IST-EL. INE,
BiRLIOTECA %
i

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

PISA

Iexpressing Event Abstractions in a Debugging
Environment

B. Lazzerini, L. Lopriore

Nota interna B4-39
Dicembre 1987

EXPRESSING EVENT ABSTRACTIONS
IN A DEBUGGING ENVIRONMENT

B. Lazzerini

Istituto di Elettronica e Telecomunicazioni
Facolta™ di Ingegneria, Universita® di Pisa
Via Diotisalvi, 2 + 56100 Pisa ~ Italy

L. Lopriore

Istituto di Elaborazione della Informazione
Consiglio Nazionale delle Ricerche
Via Santa Maria, 46 = 56100 Pisa « Italy

Abstract = A debugging environment is presented, Dbased on the event~action
model for interaction between the debugging system and the program being
debugged (target program). Events are defined at two different levels of
abstraction. At the lower level, we have the simple events., These events are
expressed in terms of the values of the program—-defined entities, and the
values of a set of variables, called instruction address (ia) variables. An

ia variable is associated by the debugging system to each Brogram block. The
:ia variable for a given block is accessed when a statement of that block is
executed, and its value is replaced by the label of that statement. At the
higher level, we have the compound events, expressed in terms of simple events -
and a set of operators, the instantanecus/deferring (id) operators. At any
given time, an instantaneous operator will produce a result which depends on
the value(s) of its factor(s) at that time, whereas a deferring operator
produces a result which depends not only on the value(s) assumed at that time,
but also on the values assumed from another given time, called the origin of
the operator.

On the occurrence of a given event, the actions connected to that event
will be performed. Possible actions can be moving the origins of the deferring
operators, and generating traps. A trace trap displays a portion of the
program state. A break trap returns control to the programmer at the console.

Instruction address variables and instantaneous/deferring operators are
powerful mechanisms for monitoring the activity of the target program. They
make it possible to construct event abstractions in terms of the path followed
by the flow of control (flow history) and the sequence of the program states
(state history). Rather than offering a fixed set of special-purpose tools,
tailored to a specific program debugging approach, the resulting environment
adequately supports different debugging techniques, and offers the wuser a
considerable degree of control over the debugging experiment.

Index Terms = Action, break trap, debugging, event, flow history, state
history, trace trap.

This work has been supported in part by the Italian Ministry of Educa=
tion, and in part by the research contract of Selenia, Industrie Elettroniche
Associate, S.p.A., Rome, Italy, and Consiglio Nazionale delle Ricerche, Pisa,
Italy. ‘

I. INTRODUCTION

Debugging is the process of diagnosing and removing program errors [36].
After a program has been written, it is executed with carefully selected test
data. If the program does not behave as expected, an error is suspected. The
results of the execution are analyzed, and the cause of the problem is
located. A correction is proposed, and the test is repeated [14], [29].

Debugging is a timemconsuming activity. Ad-hoc tools and facilities help
the programmer in this pﬂase of program development [8], [31]. These tools

support different debugging techniques. An execution monitor observes the

execution of the program being debugged (target program). Filtering actions

select the information which interests the actual debugging experiment. The
results of these filtering actions are displayed at the debugging console, or,
alternatively, are recorded on some storage media for later analysis. Path
tracing 1is the process of recording the control flow at a suitable level of
granularity, e.g., branches, basic blocks [20], and subroutine invocations

[22]. State tracing is the process of recording the evolution of an aspect of

the program state. This aspect is expressed in terms of the values assumed by

.a subset of the program=defined entities (target entities). An interactive
debugger makes it possible to interact with the program during execution [30].
A breakpoint 1is an interrupt in execution, causing control to return to the
programmer at the console. He can inspect the program state by displaying the
value of the target entities, and can affect the execution of the program if
he so wishes by, for instance, altering the value of the target variables.

Single step execution 1is the ability to return control to the programmer on

execution of each target statement. This is useful especially when it is not
clear where to place breakpoints [10].
We will refer to the eventraction model of interactions between the

debugging system and the target program [6], [13]. In this model, an event is

a condition on the program state, and an action is an operation performed by

the debugging system. Actions can involve not only the state of the target
program (e.g., by displaying the value of a target variable), but also the
state of the debugging system itself (as is required, for instance, to modify
the layout of the debugging experiment dynamically). On the occurrence of a
given event, the debugging system performs those actions connected to that
event. An adrhoc set of debugging commands allows the user to define events
and actions, and to control the connections between the events and the
actions,

The set of events depends on both the debugging technique(s) and the
programming language(s) supported by the debugging environment. For instance,
the events for a program written in a sequential hiéhwlevel language involve
conditions on the values of the target variables; events for a concurrent
program are also relevant for process interaction and synchronization [14].

A simple event is an event defined at the lowest level of abstraction, in

terms of the elementary behavior of the target program. Simple events can be
grouped to express other events at higher 1levels of abstraction (gggggggg
events). The set of simple events and the mechanisms to define event
abstractions are peculiar aspects of a debugging environment. In one
approach, a large set of simple events is supported by weak tools to build up
event abstractions. 1In this approach, the conditions on the state of the
target program are expressed by simple events at a low level of granularity.
An alternative approach 1s based on a few simple events which can be
compounded by means of a collection of sophisticated mechanisms.

Let us refer, for instance, to concurrent program debugging. In a
debugging environment in the first approach, the simple events include the
execution of primitives for process synchronization and communication, e.g.
operations on semaphores, for a language using shared variables for
interprocess communication, and the transmission and reception of a message,

for a messageworiented language [2]. 1In such an environment, a compound event

is a sequence of simple events, and occurs when all the events in the sequence
have occurred in the given order. In an environment in the second approach,
the simple events monitor the behavior of a single process, and interactions
between processes are monitored by compound events. These can involve

conditions on both the paths followed by the control flows (flow histories)

and the sequences of the states (state histories) of the interacting

processes,

We believe that an important requisite for an effective debugging
environment 1is a simple and powerful set of primitives which can be used to
build wup specialized tools, In this way, the environment offers the
programmer a coﬁsiderable degree of control over the debugging experiment, and
allows him to tailor the experiment to the intended debugging technique,
rather than supporting a specific approach to program debugging. This paper
presents a debugging environment featuring a small, powerful set of simple

events. They can involve conditions both on the values of the target entities

and on the values of a set of variables, called instruction address (_ia)
variables, One such variable is associated by the debugging system to each
block of the target progrém. The ia variable relevant to a given block 1is
accessed at the execution of a statement in that block, and its value is
replaced with the label of that statement. A compound event is an expression

involving simple events and a set of operators, the instantaneous/deferring

(_id) operators. The 1id operators allow the programmer to monitor the
activity of the target program, by keeping track of the evolution of the
values assumed by the simple events. They make it possible to express
conditions in terms of both the flow and the state histories.

Section II contains the rules for expressing simple and compound events.
The id operators are presented and their properties are illustrated. Section
IIT describes the rules used to denote the target entities. Instruction

address variables are introduced, and their utilization in the definition of

simple events 1is detailed. The interaction of the programmer with the
debugging system is considefed in Sections IV and V, where the command set is
analysed. Section IV gives a detailed description of the commands for defining
events and causing actions, and Section V examines other important aspects,
such as commands for displaying and modifying the values of the target
entities. Section VI considers a wide set of situations, which are likely to
occur in practical debugging experiments. This section 1is organized as a
sequence of problems. For each problem, a solution is outlined, and the
commands for implementing that solution are shown. Finally, Section VII
discusses the applications of the _id operators and the ia variables. The
proposed debugging environment is evaluated, with particular respect to the

support given to the outstanding debugging techniques.

II. EVENTS AND INSTANTANEOUS/DEFERRING OPERATORS

A. Simple Events

An event is an expression whose value depends on the state of the program

being executed (target program). Events can be simple and compound. A simple

event is an expression consisting of a relational operator and two factors. A

factor 1is a target variable, the label of a target statement, a numeric
literal, or a string literal. The relational operators are the equality
operator ==, the 1inequality operator <>, and the ordering operators < (less
than), <= (less than or equal to), >= (greater than or equal to), > (greater
than). The equality and the inequality operétors are defined for factors of
any type. The ordering operators are defined for factors of any scalar type,
for statement 1labels and for character arrays. The definition of a simple
event consists of the specification of the relation expressing that event,

enclosed in round brackets. At time t, a given simple event is true if the

relation expressing that event is true at that time.

