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Abstract
The problem of achieving a good maintenance plan is well-known in the modern industry. One of the most promising
approaches is predictive maintenance, which schedules interventions based on predictions made by collecting and analyzing
data from the process. However, to the best of the authors’ knowledge, this approach is still not widespread and known
enough, and particularly, the real-case scenarios of its application appear not exhaustive. To contribute to fill this gap, this
work proposes a digital twin (DT), which performs a predictive maintenance approach for a conveyor belt within a real-case
scenario with the overall goal of predicting faults during normal belt operations. Specifically, the core of the implemented DT
is a model that analyzes the data collected by various sensors distributed along the conveyor belt. In turn, this model exploits a
machine learning-based algorithm that predicts the insurgence of faults. The tests of the developed solution, conducted within
a real scenario, demonstrated good precision and accuracy in identifying the fault status and also in a time deemed acceptable
for the involved stakeholders.

Keywords Predictive maintenance · Digital twin · Machine learning · Conveyor belt

1 Introduction

Maintenance is “any activity – such as tests, measurements,
replacements, adjustments, and repairs – intended to retain
or restore a functional unit in or to a specified state in which
the unit can perform its required functions” [19]. Several
approaches of maintenance have been developed and used
over the years, mainly [22]:

• Reactive maintenance, in which the intervention is
decided and carried on after the occurrence of the fault;

• Preventive maintenance, in which the intervention is
scheduled over time;

ValerioPulcini andGianfrancoModoni contributed equally to thiswork.

B Valerio Pulcini
valerio.pulcini@stiima.cnr.it

Gianfranco Modoni
gianfranco.modoni@stiima.cnr.it

1 Institute of Intelligent Industrial Systems and Technologies
for Advanced Manufacturing, National Research Council,
Via Lembo 38F, Bari 70124, Italy

• Condition-based maintenance, in which the intervention
is decided by evaluating the state of degradation of the
component.

In recent years, the advent of Industry 4.0 technologies
is paving the way for the adoption of predictive strategies
and, in particular, the Prognostics and Health Management
(PHM) paradigm [59] that makes use of different kinds of
collected information with the aim of detecting anomalies
from the nominal behavior of an equipment, identifying
its degradation states, and predicting its remaining useful
life (RUL) [61]. Under these conditions, the outcomes of
PHM calculation can be used to support the decisions of a
new approach of maintenance called predictive maintenance
(PdM), which uses data, models, and knowledge to schedule
maintenance operations tailor-made on the process character-
istics and present status of the equipment [50, 57]. Compared
to other maintenance approaches, PdM can be much more
efficient and effective [22] as it can allow the scheduling
interventions on optimal time, avoiding operating too early
(causing too much machine-stop time) or too late (causing
damage to machines and longer machine-stop time) [49, 50].
Nevertheless, this approach is not yet widespread on a large
scale, and its adoption is mainly hindered by its realization
aspects, which still remain difficult to face [24]. Three of the
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main aspects, which are addressed in the remainder of this
work, are the following:

1. Identification of a proper model to perform the forecasts;
2. Finding a trade-off between accuracy and precision of

the model and speed of its computational load;
3. Keeping updated the forecasting model leveraging the

data collected within the physical world.

Moreover, it should be noted that, while PdM grants sev-
eral benefits and it is starting to spread, the number of PdM
applications in real-case scenarios is still limited. In addition,
PdM approaches are often, if not always, tailor-made to the
specific case study and can vary sensibly based on the type
of process. In this regard, Tiddens et al. stated in [51] that
there is a need to investigate the potential of PdM within fur-
ther cases of study, and Carvalho et al. [14] suggest exploring
PdM applications further in particularly regarding the quality
of data and the selection of the proper forecasting algorithm.

With this work, conducted within the European research
project AI REGIO (“Regions and Digital Innovation Hubs
alliance for AI-driven digital transformation of European
Manufacturing SMEs”) [4], the goal was to try to fill this
absence by providing a solution of PdM for a conveyor belt.
This solution is based on a faithful digital twin (DT), i.e.,
a digital replica of a physical entity with which the DT is
constantly synchronized [20].

In particular, the case study is set in a packaging com-
pany where a curved conveyor belt is used to automatize the
process of realization and filling of plastic bags. The main
goal was to limit the insurgence of various types of faults
during the curved conveyor belt and, if possible, avoid them
because the latter implicates the necessity to stop production
to fix them, thus causing high costs. The faults to be identi-
fied are of two types: the rupture of the loops connecting the
belt with the chain and the slack of the chain itself, which
would cause undesired behavior during the process.

The paper is structured as follows: Section 2 focuses on the
state of the art of the related works, while Sect. 3 explains
the approach used, with its steps. Section 4 describes the
architecture of the proposed DT solution. Section 5 deals
with the assessment of the proposed solution, explaining the
process conducted to verify the validity of it and how itwill be
applied to the process. Finally, Sect. 6 reports the conclusions
and future outcomes.

