Application of Formal Methods for Validating
an Interaction Policy

A. Fantechi!, S. Gnesi ?, L. Semini 3

1. Dipartimento di Sistemi e Informatica, Universita di Firenze
e-mail: fantechi@dsi.unifi.it

2. Istituto di Elaborazione dell’Informazione, C.N.R., Pisa
e—mail: gnesi@iei.pi.cnr.it
3. Dipartimento di Informatica Universita di Pisa
e—mail: semini@di.unipi.it

Abstract

Formal methods are increasingly being used to validate the design of soft-
ware and hardware components of fault tolerant systems. We describe
here an experience in the application of formal methods to the design of
fault-tolerant systems. The experience was done inside an applied research
project. The input for our validation is an interaction policy between com-
municating objects, the Multiple Levels of Integrity policy, which has been
defined within the project to enhance systems dependability.

The original definition of the policy simply consists of a set of declar-
ative rules: it can be operationally realized defining a communication
protocol. The protocol which carries out the integrity policy is formally
specified as a collection of interacting processes in a process algebra. This
formal specification is used as the basis for a formal validation of the
protocol, exploiting model-checking. Specific interaction patterns, which
subsume the most complex interaction schemata, are considered and tem-
poral logic formulae expressing the non-violation of integrity rules are
checked on them.

Keywords Integrity policies, fault tolerance, process algebras, model checking.

1 Introduction

The object—oriented paradigm has been established as the most pertinent basis
to support the development of large computing and telecommunication sys-
tems, and several important international organizations are defining distributed
object—oriented frameworks.

The software technology of fault tolerant systems is also moving towards
this paradigm. Fault tolerant systems are a class of concurrent systems that
are able to provide a service in spite of possible faults that may occur during

the computation. The design of fault tolerant systems usually includes the
modelling of faults and failures or the definition of fault tolerant schemata.
Within the object—oriented paradigm, a fault tolerant schema usually describe
a set of objects and their interactions.

An object that is part of a fault tolerant system is said to be critical if its
failure can seriously affect the ability of the overall system to fulfil its safety
requirements. Then, to enhance the dependability of fault tolerant systems, an
important issue is to limit failure propagation among communicating objects. In
particular, it is important to guarantee that a critical object (which should never
fail - or should only fail with an extremely low probability) is not influenced by
the failure of non critical ones.

One solution is to isolate critical components, dedicating to them, for in-
stance, completely separated hardware resources with respect to those dedi-
cated to the non critical ones, and to rigorously validate the critical components.
However, complete isolation is not always possible because of the inevitable co-
operation among the various parts of the system. In fact, the current trend
is towards a greater integration of different functions on the same computer
or network of computers. Another solution is to treat all the components as
critical. The advantage is that communications do not have to be limited, the
drawback is that all components have to be rigorously validated making this
approach not always feasible due to the large dimensions of systems and to the
use of “COTS” (Commercial Off The Shelf) components. Moreover, usually only
a few components are really critical.

The issue of defining a fault tolerant schema to limit failure propagation can
be solved with a compromise between the non—effectiveness of the first solution,
and the high cost of the second one, thanks to the definition of particular in-
teraction policies among objects, called integrity policies [1, 6, 18, 44, 45]. An
integrity policy assigns a level of integrity to each component of an application.
It is natural to assign a high integrity level to critical objects. Moreover, the
policy states the communication patterns among pairs of components, depend-
ing on the respective integrity levels. Once a valuable policy has been adopted,
not all the components need to be rigorously validated with the same effort, but
only those which accomplish a critical task and those which provide data for
these critical components.

Obviously, the policy itself should be seen as a critical component of the
fault tolerant system that adopts it, and therefore it needs a rigorous validation
too.

In the European GUARDS project, the Multiple Levels of Integrity policy has
been defined within an object—oriented framework [44, 45]. This policy, thanks
to OO features, is very flexible: objects are allowed to decrease their integrity
level and are thus able to receive low level data. To prevent a downgrade of the
whole system, it is sufficient to instantiate a new object capable (by means of
proper data filtering algorithms) to restore a higher level of data integrity. The
Multiple Levels of Integrity policy can be seen as a good representative of the
application of the object—oriented paradigm to the definition of fault tolerant
schemata.

This paper presents the rigorous validation of the Multiple Levels of Integrity
policy by means of the application of formal methods and related support tools
for its specification and verification.

Formal methods have already proved successful in specifying commercial and
safety-critical software and in verifying protocol standards and hardware design
[11, 21]. It is increasingly accepted that the adoption of formal methods in
the life cycle development of systems guarantees higher levels of dependability
even though formal methods cannot in general guarantee correctness. They can
however greatly increase the understanding of a system by revealing, right from
the earliest phases of the software development, inconsistencies, ambiguities and
incompletenesses, which could cause subsequent faults. Moreover, international
standards such as CENELEC EN50128 [16] recommend the use of “Formal Meth-
ods, including for example CCS, CSP, HOL, LOTOS, OBJ, Temporal Logic,
VDM, Z and B” in the software requirements specification and software design
and implementation.

We show how the Multiple Levels of Integrity policy can be specified using
a process algebra, and we show how the Multiple Levels of Integrity policy can
be verified using model checking techniques, all in a context that is quite famil-
iar to software engineers (OO systems, interaction policies). We also establish
some guidelines for the application of the model-checking approach to the early
verification of protocol scenarios other than the one considered.

Process algebras [31, 35] are formalisms that can describe a system consisting
of communicating objects at a high level of abstraction. They are well suited
to describing an interaction policy, since policies definition abstracts from the
functionalities of the objects, and the relevant events to be described are the
object invocations (the actions) which may change the object integrity level (the
state).

Model checking algorithms [19, 20] have emerged as successful formal veri-
fication techniques. They have been defined to automatically check the truth
of system properties, expressed as temporal logic formulae, on the finite state
model representing the behavior of a system. Model checkers can easily be
used by non—expert users as well. For this reason model checking has often
been preferred in industries to other verification tools, and many efficient ver-
ification environments are currently available, based on model checking algo-
rithms [14, 24, 32, 33, 17]. Model checking techniques have been already used
to check the correctness of fault tolerant applications [2, 15, 13, 34, 43]. The
main differences between the result presented here with respect to the previous
ones, is that we deal with fault tolerance in an OO framework.

This work extends [28]. The added value of this paper is that we have defined, on
the basis of the experience made in the GUARDS project and already presented
in the former work, a methodology that can be applied more in general. Though,
we have maintained the presentation of the approach strictly related to what was
done inside the project, in order to substantiate the position that the approach
is, and has been, concretely applicable. Moreover, in this revised version, we give
a more general view of the verification process itself, and enhance the discussion

on the generalization of the approach. We also add details on the validation
experience which were not included in the conference paper. Finally, a large
space is dedicated to discussion and related work.

This paper is organized as follows: in Sect. 2 we describe the Multiple Levels of
Integrity policy, and present the JACK verification environment. In Sect. 3 we
formally specify the integrity policy using the CCS/MEIJE process algebra. In
Sect. 4 we present the model checking results and discuss the key points of the
verification process. Finally, in Section 5 we deal with related works.

2 Background

The European project GUARDS (Generic Upgradable Architecture for Real—
time Dependable Systems) has addressed the development of architectures,
methods, techniques, and tools to support the design, implementation and val-
idation of critical systems [39, 44]. The architecture produced in GUARDS has
been designed to be instantiated to support different critical applications. It
consists of COTS components as well as ad hoc defined mechanisms. The for-
mal validation policy followed in GUARDS is based on the validation of selected
critical components and mechanisms of the architecture, while COTS compo-
nents are taken as already validated [38].

In particular, within the project, the Multiple Levels of Integrity policy has
been defined [44, 45], and the verification environment JACK [4, 9] has been
adopted to formally validate such a policy.

In section 2.1 we recall the definition of the GUARDS integrity policy, and
in section 2.2 we present the formal validation framework. We focus on the
CCS/MELJE process algebra and the ACTL logic, so that the reader can un-
derstand the formal specification of the policy, and the formulae expressing the
policy properties we then verify.

2.1 The Multiple Levels of Integrity policy

Integrity policies are defined to prevent failure propagation from non critical
to critical components. They are based on the notion of integrity levels: a
level of integrity, ranging over a finite set of natural values, is assigned to each
component of an application. The use of integrity levels to select those critical
components which need a rigorous validation, is also advocated by international
standards. Indeed, international standards such as CENELEC EN50128 and
RTCA-DO178B (EUROCAE ED-12B) [41] define integrity levels and discuss how
these levels can be assigned to software components.