B. Compound Events

A compound event is an expression consisting of 1id operators and simple

events, The _id operators are the unary operators ~ (instantaneous negation)

and } (deferrer), and the binary operators && (instantaneous conjunction), &

(deferred conjunction), || (instantaneous disjunction), | (deferred

disjunction). The _id operators are partitioned into three precedence
classes. One class 1includes unary operators. The other two classes include
the conjunction operators and the disjunction operators, respectively.
Clasées have been given in order of decreasing precedence,

A compound event is an instantaneous event if it is expressed in terms of

inétantaneous operators, whereas a deferred event is a compound event whose
specification includes one or more deferring operators. The meaning of all
the id operators is given below.

Definition 2.1. The unary operator ~ denotes the instantaneous negation
of an event. The instantaneous negation "E of event E is true at time t if
event E is false at that time.

Definition 2.2. The unary operator denotes the deferrer of an event.
This is a function of a time to, called the origin of the deferrer. The
deferrer |E of event E is true at time t if there exists a time t* in the
interval [to,t] such that the event is true at t¥,

Definition 2.3. The binary operator && denotes the instantaneous
conjunction of two events. The instantaneous conjunction E. && E, of events E

1 2 1

and E2 is true at time t if both EI1 and E2 are true at t.

Definition g.g. The binary operator & denotes the deferred conjunction

of two events. This 1is a function of a time tO’ called the origin of the

conjunction. The deferred conjunction E1 & E2 of events E1 and E2 is true at

time t if two times t1 and t2 exist in the interval [to,t], such that E1 is

Lrue at t1 and E2 is true at t2.

Definition 2.5. The || operator denotes the instantaneous disjunction of

two events. The instantaneous disjunction E, || E, of events E, and E, is true

1 2 1 2

at time t if either E1 or E2 or both are true at that time.

Definition 2.6. The binary operator | denotes the deferred disjunction

of two events. This is a function of a time tO’ called the origin of the
disjunction. The deferred disjunction E1 [E2 of events E1 and E2 is true at
time t if a time t* exists in the interval [to,t] such that either E1 or E2 or

both are true at t*,
The notations l(t°) and &(t°) evidence the origin of a deferring

operator, when this is not otherwise clarified by the context.

Example 2.1:

Let A be a target variable, and let us consider the events which

follow:
(A > +20) (e1)
| (& > +20) : (e2)
(A > =10) && (A < +10) (e3)
(A> #10) & (A < +10) (elt)
(A < =20) || (&> +20) (e5)
(A <=20) | (A > +20) (e6)
(A < =20) & (A > +20) (e?)
(e1) is a simple event, all the others are compound events. (e3) and

(e5) are instantaneous events, (e2), (eld), (eb) and (e7) are deferred
events. Let to be the origin of all the deferring operators. Supposing

that at tO A has the value +15, and at tj, t2 and t3 A assumes the

values +25, 0 and =25, respectively (Fig. 1), it then follows that (el)

is true in the interval [t1, t2); (e2) is true from t1 onwards; (e3) is

); (eld) is true from t

true in [t2, t)

onwards; (e5) is true in [t1, t

3 2 2
and from t3 onwards; (eb6) is true from t1 onwards; and, finally, (e7) is
true from t3 onwards.

Example 2.2:

As a further example, let us consider the different meanings of

events (e8) and (e9) defined in terms of events El and E2, as follows:

E1 & E2 (e8)
| (E1 && E2) (e9)

Let to be the origin of the deferring operators involved in these

events, Suppose that E1 is true in the interval [t1, t2) and from tu

onwards, and E2 is true in the interval [t t5) (Fig. 2). It follows

3’

that (e8) is true from t_ onwards, and (e9) is true from t, onwards.

3

C. Properties of the Deferring Operators

Let TRUE and FALSE denote an event which is always true and an event
which 1s always false, respectively. Certain properties are a direct

consequence of Definitions 2.172.6:

£ &{t) true = |(te)g (2.1)
E (%) panse = |(Folg (2.2)
Eelfe) g |(t°) E (2.3)
e (50 5o | (E0) g (.0
E, g(to) E, = E, g{o) E, (2.5)
e, |®) e, -E, |5k (2.6)
E, u(to) (E, 8 (to) Ey) = (E ALY E,) (o) Eq (2.7)
e () (g | (Fo)) - (E, (50 gy | (5o e, (2.8)

Relations (2.5), (2.6) and (2.7), (2.8) state that the & and | operators are
commutative and assoclative, respectively.
The relations which follow are useful in transforming and simplifying the

specifications of deferred events:

l(to)(l(to)E) = l(to)E

(2.9)
l(tO)(E1 &(to) EZ) = E.‘ &(to) E2 (2.10)
I(tO)(E1 I(to) E2) = E1 i(to) E2 (2.11)

Proof of Relation (2.9): Assume that I(t°)(|(t°)E) is true at time t > t,. By
Definition 2.2 there exists a time t¥* in [to,t] such that |(t°)E is true at
t*¥, Hence there exists a time t' belonging to [to,t*] such that E is true 1in
t'. Thus |(t°)E is true in t. Now assume that](t°)(l(t°)E) is false at t,

then |(t°)E is false at each t¥ in [to,t]. Thus I(t°)E is false in t.

The proofs of Relations (2.10) and (2.11) are similar to the proof of Relation
(2.9), and are left to the reader.

Relations (2.12) and (2.13) below show that the binary deferring
operators can be expressed in terms of the binary instantaneous operators and

the unary deferrer operator:

(to) g (to)
E, & E, = |

(to)
E, | E

(to) |
E, & | 7°7E, (2.12)

L= 1T g e, (2.13)

Proof of Relation (2.12): Assume that E1 &(t°) E2 is true at time t > to. By

Definition 2.4 two times t. and t, exist in the interval [to,t] such that E

1 2
is true at t1 and E, is true at t,. Hence both I(t°)E1 and |(t°)E2 are true at

t, and the right side of the relation is true. Now assume that E1 &(t°) E2 is

false at t, then either E1 or E2 or both are false at every time t¥ in [to,t].

1

(to)y
|* oK,

Hence either or I(t°)E2 or both are false at t, and the right side of

the relation is false.

The proof of Relation (2.13) is similar to the proof of Relation (2.12), and
is left to the reader.
Relations (2.14) and (2.15) below follow directly from Relations (2.10)

and (2.12), and from Relations (2.11) and (2.13), respectively:

tO 0
(to)e | (50)

, k&](t°)r~32 (2.14)

t, t,
E)) = I()E1 | [()EZ (2.15)

A, Event Evaluation Times

Let S be a simple event. If at time t at least one of the factors in
terms of which S is expressed is accessed, then t is an evaluation time for S.
Let C be a compound event. If time t is an evaluation time for at least one of
the events which compound C, then t is an evaluation time for C.

A simple or compound event occurs at time t if t is an evaluation time

for that event, and at t the event is true.

III. TARGET ENTITIES

A. Denoting Target Entities

An outermost block of the target program is denoted by the : symbol
followed by the identifier of that block. A block which is not an outermost
block is denoted by a path name. This is a sequence of block identifiers
separated by the : symbol. The path name of a given block is the path from an
outermost block to that block. A path name not starting with the : symbol
begins in the the block being executed (current block); this notation is not
permitted if the target program is a concurrent program. The debugging system
assigns automatic identifiers to nameless blocks. One such identifier consists
of the # symbol followed by the order number (textually) of that block in the
biock containing its definition.

A target variable is denoted by the path name of the block containing the
definition of that variable, and the variable identifier. The % symbol acts as
a separator between the path name and the variable identifier. If the path
name is omitted, the variable is assumed to be defined in the current block.

A target statement is denoted by the path name of the block containing

that statement, and the statement label. The $ symbol acts as a separator

10

between the path name and the label. The debugging system assigns automatic
labels to unlabeled statements. One such label is the # symbol followed by the
order number (fextually) of that statement in the containing block. The °~
symbol denotes the last statement of a block. If the block path name is

omitted, the statement is assumed to be contained in the current block.