2 Related works

2.1 Predictive maintenance in industrial scenarios

A significant step to realize a PdM approach is the definition
of the forecasting model. Precisely, based on the adopted

model, the main PdM approaches proposed in the literature
can be classified into three different types, which have been
analyzed in a systematic review conducted by Zonta et al.
[50].

The first type of approach leans on a data-based view
of maintenance by building models to perform predictions
on the process components. Two of the main pros of this
approach are that it does not require deep knowledge of
physics and that it wastes a low computational cost once
the model is trained. Instead, two of the main cons are that
this data-driven approach is unsuitable for limited historical
data and requires the model’s retraining when the opera-
tional conditions change. Some examples of the application
of this approach, which is the one used in the herein pre-
sented work, as it will be seen further on, are provided in
[53] byWu et al.. In particular, the latter reported a compara-
tive study on different algorithms based onML for predicting
tool wear.Moreover, Roosefert et al. developed anML-based
model to apply the PdM to a molding machine [42], which is
proved to be valuable, granting a great increase in the average
time between failures. Another interesting study using this
approach is proposed in [18] by Deutsch et al., who lever-
aged deep learning to predict the remaining useful life of
components, specifically rotating ones. The method lever-
ages vibrational data and was validated via two case studies;
it showed interesting capabilities for predicting the remain-
ing useful life of rotating components.

A second approach revolves around the development of
physical models, using mathematical modeling and statis-
tical analysis to measure the condition of the process and
failure occurrence. Compared to the data-driven approach,
this second approach needs a deeper understanding of the
involved phenomenon and it has a high computational cost,
but, on the other hand, it requires less calibration data and can
be used to estimate unmeasured variables [9, 26]. An exam-
ple of this second approach is provided in [25] by Kahiomba
et al., who developed a model for PdM analyzing vibrational
data.

Finally, the third approach is a hybrid onewhich combines
knowledge-based with data-driven techniques. The predic-
tion of the systems based on this approach can be more
accurate. However, the development of these systems ismore
complex as they comprise different kinds of models which
must be properly integrated. One example of the hybrid
approach is reported in [47] by Steenwinckel et al., who tried
to create a synergy between expert knowledge andML. Sim-
ilarly, Luo et al. [26] proposed a hybrid DT-based approach
for the PdM of a CNC machine tool, building the DT model
with both data-based algorithms and physical-based concepts
(degradation model, electric and thermodynamic considera-
tions, etc.).
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2.2 PdM solutions applied to conveyor belts

Leveraging the three approaches reported in the previous
subsection, different solutions have been proposed in the
literature to apply maintenance for the conveyor belt equip-
ment, which is this study’s target. A solution is proposed in
[25] by Kahiomba et al., who developed a PdM schedule for
the conveyor belt motor, exploiting an intelligent vibration
sensor and a PLC. The aim is to limit the vibration before
it reaches the dangerous zone through a maintenance pro-
gram accounting not only the current wear conditions of
machines but also their future predicted status. Nevertheless,
this approach is still based on empirical knowledge and on
the analysis of vibration waves. Shifting to data-based meth-
ods, an interesting approach is proposed by Görür et al. [37],
which presents a PdM approach based on ML. It focuses on
safety, including a closed-loop system that runs PdM analy-
sis in real-time and reports a safe operating mode. Each time
an abnormal behavior is predicted, the entity of the deviation
from a nominal behavior is calculated. The approach pro-
posed by Görür et al. gave interesting results, and it can be
considered a valid reference for the present work although it
is built on a model that uses as input a polynomial approxi-
mation of data and not raw data collected from sensors as the
model developed in the herein presented solution. Indeed, the
latter has to exploit the vibration data collected by sensors
placed on the machine since the main problems regarding
conveyor belts typically involve vibration phenomena that
cause malfunctioning in the production [39]. In particular,
the factors inducing vibration are usually identified in the
deformation of the belt and its velocity, assembly issues,
and, finally, the problems occurring during normal function-
ing, mainly the slack of the drive chain and the breakage of
the connections between the chain and belt. In this regard,
many approaches have been developed to solve the vibration
issue. Specifically, Samuel et al. [44] illustrate a vibration-
based damage detection technique, identifying Prognostic
and Health Management Systems by providing a condition-
based maintenance schedule that ensures safety and cost
efficiency.

All these solutions so far proposed in the literature to apply
PdM of a conveyor belt were proven to give a good under-
standing of the phenomenon and an acceptable amount of
fault prediction, but they tend to rely too much on empirical
knowledge since they require a detailed study of vibration
phenomena involved in the functioning of the conveyor belt
and the skill to create and validate mathematical models to
enable the good functioning of the approach [60]. On the
other hand, the herein presented approach aims to elimi-
nate or reduce this need, proposing a method in which some
knowledge about the process is still required but far less spe-
cialized. Indeed, once the model is set, there is no need to

know the behavior of the vibrations in detail since the model
itself can translate the collected data into usable information.