Failure propagation is avoided by integrity policies, which define some com-
munication patterns to prevent corrupted data from reaching “high level” com-
ponents. For instance, Biba’s policy [6], which is based on [1], forbids any flow
of data from a low to a high integrity level. In [18] data can flow to a low level
and go back, if it is possible to prove that they did not lose their integrity.

The Multiple Levels of Integrity policy, defined within an object—oriented
framework, enhances the flexibility of the previous ones permitting some com-
ponents to receive low level data [44, 45]. The integrity level of the components
is decreased in these cases. To prevent a downgrade of integrity of the whole
system, it is needed to instantiate a new object capable to restore a higher level
of data integrity, by means of proper data filtering algorithms that validate
the data (e.g. this can be performed using a majority vote on redundant data
sources). The policy is based on the following concepts!:

— Each object O has an integrity level i(O), ranging from 0, the lowest, to
3, the highest. Data are assigned the integrity level of the object which
produced them. The number of levels has been chosen in GUARDS following
the international standards mentioned above.

— Single Level Objects (SLO) are objects whose integrity level is fixed.

— Multiple Level Objects (MLO) are objects whose integrity level can be dy-
namically modified. An MLO of level 3 is allowed to receive data from an
object of level 3, but also from an object of level 2 (or 1, or 0), in which
case its level is decreased to 2 (1,0, resp.).

— Validation Objects (VO) are used to extract reliable data from low level
objects.

— A set of rules is given, describing all the possible communication patterns
among pairs of components, depending on the respective integrity levels.

— The communication model is based on the notion of method invocation.
Method invocations are assigned an integrity level too. In particular, read,
write and read—write requests are considered as abstractions of any method,
with respect to the effect on the objects’ states. The level of a write request
corresponds to the level of the data which are written, the level of a read
request corresponds to the minimum acceptable level of the data to be read.
Read—write requests are assigned two integrity levels, one for read and one
for write.

2.1.1 Single Level Objects

A Single Level Object is assigned a unique integrity level (il) which does not
change during computations. Because of this, SLOs show a very restricted
behaviour with respect to the integrity levels: an SLO of level n is only allowed
to receive data from objects of level > n and to send data to objects of level
< n. In Fig. 1, an SLO with i/=1 can receive data of a greater or equal level and
produces data of level 1, which can thus be accepted as input by an SLO with

INotice that the definition of the Multiple Levels of Integrity policy deals with objects,
regardless of the fact that they may be instances of classes. The object model assumed by the
policy is close to the CORBA one: indeed a trial implementation on CORBA was immediately
possible [38].

Figure 1: SLOs receive data (D) of a greater or equal level and produce data of
their own level. Therefore, they accept write requests (WR) with a greater or
equal integrity level and they accept read requests (RR) with a smaller or equal
integrity level.

Figure 2: MLOs receive data (D) of a level greater or equal to minil and produces
data of level il.

il=1 and an SLO with i/=0. Consequently, an SLO with il=1 can accept write
requests with greater or equal integrity level, and read requests with a lower or
equal integrity level.

2.1.2 Multiple Level Objects

Multiple Level Objects are the core of the Multiple Levels of Integrity policy,
since they are allowed to receive low level data. An MLO is assigned three
integrity levels:

maxil which represents the maximum integrity level that the MLO can have.
It is also called the intrinsic level of the MLQO, since it is assigned during
the design of the application. It is a statically defined value which does
not change at execution time.

minil which represents the minimum value the integrity level of the MLO can
reach while interacting with other objects. Unlike mazil, this is not a
statically defined value: every time the MLO is invoked, a value to minil

Figure 3: Behaviour of an MLO: dotted arrows follow the MLO’s evolution,
thick arrows bind requests to the corresponding answers.

is assigned. This value depends on the level of the invocation, and it can
change (only to increase) during the computation to serve the request. No
memory of it is kept after the answer to the invocation is returned: minil
is local to an invocation.

il which is the current integrity level. It is set at invocation time to a value
among mazil and minil and decreases if lower level data are received dur-
ing the computation to serve the invocation. As for minil, il is local to
each invocation and no memory of its value is kept between distinguished
invocations.

The policy requires a new MLO instance to be created every time the MLO
is invoked, in order not to rapidly downgrade the integrity level of the whole
system. The values for il and minil taken by the new instance only depend
on the level of the invocation. As a consequence, an MLO cannot be used to
implement a component which has to store some data. This means that an
MLO, from a functional point of view, is a stateless object: only SLOs can store
data.

In Fig. 2, we show that an MLO can receive data with an integrity level greater
or equal to its “minil”, and produce data with an integrity level equal to its
“i1”. In Fig. 3, we provide an example of the evolution of an MLO in response
to an invocation: when an MLO with mazil = 3 receives a read request of
level 1, it sets its minil to 1 to “remember” that no answer with integrity level
smaller than 1 can be returned. The value of il still equals mazil: in fact, a
read request does not corrupt the integrity level of the MLO. Suppose the MLO
needs to delegate part of the answer construction, sending another read request
to a third object. The level assigned to the request equals minil: an answer to
this request is accepted if greater or equal to minil, as in this case. Since the
integrity level of the answer is 2, the MLO can accept it but il is decreased to
level 2. Finally, an answer to the first request is provided, whose level equals

i

TBe_ o=
calorll

Figure 4: A VO is able to (partly) restore the integrity of data.

o

the current i/, and the MLO restores its initial state, i.e. its maximum integrity
level is again 3.

2.1.3 Validation Objects

In real systems, it is sometimes necessary to get data from unreliable sources,
such as sensors, and use them in critical tasks. However, this use could either
lower the level of the entire system or violate the integrity policy. We thus need
a safe way to upgrade the integrity level of these data.

Validation Objects (VO) are special kinds of objects used to extract reliable
data from low level objects. An example of a Validation Object is the one that
uses a redundant number of objects as a source for the data, and performs a
majority voting on them.

From the point of view of the integrity policy, Validation Objects are SLOs,
since they provide information at a fixed level of integrity. An example is pro-
vided in Fig. 4: some data are corrupted since they are manipulated by objects
(an SLO and an MLO) with a low integrity level. The VO manages to (par-
tially) restore the integrity of the data. In this example the VO is able to return
data at level 2.

2.1.4 Rules for communications between objects

The policy defines a set of rules to constrain communication among pairs of
components, depending on their integrity level. We list them in Table 1 con-
sidering all the possible combinations of invocations. In the table and in the
following, we call A and B the invoking and the invoked objects, respectively.
The first part of the table considers invocation conditions. The invocation
is refused if the specified condition is not satisfied. If it is accepted, the invoked
object might have to change its integrity level, as shown in the second part of
the table, where invocation effects are considered. We only treat the cases in
which the invoked object is an MLO, since only MLOs can update their level.
In the case of read or read—write invocation, an answer is returned at the
end of the method execution. To model the effect of the answer on the invoking
object, there is a last rule, which is not in the table, since it only applies in
one case and does not deserve a tabular presentation. If the invoking object

Conditions| A&B SLOs | A SLO, B MLO A MLO, B SLO A&B MLOs

A reads B | il(A) <il(B) | il(A)<mazil(B) minil(A) <il(B) minil(A) <mazil(B)

A writes B| il(B)<il(A) always il(B) <il(A) always

Ar-w B | il(A)=il(B) | il(A)<mazil(B) | minil(A) <il(B) <il(A) | minil(A) <mazil(B)

Effect A SLO, B MLO A& B MLOs
minil(B) := il(A); minil(B) := minil(A);
A reads B il(B) := mazil(B) il(B) := mazil(B)
A writes B| il(B) := min(il(A), maxil(B)) il(B) := min(il(A), maxil(B))
Ar-w B mindl(B), il(B) = il(A) minil(B) := minil(A);

il(B) := min(il(A), mazil(B))

Table 1: Conditions to be satisfied for a method invocation to be accepted, and
the effect on the level of objects after acceptance.

was an MLO, then the returned data may decrease its integrity level as follows:
il(A) := min(il(A),il(B)).