Example 3.1:

:MAIN denotes the block named MAIN at the outermost level iIn the
target program, :MAIN:BLK denotes the block named BLK and defined within
:MAIN. :MAIN:#1 denotes the first block (textually) defined within
:MAIN. :MAIN:BLK%COUNT denotes the variable COUNT defined in block
:MAIN:BLK. If :MAIN:BLK is the current block, this variable can be
denoted by %COUNT. :MAIN$LOOP is the statement labeled LOOP in block
+MAIN. :MAIN$#1, :MAIN$#10 and :MAIN$™ are the first, tenth and last
statement of block :MAIN. $#1, $#10 and $" are the first, tenth and last

statement of the current block.

B. The Instruction Address Variables

Let the target program be a sequential program, and let B denote a block
path name. The debugging system associates a variable, called instruction
address (_ia) variable, to each target block. The _ia variable for block B is
denoted by B ia. The values B ia can assume are the statement labels
contained in block B, the automatic labels B$#1, B$#2, ..., B$~ of the
statements of B, and the NIL value. The NIL value is the initial value of
B ia. Variable B ia is accessed each time a statement of block B is executed.
Its current value is replaced with the label of this statement. On abandoning
the execution of B, the value of B ia is equal to the label of the last
statement executed in B. It should be noted that no value is shared by the

_ia variables for different blocks.

"

Let the target program be a concurrent program, and let SB be the path
name of a block shared by processes P1, P2, ..., Pn. For each process Pi, the
debugging system associates an ia variable to SB., This variable is denoted by
SB_ia@Pi. The values SB_ia@Pi can assume are the statement labels contained in
block SB, the automatic labels SB$#1, SB$#2, ..., SB$” of the statements of
block SB, and the NIL value. The NIL value is the initial value of SB_ ia@Pi.
SB_ia@Pi is accessed each time a statement of SB is executed by Pi. 1Its
current value 1s replaced by the label of this statement. On completion of
execution of SB, the value of SB_ia@Pi is equal to the label of the last
statement executed in SB by Pi.

Finally, in a.concurrent program, let LB be the path name of a block
local to a single process Pi. A single ia variable, LB ia, is associated to
LB. This variable is treated in the same way as the ia variable for a Dblock
of a sequential program.

An ia event is a simple event expressed in terms of an _lia variable and
a 1label in the block of that variable. The path name of the block in the
specification of the label can be omitted. It is an error to express a simple
event in terms of more than one ia variable. This constraint applies also to
_la variables for different processes. If the value of the _la wvariable
involved in a given _ia event iIs equal to NIL, the value of that ia event is

equal to false.

Example 3.2:

The simple event (B_ia > B$#100) can be written as (B_ia > $#100).
This event occurs at execution of each statement of block B following
the oneshundredth statement. At any given time, its value is equal to
the value of the compound event

(B_ia == $#101) || (B_ia == $#102) || ... H'(B_ia == $#").

12

Iv. THE COMMAND SET ~ TREATING EVENTS

The debugging system executes the target program in a controlled fashion,
according to the specifications of the debugging experiment. These
specifications are stated by the wuser, by issuing proper sequences of
debugging commands. Some commands make it possible to express events, to move
origins, and to cause actions on the occurrence of events. These commands are
considered 1in detail in this section. The discussion is completed in the next

section, where other important aspects of the command set are considered.

A, Activating and Deactivating Events

An event declaration associates a simple or compound event with an event
identifier. After declaration, the identifier can be included in the
specifications of other events. In this case, the identifier 1is just an

abbreviation for the event it represents. The command

event <event identifier> = <event>
declares an event. The association of the event with the given identifier is
valid throughout the debugging session.

An event is active if 1its wvalue 1is computed concurrently with the
execution of the target program, according to the values assumed by the target

entities included in the specification of that event. The command

event on <event identifier>
activates the event associated with the given event identifier. If this is a
compound event, this command also activates each component event. If this
command is issued at time tO’ and the event is deferred, then tO becomes the
origin of the deferring operators involved in that event. . It is an error to

declare a compound event such that the values of one or more components depend

on the value of that compound event. The command

13

event off <event identifier>

deactivates the event associated with the given event identifier.

Let eid, eidl, eid2, ...

event on eid = <event>

is equivalent to the command pair
event eid = <event>
event on eid

The command

event on eidl eid2 ... eidN

is equivalent to the sequence of commands

event on eidl
event on eid?

°
°

event on eidN

The command

event off eidl eid2 ... eidN

is expanded similarly.

Example 4.1:

event E1 = (A > +10)

, eldN denote event identifiers.

event on E2 = (A < =10) & E1

The first command associates simple event (A > +10) with identifier

The command

E1.

The second command activates the simple events (A > +10) and (A < #10),

and the compound event (A < =10) & (A > +10). The origin of the deferred

conjunction is the time at which the second command is issued.

14

B. Moving the Origin of an Event

Two commands, origin and origin at, make it possible to move the origins

of the deferring operators included in the definition of the active events,

The origin command has the form:

origin <event identifier>

Let ty be the time at which this command is issued. If the named event 1is a
deferred event, then t, pecomes the origin of the deferring operators in terms
of which that event is expressed. If the named event is a simple event or an
instantaneous event, the command has no effect. It is an error to issue an
origin command involving an event which is not active,

The origin at command has the form:

origin <event identifier> at <event identifier> ... <event identifier>
The events named in the at portion are called the controllers of the command,
whereas the event named in the origin portion is the destination. Let t¥ be

the time at which this command is issued, and suppose that a controller occurs

at time tO’ tO > ¥,

If the destination is a deferred event, then tO becomes
the origin of the deferring operators involved in that event, At the
occurrence of an event which is Dboth a component and a controller of a
deferred event, the movement of the origin precedes the evaluation of the
deferred event. If the destination is alsimple event or an instantaneous
event, the command has no effect. It is an error to issue an origin at command

involving an event which is not active. It is an error to issue an origin at

command such that the values of one or more controllers depend on the value of

the destination.

The command

origin eidl eid2 ... eidN

is equivalent to the sequence of commands

15

origin eidl
origin eid2

origin eidN

Let dst1, dst2, ..., dstM, ctrlt, ctrl2, ..., ctrlP denote active events. The

command

origin dstl dst2 ... dstM at ctrll ctrl2 ... ctrlP
is equivalent to the sequence of commands

origin dstl at ctrli ctrl2 ... ctrlP
origin dst2 at ctrll ctrl2 ... ctrlP

°

°

origin dstM at ctrlt ctrl2 ... ctrlP

C. Traps

A trap is a deviation in the normal flow of the target program which
causes control to be temporarily or permanently transferred to the debugging
system. A trace trap 1is a temporary control transfer which causes the
debugging system to display a portion of the state of the target program at
the console. The condition causing such a trap is expressed in terms of the

cccurrence of an event by the trace on command, which has the form:

trace on <event identifier> display <target entity> ... <target entity>
This command causes a trace trap to be generated each time the named event
occurs. The trace includes the values of the target entities specified by the
display portion of the command. In this portion, the $$ literal denotes the
target statement being executed at the generation of the trap.

A trace condition is cleared by the trace off command, which is as

follows:

trace off <event identifier>

After issuing this command, no more trace traps are generated at the

16 -

occurrence of the named event.

A 92255 trap is a permanent transfer of control to thevdebugging system,
which consequently enters the break mode. This mode éllows the user to issue
commands interactively from the console. The condition causing a break trap
is expressed in terms of the occurrence of an event by the break on command,

which has the form:

break on <event identifier>

A break condition is cleared by the break off command, which is as

follows:

break off <event identifier>

The break mode can be abandoned by issuing the continue command, which

has the form:

continue
This command returns control to the target program. Execution 1is resumed at
the point where it was suspended by the break trap.

Let trgl, trg2, ..., trgl be target entities. The command

trace on eidl eid2 ... eidN display trgi trg2 ... trgT
stands for the sequence of ¢Commands

trace on eidl display trgl trg2 ... trgT
trace on eid2 display trgl trg2 ... trgl

trace on eidN display trgt! trg2 ... trgT
Expansions of the commands

trace off eidl eid2 ... eidN

break on eid! eid2 ... eidN

break off eidl eid2 ... eidN

are easy to imagine, and will not be shown,

17

V. MORE ON THE COMMAND SET

The command set presented so far must be upgraded by adding commands to
display and modify the values of target entities interactively, and to
redirect the traces. Other commands help the user to denote the target
entities. A discussion of these and other aspects of the command set is

¢

presented in this section,

A. Displaying the Value of Target Entities

The display command allows the user to inspect the values of the target

entities interactively. This command has the form

display <target entity> ... <target entity>
and prints the values of the specified target entities at the console.