2.3 DT solutions for PdM

The various physics and data-based models used to apply the
three different PdM approaches can be exploited in their full
potential if they are synchronized with the changes occurring
within the physical factory. In this regard, it can be used the
emerging technology of DT, which allows the synchroniza-
tion of the digital replica with its physical counterpart, thus
keeping the first updated through the information about the
evolutions occurring within the physical world [20]. There-
fore, the use of DT can bring the PdM solutions a significant
added value [52], by mainly showing how DT can contribute
to enlarge the knowledge of the status of the process, which
is a key part in developing a PdM approach. Several solutions
have been implemented using DT to improve the approach
to manufacturing, reporting the advantage brought in dif-
ferent areas by DT providing real-time information to the
digital model [32, 54]. In particular, the combined use of the
real asset and its digital counterpart enriches the information
provided for the maintenance plan, heightening the level of
prediction and the approach overall.

Along with many benefits, DT presents important chal-
lenges to be reckonedwith. The studies abovementioned [32,
52] report challenges mainly related to the collection of the
data [12], the development of themodel [58], and the compu-
tational burden [33]. Moreover, [52] highlighted the correct
issue of a limited number of real applications of DT for PdM
available in the literature, and they also reported the lack
of DT framework that can support the approach, especially
regarding their adaptation to the specific case study. Simi-
larly, Tao Shen et al. performed a review on the application
of DT in additive manufacturing, highlighting the lack of DT
models for real-time prediction and AI implementation [46].

Based on the results of this study conducted on the related
works, no application is deemed exhaustive and applicable
to our case of study. For this reason, in the context of this
work, it was considered the best course of action to develop
a new solution to deal with the presented issue, leveraging a
DT solution in order to gain useful insights from the moni-
toring of the conveyor belt through a tailor-made ML model
that provides the best possible plan of maintenance for the
conveyor belt in analysis.

3 Proposed solution for the case study

According to the typical approach for PHM [11, 36], the pro-
posed solution to apply PdM for the analyzed conveyor belt
implements an approach based on three consecutive steps:
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1. Observation, which consists in acquiring and collecting
the necessary data via awell-designed network of sensors
and dedicated instrumentation. Later on, the collected
data must pre-processed with proper tools in order to
clean, resample, and normalize it, thusmaking themmore
suitable for the next steps of the approach [36].

2. Data analysis for the diagnostics, which allows to per-
form both a degradation level assessment and fault
detection through the processing of the collected data
[11] and aims to understand when the system or compo-
nent will be in a non-acceptable state. For this reason, this
step usually involves amodel formonitoring the degrada-
tion process and understanding how it evolves over time,
by leveraging data-based, physic-based, or hybrid-based
approaches [36].

3. Health management through ad-hoc actions, which con-
sists in using the knowledge gained through the first two
steps to make decisions to apply interventions to the
system. A particular focus in this phase is devoted to
analyzing how to show the results of step 2 to the stake-
holders by considering human–machine aspects [11].

The description of how the three steps of the approach have
been implemented in the pilot case is reported in detail in the
following subsections.

3.1 Step 1: observation of the conveyor through
sensors

The belt was over-instrumented with various sensors placed
on its frame and, in particular, one piezoelectric microphone,
several mono-axial and tri-axial accelerometers (X-axis
along the direction of motion, Y-axis orthogonal to the fas-
tening surface, and Z-axis transversal to the direction of
motion), a photocell, and three current probes. The sensors
were installed in 5 fixed points identified along the curve.

During the test’s sessions, the following conditions of the
belt were reproduced:

• Nominal (i.e., no alteration to work conditions);
• Slack in the drive chain (of 1, 2, or 5mm);
• Removal of some connecting loops (from 1 to 12)
• Removal of a part of some connecting loops (from 1 to
12)

where slack and removal of loops were artificially repro-
duced.

Each specific condition was monitored in a full load con-
dition and maintained for 10min, except for the nominal
condition, which was maintained for more than 200min.
In addition, in order to monitor each occurring event, the
data was acquired at the maximum rate supported by the
adopted technology, comprising sensors and acquisition soft-
ware, i.e., 51,200Hz. This rate contributed to produce several
telemetry files, each corresponding to a 1-min length mea-
surement and a size equal to 588 megabytes. Each telemetry
file was saved in the TDMS format, a national instrument
native format specifically designed to contain the data of the
sensor measurements organized in channels [7]. In particu-
lar, a TDMS file contains data of the sensor measurements
(samples) organized in channels. For the analyzed case study,
the telemetry file comprised 24 channels, each containing
numeric values. Each of the first 23 channels, some of which
are represented in Fig. 1, corresponded to one different mea-
surement performed by a sensor. The last channel is a virtual
channel, called Error, which was added to the set of already
acquired samples. Specifically, the value of this channel is 0
if the telemetry file corresponded to a nominal case and 1 if
it corresponded to a fault case.

