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Abstract 

Filamentous fungi possess a wide diversity of metabolic pathways, among which the production of 

mycotoxins and the resultant contamination of agricultural commodities cause severe health impacts on 

humans and animals. Understanding the biology, ecology and genetics of mycotoxins biosynthesis is 

fundamental to counteract their spread in food and feed products and reduce the human and animal 

health risk. The gene clusters responsible for the biosynthesis of mycotoxins of agricultural importance, 

including aflatoxins, fumonisins, ochratoxins, patulin, citrinin and trichothecenes, have been mostly 

identified and characterized. However, due to the complex organization of fungal secondary metabolisms 

and interaction with climatic, environmental and biotic factors, numerous new researches have been 

recently published on structural, regulatory and epigenetics mechanisms underlying mycotoxin 

biosynthesis. This review provides an overview of the recent new insight into understanding genes, 

molecular mechanisms and factors involved in biosynthesis regulation of the principal mycotoxins.  
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Introduction 

Filamentous fungi are complex microorganisms characterized by the ability to produce a broad spectrum of 

secondary metabolites (SMs), among which are the well-known mycotoxins. They can induce toxic effects 

in humans and animals, resulting in great concern for public health and economic loss [1].. In recent years, 

progress in the fungal genome and transcriptome sequencing, computational tools, gene disruption 

techniques and analytical chemistry have allowed the comprehension of several molecular aspects of the 

biosynthesis of mycotoxins and their regulation [2, 3, 4]. Generally, the genes encoding enzymes acting in 

the multi-step pathway of mycotoxins biosynthesis are located in a biosynthetic gene cluster (BGC), 

enabling the regulation of their expression in a coordinated manner. Synthases or synthetases key genes 

(polyketide synthases, terpene synthases and/or cyclases, nonribosomal synthetases, and isocyanide 

synthases) are present in the cluster together with additional enzymes  modifying and forming the final 

complex molecular structure of mycotoxins, and possibly permitting transportation or reduction of their 

toxicity. For some mycotoxins (i.e. ochratoxin A and patulin), genes in BGCs need further characterization 

to clarify their function and determine the complete biosynthesis pathway [5, 6]. As for the molecular 

regulatory mechanisms, one or more pathway-specific transcription factors coordinating the expression of 

biosynthesis genes are placed in the same cluster. In some cases, a transcription factor may modulate the 

expression of genes in different BGCs [5, 7, 8]. In addition, the production of mycotoxins is controlled by a 

more complex regulatory system, comprising broad domain transcription factors and multiprotein 

complexes that positively or negatively regulate the expression of different BGCs in fungal species [9]. 

Recent research has evidenced the crucial role of signalling molecules and pathways in controlling the 
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fungal response to a multitude of nutritional, chemical and environmental cues that affect the primary 

metabolism and the biosynthesis of SMs, including mycotoxins [10]. Also, evidence of the importance of 

epigenetic mechanisms and post-translational modifications in the regulatory system of fungal secondary 

metabolism has recently emerged [11, 12].  

In this review, we describe the latest findings (Table 1) on molecular mechanisms and factors involved in 

regulating the main important mycotoxins for food safety and human health: aflatoxins, ochratoxins, 

patulin, citrinin, fumonisins and trichothecenes (Figure 1).  