Display formats should be congenial to the user [17]. For instance, the
value of a scalar variable of a usersdefined enumeration type should be
printed using the enumeration literals in terms of which that type is defined.
In some implementations, the type information 1is not available for the
debugger. One solution is to try to derive the type of a variable from 1its
size, and to solve the type ambiguities by printing the variables in all the
appropriate formats [34]. A different approach is to include a format

specification in the display command. For instance,

display Vili V2lc
takes variable Vi to be a signed integer, and V2 a single.character.

The display format of structured variables such as arrays depends on the
type of the components. Of course, it is desirable for character arrays to be
printed in the usual string format. Statements should be displayed as they
appear in the source listing, with the addition of the automatic labels.

Of course, these considerations apply to the display portion of the trace

on command as well. Furthermore, the user should be allowed to include

18

comments in a trace, for increased readability. For this purpose, strings
should be valid parameters for the trace on command, as in the example which

follows:

trace on EV display "V1: " V1!i

B. Modifying the Value of Target Entities

The assign command makes it possible to assign a new value to a target

variable. This command has the form

assign <target variable> := <expressiom
The eipression is evaluated and the result is assigned to the named variable.
This variable and the value of the expression must be of the same type. The
expression may involve the target variables and constants. The implementation
may restrict the applicability of this command, for instance, to the variables
in the active blocks, or to the most recent activation of each variable [10],
or even to the variables in the current block. Furthermore, the
implementation may explicitly state that the values of the target variables
will be retrieved and changed in memory. If the value of one such variable is
stored in a register, the effects of the assign command may not be reflected

by later use of that target variable [18].

C. Redirecting a Trace

The console can be replaced by a file for trace output. A trace file
makes it possible to graphically replay the execution of program portions.
Events can be displayed, at reduced speed if desired, &ithout having to run
the entire program again from the beginning [26]. This is especially useful
in debugging concurrent programs. The result of the execution of a concurrent
program depends on process scheduling and timings, and is hard to reproduce.

This 1is true, in particular, in the presence of improper process

synchronizations [7], [14]. Further applications of trace postsprocessing can

19

be found in the field of program performance evaluation [23].
The specifications of trace redirection can be included in the trace on

command, as in the example below:

trace on EV display V1!i V2!c to TRFILE
The output of the trace 1is -placed in the TRFILE file instead of being

displayed at the console., The command

trace to TRFILE

redirects the output of every trace on command nct featuring an explicit trace

redirection. The command

trace to CONSOLE

resumes the console for trace output.

D. Changing the Current Block

As seen in Section III, if a target entity 1is defined in the current
block, the path name of that block can be omitted, and that entity can be
denoted simply by 1its 1identifier. If the user needs to access several
entities, which are all defined in a block which is not the current block, the
current command allows temporary modification of the current block. For

instance, after issuing the command

current :MAIN:BLK
the current block will be :MAIN:BLK. The effects of this command cease on
resuming execution of the target program.

A refinement (suggested by Holdsworth [21]) is to introduce an ad~hoc
notation, e.g. ::, for the block enclosing the current block. For instance,

suppose that the current block is :MAIN:BLK. After issuing the command

current ::

the current block will be :MAIN.

20

E. Aliasing Path Names

The same identifier may occur in different declarations in the target
program. Of course, no ambiguity can occur if a target entity is denoted to
the debugger using path names. However, the user has to type a full path name
to denote an entity which has not been defined in the current block. An
aliasing mechanism makes it possible to introduce a short, easy~to~type alias
for a complex path name [21]. This mechanism takes the form of an alias

command., For instance, after issuing the command

alias P :MAIN:BLK

P will be an alias for the path name :MAIN:BLK. The command

alias all

lists all active aliases. The command

unalias P

removes the named alias. Finally, the command

unalias all
removes all active aliases.

The alias command is a useful complement to the current command. In
traditional debugging environments, the user seldom needs to issue a command
invelving entities defined in different blocks [10]. A single exception is
perhaps the trace command. As will be shown in the next section, this is not

the case as far as applications of deferring operators are concerned.
F. Scope Rules

At any given time in the execution of the target program, only a subset
of the target variables will have defined values, as stated by the scope rules
of the target language. This is true even in languages, such as FORTRAN, which

feature a static binding between the code segment and the activation record

21

[15]. Even if a given variable has a defined value, accessing that variable
when it is not visible is a violation of the scope rules.

On the other hand, limiting the range of possible accesses of the
debugging system to the scope rules is not viable. For instance, it could be
‘useful to inspect the internal state of a module not visible from any active
block [21]. A solution is to allow full path names to be used to denote the
variables not visible from the block being executed. Of course, with path
names it is possible to denote every target entity, independently of the scope

rules.

G. Other Aspects

The discussion of the command set, contained in this and in the previous
section, has been essentially aimed at showing how the _1d operators and the
_ia variables can be integrated in an interactive debugging environment. We
must point out that the commands introduced so far are only a subset of the
command set of a practical debugger. We have intentionally omitted considering
several features which are not related to the treatment of events. Examples
are commands which force a diversion in the flow of control of the target
program; mechanisms for saving and then restoring the state of a debugging
sesslon, such as are required to span a debugging experiment across two or
more sessions; and advanced display facilities, e.g. multiple windows. These
Teatures are, however, important aspects of an effective debugging environment

L123, [33]1, [36].

VI. FEXAMPLES OF APPLICATIONS

This section considers some important applications of ia variables and
_1d operators. A set of problems are proposed which reflect situations which
are likely to occur in a practical debugging experiment..For each problem, a

solution is outlined, and a sequence of commands to implement that solution is

22

illustrated.

A, Detecting Unsafe Situations

Problem 6.1: A bounded buffer, defined in the USE BUFFER block, can hold
up to 100 elements. The USE BUFFER%COUNT variable indicates how many elements
of the buffer are in use. Access to the buffer is unsafe when the value of the
counter is greater than 90 (buffer nearly full): a) trace each unsafe access;
b) generate a break at the first unsafe access and at each subsequent access.
Solution:

a) Event OFLW below will be true when the buffer is nearly full. A trace
trap 1is generated at each occurrence of OFLW. The trace includes both the
statement causing the access and the value of the counter, as follows:

event on OFLW = (USE BUFFER%COUNT > 90)

trace on OFLW display $$ USE BUFFER%COUNT

b) The deferred event DOFLW is defined in terms of the deferrer of OFWL.
A break is generated at each occurrence of DOFLW, as follows:

event on DOFLW = OFLW

break on DOFLW

The command

origin DOFLW
suspends the generation of break traps until occurrence of the next situation
of neartoverflow.

Problem é.g: Same as Problem 6.1, but a buffer access is unsafe even when
the value of the counter is less than 10 (buffer nearly empty).
Solution:

a) Event UFLW below will be true when the buffer is nearly empty. The
event UOFLW 1is defined in terms of the instantaneous disjunction of UFLW and
of event OFLW defined in the solution of Problem 6.1. The trace is gathered at

the occurrence of UOFLW, as follows:

. 23

event UFLW = (USE BUFFERZCOUNT < 10)

event on UOFLW = UFLW || OFLW

trace on UOFLW display $$ USE BUFFER%COUNT

b) The event DUOFLW is defined in terms of the deferred disjunction of
UFLW and OFLW. A break is generated at the occurrence of DUOFLW, as follows:

event on DUOFLW = UFLW OFLW

break on DUOFLW

B. Control Path

Problem 6.3: Detect when the control path of the target program has
passed over the statements of block B labeled L1, L2 and L3:

Solution:

event on PATH = (B_ia =
break on PATH

$L1) & (B_ia == $L2) & (B_ia == $L3)

Problem 6.4: Detect when the control path has passed over statements B$L1
and B$L2, in that order.

Solution:

event EL1 (B_ia == $L1)
event EL2 = (B _ia == $L2)
event on EL1L2 = EL1 & EL2
origin EL1L2 at EL1

break on EL1L2

Events EL1 and EL2 will become true on execution of B$L1 and B$L2,
respectively. Event EL1L2 is defined in terms of the sequential conjunction of
EL1 and EL2. The origin at command moves the origin of ELIL2Z on the
occurrence of ELt, and this prevents EL1L2 from becoming true if EL2 occurs
before ELT.