According to some studies on conveyor belts [39] avail-
able in the literature, the typical frequency of transverse
vibrations interesting to the belts is a maximum of 200 Hz.
Thus, according to the Nyquist-Shannon Theorem [45], the

Fig. 1 Example of the adopted
data set with the visualization of
a set of channels (columns) and
related samples
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Fig. 2 Superposition of Acc1X acquired in the condition of nominal (green) and one loop removed (red)

sampling rate to use must be at least 400 Hz [27]. Under
these conditions, the much higher sampling rate adopted for
the telemetry in this case study (51,200 Hz) allows accu-
rate monitoring, granting an excellent representation of the
phenomenon. On the other hand, it brings a series of compli-
cations, such as a high computational cost to process, transfer,
store, and visualize telemetry files. In this regard, to visu-
alize these files, it was decided to use the proprietary tool
DiAdem [5], which allows high precision in analysis and
manipulation. At first, this tool was used for visual compar-
ison of superposed signals acquired in different conditions
(i.e., nominal versus error conditions) in order to identify
visible differences. In this section, for the sake of brevity, it
is chosen to limit to report the analysis of the acceleration
signal corresponding to one of the used sensors along the
X-axis. Specifically, as shown in Fig. 2, the first minute of
measurement for a fault case and a nominal case is reported.
The red signal represents the acceleration Acc1X measured

in the fault case (12 loops missing), while the green signal
is the same acceleration measured in the nominal case. In
this comparison, some slight differences between the nomi-
nal case and the loop removal case can be visualized, seeing
in particular that the peaks appear different and spread dif-
ferently, and the waveform seems visually not the same, but
it should be noted that the mentioned differences are not
evident. Also, the same visual comparison between nominal
and fault cases performed for other signals did not show evi-
dent differences. Since this performed comparison proved to
be non-significant, to better underline the signal pattern for
each belt condition, it was decided to focus the analysis on
the zoomed images of the superposed plots as the example
reported in Fig. 3. This zoomed plot highlighted the differ-
ence between the two signals, and thus, it can be considered a
valid preliminary step in understanding the failure impact on
the process. In particular, it is interesting to notice in Fig. 3
the visible difference in the waveform of the nominal (green)

Fig. 3 Zoomed superposition of Acc1X, nominal (green) and one loop removed (red)
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and the failure test (red), and some notable differences in
some selected moments, for instance, in the range of values
from 0.002 to 0.006, or from 0.01 to 0.012 of the x-axis, both
reporting a clear change in pattern.

However, despite the positive results achieved with the
above evaluations, it should noted that these evaluations are
limited to the analysis of a portion of a signal acquired
under two different conditions, while the analysis should
be applied to the totality of the data acquired from all the
sensors during the various conducted tests, which is a much
more difficult activity to bear. In this regard, a new strategy
has been investigated, which considers the issue of the large
size of the telemetry files by reducing it before analyzing
and passing this data to the forecasting model. Specifically,
it was decided to apply a resampling to reduce each file’s
dimension while maintaining the relevant information con-
veyed by the original data. The resampling was performed
through the linear interpolation function provided by the
already-mentioned DiAdem tool, and this function allowed
the reconstruction of each signal exploiting a set of selected
points and estimating the adjoining ones [1]. In particular,
a resampling with a frequency of 10,000 Hz was applied
from the original signal frequency (51,200 Hz), still granting
compliance to theShannon-Nyquist theorem, considering the
maximum sample rate suggested in the literature is 400 Hz.
This operation reduced each file dimension from 588 to 151
MB. Afterward, in order to evaluate the data loss after the
resampling, a set of resampled signals was compared with
the corresponding original. As an example, a superposition

of a portion of the original signal Acc1X of the nominal
test and the corresponding resampled is reported in Fig. 4.
The green curve is the resampled plot, and the red is the
original signal plot. The pattern shown is similar in both
the signals, and the peaks were (min=−7.057;max=8.184)
and (min=−5.895;max=6.988), respectively, for the origi-
nal and resampled signal, with a maximum loss of 1.196 in
amplitude. The data loss was considered acceptable, and the
resampled signal was still significant. Similar results were
also obtained for other resampled signals.

Since the files’ dimensions were still considered big after
the first resampling, a stricter resampling was tried, apply-
ing a sampling rate of 5000 Hz. It should be noted that this
rate still adheres to the Nyquist-Shannon sampling theorem,
being much higher than the frequency suggested in the liter-
ature (i.e., 400 Hz). The result of this latest resampling is that
the data size was reduced to 99.5 MB, while the superposi-
tion of the resampled and the original signals (considering
the same signal portion reported in Fig. 4) is shown in Fig. 5.
In this figure, the green curve is the resampled plot, while
the red is the original signal plot. Compared to the previous
resampling, the pattern shown between the two signals is
much less similar, losing the wave’s peaks and also changing
its structure. Thus, it is clear that the second resampling is
much more impacting on the meaningfulness of the signal,
and for this reason, it was decided to adopt for the subse-
quent data preprocessing the resampling rate of 10,000 Hz
evaluated in the first conducted experiment.

Fig. 4 Superposition of Acc1X of nominal test, original (red) and resampled 10,000 Hz (green)
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Fig. 5 Superposition of the original Acc1X channel corresponding to a nominal test (red) and its resampling at 5000 Hz (green)

3.2 Step 2: analysis of the conveyor’s telemetry data
leveraging theMLmodel

This step concerns the identification of faults during the
normal functioning of a conveyor belt, exploiting the data
collected through Step 1. In this regard, an ML model was
developed to monitor and predict the status of the conveyor
belt. The following subsections illustrate the activities con-
ducted to realize this model.