2.1.5 An Example

As an example of application of the policy, we consider a safety-critical system
controlling a chemical plant: the data on which the control law operates are
high integrity data. The control algorithm itself has a high integrity level.
Part of the data is from time to time stored to enable off-line analysis of the
production of the plant. The storing and analysis functions, though important
for the productivity of the plant, are not safety critical, and hence have a lower
integrity level. In principle, they could be isolated as much as possible, confining
them for example on a separate computer. However, suppose that the control
and the analysis functions use internally the same integration algorithm, the first
one on vital data, the second on data which is also entered from the operator,
which therefore cannot be trusted. All the identified functions can be hosted on
the same computer, provided that they do not violate the integrity policy that
forbids the lower integrity functions to write on the vital control data. Note
that the integration function could now be used from both the analysis and the
control algorithms. The object structure of this example system could be:

— A high integrity SLO implementing the control algorithm;

— A low integrity SLO implementing the storing function;
— A low integrity SLO implementing the analysis function;

— A high integrity MLO implementing the integration algorithm.

The integration algorithm (note that this is a stateless object) would lower its
integrity level when invoked by the analysis function to access non-critical data.

Only the high integrity SLO and MLO above need to undergo a thorough
validation.

2.2 Formal Validation Methodology in GUARDS

All the critical mechanisms (i.e. Inter—Consistency mechanism, Fault—-Treatment
mechanism, and Multiple Levels of Integrity policy) of the GUARDS architecture
have been validated according to the following steps [3]:

— Formal specification of the mechanism using the CCS/MELJE process alge-
bra [10].
Process algebras are based on a simple syntax and are provided with a
rigorous semantics defined in terms of Labelled Transition Systems (LTSs).
LTSs describe the behaviours of a system as sequences of elementary actions,
where each action is seen as a state transformer.

— Use of the ACTL temporal logic [23] to describe the properties that express
the desired behaviour of the mechanism.

Temporal logics have been proposed [23, 27] to provide a means to express
properties of concurrent systems at a high level of abstraction. The logic
ACTL is a branching-time temporal logic whose interpretation domains are

LTSs.

— Generation of the (finite state) model of the mechanism.

To this end, we use the tools of the JACK (Just Another Concurrency Kit)
verification environment [4, 9]. JACK is a formal specification and verifica-
tion environment based on the use of process algebras, LTSs and temporal
logic formalisms, supporting many phases of the systems development pro-
cess.

— Model checking of the ACTL formulae against the model of the mechanism,
using the efficient model checker for ACTL available in JACK, AMC [22].

Model checking is an automated verification method for checking finite state
systems against properties specified in temporal logic [19, 20]. The proof
of the properties is carried out by means of an exhaustive search on the
complete behaviour (model) of the system.

The choice of CCS and JACK was made inside the GUARDS project also to have
a testbed on which to test and refine the verification tools themselves. Indeed,
CCS is one of the formal methods listed in the EN50128 standard, so its use

10

a:P Action prefix Action a is performed, and then process P is exe-
cuted. Action a is in Act,

P+ Q Nondeterministic choice Alternative choice between the behavior of process
P and that of process Q
PllQ Parallel composition Interleaved executions of processes P and Q. The

two processes synchronize on complementary in-
put and output actions (i.e. actions with the same
name but a different suffix)

P\a Action restriction The action a can only be performed within a syn-
chronization

Table 2: A fragment of CCS/MEIJE syntax

was positively considered in an industrial context which looks compliance to
that standard (one of the partners of the GUARDS project was indeed a railway
signalling company): the use of a basic formalism such as CCS, directly related
to a finite state representation, is in line with the conservativeness of safety
critical software industries. Obviously, other formalisms equipped with powerful
verification tools could have been used as well following the same validation
process.

2.2.1 The CCS/MEILJE process algebra

Process algebras [31, 35] rely on a small set of basic operators, which corre-
spond to primitive notions of concurrent systems, and on one or more notions
of behavioral equivalence or preorder. Behavioral equivalences are used to study
the relationships between descriptions of the same system at different levels of
abstraction (e.g., specification and implementation).

The process algebra we have used is CCS/MEIJE [10]. In CCS/MELJE a
system consists of a set of communicating processes. Each process executes
input and output actions, and synchronizes with other processes to carry out
its activities. The CCS/MELJE syntax is based on a finite set Act of atomic
action names. Such names represent output actions if they are terminated by
“I” or input ones if they are terminated by “?”. Moreover, 7 denotes the
special action not belonging to Act, representing the unobservable action (to
model internal process communications). We assume Act, = Act U {7}.

The syntax of CCS/MEIJE processes is based on a set of operators that
allow complex processes to be built from simpler ones. The syntax permits
a two-layered design of process terms. The first level is related to sequential
reqular terms, the second one to networks of parallel sub-processes supporting
communication and action renaming or restriction. In Table 2 we present the
subset of the CCS/MELJE operators we will use in the following.

The semantic models of CCS/MELJE terms are Labelled Transition Systems
which describe the behavior of a process in terms of states, and labelled transi-
tions, which relate states. An LTS is a 4—tuple A = (Q, qo, Act,,—), where: Q
is a finite set of states; qo is the initial state; —C @ x Act, X @ is the transition
relation. In Table 3, we provide the structural operational semantics of the

11

a:P a:P-5H P

P2 p Q-4 q
P+ _ S A —
@ P+qQ-%L P P+Q -5 Q@
il P pr Q% qQ PPt g
PlQ-%PQ PlQ-5P|Q PIlQ-5 P @
PP
P\a — b#a

P\aLP’\a

Table 3: Structural operational semantics of the considered CCS/MEIJE opera-
tors, in terms of LTSs

considered CCS/MELJE operators, in terms of LTSs [35].

2.2.2 The ACTL temporal logic

We introduce here the branching time temporal logic ACTL [23], which is the
action based version of CTL [27]. ACTL is well suited to expressing the prop-
erties of a system in terms of the actions it performs at its working time. In
fact, ACTL embeds the idea of “evolution in time by actions” and is suitable for
describing the various possible temporal sequences of actions that characterize
a system’s behavior.

The syntax of ACTL is given by the following grammar, where ¢ denotes a
state property:

b= true |~ | 9 & & | [ulg | AG ¢ | Alp{u}U '}’ | Elo{uyU{u'}o]
In the above rules p is an action formula defined by:

u:::true|a|uVu|~u for a € Act

Labelled transition systems are the interpretation domains of ACTL formulae.
We provide here an informal description of the semantics of ACTL operators.
The formal semantics is given in [23].

Any state satisfies true. A state satisfies ~¢ if and only if it does not satisfy
¢; it satisfies ¢ & ¢’ if and only if it satisfies both ¢ and ¢'. A state satisfies
[a]¢ if for all next states reachable with a, ¢ is true. The meaning of AG ¢ is
that ¢ is true now and always in the future.

A state P satisfies A[¢p{p}U{p'}¢’] if and only if in each path exiting from
P, u' will eventually be executed. It is also required that ¢’ holds after pu/',
and all the intermediate states satisfy ¢; finally, before u' only p or 7 actions
can be executed. The formula E[¢{u}U{u’'}¢'] has the same meaning, except
that it requires one path exiting from P, and not all of them, to satisfy the

12

<p>¢ AG¢ Algp{p}U{n'}¢']

LN
NI
(A ;

Figure 5: Models and ACTL formulae.

given constraint. A useful formula is A[p{true}U{pu'}¢'] where the first action
formula is true this means that any action can be executed before pu'.

Some derived operators can be defined: ¢ | ¢' stands for ~(~¢ & ~¢');
<p>¢ stands for ~[u]~¢ ; finally, EF ¢ stands for ~AG~¢ (this is the eventually
operator, whose meaning is that ¢ will be true sometime in the future).

In Figure 5 we exemplify the truth of some formulae on some models.

Example. The ACTL logic may express safety and liveness properties in terms
of the actions a system can perform. Safety properties claim that nothing bad
happens; i.e., that there is no path in the LTS in which a given action sequence
occurs. Liveness properties claim that something good eventually happens; i.e.,
that there exists a path in the LTS in which a given action sequence occurs. In
this setting, for example, the formula:

AG[a)Altrue{ false}U{b}true]

means that, in all paths of the LTS, any action a has to be immediately followed
by an action b. The formula well characterizes safety requirements. On the
other hand, a typical ACTL formula stating a liveness property is, for example:

EF true

which means that on some path of the LTS, action b will eventually be executed.

3 Formal specification of the Integrity policy

We present in this section the formal description of the GUARDS integrity policy
using the CCS/MELJE process algebra.

13

Our claim is that process algebras are particularly suited to describing the
Multiple Levels of Integrity policy. In fact, the policy definition abstracts from
the functionality of the objects, and the actions are the relevant events we need
to describe, i.e. method invocations and method returns (i.e. answers). The
actions may change the object integrity level, which is our abstraction of the
state. We model method invocation through a remote procedure call, in which
the invoking object waits for the method return event.