Problem 6.5: Detect when the control path has passed over statements
B$L1, B$L2 and B$L3, in that order.

Solution:

24

event EL3 = (B_ia == $L3)
event on EL1L2L3 = EL1L2 & EL3
origin EL1L2L3 at EL1 EL2
break on EL1L2L3
Events EL1, EL2 and EL1L2 have been defined in the solution of Problem 6.4,

The solutions of Problems 6.4 and 6.5 can be easily extended to treat

conditions on control paths expressed in terms of an arbitrarily large number

of statements.

C. Tracing the Execution of Program Portions

Problem 6.6: Trace the execution of a procedure P.
Solution:

event on IP = (P_ia > $#1) && (P_ia < §7)

trace on IP display $$

Problem 6.7: The program fragment between statements B$L1 and B$L2
contains a call to procedure P. We must: a) trace the execution of the
procedure when called from inside the fragment; b) trace the execution of both
the procedure and the fragment; c¢) trace the execution of the procedure when
called from outside the fragment, after the first execution of the fragment.
Solution:

a)

event on TRP = (B_ia > $L1) && (B_ia < $L2) && IP

trace on TRP display $$
Event IP has been defined in the solution of Problem 6.6.

b)

event on TRPF'= (B_ia > $L1) && (B_ia < $L2) || 1P

trace on TRPF display $$

c)

H

event on IF (B_ia == $L1)
event on OF = | (B ia == $L2)
origin OF at IF

event on TROF = IP && OF
trace on TROF display $$

i

25

D. Tracing the Values of a Variable

Problem 6.8: Statement B$INIT initializes a variable B%V. Trace each
access to B%V before initialization.
Solution:

event INV = |(B_ia == $INIT)

event ACCV = (B%V <= MAXV)

event on TRV = "INV && ACCV

‘trace on TRV display $$ B%V
The constant MAXV denotes the largest value that can be assumed by B%V. The

trace includes both the statement causing the access to B%V and the value of

B%V.

E. Breaking the Execution of a Loop

Problem 6.9: The fragment between B$P1 and B$P2 is the body of a 1loop.
Trace the first iteration of every execution of the loop.
Solution:

event on TRLOOP = (B _ia > $P1) && “(l(B_ia == $P2))

event on ENDL = (B ia > $P2)

origin TRLOOP at ENDL

trace on TRLOOP display $$

Problem 6.10: The fragment between B$F1 and B$F2 is the body of a loop
having a for iteration scheme, and controlled by variable B%I. Break
execution at the one~hundredth iteration.
Solution:

event on BL = (B _ia == $F1) && (B%I == 100)
break on BL

26

F. Single Stepping

Problem é.ll: Singlemstep each iterated execution of the program fragment
between B$F1 and B$F2, introduced in Problem 6.10.
Solution:

event on SNG = (B_ia >= $F1) && (B _ia <= $F2)

break on SNG

G. Unreached Code

Problem é.lg: Consider the following program fragment:

(F$#100) while ...
(F$#101) do if ...

(F$#102) then ...
(F$#103) else if ...
(F$#104) then ...
(F$#105) else ...

(F$#106) ...
The test data are such that each alternative sequence of statements should be
executed [24]. Generate a break if the while statement terminates and one or
more branches have not been tried at least once.
Solution:

event on INITW = (F_ia == $#100)

event on BR = (F_ia == $#102) & (F_ia == $#104) & (F_ia == $#105)

event on ERR = (F_ia == $#106) && "BR

origin BR at INITW

break on ERR

H. Shared Variables

Problem é.li: A bounded buffer of size one is shared between a sender
process S and a receiver process R, The former deposits data into the buffer
by executing the DEPOSIT procedure, the latter fetches data from the buffer by
executing the FETCH procedure; Detect a possible synchronization error,
resulting in a fetch issued before the corresponding deposit.

Solution:

27

event on D = |(DEPOSIT ia@S == $
event on F = (FETCH ia@R == $#1
event on ENDF = (FETCH ia@R == $
origin D at ENDF h

event on ERROR = F && ~D

break on ERROR

#1
)

)
)

Problem é.lﬁ: A few concurrent processes use a binary semaphore MUTEX to
implement mutually exclusive execution of critical sections. Detect possible
errors in the usage of the P and V operations on the semaphore.

Solution: The event

event PP = (MUTEX > 1)

detects a missing P. The event

event VV = (MUTEX < 0)

detects a missing V. The event

event PV = PP || vV
detects both a missing P and a missing V. Let MAXM denote the largest value
that can be stored in the area reserved for the value of MUTEX. The following
commands detect the accesses to MUTEX, and, for each access, display the value
of the semaphore together with the statement causing the access:

event on TRM = (MUTEX <= MAXM)

trace on TRM display $$ MUTEX

I. Message Passing

Problem 6.15: The following fragment of a concurrent program is written
in a messagemoriented language with synchronous (blocking) message passing.

The fragment involves a multiple-clients/single~server relationship:

28

(S$LS)

(C1$LCT)

(Ca%LCc2)

process S;
var MS: MSG TYPE;

receive MS from REQUEST PORT;

end;

process C1;
var M1: MSQ_TYPE;

send M1 to REQUEST PORT;

.

end;

process C2;
. var M2: MSG TYPE;

°

send M2 to REQUEST PORT;

.

end;

a) trace the contents of the messages received by the server S from client C1;

b) trace

the contents of all the messages received by S; c) generate a break

when both C1 and C2 have sent at least one message to S.

Solution:
a)
event
trace
b)
event
Lrace
c)

event
break

on
on

on
on

on
on

MC1 = (C1_ia == $LC1) && (S ia == $L.S)
MC1 display MS

MC1C2 = ((C1_ia == $LC1) || (C2_ia == $LC2)) && (S_ia == $LS)
MC1C2 display MS

Ci2 = (C1_ia == $LC1) & (C2_ia == $LC2)
c12

29

VII. EVALUATION OF THE DEBUGGING ENVIRONMENT PROPOSED

This section discusses the properties of the debugging environment
proposed. We will give particular attention to the outstanding debugging
methodologies, and will evaluate the support given by the enviromment to the

implementation of these methodologies.

A. State History

Most debuggers make it possible to express events in terms of the current
state of the target program, whereas the user often needs to specify an event

as a function of a. sequence of program states (state history). Another user

requirement 1s the dynamic control over traps, i.e. trap generation can be
turned on or off, according to the program state history, without manual
intervention.

The id operators and the origin at command allow the user both to
express conditions on the program state history, and to specify the interval
when a trap is generated as a function of the state history (see Problems

6.1b) and 6.2b)).

B. Flow History

Triggering the generation of a trap on the execution of a given statement
is possible in most debugging environments. However, frequently a statement
can be reached by executing several control paths, but only a few of these
paths are of actual interest to the debugging experiment, Thus, in an
experiment based on break traps, the user must inspect the program state and
try to understand the path actually followed by the flow of control (flow
history). In an experiment based on trace traps, the trace must contain not
only the values oflthe entities to be actually monitored, but also the state
information aimed at the flow analysis. This complicates the tracing activity,

and also places new burdens to the user.

30

In our approach, the ia variables make it possible to treat flow—history
events in the same way as state=history events. This is true, in particular,
for dynamic control over trap generation. Applications of flow=history
techniques have been shown in the solutions of Problems 6.3, 6.4, 6.5 and
6.15¢c). A dynamic control over trap generation based on the flow history has

been used to solve Problems 6.7a), 6.7¢), 6.9 and 6.12.

C. Selective Tracing

A trace can be generated by inserting print statements at appropriate
points in the target program [24]. This technique is slow, and imposes a
considerable manual effort on the user [23]. The tracing statements themselves
are prone to errors [34], and this complicates the debugging activity.
Automatic tracing techniques have therefore been devised. These techniques
have a high cost in terms of both the storage for maintaining the trace, and
of the time required for collecting it. An automatic trace wusually contains
much more information than is of actual interést to the debugging experiment.
Effective utilization of such a voluminous amount of data requires proper
filtering actions, to be carried out after trace gathering [14].

An alternative approach is to record only those events strictly pertinent
to the experiment [13], [14]. This selective tracing is only effective if the
user can express ﬁhe events causing the trace traps at a suitable level of
detail. For instance, most trace commands feature an option making it possible
to limit the tracing activity to one or more subprograms, but the user often
needs to restrict this activity to even smaller program portions. This featuhe
is important in both bottom~up and top~down debugging [24].