3.2.1 Selection of the MLmethod to evaluate

A first comparison of various methods was conducted before
proceeding with the evaluation. According to literature [29,
40], various methods can be applied to fault identifications,
each with different characteristics. The most common ones
have been evaluated and compared to understand which is
best suited to the problem under analysis. They are reported
in the following, accompanied by a brief description:

• Binary classification, which consists in a supervised
learning approach that allows the classification of the
given data in one or two predefined classes [23, 56].

• Multi-class classification, which is similar to the binary
approach but involves more classes for a more precise
differentiation of the cases [10].

• Regression, which uses determined independent vari-
ables, called predictors, to foresee some decided depen-
dent variables [17].

• Anomaly detection, an anomaly system that defines a
normal status in which the system should be during nor-
mal functioning. Then, it can identify and notify when
the system deviates from this status [38, 43].

Every method has pros and cons, which can be more suit-
able in some cases and less in others. For this reason, various
approaches based on one or more of the above-mentioned
methods were evaluated in this study. In particular, Ran-
dom Forest (binary classification) [41], logistic regression
(regression) [21], linear SVM (binary classification) [48],
and decision tree (regression) [55] were taken into account,
evaluated, and compared in order to implement a binary clas-
sification that distinguishes between nominal and fault cases.
It is noteworthy to mention that other methods, specifically
based on Recurrent Neural Network (RNN), proved to be a
valid option for cases similar to the one analyzed [15], but
they have not been yet evaluated mainly for the required high
computational cost. However, it is intended to include them
when investigating more models as part of the future steps
(Sect. 6).

3.2.2 Evaluation and comparison of different MLmethods

The evaluation stage started with the training of each ML
model, which was conducted using as input of themodel data
sets acquired in nominal conditions and data sets acquired in
a condition of fault. Specifically, one nominal case and six
fault cases were used (three files with slack in the chain, and
three files with loops removed).
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For each algorithm to be evaluated, it was used a test size
of 0.2, meaning it was taken 80% of the available data to
train the algorithm and 20% of data to test it. This ratio was
chosen based on the evidence in literature [16] to guarantee
an adequate amount of data for training, thus performing an
accurate training of themodel; the datawas divided randomly
taking 20% of data from each channel for each data set (i.e.,
for every considered case was taken 20% of each channel
randomly). The evaluation of the four different methods was
conducted by comparing their Receiver Operating Charac-
teristic (ROC) curve and their Area Under the Curve (AUC).
The latter are well-established methods to evaluate the qual-
ity of the ML algorithms and, in particular, their capacity to
correctly identify the classes [13, 28]. The ROC curve has
been designed in Fig. 6 for the four different algorithms using
the same overall dataset for training and testing as input.

It should be noted that the perfect score is AUC = 1, while
a random approach (which randomly assigns a label of 0
or 1 to the sample) has an AUC = 0.5. The Random Forest
algorithm (RanFor) has an AUC of 0.87, by giving the best
performance among all the evaluated models. In addition, to
evaluate more accurately the four developed algorithms, the
following indexes were calculated for each algorithm [8]:

• Precision score, i.e., the percentage of occurrences cor-
rectly predicted, which represents the model’s ability to
not label a negative sample as positive. It is calculated
as the fraction between the true positives (tp) and the
total given by true positives plus false positives (tp + f p)

tp
tp+ f p

;

Fig. 6 ROC curve for four different developed algorithms

Table 1 Algorithms indexes

Indexes RanFor LogReg SVM DecTree

Precision score 0.88 0.74 0.76 0.85

Recall score 0.89 0.86 0.63 0.84

F1-score 0.88 0.79 0.68 0.84

• Recall score, i.e., the percentage of positive occurrences
correctly predicted over the total of positive occurrences,
which represents themodel’s ability tofind all the positive
samples. It is calculated as the fraction between the true
positives (tp) and the sum of true positives plus false
negatives (tp + fn)

tp
tp+ fn

;
• F1-score, a weighted mean of precision and recall that
gives an overall algorithm evaluation.

The calculated indexes for the four algorithms, reported
in Table 1, highlighted the better performance of the RanFor,
thus confirming the evaluation leveraging the AUC index.

Based on the results, the Random Forest algorithm was
selected to continue this study.

3.2.3 The code implementation

The implemented code has been developed by using the
Python language and the native libraries of the Jupyter
Lab platform [6], and it was made available by the authors
on Zenodo’s platform [3]. Some examples representing the
developed code are shown below. In particular, in Listing 1
below, it is reported the code to read the telemetry data sets.
In this regard, a Pandas Data frame was created by exploiting
the Python library Pandas [31], and it was then filled with a
set of imported files.

In Listing 2, the import of the libraries and the related
functions needed to develop the model is shown.

Moreover, to randomly divide the input data between input
for training and for testing based on the established test_size,
the Python function train_test_split was exploited, as shown
in Listing 3. In particular, a ratio of 80% for training and
the remaining 20% samples for testing was adopted, thus
obtaining the two couples of values (X_train, Y_train) and
(X_test, Y_test), where the X is the value provided by the
sensors, while the Y is the predicted value and it represents
the presence or absence of the error.