 
Aflatoxins  
 
The aflatoxins (AFs) are probably the most widely studied mycotoxins regarding molecular biosynthesis and 
regulation. More than 19 identified AFs analogues are produced by over 16 species in Aspergillus genus 
[13]. A biosynthetic gene cluster with about 30 genes has been characterized in both major aflatoxigenic 
species A. flavus and A. parasiticus, although molecular studies have been conducted mainly on the 
production of AFB1 by A. flavus [14]. The roles of most AF genes have been established; however, some 
steps still need to be fully determined. Only recently, the disruption of aflN (verA) gene has led to the 
identification of a novel intermediate between versicolorin A and demethylsterigmatocystin in the AFs 
biosynthesis [14, 15]. In addition, site-specific mutagenesis and biochemical studies have shown 
modifications of two key biosynthesis enzymes, such as the lysine succinylation of aflE [16]. 
Most recent RNA-seq research focused on various environmental stresses related to climate change 
scenarios affecting aflatoxin production. The results suggested that co-regulation of different secondary 
metabolic pathways likely help maintain cellular homeostasis and promote cell survival under stress 
conditions and, in addition, provided a valuable gene set for further investigation [17, 18]. The protein 
HexA is the main component of Woronin body, repairing hyphal wounding in filamentous fungi, and its loss 
in A. flavus was reported to reduce the production of AFB1, conidia, and conidiophores [19]. In the study of 
Yang et al. [20], the vacuole-related protein Fab1, proposed to maintain the vacuolar/cellular homeostasis, 
has been shown to impact aflatoxin production, suggesting the regulatory role of fab1 gene. 
Transcriptome analyses have been carried out on mutant strains of A. flavus to examine the role of AF 
biosynthesis regulators previously identified: the homeobox gene hbx1 showed a broad effect on 
secondary metabolism genes [21]; while the rmtA gene appeared to govern over 2,000 genes, including 200 
transcription factors [22].  
The RNA-seq analysis of A. flavus treated with a non-aflatoxigenic A. oryzae culture filtrate showed reduced 
expression of AF positive regulators genes aflS, farB, and mtfA correlated with aflatoxin inhibition [23].  
Regarding nutritional regulation, the creA gene was identified in A. flavus, acting in the carbon catabolic 
repression (CCR) mechanism to use the most favourable carbon source [24 ]. Also, the antioxidant gallic 
acid was observed to correlate with the down-regulation of the transcription factor genes creA and farB, 
the latter participating in peroxisomal fatty acid –oxidation [25]. In addition, the regulators SsnF and RocA 
were found to control the expression of CCR factors, interact with CreA and positively regulate AFB1 
biosynthesis [26].  
As for the regulation of nitrogen metabolism, the areA gene was confirmed to play an important role in the 
aflatoxin biosynthesis in A. flavus [27].  
Fungal cellular development and AFs biosynthesis are complex and interconnected processes involving 
many different types of transcription factors. For example, the plant homeodomain (PHD) transcription 
factor Rum1 has been reported as a regulator of the growth and the formation of conidia and sclerotia, as 
well as aflatoxin biosynthesis in A. flavus [28]. The latest findings have indicated that the basic leucine 
zipper (bZIP) transcription factors Afap1 and AflRsmA are associated with oxidative stress response and 
aflatoxin synthesis in A. flavus [29, 30]. Furthermore, the antioxidant catalase enzyme CTA1 in A. flavus has 
been shown to play a crucial role in fungal development, virulence, and aflatoxins biosynthesis [31], 
confirming that the antioxidant system, involved in the defence response to increased reactive oxygen 
species (ROS), could regulate several fungal metabolisms. Also, ethanol inhibited AFB1 biosynthesis by 
enhancing fungal oxidative stress response [32] as well as the antioxidant epigallocatechin gallate was 
associated with the down-regulation of the bZIP transcription factor AtfA mediating oxidative stress [33].  
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In A. flavus, the G protein α-subunit GpaB was found to play a role in AF biosynthesis by regulating the 
adenylate cyclase/cAMP signalling transduction pathway, and the cyclase-associated protein Cap has been 
demonstrated to contribute to mycotoxin biosynthesis and fungal virulence [34, 35]. 
In recent years, in A. flavus, three central mitogen-activated protein kinases (MAPK) pathways, 
representing other essential mechanisms for environmental signal transduction, have been described, 
which include the kinases SakA (HogA/Hog1), Slt2 (MPKA) and Fus3 (MPKB) and are involved in the 
development, stress response, pathogenicity and aflatoxin biosynthesis [36, 37, 38]. Furthermore, the Fus3 
kinase protein has been recently suggested to affect mycotoxin production by the AF substrate regulation 
rather than the modulation of AF cluster genes [39]. In the MAPK cascade participating in the high 
osmolarity glycerol (HOG) pathway in response to hyperosmotic stress, the kinase kinase PbsB, likely 
involved in the activation of the terminal kinase SakA kinase, was found to upregulate the expression levels 
of regulatory and structural genes in the AF gene cluster increasing AFB1 biosynthesis [40] and the Msb2 
mucin protein has been hypothesized as an osmosensor initiating the signalling response [41]. Lately, the 
Ras subfamily GTPase proteins have been demonstrated to act as molecular switches in A. flavus signal 
transduction pathways controlling various cellular processes, including aflatoxin biosynthesis [42].  
Epigenetic and post-transcriptional enzymatic modifications (PTM) have been correlated to the modulation 
of aflatoxin biosynthesis in A. flavus [43].  
The transcriptome analysis of A. flavus grown in conducive conditions contributed to identifying the gene 
lael1 as coding a novel LaeA-like methyltransferase, whose deletion caused a significant increase in AF 
production [44]. Also, the volatile ether compound benzenamine was proposed to affect the aflatoxin 
biosynthesis by downregulating the global regulatory factor laeA [45]. 
New findings have provided additional evidence that the phosphatases CDC14 and Ssu72 [46, 47], the 
histone deacetylase HosA [48], the histone methyltransferases Set3 and AflSet1 [49, 50], the histone 
acetyltransferases MystA and MystB [51], and the lysine acetylation of aflO [52], play a critical role in the 
regulation of AF biosynthesis cluster genes.  
Furthermore, a very recent proteomic study has revealed a wide range of PTMs potentially implicated in 
regulating the AF pathway in A. flavus [53]. 
 