The ia variables make it possible to treat an event defined in terms of
the execution of a statement in the same way as an event defined in terms of
the value of a data item. In this way, trace gathering can be limited to one

or more program fragments (see Problems 6.6 and 6.7). The id operators and

31

the origin at command make it possible to specify selective tracing 1in terms
of both flow and state histories (see Problems 6.7a), 6.7c), 6.8, and 6.9).
An event can even involve conditions on both instruction execution and data

values {(see Problem 6.10).

D. Range Checks

An instantaneous range check is a range check expressed in terms of an

instantanecus event. An instantaneous range check involving a given variable
is carried out at each access to that variable, and will succeed if the value
of the variable satisfies the given in=range or outrrange condition. A

deferred range check is a range check expressed in terms of a deferred event.

A deferred range check involving a given variable is carried out at each
access to that variable. The check succeeds at the first access such that the
value of the variable satisfies the given range condition. The check also
succeeds at each access following the first successful access.

Instantaneous range'checks allow us to detect, for instance, a variable
of a given type assuming a value which is not consistent with that type, if
the pertinent run~time checks are not inserted by the compiler. A further
application is to ascertain a violation of possible constraints on the value
of a given variable, holding in a specific program portion ([19]. The main
applications of deferred range checks are in inspecting the behavior of the
target program in critical, nearserror situations.

Most debuggers make it possible to express instantaneous range checks,
whereas the implementation of deferred range checks is based on repeated
manual intervention by the user. The id operators, on the other hand, allow
us to express both classes of range checks. Examples are the solutions of

Problems 6.1 and 6.2.

32

E. Unreached Code

Internal testing is a debugging technique based on the construction of

test data such that all branches of the program are executed at least once
[24]. This technique can help to detect an unreachable program portion.
Unreachable code 1is often a consequence of an error, for instance, in the
specification of a branch condition.

Internal testing is an application of flowshistory techniques. As seen
in the previous paragraphs, these techniques are well supported by our
environment. An example of the application of internal testing for the

detection of unreachable code has been presented in Problem 6.12.

F. Exception Handlers

Raising an exception is one way to handle anomalous processing states
[21]. As such, it is an occasion when special attention from the programmer is
often required during debugging [23]. This is especially true for unexpected
exceptions, requiring careful inspection of the program state to detect the
cause of the exception. For instance, on raising an exception of a given
class, the programmer may need to understand the specific violation causing
the exception. Of course, a further application is to debug the exception
handler itself.

Facilities for getting the attention of the debugging system on
encountering an exception have been actually introduced in existing debuggers
(181, [21]. The _id operators allow us to meet an even more stringent
requirement, 1i.e., capturing the exceptions of a given class only if they are
raised from inside a given program fragment (a similar application has been
considered in Problem 6.7a)). This can be useful, for instance, to tailor a

library handler to a specific program unit.

33

G. Single Step

Single~stepping, or returning control to the programmer at the execution
of each statement, 1is useful especially when it is not clear where to place
break traps [10]. In a few debugging environments, in order to single~step a
given program fragment, the programmer must insert a break trap at the first
statement of the fragment. When this bbégkmgé encountered, he must issue an
ad=hoc command, causing the debugging system to enter the single-step mode of
operation. On the execution of the last statement of the fragment, he will
issue another command, causing the single-step mode to be abandoned. In other
debugging environments, a single command makes it possible to single~step a
given number of statements. In both approaches, the manual effort is heavy,
especially for a repeatedlymexecuted fragment such as the body of a loop.

The instruction address variables and the origin at command allow wus to
singler~step one or more fragments, by defining a few _ia events in term of the
first and last statement of each such fragment. No manual intervention 1is
required even to monitor iterated execution of one such fragment. An example

of this application has been shown in Problem 6.11.

H. Break Traps Vs. Trace Traps

The properties of the debugging techniques based on break traps have been
compared with the properties of the techniques based on trace traps [14],
[34]. The main advantage advocated to break traps is the better control over
the layout of the debugging experiment. At a breakpoint, the user can activate
and deactivate traps, and dynamically decide the items to be displayed. Data
display 1is experimenter command driven ih a debugging experiment based on
break traps, whereas‘it is event driven in an experiment based on trace traps
[6].

On the other hand, the dynamic control over thé tracing activity, made

possible by the state and flow histories, allows us to gain the advantages of

34

a precise specification of the actions to be taken on occurrence of a given
trap, even 1in the utilization of trace traps. This is of particular interest

as far as concurrent program debugging is concerned.

I. Sequential Program Debugging Vs. Concurrent Program Debugging

The techniques for sequential program debugging have been considered
inadequate for concurrent program debugging [14], [26]. This is, essentially,
a consequence of the laék of reproducibility of the execution of concurrent
programs, due to communication and scheduling delays [13]. Break traps have
been deemed useful in the debugging of a concurrent program only within
critical sections, when the program actually behaves as if it were sequential
f12].

On the other hand, the time and space problems, proper of automatic
tracing, are compounded by the fact that events are generated by many
processes. A careful selection of events of actual interest 1is therefore
mandatory [51, [13], [14], ([26]. For instance, if the target program is
written in a messageroriented programming language, important events are the
transmission and reception of a message. However, even tracing every message
transmitted or received has a high cost. The wuser should be allowed to
restrict trace gathering to a single process, as well as to exclude a given
process from the tracing activity [12].

In our opinion, break traps can hardly be used in concurrent program
debugging as long as the events controlling the traps must be expressed in
terms of entities local to a single process, and cannot take into account the
past interactions of the concurrent processes. In a sequential program, the
flow of control and the ordering of the events are well~known factors, whereas
this is not the case for concurrent programs, on account of their non-
deterministic nature. The behavior of one such program is independent of the

relative execution speed if the program works correctly. Of course, this is

35

not the case when the program is being debugged.

Our environment features powerful tools for expressing events in terms of
entities defined in different processes. The ia variables make it possible to
specify conditions on the execution of statements in different control flows.
The _id operators allow us to express relations involving the value of target
variables defined in program units to be executed concurrently. In this way,
a break trap can be controlled by concurrent events. This is a suitable means
for monitoring the interactions between processes, and extends the range of
applicability of break trap techniques. The user can now take profit of the
salient advantages of these techniques, for example, the better control over
the debugging experiment, even in concurrent program debugging.

Important advantages can however also be gained wusing trace—based
techniques. The definition of compound events concerning different processes
makes it possible to also apply the techniques for selective tracing,
illustrated previously, to the execution of concurrent programs. For instance,
we can limit trace gathering to just a few message exchanges (see Problem
6.15a)). In this way, the user tailors event filtering to the debugging
experiment, with a level of granularity which is much higher than that made

possible when a list of important events is part of the debugger design.

J. LanguagemIndependent Debugging Systems

The main reason for a languagesindependent debugging system is that the
user does not have to learn more than a single debugging command set [4].
This is especially useful in multimlingual applications. Packages written 1in
different languages caﬁ be integrated in a single program, and their behavior
monitored by means of a single debugger [33].

However, very few debuggers actually support multiple highwlevel
languages. This 1is especially true for concurrent program debuggers. As

already seen, these debuggers are often strongly oriented towards a specific

36

language. For instance, a debugger for a messageroriented language essentially
monitors message exchanging activities [26]. In a debugger for a programming
language featuring a synchronization mechanism based on path expressions, the
operations on semaphores are the primitive events [13]. A debugging tool for
a language featuring constructs for sharing variables traces the values
assumed by these variables in order to detect the critical sections possibly
defined improperly [12].

On the other hand, the _id operators and the _ia variables are inherently
independent of the target programming language. In particular, they can be
used to monitor interactions between concurrent processes independently of the
mechanisms for interprocess synchronization and communication (see Problems
6.13=6.15). Interactions are monitored when they actually occur, instead of by

indirect reference to their effects.

VIII. SUMMARY AND CONCLUSIONS

A debugging environment has been presented which is based on the event-
action model for interaction between the debugging systbm and the target
program. The salient features of this environment are the instruction address
variables and the instantaneous/deferring operators. The instruction address
variables make it possible to treat an event expressed in terms of the
execution of a statement in the same way as an event expressed in terms of the
value of a program+defined variable. The instantaneocus/deferring operators
make it possible to define event abstractions in terms of both the flow and
the state histories. In this way, the behavior of the target program can be
monitored at the two levels of the program state and of the program activity
£31.