The formal description of the policy is given on the basis of the rules in Sec-
tion 2.1.4. Note that these rules cannot be formalized within a static framework,
such as traditional type theory, due to the presence of dynamically changing in-
tegrity levels for MLOs. We rather need to associate a process to each object,
to model its dynamic behaviour with respect to the integrity level.

We first need to define the process variables and the set of actions performed
by SLOs, MLOs, and VOs. We consider here only the action labels, abstracting
from their possible role as input or output actions.

SLOx, MLOx, and VOx are process variables denoting the processes defining a
Single Level Object with integrity level x, a Multiple Level Object with
the statically defined mazil value x, a Validation Object providing data of
level x, respectively.

read requestx is a read request action of level x. This means that the invo-
cation was issued either by an SLO with x as il or by an MLO with x as
minil.

answery is an answer action. Value x can be the current il of the object which
is answering, or -1: answer_q means something like: “I cannot answer”
(we use this notation for the sake of uniformity).

write_requesty denotes a write request issued by an object with x as il. We
call x the level of the write request. Write requests are not answered.

read write requestx,y denotes a read—write request issued either by an MLO
with x as minil and y as il or by an SLO with il = x = y. Variable x denotes
the read level of the request, variable y denotes the write level.

We first describe the specification of an SLO. In Sects. 3.2 and 3.3 we will
describe MLOs and VOs.

3.1 Formal description of the behaviour of SLO,

We give in the following the specification of an SLO with integrity level equal
to x as a CCS/MELJE mutually recursive process.

14

SLO0x = read_requesty? (case y<x) : SAT_R_REQ_Sg
read_requesty? (case y>x) : answer_q! : SLOx
write requesty? (case y<x) : SLOx
write requesty? (case y>x) SAT_W_REQ_Sy

read_write_requesty,z? (case y<z<x) : answer_q!: SLOx

4+ o+ o+

read write_requesty ;7 (case y<x<z) : SAT_RREQ_Sx

read vrite requesty 7 (case y>x) answer_q! : SLOx

where read requesty? (case y<x) : P is a shorthand for the process:
read request(?:P + read requestq7:P +...+ read requestx?:P.

We will use this kind of shorthand throughout. Indeed, since the relevant de-
cisions only depend on the relative value of the level of the interacting parties,
we can describe these processes using the inequalities y < x, ... to collapse sets
of equivalent behaviours into one line of description.

When a read request of level y is received and y < x, then the SLO makes
the needed computation to serve the request. On the contrary, a read request
of level greater than x cannot be considered, since the SLO has not the needed
integrity level to supply an answer.

When a write request is received, a computation can be performed to satisfy
the requests, but no answer is due. If the level of the request is smaller than x,
then it is ignored, and no computation is performed.

A read-write request is dealt with in the same way as the composition of
read and write ones: it is accepted only if the read level y is smaller or equal
than x and the write level z is greater or equal than x.

With SAT_R_REQ_Sx we represent an SLO, which satisfies a read or a read—write
invocation. Its specification is:

SAT R BEQ_Syx =
answerx! : SLOx + (1)
write_requesty! : SAT_R REQ_Sx + (2)
read_requesty! : (
answery? (case y<x) : answer_q! : SLOx + (3)
answery? (case y>x) : SATR.REQSx) + (4)
read_write requesty y! : (
answery? (case y<x) : answer_q! : SLOx + (5)
answery? (case y>x) : : SAT_RREQ_Sx) (6)

Indeed, both to satisfy a read and a read—write request, the SLO can:

— provide the answer to the caller. In this case the SLO has ended its duty.
The answer carries the integrity level of the SLO: this is necessary if the
invoking object is another MLO that might need to update its il; (1)

— send a write request to another object and continue; (2)

15

— send a read or a read—write request, wait for the answer. Continuation
depends on the level of the answer received, if this is too low, then the
computation is stopped, and a “I cannot answer your request” message is

sent; (3)(4)(5)(6)

The specification is non—deterministic, and the SLO might get into a loop and
never send an answer back. This happens if steps (1), (3), or (6) are never
taken. Non-determinism is a consequence of the abstraction from the object
functionalities. In particular, step number (1), which is the normal loop exit,
is taken or not depending on the functional behaviour of the object , and it is
correct that, if no integrity level violation occurs (in this case step (3) or (6)
are taken), the overall behaviour of the object depends only on its functional
description.

With SAT_WREQ_Sx we represent an SLO, which satisfies a write invocation.
The description of SAT_W_REQ_Sx can be immediately derived from SAT_R_REQ_Sx.
Indeed the behaviour of SAT_W_REQ_Sx corresponds to that of SAT_R_REQ_Sx, where
all actions of the type answerji! are removed, since no answer is due to write
requests.

SAT_WREQ_Sx =
SLOx +
write_requesty! : SAT_W_REQ_Sx -+
read_requesty! : (

answery? (case y< x) : SLOx +

answery? (case x<y) : SAT_W_REQ-Sy) +
read_write_requesty y! : (

answery? (case y<x) : SLOx +

answery? (case x<y) : SAT_W_REQ_Sx)

3.2 Formal description of the behaviour of MLO,

The description of MLOs is more complex than that of SLOs. One particular
difference arises especially when dealing with write requests: while an SLO
ignores a write request with a low integrity level, an MLO always accepts a
method invocation corresponding to a write request (decreasing il to the level
of the request).

MLOx = read_requesty? (case y<x) : SAT_RREQy,x, x
read requesty? (case y>x) : answer_q! : MLOx
write requesty? (case y<x) : SATW_REQq,y,x
write requesty? (case y>x) : SAT.WREQp, x,x
read_write_requesty,z? (case y<z<x) : SAT_RREQy,z,x

+ + + + + +

read vrite requesty 7 (case y<x<z) : SAT_RREQy,x,x

read vrite requesty ;7 (case y>x) : answer_q! : MLOx

16

When a read request of level y is received and y<x, then the MLO makes the
necessary computation to serve the request taking y as its minil value, and x,
its maaxil value, as its value for i, and behaves like SAT R REQy,x,x. On the
contrary, a read request of level greater than x cannot be considered, since the
MLO does not have the integrity level needed to supply an answer.

When a write request is received, the MLO takes 0 as minil, and the mini-
mum among x (its mazil) and y (the level of the request) as il. A computation
can then be performed to satisfy the requests, but no answer is due.

A read—write request is dealt with as the composition of a read and a write
one. Depending on its read and write values, the object can refuse the invoca-
tion, and behave as SAT R REQy,z,x Or as SAT R REQy,x,x.

Processes SAT R REQy,z,x and SAT R REQy,x,x are obtained by instantiating the
following parametric definition of SAT R REQ pin,i1,max- LThe CCS/MEIJE descrip-
tion of process SAT R REQy,x,x is obtained, for instance, by substituting y for min,
and x for both il and max in SAT R REQmin,i1,max-

SAT_R_REQmin,i1,max represents an MLO which satisfies a read invocation: the
MLO is characterized by the three values min, il, and max. We recall that,
when satisfying an invocation, the MLO can change these values, depending on
the integrity level of other objects it communicates with during the computation.
When the request has been satisfied, the MLO forgets the min and il values
and keeps only its intrinsic integrity level max which has never changed during
the computation. This is possible since we made the assumption that a new
object instance is created every time the object is invoked, and thus the object
keeps no memory of previous invocations.

SATlR—REQmin, il, max —

answerij! : MLOmax +
write requestij! : SAT_R_REQmin, il,max +
read_requestpyin! : (

answerx? (case x<min) : answer_q! : MLOmax +

answerx? (case min<x<il) : SATRREQuip, x,max +

answer;? (case x>il) : SAT_RREQpin, i1, max) +
read write.requestpin j1! @ (
answerx? (case x<min) : answer_q! : MLOmax +

answerx? (case min<x<il) : SAT—R—REQmin,x,max +

answerx? (case x>il) : SAT_R_REQmin,i]_, max)

The behaviour of SAT WREQ o,y,x and SAT_WREQ o,x,x corresponds to that of
SAT R REQ 0,y,x and SAT_RREQ o,x,x where all actions of the type answeri1! are
removed, as we have done in the case of SLOs. We omit their definition.