Ochratoxin A  
Ochratoxin A (OTA) is a toxic secondary metabolite produced by Aspergillus and Penicillium species that 
widely contaminates food and feed. Presently, fungal species known to be producers of OTA (more than 20) 
belong to the genera Aspergillus and Penicillium [54, 55]. 
An OTA-biosynthetic cluster comparative analysis highlighted a high synteny in OTA cluster organization in 
five structural genes, namely otaA, otaB, otaC, otaR1, and otaD [56, 57]. Recently a sixth gene coding for a 
cyclase synthase, otaY, located between the otaA and otaB genes, was identified in all available genomes of 
Aspergillus and Penicillium OTA producers [54]. The key role of OTA core genes has been demonstrated not 
only by gene deletion in producing species [58, 59, 60] but also by genome sequencing and transcriptomic 
analysis of some natural A. carbonarius OTA non-producing strains [61].  
One of the most important nutrients for the growth and production of secondary metabolites is the carbon 
source. The growth on different carbon source components leads to differences in mycotoxin production. 
CreA is the main transcriptional factor mediating carbon catabolite repression, which is employed in using 
carbon sources. Wang and co-authors [62] investigated the growth and OTA production of A. ochraceus on 
different carbon sources (glucose, D-xylose, maltose, fructose, D-galactose, D-mannitol, lactose, D-
mannose, and acetate), revealing that glucose and maltose were the most OTA inducing carbon sources for 
A. ochraceus. The generation of a AoCreA deletion mutant of A. ochraceus demonstrated an effect on 
fungal morphology, conidiation and  OTA production on all media except for PDA. 
An extensive understanding of OTA biosynthesis and mycelium development in relation to NaCl-riched 
medium was recently gained in A. ochraceus and P. nordicum, demonstrating that increasing NaCl 
concentration induced OTA production. Moreover, in A. carbonarius mycelium growth, sporulation and 
OTA production were significantly promoted at increasing glucose content [63]. In addition, in P. 
verrucosum OTA production and the expression of related biosynthetic key genes were significantly 
decreased when solute or matric stress was imposed [64]. 
External pH plays an important for the growth, development and metabolism of microorganisms. Fungi 
have evolved complex signalling pathways responding to external pH in order to adapt to the different 
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ambient conditions. The transduction factor PacC is one of the most important factors in the fungal 
regulatory system. A reduction of mycelium growth and an increase in sporulation were observed in the A. 
ochraceus ΔAopacC mutant. Compared to the neutral condition, OTA content was severely reduced under 
both acidic and alkaline conditions regardless of ΔAopacC that instead influenced OTA production in the 
neutral condition [65]. A comparable behavior with some differences was observed for the ∆AcpacC mutant 
strain of A. carbonarius showing altered fungal growth both at neutral and acid pH, linked to reduced 
sporulation and conidial germination and inhibition of OTA production at pH 7.0 and 4.0 [66].  
The fluctuation of internal peculiar factors that change during fruit ripening, such as sugars, organic acids 
and pH, also significantly impact A. carbonarius ability to produce OTA. A strong correlation was observed 
when the fungus was exposed to high malic acid content and limited sugar and low pH levels, resulting in 
activation of OTA biosynthesis pathway through modulation of laeA [67]. 
Many studies have shown the involvement of global transcription factors in the regulation of secondary 
metabolite biosynthesis in filamentous fungi. Gene expression analysis of Velvet complex (laeA/veA/velB) 
suggested that the exposure to 15-28 °C and 1000 ppm CO2 directly influences the global regulatory 
complex and thus OTA production in A. carbonarius [68]. The involvement of laeA in OTA regulation was 
confirmed recently by its deletion in A. carbonarius, resulting in a significantly reduced OTA production 
[69].   
In A. ochraceus mutant strains for laeA, veA, and velB genes, differences in vegetative growth, conidial and 
OTA production were observed[70]. Especially, ΔlaeA strain almost lost the ability to generate 
conidiophores under dark conditions. Moreover, even the disruption of veA gene in A. niger demonstrated 
its role in positive regulation of conidia production, OTA biosynthesis, and oxidative stress tolerance, 
regardless of light conditions [71]. 
More recently, the effect of environmental stimuli has been explored from the perspective of a mutated 
climate scenario that could occur in the next future. Cervini and co-authors [68] investigated the influence 
of two different temperature cycles (15-28 vs 18-34 °C, 11.5 h/12.5 h dark/light) and interaction with 
existing and future CO2 exposure concentrations (400 vs 1000 ppm) on the growth, OTA production and 
cluster regulation on a synthetic grape medium. They found that the increase of more than 2.5 fold CO2 
concentration even at a lower temperature cycle (15-28 °C) resulted in an increase in colony growth and 
OTA production. 
Moreover, a similar study has been conducted on P. verrucosum by analyzing the effect of temperature (25 
vs 30 °C), CO2 (400 vs 1000 ppm) and matric/solute stress (-2.8 vs -7.0 MPa) on growth, OTA biosynthesis 
and cluster regulation [72]. Overall, the growth rate under solute stress was slower in elevated CO2 than 
under matric stress when compared with existing conditions, and under elevated CO2 levels in matric stress 
treatments otaA (otapksPV) gene expression was increased..  