In Listing 4, it is shown the snippet code which performs
the training of the model and the calculation of the accuracy,
showing the elapsed time.

Moreover, to store the trained model in a specific archive
(locally or on a cloud), it is exploited the dump function, as
shown in Listing 5. The stored model can then be used in
subsequent processing without the need to train it again, thus
reducing processing time, shown in Listing 6.
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Listing 1 Read telemetry data sets

1 # Errror Tdms fi les to be loaded
2 file_paths = [
3 "data_Test41_0009_catena_1mm_sampled .tdms" ,
4 "data_Test41_0003_cat1_sampled .tdms" ,
5 "data_Test43_0002_cat5_sampled .tdms" ,
6 "data_Test42_0013_cat2_sampled .tdms" ,
7 "data_Test42_0004_catena_2mm_sampled .tdms" ,
8 "data_Test43_0010_catena_5mm_sampled .tdms" ,
9 ]

10

11 # Create empty l i s t for the Dataframe
12 df_err = []
13

14 # Run every tdsm fi le and prepare corresponding database
15 for file_path in file_paths :
16 full_path = ’ /Users /AIRegio/Sampled_Data/Chain/ ’ + file_path
17 tdms_file = TdmsFile( full_path )
18 df = PrepareTrainingSet_Error( tdms_file )
19 df_err .append(df)
20

21 df_error = pd. concat(df_err , ignore_index=True)
22 df_error

Listing 2 Libraries and functions import

1 from sklearn .ensemble import RandomForestClassifier
2 from sklearn .metrics import confusion_matrix , ConfusionMatrixDisplay
3 import matplotlib . pyplot as plt
4 from sklearn .decomposition import PCA
5 from scikitplot .metrics import plot_roc , plot_precision_recall ,
6 plot_cumulative_gain , plot_lift_curve
7 from numpy import argmax
8 import numpy as np
9 from sklearn .metrics import precision_score , recall_score , f1_score ,

10 accuracy_score , roc_curve , auc , roc_auc_score
11 from sklearn .metrics import classification_report
12 import pandas as pd
13 from nptdms import TdmsFile
14 import time
15 import joblib

Listing 3 Divide data for training and testing

1 from sklearn .model_selection import train_test_spli t
2 X_train , X_test , Y_train , Y_test = train_test_spli t (X,Y, test_size=0.2,
3 random_state =1984)

It was created a specific function for all the evaluation
metrics (explained previously) to be loaded and used in the
code, shown in Listing 7.

3.3 Step 3: action

The outcomes of the implemented ML model can then be
exploited to inform the stakeholders about the status of the
belt by providing predictions of the eventual fault cases, thus

allowing to make actual interventions in the system (e.g.,
emergency stops) and to enable the decision-making pro-
cess about its maintenance. Specifically, in this phase of the
research project and as asked by the company itself, it was
thought to leave the given information to a very core state to
let the related stakeholders analyze it and produce an opera-
tional plan based on the knowledge of the process itself.

This information differs in form and content according to
the specific stakeholder’s needs. Specifically, for this sce-
nario, the solution was conceived for two main types of
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Listing 4 Model training

1 #Training the model
2

3 start_time = time . time()
4

5 model = RandomForestClassifier( criterion = ’entropy’ , min_samples_leaf = 3,
6 min_samples_split = 5, max_depth = 60 )
7 model. f i t (X_train , Y_train)
8

9

10 train_accuracy = model. score(X_train , Y_train)
11 print ( f"Training Accuracy: {train_accuracy}")
12

13 test_accuracy = model. score(X_test , Y_test)
14 print ( f"Test Accuracy: {test_accuracy}")
15

16 end_time = time . time()
17 elapsed_time = end_time − start_time
18 print ( f"The model took {elapsed_time} seconds to train . ")

Listing 5 Store the trained model

1 #Saving model locally
2 joblib .dump(model, ’Trained_Model . pkl ’ , compress=’zlib ’ )

Listing 6 Load the saved model

1 #loading model from local
2 model = joblib . load( ’ /Users /AIRegio/Trained_Model . pkl ’ )

users (system operators and process engineers), each with
different duties and needs. In particular, the system operator
is responsible for performing small adjustments to the sys-
tem, monitoring the regular functioning of the conveyor belt,
and reporting faults and problems of the system. To accom-
plish these tasks, the system operator can access, through a
proper dashboard, a simplified version of all the ML model
outputs, particularly the count of the values predicted as nom-
inal or faults. Indeed, the proposed solution only provides
raw information, which is analyzed by the system operator,
who identifies potential problems based on his experience.
Instead, in the future, an evolution of the solution is foreseen
to set a threshold for the number of predicted faults in order to
discern between the status of regular functioning and action
needed.