3.3 Formal description of the behaviour of VO,

A validation object provides data at a fixed integrity level, that is the level of
integrity to which it is able to raise data. It only accepts read requests, and

17

behaves as follows:

V0x = read requesty? (case y<x) : SATR_REQ_Vx +

read_requesty? (case y>x) : answer_q! : VOx

In the above definition the validation object can try to satisfy the request, or it
answers immediately that this is not possible. With SAT_R_REQ_Vy we represent
a VO, which satisfies a read invocation, defined as in the following:

SAT_RREQ_Vy = answerx! : VOx + answer_q ! : VOx

i.e. a request satisfaction can fail as well. This is the case, for instance, if the
VO cannot find all the (redundant) data it needs.

4 Validation of the Integrity policy

The Multiple Levels of Integrity policy has to guarantee that the interaction
among different components does not affect the overall confidence of the ap-
plication, i.e that a non—critical component does not corrupt a critical one. In
particular, data of a low integrity level cannot flow to a higher integrity level
(unless through a Validation Object, which is the only kind of object authorized
to break this rule). This condition should hold for isolated objects and in any
schema of interaction among objects.

In particular, we address nested and concurrent invocations as validation
cases, since in an object—oriented framework most schemata can be reduced to
combinations of these two interaction patterns. We show in the following some
properties which are sufficient to ensure that any interaction schema is not
erroneously violated when read requests are considered. The properties that
deal with write and read—write requests can be similarly expressed following the
rules of Section 2.1.4.

Prop 1 An object with intrinsic level i cannot provide answers of level j > i.

Prop 2 An object with intrinsic level i does not accept read requests of level
Jj >

Prop 3 If an MLO with intrinsic level i receives a read request of level j < 1,
and, to serve the request, it invokes with a read request a third object
of intrinsic level mazil smaller than j, then it cannot answer the initial

request. Indeed, its level is decreased to the mazil value of the third object
because of the new data received.

Prop 4 If an MLO with intrinsic level i receives a read request of level j < 1,
and then a write request of level £ < j, then it can still answer the
read request. In other words, its level is not decreased by the concurrent
invocation.

18

We will check these properties against the model of an isolated object or the
model of a combination of MLOs based on nested or concurrent invocation.
Indeed, the most interesting cases are those involving MLOs, which can change
their integrity levels during the computation.

The above properties are first formalized as ACTL formulae, then the AMC
model checker is used to verify their satisfiability on the model of the selected
subsystems.

Since actual validation by model-checking requires non—parametric models,
we will define particular instances of the considered validation cases, which will
be shown to be sufficiently representative to be generalized. Hence, we will
use these instances to prove the set of temporal logic formulae expressing the
integrity properties above, and then we will discuss how model checking results
can be generalized. For example, the case of nested invocations is generalized
in order to prove a more general variant of Prop 3:

Prop G—3 If an MLO with intrinsic level i receives a read request of level j < 4,
and, to serve the request, it starts a chain of nested invocations to other
objects, one of which has intrinsic level k < j, then it cannot answer the
initial request.

4.1 Isolated object

Multi Level Objects (MLOs) have already been identified as the most complex
and interesting ones, and are the core of the innovative integrity policy. Hence,
we concentrate on them to show the validity of Prop 1 and 2 above.

In particular, we consider a system consisting only of the object A, which
is an MLO with mazil equal to 2. In this case, Prop 1 and 2 can be expressed
by the following ACTL formulae?:

F1: ~ EF (A _answers!) true
F2: AG [Ay-read_requests?] A [true {false} U {As_answer_;!} true

i.e. Ay cannot provide answers of level 3, nor serve read requests of level 3.

4.1.1 Model—checking results and generalization

Formulae F1 and F2 have been proven true on the model of A using the model
checker AMC for ACTL. The process algebraic description of A has a low com-
plexity, and the LTS has a really small number of transitions and states (see
Table 4).

For the other values (i.e. 0, 1, 3) of mauzil, we can repeat the verification
using the corresponding formulae and processes. To provide an intuition of how
the formalization of properties Prop 1 and 2 looks like for the other values of

2In the following we rename requests and answers: requests carry the name of the object
which is invoked to serve the request, answers take the name of the answering object.

19

maxzil, we provide the general formulae and instantiate them to the various cases.
Here and in the rest of this section, we will use some shorthand to express the
general formulae: for instance & ¢; stays for ¢ & ¢s3.

i>1

Prop 1 says that any A; satisfies:
& ~ EF(A;_answer;)true.
i>i

F1 is the instantiation of this formula for A, the other instances are:

Ao: ~ EF (Ag_answery!) true & ~ EF (Ag_answersy!) true &
~ EF (Ag-answers!) true

Ai: ~ EF (A _answery!) true & ~ EF (A _answers!) true

As: true

Prop 2 says that any A; satisfies:

& AG[A; read_request;?) Altrue{ false}U{A;_answer_i!}true]

i>i

F2 is the instantiation of this formula for A, the other instances are:

Ao: AG [Ag_read_requesty?
AG [Ag-read_requests?]

AG [Ag-read_request3?]

]

1 A [true {false} U {Ag-answer_1!} true]
A [true {false} U { Ag-answer_1!} true]
A [true {false} U { Ag-answer_1!} true]
Ay AG [Arread_requests?] A |
AG [A; read_request3?] A
Asz: true

true {false} U { A1 _answer_;!} true
[true {false} U {A1_answer_;!} true]

4.2 Nested invocations

We take into account here the case in which an MLO of a given level, in re-
sponse to a read-request, invokes with a read-request another MLO of a lower
integrity level. This is indeed the most complex case of nested invocations:
all the other combinations (SLO vs. MLO, read-request vs. write-request or
read/write-request, different levels of integrity) can be reduced to this one: in
any case, a separate validation by model-checking of these other cases can be
made following what is presented here.

We describe such a system with the parallel composition of the two objects:

— Ao which is an MLO with maxil 2
— Bp which is an MLO with mazil O

20

To clarify the behaviour of the objects in case of nested invocations, we consider
a possible scenario, depicted in Fig. 6. Let a read request of level 1 be received
by A, and assume that the functional description of A; imposes that, to serve
such a request, a further read request must be sent to By. We list the steps of
such an execution of Az || Bo:

. at the beginning we have: A3 || Bo;

. Ag receives the read request performing action Ay _read requesti?;
. the request is accepted, since request_level = 1 < maxil(ag) = 2;

. we now have: SAT_RREQ1,2,2 || Bo;

. Bp_read_requesti! is output by A (and received by Bo);

S U W N =

. the request cannot be accepted by Bg since:

minil(SAT_R_REQ1,2,2) = request_level = 1 > maxil(Bg) =0;
7. we thus now have: (A2 waiting for an answer) || Bg _answer_1 ! : Bg where
“ Ao waiting for an answer” is equivalent to:
Bo_answer-17 : Ag_answer-1! : Ao + Bg_answerq? : Ap_answer-q! : Ay +
Bo-answery? : SAT R REQ1 1,2 + Bo-answerp? : SAT R REQq 2,2 +
Bo-answer3? : SAT R REQ1 2 2

8. Bp-answer-1! is output by By (and received by As);
9. we thus have: Ay _answer-1!: Ag || Bo;

10. Ap_answer-1! is output by As to acknowledge that it cannot satisfy the
request it was trying to serve;

11. we end up back in the initial configuration: Az || Bo
The behaviour corresponding to this scenario is:

A, read request,?
A2 || Bo SAT_R_REQ 2,2 || Bo

I .. + Bpo_answer-17:Ao_answer-q!:A9 + ... || Bo_answer -1!:Bg

~~
A, waiting for an answer

5 Ao _answer-1!: A || Bo
ho-ansver.;! 1 || Bo
4.2.1 Properties in the case of nested invocations
Prop 3 in the case of Ag || Bg can be expressed by the ACTL formula:

F3: AG [Aj_read_request;?] AG [v] A [true {u} U {A2_answer_,!} true]

with g =~ (As_answerg!V As_answery |V As_answera!V As_answers!) and v =
By _read_requesty!V By _read_request,!V By _read_requests!V By _read_requests!

i.e., if A5 receives a read request of level 1 and then sends a read request to By,
then the unique next visible answer has level —1.

21

© © O

Initial state Vertex to be explored Vertex explored

A_2_read_request_0 ?

A_2_read_request_2 ?

©<

A_2 read_request 1? "O B_0_read_request_1! ~ B_0_answer_1?

A2 read_request 3 ?

A_2 answer-1! B_0_answer-1?

Figure 6: A, behaviour in the case of nested invocations.

4.2.2 Model-checking results and generalization

Formula F3 has been proven true on the model of A3 || Bo. The LTS produced
for A2 || Bo consists of 851 transitions and 280 states.