 
 
Patulin  
Patulin is a tetraketide mycotoxin frequently found in fruit juices and apple products. Various fungal species 
of Penicillium, Aspergillus and Paecilomyces genera produce patulin [73]. 
In the last decade, the patulin gene cluster, containing 15 genes (PatA–PatO) in a genomic region of 41-kb, 
was identified in A. clavatus, P. griseofulvum and P. expansum. The cluster includes genes encoding a C6 
transcription factor (PatL), three transporter proteins (PatM, PatC, PatA), and 11 biosynthetic enzymes [73, 
74]. The deletion of patL in P. expansum was found to prevent the expression of all other biosynthesis 
genes [74]. Successively, Li and co-authors clarified the functions of the genes involved in eight steps of the 
patulin biosynthetic pathway by using substrate feeding and heterologous expression analyses [75]. In 
particular, it was established that: i) PatK encoding a 6-methyl salicylic acid synthase is responsible for the 
initial step of patulin biosynthesis; ii) PatG encoding a putative decarboxylase acts most likely in the 
decarboxylation of 6-methyl salicylic acid to m-cresol; iii) PatH and PatI encode the enzymes responsible for 
the hydroxylation of m-cresol to m-hydroxy benzyl alcohol and of m-hydroxy benzyl alcohol to gentisyl 
alcohol, respectively; iv) PatJ and PatO catalyze the conversion of gentisaldehyde to isoepoxydon that is 
transformed to phyllostine by PatN. In addition, the authors also demonstrate for the first time that PatF 
(neopatulin synthase), PatD (alcohol dehydrogenase) and PatE (glucose-methanol-choline oxidoreductase) 
are involved in the last three steps of patulin biosynthesis by catalyzing the conversion from phyllostine to 
neopatulin, neopatulin to ascladiol, and finally ascladiol to patulin, respectively [75, 76]. In particular, the 
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secretion of PatE protein outside the cell is probably due to reducing the risk of cell toxicity. In addition, the 
authors demonstrated for the first time that the inactivation of patulin genes resulted in changes in other 
phenotypic characteristics such as the production of a dark-red pigment, slower colony expansion (ΔPePatI, 
J, K, N, L), and reduced sporulation (ΔPePatF). Finally, no substantial differences in the pathogenicity were 
observed with respect to apple fruit in deletion mutants compared with wild-type strain [76].  
However, the enzyme responsible for converting gentisyl alcohol to genitsaldehyde, remains unknown, and 
the PatB gene, encoding a carboxylesterase, is the only gene not yet assigned to any step of the patulin 
biosynthesis [75, 76]. The specific regulation mechanism of patulin biosynthesis depends on a C6 
transcription factor PatL located in the cluster.  
Interestingly, it was evidenced that sporulation in P. expansum is not related to the regulation of patulin 
biosynthesis. The deletion of brlA gene, usually expressed in the early conidiation process, altered the 
fungal morphology, inhibited conidiation and enhanced the in vivo aggressiveness. As for the production of 
mycotoxins, a significant increase in patulin production was observed in vivo in relation to the higher 
aggressiveness [77]. 
More recently, Chen et al. [78] have demonstrated that the bZIP transcription factor PeMetR, involved in 
sulfur assimilation, participates in controlling virulence and patulin biosynthesis in P. expansum. 
Furthermore, the effect of sulfur assimilation on the patulin production was confirmed by the deletion of 
other sulfur assimilation pathway genes, PesA, PesB, PesC, PesF, which generated defects in growth, 
virulence and patulin production similar to ΔPeMetR *78]. 
Patulin biosynthesis is also regulated at the epigenetic level. Among the velvet family proteins in P. 
expansum, VeA and VelB were found to positively regulate the expression of patulin genes, as well as VelC 
[75, 76, 79]. Patulin biosynthesis also responds to carbon sources and pH through the general transcription 
regulators CreA and PacC [80, 81, 82]. Also, the epigenetic reader SntB governs patulin biosynthesis by 
positively modulating the regulators PacC, LaeA, and CreA, and its expression results significantly reduced 
under postharvest storage conditions such as low temperature and high CO2 [73, 82]. However, regulatory 
mechanisms behind the patulin production in response to most environmental factors remain to be 
clarified [76]. Additionally, the in silico prediction of Paecilomyces niveus draft genome for secondary 
metabolite genes revealed a cluster of 15 putative genes responsible for patulin biosynthesis [83]. 
However, a deeper investigation on cluster regulation is still needed for this species. 
 