In the workflow supported by the current solution, if
the operator identifies potential problems, he communicates
them to the process engineer, who can decide the appropri-
ate corrective action to apply to the belt. In fact, the process
engineer is responsible for ensuring the system is functioning
well by scheduling corrective interventions and deciding on a
maintenance plan. In addition, the process engineer controls
the quality of theMLmodel by analyzing its performance. In
this regard, the process engineer can visualize various infor-
mation such as the prediction count (as for the operator),

the main indexes, the principal component analysis, and the
confusion matrix calculated as it is later reported in Sect. 5,
and this information is essential for deciding about possible
improvements to the ML model.

4 The DT-based solution

A DT-based solution is well suited to support the three steps
of the approach described in Sect. 3 and, in particular, to
integrate these steps into an overall approach. Under these
conditions, the authors conceived and realized a DT of the
conveyor belt that provides the telemetry data acquired on
the real conveyor belt as input to the ML model. In turn,
the ML model uses telemetry data to monitor and predict
the status of the conveyor belt, while the model outputs are
exploited to make decisions to apply some corrective actions
on the belt. This implementedDT, whose code is available on
Zenodo’s platform [3], represents one of the assets included
in the assets catalog of the AI REGIO project [4], and it is
also included in the AI4EU portal [2].

According to the typical architecture for DT [35], the
proposed solution comprises the following three main com-
ponents (Fig. 7):
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Listing 7 Evaluation metrics for the trained model

1 #function to report al l the evaluation metrics for the trained model
2 def evaluate_model_first (model, X_train , Y_train , X_Test, Y_Test) :
3

4 # Test the model
5 Y_pred = model. predict (X_Test)
6 print ( ’Precision score : %s ’ % precision_score(Y_Test, Y_pred) )
7 print ( ’Recall score : %s ’ % recall_score (Y_Test, Y_pred) )
8 print ( ’F1−score : %s ’ % f1_score(Y_Test, Y_pred) )
9 print ( ’AccuracY score : %s ’ % accuracy_score(Y_Test, Y_pred) )

10

11 # Confusion Matrix
12 print ( ’Confusion Matrix training set ’ )
13 confusion_matrix = ConfusionMatrixDisplay . from_estimator(model, X_train ,
14 Y_train , display_labels=[’nominal’ , ’error ’ ] , cmap=’Blues’ )
15

16 print ( ’Confusion Matrix test set ’ )
17 confusion_matrix = ConfusionMatrixDisplay . from_estimator(model, X_Test,
18 Y_Test, display_labels=[’nominal’ , ’error ’ ] , cmap=’Blues’ )
19

20 # Build and Plot PCA
21 pca = PCA(n_components=2)
22 pca . f i t (np. array(X_train) )
23 X_pca = pca . transform(np. array(X_train) )
24 plt . scatter (X_pca[ : , 0] , X_pca[ : , 1] , c=y_train , cmap=plt .cm.prism ,
25 edgecolor=’k’ , alpha=0.7)
26 plt .show()
27

28 Y_score = model. predict_proba(X_Test)
29 fpr0 , tpr0 , thresholds = roc_curve(Y_Test, Y_score[ : , 1])
30 roc_auc0 = auc(fpr0 , tpr0 )
31

32 # Plot metrics
33 plot_roc(Y_Test, Y_score)
34 plt .show()
35

36 plot_precision_recall (Y_Test, Y_score)
37 plt .show()
38

39 plot_cumulative_gain(Y_Test, Y_score)
40 plt .show()
41

42 plot_lift_curve (Y_Test, Y_score)
43 plt .show()
44

45 # Print a classification report
46 print ( classification_report (Y_Test, Y_pred) )

1. TheMLmodel, which uses the Random Forest algorithm
selected within Step 2;

2. The telemetry acquired through the sensors distributed
across the belt;

3. The database used to persist the information and where
the trained model is stored. In the first implementation of
the proposed solution, a file archive was used to store the
telemetry files.

Figure 7 also reports themain interactions among the com-
ponents under the form of arrows described below. First, the

Arrow 1 represents the telemetry data acquired from the belt
and given as input to the implemented model to train it, while
Arrow2 represents the trainedmodel,which is stored and per-
sisted within a proper a file archive. The Arrow 3, Arrow 4,
and Arrow 5 embody the input of the ML model.

Specifically, Arrow 3 represents the new data provided
by the telemetry to be processed in the form of samples,
each containing 24 channels as described in Sect. 3.1, while
Arrow 4 represents the loading of the trained model from
the database and Arrow 5 represents the algorithm selected
through Step 2 of the approach and then given as input to
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Fig. 7 The proposed DT
solution

the ML model. Regarding this algorithm, for the benefit of
the readers, the snippet code implemented to perform the
new prediction and calculate the elapsed time is reported in
Listing 8, while in Fig. 8, it is reported the results of the cal-
culation. In particular, the reported results consist in a count
of the predicted values, reporting the number of values pre-
dicted as 0 (nominal) and the number of values predicted as 1
(fault cases). These results, which are shown to the operators,
represent one of the two outputs of the ML model and are
reported in Fig. 7 through the Arrow 6, while the other out-
put of the ML model (Arrow 7) represents the performance
indexes shown to the process engineer. In addition, the bidi-
rectional Arrow 8 represents the communication exchanged
between the operator and the process engineer. Finally, the
Arrow 9 represents the changes applied by the process engi-
neer to the model, while the Arrow 10 is an update of the
maintenance plan to be applied to the belt.