The generalization step deals with the integrity levels. We would consider
all the models built with A; and By, and read_request;, for any 4,7,k such
that i > j > k and check the corresponding instances of the following general
formula expressing Prop 3:

& AG [Airead_request;?] AG |

\</ . By, _read_request,,! |
i< 0.

k
m=

A [true{~ \?0 A;_answery,!} U {A;_answer_q!}true]

We can repeat the model-checking for any 14, j, k, and it is easy to see that the
result of model—checking will not change. The proven properties guarantee that
data do not flow from a given level of integrity to a higher level of integrity
through a pair of nested invocations.

A further generalization step can be made, to conclude that data do not flow
from a given level of integrity to a higher one, through any number of nested
invocations which include an invocation to an object with a lower level than
the level of initial read invocation (Prop G-3). We reason by induction. We
consider n objects B! || B2 ||...|| B® , where B! is the first object of the chain,
i.e. the one receiving the first read invocation. Let j be the integrity level of
such an invocation. The inductive assumption guarantees that if any of the Bs
has an integrity level lower that j, then the answer has level -1. Thus, we can

safely simulate the behaviour of the parallel composition B ||B? || ... || B* with
an MLO Cx with k<j. Hence, once we have proved that A||Cx behaves correctly,
we can conclude that this is also true for A || B ||B?||...| B™.

22

4.3 Concurrent invocations

We now consider the case of two concurrent invocations of the same object.
This means that two requests sent to an object are served concurrently. The
Multiple Levels of Integrity policy imposes the creation of two instances of the
object to serve these two requests.

We model this through the definition of two concurrent copies of the ob-
ject, each accepting one of the requests. Alternatively, we could have explicitly
modelled object creation.

We chose the first option, according to what we have done in Section 3, where
we modelled MLOs recursively, requiring the MLOs to restore their integrity
level after answering a request. This way we could both satisfy the policy
constraint of having an MLO with its intrinsic integrity level each time it is
invoked and of having a finite state model associated with each system. On the
contrary, explicit modelling of object creation generally leads to infinite state
models.

Assume Ap is an MLO with mazil 2. We analyze the scenario corresponding to
to the parallel composition Ay || A2 when a read request of level 1 and then a
write request of level 0 are received, and show that the write request does not
influence the answer to the read request.

at the beginning we have Ag || Ag;

a read_request4 is received;

the request is accepted, since 1 < mawzil(A2):
we now have SAT R REQ1,2,2 || A2;

a write_request is received;

the request is accepted unconditionally;

we then have: SAT R REQq,2,2 || SAT_-W_REQo,0,2;
answersp is sent back;

we are in situation As || SAT_W_-REQg,0,2;

10 the computation started by the write request ends, and we are back to the
initial situation Ag || As.

© 0 NSOt WD

Fig. 7 gives a partial view of the global LTS representing the behaviour of Ag || Az,
with respect to the above scenario. To avoid multiple synchronizations, we have
used (although not shown for simplicity) the CCS-MEIJE relabelling operator,
and introduced the labels first and second to distinguish the actions of the two
objects. We assume that each of the two copies of object Ag sends an ack after
receiving a request. The ack to a read request can be firstAg_called_read ! or
secondAg_called read !, depending on which copy of As accepted the request.

We can observe from Figure 7, that the two invocations are interleaved, but
independent, due to the stateless nature of the MLOs. Actually, this formaliza-
tion has allowed the nature of concurrency of MLOs to be singled out. Given
this independence, properties about non—interference are trivially guaranteed.
Nevertheless, we report in the following the application of model checking veri-
fication to this case.

23

IsecondA_2_writing IfirstA_2_writing

IfirstA_2_answer_2 . IsecondA_2_answer_2

IsecondA=2-writing IfirstA_2_writing.

IsecondA_2_called_write X 2A_2 write request_2 ?A_2 write_request_2 'firstA_2_called_write

IfirstA.2_answer_2 1secondA,2_answer [2

firstA_2 called_read ifirstA_2_called_read firstA_2_called read tsecondA_2lcalled_read tsecondA.2 caled read tseoondA 2 called_read
1

TsecondA _2_called_write ™~ ?A_2_write_request 27~ ?A_2_read_request_1 = ?A_2_read_request_1 —“2A_2 write_request_2 = IfirstA_2 called write

IsecondA_2_writing firstA_2_writing

Figure 7: Concurrent Invocations.

4.3.1 Properties in the case of concurrent invocations

Prop 4 for the case of Aa || A2 receiving a read request of level 1 and a write
request of level 0 is formalized as follows:

F4: AG [Ay_read_request,?] A [true {true} U {As_answery!} true]
&
AG [Asread_request,?] E [true {~ p} U {As_write_requesty?} true]

where u stays for As_answer_1!V As_answerg! V...V Ay _answers!

This means that a write request of level 0, which decreases the MLO integrity
level, can be accepted while a read request is being served, without influencing
it: the two requests are dealt with independently by the two instances of 5.

4.3.2 Model-checking results and generalization

Formula F4 has been proven true on the model of Az || A2. The LTS produced
for validating the concurrent invocations case study consists of 1168 transitions
and 400 states.

To generalize our result with respect to the integrity levels, we need to prove
that the following formula holds for all A;s:

& AG [Airead_request;?) A [true {true} U {A;_answer;!} true]
i<i

&

& AG [A; read_request;?]

i<i

E [true {~ "V A;_answerp!} U {kv A; write_requesty?} true)
3 <7J

J

24

A simple solution is to repeat the proof for all the cases, using any A; instead of
Ao, read_request; with any j < i instead of read_request;, and write_requesty,
(for k < 1) instead of write_requesty, and prove that the model satisfies the
corresponding instance of the above general formula expressing Prop 4.

Finally, according to the policy, any number of concurrent invocations of an ob-
ject is allowed. For the sake of validation via model checking, we rather need to
model the objects’ behaviour via a finite state machine and thus we need to limit
the number of possible concurrent invocations to a bound quantity. Of course,
this can be as large as we want, thus obtaining a reasonable approximation of
the general result.

A different solution, that does not need to bind the number of concurrent
invocations, is to prove the effective independence between two concurrent MLO
instances. To experiment this solution we proved by model checking that when
one of the copies of Ay accepts a request, then it cannot accept other requests
before answering the first one, as expressed by the following formula.

F5: AG [firstAs_called_read!] A [true {~ p} U { v firstAs;_answery!} true]

y 2

where

= firstAs_calledread! V firstAs_called_write! V first As_called_read_write!

4.4 The state explosion problem

The application of the model checking approach can sometimes be affected by
the so—called state explosion problem, when the parallel composition of several
processes is considered. Indeed, when two or more concurrent processes are
considered, the LTS dimensions can grow exponentially.

One way to solve the state explosion problem is to impose some restrictions
on the behaviour of the system under consideration, to limit the number of
states. These restrictions can be made by looking at the properties to be verified
and cutting the paths which do not affect the validity of the property, if they
exist.

Though the state explosion problem was not a concern for this validation
case (see Table 4), we discuss how we could have restricted the behaviour of
the nested invocation pattern of Section 4. The restriction of A2 || Bo could
be operated in two steps: first constrain As to react to the request received by
actually sending a read request to Bg. This is the consequence of an assumption
on the functional behaviour of A>. Let A5 be the restricted A2. The second
restriction involves the level of the request sent to Bg. We prove that this level
is 1, by checking the following formula against the model of A5.

AG [Ay-read_request ?] A [true {false} U {By_read_request;!} true]

25

Formula | States | Transitions Time

F1 23 96 < 0,1 sec.
F2 23 96 < 0,1 sec.
F3 280 851 < 0,1 sec.
F3’ 17 20 < 0,1 sec.
F4 400 1168 < 0,1 sec.
F5 400 1168 < 0,1 sec.

Table 4: Summary of the model-checking results. Proofs were made on a Sun
Ultra 1.

The restricted behaviour of Ay || Bg is represented by the automaton fragment
in Fig 6. The LTS has only 20 transitions and 17 states. Now, we can prove
that the restricted model of Ag || Bg satisfies the following formula:

F3’: AG [Ay-read_request,?] A [true {u} U {Az_answer_1!} true]

which strengthens F3 asking that, when A receives a read request of level 1,
then the unique next visible answer has level —1.

In the above reasoning, we have modified the processes by exploiting the
process algebras restriction operator.