Citrinin  
Citrinin (CIT), discovered in 1930, was isolated firstly from Penicillium citrinum, but it is also produced by P. 
expansum, P. verrucosum, A. fumigatus, A. parasiticus, and by M. purpureus, M. aurantiacus, and M. ruber. 
Citrinin exhibits a polyketide structure related to the polyketide component of OTA and is a potent 
mycotoxin with nephrotoxic activities [84, 85]. The citrinin biosynthesis involves seven structural genes, 
encoding the nrPKS (known as CitS) synthetizing a ketoaldehyde, the hydrolase mrl1/CitA, the iron oxidase 
mrl2/CitB,  the oxidase mrl7/CitC and the aldehyde dehydrogenase mrl4/CitD. In the last step, the 
dehydrogenase mrl6/CitE leads to the formation of citrinin [84]. 
Citrinin could occur with OTA or patulin, but its biosynthesis results genetically linked to OTA and not to 
PAT, with a shift between the two toxins versus OTA at high NaCl level or versus CIT under oxidative stress 
in  P. verrucosum [86].  Moreover, in P. expansum, toxins production was shifted to citrinin at higher pH 
values, suppressing the patulin biosynthesis, occurring at lower pH (4–6) [87]. 
The regulation of citrinin in Penicillium and Monascus is not yet well understood; a major transcriptional 
activator (CtnA) is present in the cluster, but additional transcription factors, may be involved in the 
biosynthesis as identified in a transcriptional analysis in M. purpureus [88]. In general, it is well known that 
pigments and citrinin share the biosynthetic pathway up to a certain branch point. An increased pigments 
production in Monascus leads to a decrease in citrinin biosynthesis [89]. Hong et al. [90] demonstrated by 
comparative transcriptomic analysis that NH4Cl or NH4NO3 as a nitrogen source can significantly enhance 
the synthesis of pigment precursors in M. purpureus, but downregulates the expression of citrinin genes.  
Recently, Wang et al. [91] revealed that overexpression of PexanC, encoding a bZIP transcription factor of 
the xanthocillin gene cluster, leads to high citrinin production in P. expansum, indicating the evolutionary 
relevance of functional divergence of BGC regulatory elements. [91]. 
 
Fumonisins  
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Fumonisins are a group of long-chain amino polyalcohols, of which fumonisin B1 is the most toxic and most 
occurring in cereals. Fusarium verticillioides is considered worldwide the main fumonisin contamination 
source in maize, although many species of the F. fujikuroi species complex and F. oxysporum have been 
reported as fumonisin producers.  
The FUM cluster consists of 16 genes encoding biosynthetic enzymes and regulatory proteins [92]. The 
function of several genes involved in fumonisin biosynthesis has been widely studied in different Fusarium 
species. Recently, Sun and co-authors [93] found that deletion of fum1, fum6, fum8, or fum21 results in a 
strong reduction in fumonisin production in F. proliferatum, while loss of fum19 does not. In addition, 
fumonisin-deficient strains display significantly decreased pathogenicity. The role of fum1 in F. proliferatum 
fumonisin biosynthesis was also confirmed by CRISPR/Cas9 genome editing [94]. Moreover, comparative 
analyses of FUM cluster genes between F. fujikuroi fumonisin producing and non-producing strains 
revealed that natural mutations in the FUM cluster, especially in fum21 and fum7 genes, determined the 
fumonisin nonproduction [95, 96]. 
Regulation of fumonisin biosynthesis is strictly related to carbon sources. For example, the absence of 
sucrose in the medium could greatly induce the production of fumonisin in F. proliferatum, as confirmed by 
fum1 and fum8 up-regulation. In contrast, additional supplementation of sucrose to the culture medium 
significantly reduced fumonisin production [97].  
The complex process of fumonisin production is regulated not only by specific genes of the biosynthetic 
cluster but also by global regulators able to control mycotoxin production at different levels.  
The bZIP transcription factors play an essential role in regulating vegetative growth, secondary metabolite 
production and environmental stress tolerance. In F. verticillioides the bZIP-type transcription factor, 
FvAtfA, is involved in fumonisins regulation. Expression levels of fum1 and fum8 genes in the ΔFvatfA 
mutant were down-regulated, resulting in defected fumonisin production [98].  
Also, the APSES-class transcription factors are well-known fungal regulatory elements. The deletion of stuA 
gene in F. verticillioides led to reduced vegetative growth, stunted aerial hyphae, and significant reductions 
in microconidiation, as well as reduced fumonisin production and virulence. Additionally, the transcriptomic 
analysis revealed the downregulation of the expression of several genes in the fumonisin and fusarin C 
biosynthetic clusters [99]. 
The transduction of environmental stimuli at the membrane level plays a crucial role in the regulation of 
fumonisins biosynthesis. The G protein-coupled receptors (GPCRs) are the largest group of membrane 
receptors that transduce signals from the external environment into the cell [100]. Earlier studies 
demonstrated that Gα and Gβ subunits are positive regulators of FB1 biosynthesis and that the expression 
of two regulators of G-protein signalling genes, FvFlbA1 and FvFlbA2, were induced  in Gβ deletion mutant 
∆Fvgbb1. Notably, FvFlbA2 has a negative role in FB1 regulation. While many fungi contain a single copy of 
FlbA, F. verticillioides harbors two putative FvFlbA paralogs, FvFlbA1 and FvFlbA2. Yan et al. [101] 
characterized the functional role of FvFlbA1 and FvFlbA2. While the ∆FvflbA1 mutant exhibited no 
significant defects, ∆FvflbA2 and ∆FvflbA1/A2 mutants showed thinner aerial hyphal growth while 
promoting FB1 production. Thus, FvFlbA2 is required for the proper expression of key conidia regulation 
genes and fumonisin cluster genes. 
Membrane trafficking and vesicular transportation are other processes strictly involved in the secretion of 
secondary metabolites in fungi. The Rab GTPases, particularly those homologous to Saccharomyces 
cerevisiae Sec4, are known to be associated with protein secretion, vesicular trafficking, secondary 
metabolism and pathogenicity. However, the role of Rab GTPases in many toxigenic fungi remains elusive. 
Recently in F. verticilliodes the role of a Rab GTPase, namely FvSec4, was investigated [102]. The ΔFvsec4 
mutant produces dramatically lower levels of FB1 than the wild-type progenitor, as confirmed by the down-
regulation of fum1 and fum8 genes. Moreover, the mutant demonstrated that FvSec4 plays essential roles 
also in hyphal development, virulence, and stress responses. 
 