The proposed environment offers the user a considerable degree of control
over the debugging experiment, and allows him to build up those tools which

most adequately support his intended debugging technique. This approach is in

37

direct contrast with that 1in which the environment offers a fixed set of

special=purpose tools, tailored for a specific approach to program debugging.

APPENDIX

IMPLEMENTING EVENTS

This appendix examines certain important aspects of the implementation of
the proposed debugging environment., The evaluation of _id operators is first
considered. A possible apprcocach to event processing is then presented.
Finally, mechanisms which can be used to reveal the evaluation times of simple
events are analysed, and a few observations concerning efficiency are

presented.

A. Evaluating ..id Operators

Instantaneous negation. Let t t

TRLPYERE be the evaluation times of the

instantaneous negation "E of event E. Let igE) and n(E) denote the values of
E and of "E in the interval [tj’ tj+1)' Then
nl® o (B (A.1)
J J
This relation follows directly from Definition 2.1,

Deferrer. Let t,, t,,... be the evaluation times of the deferrer I(t°)E
of event E. Let igE) and dj(E) denote the value of E and of l(t°)E in the
interval [tj’ tj+1)' Then

1 (E) 3=0
(E) _ 0
4G - (E) (E) (4.2)
lj Y djn1 J=1,2,... |
This relation follows directly from Definition 2.2.
Instantaneous conjunction. Let t t be the evaluation times of the

10 Eorens

38

instantaneous conjunction E1 && E., of events E, and E Let 1(E) i(Ez) and

2 1 2" J J
(E,,E;) . .
lcj denote the value of E1, E2 and E:1 && E2 in the interval [tj, tj+1).
Then
1o BER) (B (Ep) ‘ (4.3)
J J J

This relation follows directly from Definition 2.3.

Deferred conjunction. Let ¢ t.,... be the evaluation times of the

1* 72
deferred conjunction E &(t°) E of events E, and E.,. Let d(E) d(Ez) and

1 2 1 2 J J
(E1,E,) (to) (ty) (to)
de; | Es | E, and E, & E,

denote the value of in the interval

[t., t.

j J+1)' Then

dolFroBa) o (B 4(E2)
j i j

i(El) A i(Ez)

= 0 0 =0 (A.4)
Gy By A Al voalB gene, '
This relation follows directly from Relations (2.12) and (A.2).
Instantaneous disjunction. Let t1, t2,... be the evaluation times of the
instantaneous disjunction E1 | E, of events E1 and E2. Let 1§E), igEz) and
1d§E"E2) denote the value of E,, E, and E, || E, in the interval [tj, tj+1)‘

Then

alEisBa) 3 (B) 5 (Bs)
3 J J

This relation follows directly from Definition 2.5.

(A.5)

Deferred disjunction. Let t1, t2,... be the evaluation times of the

deferred disjunction E, | (%) B of events E, and E,. Let djE 1) gEz) and
aa'F12E2) genote the value of |(t°)E1, l(t°)E2 and E, |(t°) E, in the interval
[tj, tj+1)‘ Then
dd(El’Ez) = d(El) v d(Ez)
J J J
SiéE‘) \Y/ 1(E) " j=0
(A.6)

l(i§E‘) v d(E)y v (1(E v d(E) st

39

This relation follows directly from Relations (2.13) and (A.2).

B. Evaluating Events

Let C be. a compound event. A Boolean variable I 1is associated with each
unary deferring operator in terms of which C is expressed. This variable is
called the image of the factor of that operator. Two Boolean variables I' and
I" are associated to each binary deferring operator in terms of which C is
expressed. These variables are called the left image and the right image, and
are associated to the left and right factors of the operator, respectively.
When a deferring operator is evaluated, the value of the deferrer of that
factor 1is assigned to the factor's image. The evaluation of event C at time
tj consists in evaluating each operator included in that event, according to
Relations (A.1)w(A.6). This action involves not only the value at time t, of
the factor(s) of each operator, but also the value at time tjr_’1 of the
deferrer(s) of the factor(s) of each deferring operator. These values are

stored in the image(s) of that operator.

C. Event Descriptors

A descriptor DESCRE is associated to each event E. The descriptor

contains the whole state of that event, consisting of the following items: i)

the specification of the event; ii) the value V i.e. the result of the most

E)

recent evaluation of the event; 1ii) the images of the deferring operators in
terms of which E is expressed; iv) an evaluation list E_LISTE; v) an origin

list G_LISTE; vi) an origin flag GE; vii) an evaluation flag LE; viii) a trap

flag TE; ix) a break flag BE; and, finally, x) a trace 1list T LIST The

B
evaluation 1ist contains the identifiers of the events expressed in terms of
E, i.e., the events to be evaluated as a consequence of the evaluation of E.

The origin 1list G_LISTE contains the identifiers of the events controlled by

4o

E, i.e., the events whose origin must be moved when E occurs. The origin flag
GE’ if set, specifies that a controller of E has occurred, and, therefore, the
origin of E must be moved. The evaluation flag LE’ if set, specifies that an

evaluation time of E has been generated. The trap flag T if set, specifies

E’
that E has occurred, and, therefore, any traps connected with E must be
triggered. The break flag BE’ if set, specifies that a break trap is
connected with E, and the trace list T_LISTE, if not empty, specifies that a

trace trap is connected with E. The items whose value must be actually traced

are specified by the contents of this list.

D. Event Processing

The event descriptors are the nodes of a directed graph, the descriptor
graph. In this graph, if E is a component of a compound event C, a directed
edge connects the descriptor DESCRE to the descriptor DESCRC of event C. If E
controls a destination event D, a directed edge connects DESCRE to the
descriptor DESCRD of event D. As stated in Section IV=A and Section IV=B, for
a given compound event, the value of each component event never depends on the
value of that compound event, and, for a given destination event, the value of
each controller never depends on the value of that destination event,
Therefore, the descriptor graph contains no cycles.

Later in this appendix, we will discués mechanisms for revealing the
accesses to the Tfactors of the active simple events. When an access to a
factor of one or more such events is revealed, control 1is returned to the
debugging system, which sets the evaluation flags of these events, and
processes all active events, The actions connected with event processing are
carried out in two phases. In the first phase, the origins of the active
events may be moved, and the events may be evaluated. In the second phase,
the traps connected with the occurring events are executed. In both phases,

events are processed in the order which results from applying a topological

sort to the descriptor graph. As the graph is acyclic, the topological sort
is always successful [35]. In this way, the evaluation of a given event never
precedes the evaluation of other events which must take place first, and the
value of the deferrer of a factor of a deferred event is never assigned to the

factor's image before evaluating that factor.

First phase. For each event E, the following actions are carried out:

A. If the origin flag GE is set
then

1. clear each image possibly stored in the descriptor DESCRE;

2. Store the value FALSE in VE;

3. set the evaluation flag LE;

4, clear the origin flag GE;

B. if the evaluation flag L. is set

then E
1. evaluate event E, and store the result in VE;
2. 1if VE is true
then

@ set the trap flag TE;

® set the origin flag of each event in the origin list Q_LISTE;

3. set the evaluation flag of each event 1in the evaluation 1ist
E_LISTE;

4, clear the evaluation flag LE’

Second phase. For each event E, the trap flag TE is considered. If this flag

is set, the trace specified by the trace list T__LISTE is generated, and then,

if the break flag BE is set, the break mode is entered.

Example A.1:

Let us consider the following sequence of commands:

42

event 31 .
event S2 oas
event on C=51 & 82
origin C at 82

break on C

I]

These commands define two simple events S1 and S2, and a compound event

C. Suppose that 81 is evaluated at ¢t t, and ¢t

10 & Y and is true in
[t1,t2) and from tM onwards. Suppose also that S2 is evaluated at t3,
and 1is true from t3 onwards (Fig. 3). Thus, C is evaluated at t1, t2,
t3 and tu, and is true from tu onwards. The origin of C is moved at t3,

as a consequence of the occurrence of S2.