5 Related Work

The use of process algebras to validate interaction policies is not new. In [29],
security policies are addressed. The authors introduce a new process algebra,
called SPA, derived from CCS. In SPA, the set of actions is partitioned into two
subsets corresponding to the two possible action levels: low and high. To verify
security properties, they define the Compositional Security Checker, a tool that
verifies the semantic equivalence between processes.

The main differences between their approach and ours lies in the action set
partition, which we claim is not necessary. In particular, we can exploit standard
process algebras and verification tools, while they have to define ad hoc ones.
Moreover, we prefer to use a logical approach through model checking to the
verification of interaction properties, since it is generally more abstract and also
more efficient than the one based on behavioural equivalences.

Similar ideas are also used in the formalization and analysis of architectural
styles in an operational framework [5]. The authors use a process algebra to

26

formalize the interactional properties of components and connectors, abstracting
from their functionalities. Similarly to us, they describe a component/connector
with a term of a process algebra and interactions are specified through actions.
They again use the notion of bisimulation equivalence to reason on the properties
of the architecture, with particular interest in architectural compatibility and
conformity.

An alternative approach to verify fault tolerant mechanisms is to exploit
theorem proving techniques [30]. In the theorem proving approach, the sys-
tem state is modeled in terms of set—theoretical structures, and operations are
modeled by specifying their pre— and post—conditions in terms of the system
state [12]. Properties are described by invariants that must be proved to hold
through the system execution by means of a theorem prover, usually with the
help of the user. This is a drawback with respect to model checkers, which are
automatic tools. On the contrary, the proof theoretical approach can partially
overcome some of the drawbacks of the model checking one, especially those
related to state explosion problems.

Theorem proving and model checking are complementary techniques and
some environments to combine them have recently been defined. One of the
most remarkable is the integration of the BDD based model checker [14] for the
propositional p—calculus within the framework of the PVS proof checker [40, 42].

More recently, the STeP environment has been proposed [7, 8]. It supports a
diagram based model checking procedure which can verify infinite state systems
using STeP’s deductive tools.

Abstraction from data and functional details, which maintains only be-
havioural information in a process algebraic style, has been recently adopted
in the definition of the so called behavioural type systems [37, 36, 26]. These
type systems associate to a component an abstraction of their behaviour in a
suitable process algebra, aiming to check the compatibility of communicating
concurrent objects, with regard to the matching of their respective behaviour.

The analogy with our approach lies in the interest to verification, though
in the case of behavioural types the focus is in a verification of compatibility
between components (which can be reduced to some form of equivalence or
pre-order verification between two behaviours) while in our case the focus is on
the verification of properties over a single behaviour, hence performed through
model checking.

6 Discussion

A first point of discussion deals with the OO model to which the policy refers,
which appear to be simple and static. We have received this model with the
policy, as an input: the simplicity and staticity of the OO model adopted is
related to the typical conservativeness of safety critical industries. For example,
dynamic object creation is not recommended in the cited EN50128 norm due
to unpredictability of memory exhaustion. Also, implicit invocations are not
well accepted in a context in which the code is required to explicitly indicate

27

data and control flows. Consequently, we have not addressed, in this work, the
formalization of the implicit invocation interaction mechanism.

By the way, the conservativeness of the project context well matches the
use of model checking, which requires a static configuration of interacting state
machines. Nevertheless, we claim that a more general OO model can be dealt
with within our approach.

In particular, we could address the process algebraic formalization of the
implicit invocation mechanism as done, for instance, in [25]. Implicit invoca-
tion is an important architectural style for system design. The basic idea of
this paradigm is that a component A can invoke a component B without know-
ing B’s name. To model implicit invocation, the authors consider a collection
of components that anonymously exchange messages (events) by means of a
dispatcher and an event—component binding. A binding associates an event e
with zero or more components that are to be triggered when the event is an-
nounced. Since CCS/MEIJE supports multi-way synchronization, it is possible
to model systems exploiting implicit invocation. The CCS/MEIJE multi-way
synchronization mechanism permits one to compose in parallel, on a multi-way
synchronized channel, all the components of the system that should trigger when
matching the event which is communicated on the channel. So, it is possible
that zero or more components trigger.

A further point of discussion is why we have used CCS, even if many formalisms
have been proposed after it. Our choice was guided by the following considera-
tions:

e basic process algebras are suitable to model interaction policies, when
functionalities of the object are abstracted away;

e the availability of a verification environment including several powerful
verification tools - for example we have had a significant experience with
LOTOS as well, and a few verification tools working on (basic) LOTOS
are available, but in the end a verifiable LOTOS specification is not very
different from our CCS one;

e the choice of CCS and JACK was made inside the GUARDS project, also to
have a testbed on which to test and refine the verification tools themselves;

e CCS is anyway one of the formal methods listed in the EN50128 standard,
S0 its use is potentially more easily accepted in an industrial context which
looks compliance to that standard (one of the partners of the GUARDS
project is indeed a railway signalling company);

e it is known that the plus operator is not suitable to model different aspects
of non-determinism, and that it can be confusing and difficult to use.
However, this is mainly a specification problem: when it comes to model-
checking verification, where you need state machines, the CCS plus is
exactly corresponding to the choice between alternate transitions. And

28

we have not met any difficulty with the plus in our modelling of the MLI
policy;

e in a previous experience [4], we have not met strong opposition to CCS
and ACTL modeling within an industrial context. Certainly should a more
appealing formalism, with the same verification capabilities be available,
we think that the approach could be fruitfully used. But again we want to
insist that the use of a basic formalisms, directly related to a finite state
representation, is in line with the conservativeness of the safety critical
software industries.

e the formal specification and verification of the same policy has been made
again by people in our group using the more popular PROMELA language
and SPIN model-checker[32, 33]. This experiment, which followed the
project outcomes, confirmed our results, but with no significant advantage
in terms of easy of modeling and verification effort;

7 Conclusions

We have presented the application of a model-checking approach to specify
and validate the Multiple Levels of Integrity protocol of GUARDS. A formal
description of the protocol has been provided, in CCS/MEIJE style, and a set
of properties have been formally stated in the ACTL temporal logic. Property
satisfaction has been proved by exploiting the AMC model checker, available
within the JACK verification environment,.

The validation approach we have followed for the GUARDS Multiple Levels
of Integrity policy can be exported to other contexts where specific properties
of Object—Oriented distributed systems have to be checked. For example, a
case which has much in common with the Multiple Levels of Integrity policy is
the verification of security properties within distributed systems, in particular
within Object—Oriented distributed systems. The high diffusion of Object—
Oriented distributed infrastructures and frameworks (CORBA, TINA, ODP)
makes this issue a hot topic where our approach to verification may prove useful.
The verification of the “interactional” aspects of such distributed infrastructures
can follow our approach.

Indeed, since interaction policies abstract from data and from functions, the
description of a system adopting a policy can be reduced to the description of
the possible interactions (method invocations) between the objects that make
up the system.

We recall the validation path we have followed, in order to draw some guide-
lines for the application of the model-checking approach to the early verification
of protocol scenarios other than the one considered.

1. abstraction from the number of instances of objects, which are often po-
tentially infinite: we consider only the minimum number that is needed
to analyse the interaction protocol considered.

29

3.
4.

The

. modeling of the interaction protocol by process-algebra terms: we have

singled out the events causing relevant state changes with respect to the
policy. In our case, we have considered read and write method invocations.

definition of the desired properties by temporal logic formulae.
model-checking.

model checking results have to be generalized by suitable reasoning: this

step concerns the proof that generalization/concretization maintains the verified
properties on the abstract model. The proofs presented in Section 4 were made
without any automatic support. However, this is an issue where theorem proving
tools can prove useful, and is a move in the direction of a stronger integration
between model checking and theorem proving approaches.

References

[1]

D.E. Bell and L.J. LaPadula. Security Computer Systems: Mathemati-
cal foundations and model. Technical Report Technical Report M74-244,
MITRE Corp., Bedford, Mass., 1974.

C. Bernardeschi, A.Fantechi, and S.Gnesi. Formal Validation of the
GUARDS Inter—consistency Mechanism. Reliability, Engineering and Sys-
tem Safety(RE€SS), 71(3):261-270, Feb. 2001. Elsevier.

C. Bernardeschi, A. Fantechi, and S. Gnesi. Formal verification. Chapt. 8
of [38].

C. Bernardeschi, A. Fantechi, and S. Gnesi. An Industrial Application for
the JACK Environment. Journal of Systems and Software, 39(2), 1997.
Elsevier Science Inc.