 
Trichothecenes  
Trichothecenes belong to the sesquiterpene type of toxins and are produced by fungi belonging to 
Sordariomycetes, Eurotiomycetes and Dothideomycetes classes [103]. Over the last three decades, the 
genetic and biochemical bases of trichothecene biosynthesis in several species of Fusarium and 
Trichoderma have been elucidated. Trichothecenes may differ in structure, and these changes significantly 
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impact toxicity and the biological activity of these compounds. Phylogenetic and functional analyses of 
trichothecene biosynthetic genes in multiple genera have provided evidence that the loss, acquisition, and 
changes in functions of TRI genes have determined the diversity of trichothecene structures. In F. 
graminearum, the biosynthetic TRI cluster is composed of 15  genes located on different chromosomes at 
three different loci [104]. The core TRI cluster is represented by 10 co-regulated genes, including the tri5, 
encoding a trichodiene synthase. Moreover, in F. sporotrichioides and F. graminearum two additional 
genomic regions are involved in trichothecene biosynthesis: the Tri1-Tri16 locus and the Tri101 locus [104]. 
Regulation of trichothecenes biosynthesis is strictly correlated to environmental conditions.  
Climate change factors may have a significant impact on growth and trichothecenes production. Abiotic 
factors such as water activity, temperature and CO2 exposure could affect growth, gene expression of TRI 
cluster, and associated metabolites. In F. langsethiae, Verheecke-Vaessen and co-authors demonstrated 
that tri5 gene expression was significantly increased (5.3-fold) at 30 °C, 0.98 aw, elevated CO2 (1000ppm) 
and the tri6 and tri16 genes were overexpressed, especially under high CO2 conditions. Moreover, at 0.98 
aw, in stored oats, they observed that elevated CO2 led to a significant (73-fold) increase in T2/HT-2 toxin, 
especially at 30 °C [105]. 
Nakajima and co-authors showed that continuous acidification of the culture medium plays an important 
factor in the stimulation of trichothecene biosynthesis, especially during the early growth stage [106]. Also, 
the nitrogen regulatory GATA transcription factor AreA is indispensable for transcriptional activation of TRI 
cluster genes. In F. graminearum AreA (FgAreAp) is unessential for the functioning of the Tri6 promoter, but 
it contributes to some extent to the increased production of mycotoxin under mildly acidic conditions 
[106]. Recently, the suppressive effects of amino acids, used as the sole nitrogen source, on trichothecene 
biosynthesis were also demonstrated in F. graminearum. When the medium pH was maintained at 4.0, Gly, 
L-Ser, and L-Thr suppressed trichothecene production, while when the medium pH was 3.5 the 
trichothecene production was induced, with only the exception of L-Thr, which suppressed their 
biosynthesis [107]. 
Histone acetyltransferase (HATs) could play a central role in the regulation of gene expression and other 
processes by inducing post-translational modifications of chromatin structure in eukaryotes. Even though 
these genes were investigated in various fungal species, few of them have been functionally characterized. 
In F. graminearum the role of four putative HATs (FgGCN5, FgRTT109, FgSAS2, FgSAS3) in sensitivity to 
osmotic and oxidative stress, conidiation and DON production was demonstrated. Interestingly, both  
ΔFgSAS3 and ΔFgGCN5 mutants inhibit the production of DON, inducing a significant downregulation of TRI 
genes expression. Moreover, for the first time, it was demonstrated that FgSAS3 and FgGCN5 are 
indispensable for the acetylation of histone at different sites [108, 109]. This evidence was further 
confirmed by a comparative acetylome analysis revealing as the deletion mutant of Fggcn5 failed to 
produce DON, supporting the hypothesis of the central role of lysine acetylation for DON biosynthesis in F. 
graminearum [110]. 
 