5 Assessment of the proposed solution

This section reports the test session results conducted to
assess the proposed solution. In this evaluation, it is taken
into account the results of the predictions (number of faults

and nominal cases predicted), but also the indexes (precision
score, recall score, f1 score), and the confusion matrix to
clearly understand the accuracy of the prediction.

In the first executed test, eight nominal files and six error
fileswere used to train and test themodel (test size= 0.2). The
results are shown in Fig. 9, which reports the model evalu-
ation through a confusion matrix. Among the total labels
(1,44e6), the matrix reports that 1,40e6 were correctly pre-
dicted as nominal, and 2,23e5 were correctly predicted as
faults. Regarding incorrect predictions, 8,00e4 were pre-
dicted as badwhile being nominal, and 1,37e5were predicted
as nominal while being faults. This gives a total accuracy
score of 0.88, a recall score of 0.62, and a precision score of
0.74, showing an acceptable response from the model for the
performed prediction.

In the second test, it proceeded to give as input to the pre-
viously trained model a single file corresponding to an error
case. The results of this test, including a confusion matrix,
are reported in Fig. 10. They show an accuracy score of 0.83,
a recall score of 0.83, and a precision score of 1, showing a
even better response than the first test.

The third test aims to evaluate the impact of resampling
on the prediction. In this regard, the ML model input is not
a resampled file corresponding to a nominal case prediction.

Listing 8 Perform new prediction and report valuer count

1

2 predictions_df [ ’Prediction ’ ] . value_counts ()
3 start_time = time . time()
4 new_prediction = model. predict (X_Test_err2) #making predictions
5

6 end_time = time . time()
7 elapsed_time = end_time − start_time
8

9 print ( f"The model took {elapsed_time} seconds to make predictions . ")
10

11 # Create a new DataFrame to hold the predictions
12 predictions_df = pd.DataFrame({ ’Prediction ’ : new_prediction})
13 print (predictions_df )
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Fig. 8 Code and results for the prediction of a new file

The results, reported in Fig. 11, show a 98% accuracy, which
is very high, and thus, it demonstrates an excellent prediction
of nominal cases. This proves that a certain loss is caused
by the resampling, but it is a necessary trade-off due to the
calculation times required for not resampled data sets.

Despite the results obtained in all three tests were improv-
able, the performed analysis of the evaluation demonstrated
that these results were consistent with a high number of true
predictions and a low rate of incorrect ones. Under these con-
ditions, it is possible to understand the presence of nominal
and fault cases, and the operators can act accordingly.

Concerning the time requested for the prediction, the
model took 56s to predict 1min of acquisition from the sen-
sors (resampled to 10,000 Hz), while the not-resampled case
took 241s to predict a minute of acquisition. This gives an
acceptable response time, allowing monitoring in-line of the
belt during its normal use by predicting every minute of a
resampled acquisition or, alternatively, 1 min every 4min of
a not-resampled one.

Fig. 9 Evaluation of the results in the second test (the inputs are eight
nominal files and six error files)

Fig. 10 Evaluation of the results in the second test (the input is a single
file corresponding to an error case)

6 Conclusion and future outcomes

The contribution of this study is a DT solution-based ML
model that can predict the occurrence of faults in a curved
conveyor belt. The results obtained in the study demonstrated

Fig. 11 Evaluation of the results in the third test (the input is a single
file corresponding to an error case)
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that the proposed solution, developed and tested within a
real-case scenario, is valid in terms of precision, accuracy,
and response time.

6.1 Future steps

Future studies and developments related to this work will
mainly address the following eight goals:

1. The solution will be deployed in production, thus allow-
ing the evaluation of its real impact on the company’s
processes;

2. The ML model will be extended by integrating a
multi-classification approach to the already implemented
binary classification. The latest aims to detect the pres-
ence of faults, while the multi-classification will identify
the kind of faults.

3. In collaboration with the stakeholders’ company, spe-
cific thresholds for the number of predicted faults will
be identified. These thresholds will help to choose which
conditions are acceptable and which are not.

4. Visual/acoustic signals and augmented reality appli-
cations will be implemented to communicate to the
operators the results elaborated by the model.

5. A newmethod based on statistics (and in particular using
binning [30]) will be studied to pre-process the input
dataset and extrapolate values of interest to be fed to
the model, instead of resampling the data (this activity
is ongoing). In addition, a new approach to extract fea-
tures will be studied, using a Recurrent Neural Network
model.

6. The possibility to incrementally train the ML model
through different steps will be implemented (in the pro-
posed solution, the model is trained in a single step).

7. The potential of another different ML model imple-
mentation approach will be investigated. The idea is to
implement a different model for each specific condition
of faults, and all these models will be run in parallel,
thus improving the precision and accuracy of the overall
model.

8. The proposed approach will be revised to be compliant
with the human-centricity of Industry 5.0 by analyzing a
collaborative model between humans and (physical and
virtual) machines [34].
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