M. Bernardo, P. Ciancarini, and L. Donatiello. On the Formalization of
Architectural Types with Process Algebras. In Proc. ACM SIGSOFT 8th
Int. Symp. on the Foundations of Software Engineering (FSE-00), volume
25, 6 of ACM Software Engineering Notes, pages 140-148. ACM Press,
2000.

K. Biba. Integrity Considerations for Secure Computer Systems. Technical
Report Tech. Rep. ESD-TR 76-372, MITRE Co., Apr. 1997.

N. Bjgrner, Z. Manna, H. Sipma, and T.E. Uribe. Deductive verification of
real-time systems using STeP. Theoretical Computer Science, 253(1):27-60,
2001.

Nikolaj S. Bjgrner, Anca Browne, Michael Colén, Bernd Finkbeiner, Zohar
Manna, Henny B. Sipma, and Tomés E. Uribe. Verifying temporal prop-
erties of reactive systems: A STeP tutorial. Formal Methods in System
Design, 16(3):227-270, June 2000.

30

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A. Bouali, S. Gnesi, and S. Larosa. JACK: Just another concurrency kit.
Bulletin of the European Association for Theoretical Computer Science,
54:207-224, 1994.

G. Boudol. Notes on Algebraic Calculi of Processes. NATO ASI Series F13,
1985.

J.P. Bowen and M.G Hinchey. Seven more myths of formal methods. IEEE
Software, 12:34-41, July 1995.

R.S. Boyer and J.S. Moore. A Computational Logic. ACM Monograph
Series. Academic Press, 1979.

G. Bruns and I. Sutherland. Model Checking and Fault Tolerance. In
Proc. 6-th International Conference on Algebraic Methodology and Software
Technology, volume 1349 of Lecture Notes in Computer Science, pages 45—
59, Sydney, Australia, 1997. Springer-Verlag.

J.R. Burch, E.M.Clarke, K.L.. McMillan, D. Dill, and J. Hwang. Symbolic
Model Checking 10?° states and beyond. In Proceedings of Symposium on
Logics in Computer Science, 1990.

A. Fantechi C. Bernardeschi and S. Gnesi. Model checking fault tolerant
systems. Software Testing, Verification & Reliability (STVR), 12(4):251-
275, December 2002. John Wiley & Sons Ltd.

CENELEC. Railway Applications: Software for Railway Control and Pro-
tection Systems. CENELEC draft CLC/SC9XA/WG1 (sec), feb 1994.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV Version 2: An Open-
Source Tool for Symbolic Model Checking. In Proc. International Confer-
ence on Computer-Aided Verification (CAV 2002), volume 2404 of LNCS,
Copenhagen, Denmark, July 2002. Springer.

D.D Clark and D.R Wilson. Comparison of Commercial and Military Com-
puter Security Policies. In IEEE Symp. on Security and Privacy, pages
184-194, Oakland, CA, 1987. IEEE Computer Society Press.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification
of Finite—State Concurrent Systems Using Temporal Logic Specification.

ACM Transaction on Programming Languages and Systems, 8(2):244-263,
Apr. 1986.

E.M. Clarke, O. Grumberg, and D.Peled. Model Checking. MIT Press,
1999.

E.M. Clarke and J.M. Wing. Formal methods: state of the Art and Future
Directions. ACM Computing Surveys, 28(4):627-643, 1996.

31

[22]

[23]

[24]

[25]

[26]

[27]

[28]

31]

[32]

[33]

R. De Nicola, A. Fantechi, S. Gnesi, and G. Ristori. An action-based
framework for verifying logical and behavioural properties of concurrent
systems. Computer Networks & ISDN Systems, 25(7), 1993.

R. De Nicola and F.W. Vaandrager. Action versus State based Logics
for Transition Systems. In Proceedings Ecole de Printemps on Semantics
of Concurrency, volume 469 of Lecture Notes in Computer Science, pages
407-419. Springer-Verlag, 1990.

D.L. Dill, A.J. Drexler, A.J. Hu, and C. Han Yang. Protocol Verification
as a Hardware Design Aid. In IEEE International Conference on Com-
puter Design: VLSI in Computers and Processors, pages 522-525. IEEE
Computer Society, 1992.

J. Dingel, D. Garlan, S. Jha, and D. Notkin. Reasoning about implicit
invocation. In Proceedings of the ACM SIGSOFT 6th International Sym-
posium on the Foundations of Software Engineering (FSE-98), volume 23,
6 of Software Engineering Notes, pages 209-221. ACM Press, 1998.

A. Nimour E. Najm and J.-B. Stefani. Garanteeing liveness in an object
calculus through behavioral typing. In Proceedings of FORTE/PSTV’99,
Beijing, China, October 1999. Kluwer.

E.A. Emerson and J.Y. Halpern. Sometimes and Not Never Revisited: on
Branching Time versus Linear Time Temporal Logic. Journal of ACM,
33(1):151-178, Jan. 1986.

A. Fantechi, S. Gnesi, and L. Semini. Formal Description and Validation
for an Integrity Policy Supporting Multiple Levels of Criticality. In C.B.
Weinstock and J. Rushby, editors, Dependable Computing for Critical Ap-
plications, 7, pages 129-146. IEEE Computer Society Press, 1999.

R. Focardi and R. Gorrieri. The Compositional Security Checker: A tool for
the verification of information flow security properties. IEEE Transactions
on Software Engineering, 23(9):550-571, September 1997.

L. Gong, P. Lincoln, and J. Rushby. Byzantine Agreement with Authentica-
tion: Observations and Applications in Tolerating Hybrid and Link Faults.
In Proc. DCCA-5, Fifth IFIP International Conference on Dependable
Computing for Critical Applications, Urbana-Champaign, Il, USA, 1995.

C. A. R. Hoare. Communicating Sequential Processes. Series in Computer
Science. Prentice Hall Int., 1985.

G.J. Holzmann. The Model Checker SPIN. IEEE Transaction on Software
Engineering, 5(23):279-295, 1997.

G.J. Holzmann. The SPIN model checker: Primer and reference manual.
Addison Wesley, 2004.

32

[34]

[35]

[36]

[37]

[38]

[39]

[44]

[45]

Z. Liu and M. Joseph. Specification and verification of fault-tolerance,
timing, and scheduling. ACM Trans. Program. Lang. Syst., 21(1):46-89,
1999.

R. Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.

B.C. Pierce N. Kobayashi and D.N. Turner. Linearity and the Pi-Calculus.
ACM Transactions on Programming Languages and Systems, 21(5):914—
947, 1999.

O. Nierstrasz. Regular types for active object, pages 99-121. Prentice-Hall,
1995.

D. Powell, editor. A Generic Fault—Tolerant Architecture for Real-Time
Dependable Systems. Kluwer Academic Publishers, Jan. 2001.

D. Powell, J. Arlat, L. Beus-Dukic, A. Bondavalli, P. Coppola, A. Fantechi,
E. Jenn, C. Rabéjac, and A. Wellings. GUARDS: A Generic Upgradable
Architecture for Real-Time Dependable Systems. IEEE Transactions on
Parallel and Distributed Systems, 10(6), June 1999.

S. Rajan, N. Shankar, and M.K. Srivas. An integration of model checking
with automated proof checking. In Proceedings of CAV’95, volume 939 of
Lecture Notes in Computer Science, pages 84-97. Springer-Verlag, 1995.

RTCA/EUROCAE. Software Considerations in Airborne Systems and
Equipment Certification. RTCA-DO178B / EUROCAE ED-12B, 1992.

N. Shankar. Combining theorem proving and model checking through sym-
bolic analysis. In CONCUR 2000: Concurrency Theory, number 1877 in
Lecture Notes in Computer Science, pages 1-16, State College, PA, August
2000. Springer-Verlag.

W. Steiner, J. Rushby, M. Sorea, and H. Pfeifer. Model checking a fault-
tolerant startup algorithm: From design exploration to exhaustive fault
simulation. In To be presented at DSN 04, Florence, June 2004.

E. Totel, L. Beus-Dukic, J.-P. Blanquart, Y. Deswarte, V. Nicomet, D. Pow-
ell, and A. Wellings. Multi level integrity mechanism. Chapt. 6 of [38].

E. Totel, J.-P. Blanquart, Y. Deswarte, and D. Powell. Supporting Multi-
ple Levels of Criticality. In Proceedings 28th Int. Symp. on Fault-Tolerant
Computing (FTCS-28), Munich, Germany, Jun. 1998. IEEE Computer So-
ciety Press.

33