Conclusions 
In the last few years, new findings have expanded the understanding of the complex regulatory network 
underlying the biosynthesis of some main mycotoxins.  
Several biotic and abiotic factors trigger the production of mycotoxins through different steps, including the 
detection of environmental cues at the membrane level, the signal transmission into the fungal cell, the 
response to the resulting oxidative stress and the activation of broad domain transcription factors and 
multiprotein complexes, that finally regulate the expression of the mycotoxin biosynthesis genes. In 
addition, epigenetic and post-transcriptional enzymatic modifications have been demonstrated to be 
crucial in modulating mycotoxins production.  
The most advanced results have been achieved for the main studied mycotoxins, such as aflatoxins and 
fumonisins, while for other mycotoxins, such as OTA and patulin, the comprehension of the molecular 
biosynthesis mechanisms is more recent and requires further investigation.  
In the future, the latest progress in omic techniques and genome-editing approaches will help clarify the 
still unknown aspects of biosynthesis and regulation even in deeply studied mycotoxins. Furthermore, 
elucidating the complex interconnection between the specific and global biological processes behind the 
biosynthesis of mycotoxins is fundamental for developing new prevention and control solutions. 
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Figure and table caption 

 

 

 

Fig.1 Representation of principal mechanisms governing mycotoxins biosynthesis. The main producing 

fungal genera (Aspergillus, Fusarium and Penicillium), some of the most studied regulatory elements 

and mycotoxins (AFB1, aflatoxin B1; OTA, ochratoxin A; PAT, patulin; CIT, citrinin; FUM, 

fumonisin; TRI, trichothecenes) are depicted. 
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Table 1. List of the latest findings on biosynthesis and main regulatory mechanisms of mycotoxins. 

   
mycotoxin Biosynthesis genes reference 
ochratoxin otaY gene is involved in the cyclization of OTA molecule in A. 

carbonarius 
[59] 

patulin functions of several enzymes in the PAT biosynthetic pathway are 
confirmed in P. expansum 

[75,76] 

fumonisin role of fum1, fum6, fum7, fum8, fum21 genes is confirmed in 
producing species in F. proliferatum and  F. fujikuroi 

[93,94,95,96] 

Pathway-specific transcription factors 
ochratoxin bZIP transcription factor otaR1 regulates biosynthesis OTA cluster 

genes in A. ochraceus/westerdijkiae, A. carbonarius, A. niger 
[57,58,60] 

Regulators of mycotoxin biosynthesis 
aflatoxin HexA protein, the main and essential component of Woronin body, is 

required for AF biosynthesis in A. flavus 
[19] 

aflatoxin vacuole-related protein Fab1 maintaining cellular homeostasis 
regulates AF biosynthesis in A. flavus 

[20] 

aflatoxin AF regulator Hbx1 shows a broad effect on SM genes in A. flavus [21] 
aflatoxin  AF regulator RmtA controls the expression of around 2,000 genes in A. 

flavus 
[22] 

aflatoxin non-aflatoxigenic A. oryzae downregulates AF regulators aflS, farB 
and mtfA genes in A. flavus 

[23] 

aflatoxin  CCR gene creA regulates AF biosynthesis and virulence in A. flavus [24] 
aflatoxin gallic acid downregulates  AF biosynthesis regulators farB and creA 

genes in A. flavus 
[25] 

aflatoxin SsnF and RocA positively regulate AF biosynthesis in A. flavus as 
corepressors of CreA 

[26] 

aflatoxin global nitrogen regulatory gene areA is important for AF production in 
A. flavus 

[27] 

aflatoxin PHD factor Rum1 involved in conidia e sclerotia production plays a role 
in AF biosynthesis in A. flavus 

[28] 

aflatoxin bZIP transcription factors Afap1 and AflRsmA mediate oxidative stress 
response and AF production in A. flavus 

[29,30] 

aflatoxin antioxidant related catalase CTA1 regulates AF biosynthesis in A. flavus [31] 
aflatoxin ethanol inhibits AF biosynthesis upregulating oxidative stress response 

genes in A. flavus 
[32] 

aflatoxin epigallocatechin gallate downregulates bZIP AtfA mediating oxidative 
stress and inhibiting AF biosynthesis in A. flavus 

[33] 

aflatoxin novel LaeA-like protein Lael1  plays a specific role in the regulation of 
AF biosynthesis in A. flavus 

[44] 

aflatoxin benzenamine affects AF biosynthesis by downregulating  the global 
regulatory factor leaA in A. flavus 

[45] 

ochratoxin AoCreA gene regulates OTA biosynthesis in response to carbon 
sources in A. ochraceus. 

[62] 

ochratoxin glucose and salt content in substrate regulates OTA production in A. 
carbonarius, A. ochraceus, P. nordicum 

[63] 

ochratoxin solute and matric potential stress affect OTA production in P. 
verrucosum 

[64] 

ochratoxin pacC gene regulates OTA biosynthesis in response to ambient pH in A. 
ochraceus and A. carbonarius 

[65,66] 

ochratoxin Velvet complex laeA, veA, velB genes regulate OTA production in A. [67,68,69,70,71] 
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ochraceus, A. carbonarius, A. niger 
ochratoxin temperature and CO2 impact OTA production in A. carbonarius and P. 

verrucosum 
[68,72] 

patulin LaeA, VeA, VelB and VelC, are involved in the regulation of PAT 
biosynthesis in P. expansum 

[75,76,79] 

patulin deletion of the conidiation regulator gene brlA does not impair PAT 
biosynthesis in P. expansum 

[77] 

patulin bZIP transcription factor PeMetR  mediating sulfur assimilation is 
essential for PAT biosynthesis in P. expansum 

[78] 

patulin pH-responsive PePacC transcription factor regulates PAT biosynthesis  
in P. expansum 

[80] 

patulin apple intrinsic factors modulate the global regulator LaeA  and impact 
PAT biosynthesis in  P. expansum 

[81] 

citrinin CIT is produced at high pH while PAT is produced at low pH in P. 
expansum 

[87] 

citrinin transcriptomic analysis indicates possible transcription factors 
regulating CIT biosynthesis in M. purpureus 

[88] 

citrinin increased pigments production leads to a decrease in CIT biosynthesis 
in Monascus 

[89] 

citrinin  nitrogen source  NH4Cl or NH4NO3 increases pigments production 
and decreases CIT formation in Monascus spp. 

[90] 

citrinin transcription factor PexanC regulates  pathway-specific ctnA gene and 
promotes CIT biosynthesis in P. expansum   

[91] 

fumonisin sucrose content in substrate regulates FUM production in F. 
proliferatum  

[97] 

fumonisin bZIP transcription factor FvAtfA regulates the expression of FUM 
biosynthesis genes  in F. verticillioides 

[98] 

fumonisin APSES-class transcription factor FvstuA regulates the expression of 
FUM biosynthesis genes in F. verticillioides 

[99] 

trichothecene climate change factors (T, aw, CO2) impact  expression of Tri genes and 
T-2/HT-2 production in  F. langsethiae  

[105] 

trichothecene transcription factor AreA contributes to TRI production under mildly 
acidic conditions in F. graminearum 

[106] 

trichothecene certain amino acids (Gly, Ser, Thr) negatively affect TRI production in   
F. graminearum 

[107] 

Signalling pathways 
aflatoxin G protein α-subunit GpaB regulates cAMP signalling and is required for 

AF biosynthesis in A. flavus  
[34] 

aflatoxin cyclase-associated protein Cap regulates cAMP signalling and 
contributes to AF biosynthesis in A. flavus 

[35] 

aflatoxin kinases Slt2 (MPKA) and Fus3 (MPKB) are involved in MAPK signalling 
pathways modulating AF biosynthesis in A. flavus 

[37,38,39] 

aflatoxin kinase SakA (HogA/Hog1) and kinase kinase PbsB in the MAPK/HOG 
pathway regulate AF biosynthesis  during osmotic stress in A. flavus 

[36,40] 

aflatoxin Msb2 acts as an osmosensor in  the MAPK/HOG pathway regulating AF 
biosynthesis in A. flavus 

[41] 

aflatoxin Ras subfamily GTPase proteins act as molecular switches in signalling 
pathways regulating AF biosynthesis in A. flavus 

[42] 

fumonisin RGS protein  FvFlbA2 is negatively associated with FUM production in 
F. verticillioides 

[101] 

fumonisin Rab GTPase protein FvSec4 is critical for FUM production in F. 
verticillioides 

[102] 

Epigenetic and Post Transcriptional Modifications 
aflatoxin lysine succinylation of aflE and lysine acetylation of aflO contribute to  [16,52] 
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 An update on molecular mechanisms behind the biosynthesis of main mycotoxins  

 Global and cluster specific regulatory elements govern mycotoxin biosynthesis 

 Effect of nutritional, chemical and environmental signals on mycotoxin biosynthesis 

 New advances in epigenetic and post transcriptional modifications for AFs and TRI 

 

 

AF biosynthesis in A. flavus 
aflatoxin phosphatases CDC14 and Ssu72 regulate AF biosynthesis in A. flavus [46,47] 
aflatoxin histone deacetylase HosA  regulate AF biosynthesis by modulating AF 

cluster genes in A. flavus 
[48] 

aflatoxin histone methyltransferase Set3 and AflSet1 are involved in AF 
biosynthesis in A. flavus 

[49,50] 

aflatoxin histone acetyltransferases MystA and MystB impact AF biosynthesis in 
A. flavus 

[51] 

patulin epigenetic reader SntB positively regulates the expression of LaeA, 
CreA, PacC  in P. expansum 

[82] 

trichothecene histone acetyltransferases  FgGCN5, FgRTT109, FgSAS2, FgSAS3 are 
involved in DON biosynthesis  in F. graminearum 

[108,109,110] 
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