The descriptor graph for events St1, S2 and C is shown in Fig. U4,
The descriptors are displayed in the linear ordering which results from
a topological sort. The evolution of the state of the three events for
the first phase is shown 1in Table 1. For each evaluation time, the
evaluation flag set when that evaluation time is revealed 1is specified
in round brackets. For each event, the table shows the modifications of

the state of that and of the other events, occurring when that event is

processed.

E. Revealing the Evaluation Times of Simple Events

The mechanisms to reveal the evaluation times of a simple event depend on
both the factors and the relational operator invdlved in that event. For some
simple events, these mechanisms can be fully implemented at the software
level, for others, adrhoc hardware support is required. The hardware support
is always mandatory if we are concerned with realstime program debugging [16],
[25].

Let us first refer to a simple event expressed in terms of a target
variable which is not an _ia variable, and a constant factor such as a numeric
or string literal. An example could be the event (A <= 100); The evaluation

times of such an event are the times when the data location implementing that

43

TABLE 1. EVOLUTION OF THE STATE OF THE EVENTS S1, S2 AND C,
CONSIDERED IN EXAMPLE A.1

time t, (

1 <o)

Ls

event S1: VS1 <= true; TS1 <mo 1 LC <= j;

event S2:

event C: Ié <& true; Ig <m» false; V., <= false; L. < 0

C

time t2 (LS1 <~ 1)

event S1: VS1 <= false; LC <1 LS1 <= 0

event S2:

i ! - . n - . - . —
event C: I& <~ true; I& <= false; VC <~ false; Lc <=0

time t3 (LS2

event Sit:

<#B1):

event S2: V.. <= true; To. <= 1; G. <= 1; L

32 S2 C C S2
. ' = . " . - . = . .
event C: I& <~ false; I& <+~ false; VC <~ false; LC <=1 GC <& 0;
1 - . " - . - . bl
I& <= false; I& <= true; VC <~ false; LC <= 0

time tu (LS1 <exo 1)

event S1: VS1 <= true; T <= 13 L

event S2:

o v — . " . - . - . -
event C: I& <= true; I& <t true; VC <~ true; TC <= 13 LC <~ 0

variable is accessed. Atkthe software level, these times can be revealed by
replacing every instruction referencing that variable by a software interrupt,
e.g. an Instruction raising an exception. This interrupt transfers control to
the debugging system, which must execute (or emulate execution of) the
instruction replaced before resuming execution of the target program. of

course, this approach cannot detect an access to a variable expressed in terms

4y

of a computed addressing mode (e.g., the indexed mode) [22]. At the hardware
level, an adrhoc circuitry inspecting the address bus can detect each access
to the variable to be monitored, by generating a hardware interrupt when the
address of that variable is recognised [25]. Tagged architectures allow us to
flag the data locations to be monitored by means of a specific tag
configuration. An access to one such location generates a call to the
debugging system [32]. 1In an object=oriented architecture, a specific data
configuration can be wused to mark a variable to be monitored. This data
configuration is inserted at a fixed location in the segment implementing that
variable. The contents of this location must be inspected by the microprogram
at each access to that variable (a similar approach is adopted, for instance,
in [28], in order to reveal erroneous accesses to uninitialized objects). In
a capability architecture featuring a capability dereferencing mechanism based
on capability registers [27], an ad~hoc field in each such register can be
used to generatelan interrupt at each access to the object referenced by that
register.

Let us now refer to a simple event expressed in terms of two target
variables, e.g. (A < B). Revealing the evaluation times of such an event means
detecting the accesses to both factors. Of course, each factor can be treated
independently of the other.

Finally, let us refer to _ia events. As seen 1in Section III, the
evaluation times of these events are all the times at which a statement is
executed in the block referenced by that _la event. This 1implies that the
debugéing system must be invoked on the execution of every statement in that
block. At the software level, this can be achieved by replacing the first
machine instruction translating each such statement by a trap instruction. At
the hardware level, a small amount of circuitry is required to generate an
interrupt on the execution of each instruction [1]. This feature is usually

“controlled by the software, for instance, by means of a bit in the progranm

45

status word of the processor. This bit will be set and cleared at the
beginning and at the end of the block to be monitored, respectively. If all
the _ia events active at a given time are relevant to the same block, a couple
of bound registers, such as those provided by the architectgre of the IBM
System/370 [9], can be loaded with the address of the first and last
instruction of that block. If more than a single block is referenced by the
active simple events, the contents of the bound registers will be updated at
“the beginning of execution of each block. In a paged environment, execution
of an instruction in a given page can be detected by setting the access right
field of that page to no right. In a tagged architecture, a specific tag
configuration can be reserved to denote instructions whose execution causes a
call to the debugging system [11]. A debugging comprocessor can inspect the
value of tags in parallel with elaborations of the main processor [20]. A
different approach uses a high-speed associative memory to hold a list of the

interrupt addresses [1].

F. Optimizing the Implementation of _ia Events

Invoking the debugging system at the execution of each statement of a
block in order to implement an _ia event has a high cost in terms of the
execution times of the debugging system. In concurrent program debugging, the

resulting delays may give rise to the somcalled probe effect: the behavior of

the target program is influenced to such an extent as to invalidate the
results of the debugging experiment [12]. A careful implementation can limit
the consequences of this effect. Of course, the time requirements are even
more stringent as far as real=time program debugging is concerned [16]. A few
improvements in the implementation of _ia events significantly reduce this

time overhead,

Consider, for instance, the following sequence of commands:

46

event IA = (BLK_ia == $#100)
event on CMP = |IA
trace on CMP display ...
The trace activated by the last command is controlled by the compound event
CMP, and this event is expressed in terms of the‘_ia event IA. The trace is
generated on each occurrence of CMP, i.e., at each evaluation time of IA after
its first occurrence. Now consider the following command pair:

~event on IB = (BLK ia == $#200)

trace on IB display ...

The trap action is controlled by thé _ia‘event IB, which is not included in
the definition of any compound event. Therefore, we can reveal the occurrence
of IB, rather than its evaluation times.

In conclusion, when an _ia event 1is activated, we can set up the
mechanisms to reveal only the occurrence of that event. The mechénisms for the
detection of the evaluation times will be eventually set wup later, on the
activation of a compound event expressed in terms of that _ia event.

This approach is of particular interest for _ia events, such as event 1IB
introduced above, which are defined in terms of the equality operator and are
used to generate a trap on execution of a statement. The widespread use of
this application of ia events makes an optimized implementation particularly
attractive, The occurrence of such an event can be easily revealed via
software, by simply replacing the first machine instruction implementing that
statement by a trap instruction [4].

A different optimization is possible if the event controlling the trap is
expressed in terms of the instantaneous conjunction of two _la events for the
same block, and neither of the events are components of other events. An

example is shown below:

event INF (BLK ia > $#10)
event SUP = (BLK ia < $#100)
event on IR = INF && SUP
trace on IR

47

In this case, we only need to generate a call to the debugging system on the

execution of the statements between BLK$#10 and BLK$#100, instead of on the

execution of every statement of BLK. Note that no advantage can be gained

here by using the optimization technique described previously.

1.

10.

11.

REFERENCES

D. Abramson, J. Rosenberg, "Hardware Support for Program Debuggers in a
Paged Virtual Memory", Computer Architecture News, Vol. 11, No. 2 (June
1983) pp. 8-19.

G. R. Andrews, F. B. Schneider, "Concepts and Notations for Concurrent
Programming", Computing Surveys,Vol. 15, No. 1 (March 1983), pp. 3-43.

P. Bates, J. C. Wileden, "An Approach to HightLevel Debugging of
Distributed Systems", Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on High Level Debugglng, Pacific Grove, California

(March 1983), 1in: Software Engineering Notes, Vol. 8, No. 4 (August
1983), SIGPLAN Notices, Vol. 18, No. 8 (August 1983), pp. 107+111.

B. Beander, "VAX DEBUG: An Interactive, Symbolic, - Multilingual
Debugger", Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on High Level Debugglng, Pacific Grove, California (March
1983), 1in: Software Engineering Notes, Vol. 8, No. 4 (August 1983),
SIGPLAN Notices, Vol. 18, No. 8 (August 1983), pp. 173=179.

H. K. Berg, M. G. Smith, "A Distributed System Experimentation
Facility", Proceedings of the Third International Conference on
Distributed Computing Systems, Miami, Florida, October 1982, pp. 320~
329.

D. Bhatt, M. Schroeder, "A Comprehensive Approach to Instrumentation
for Experimentation in a Distributed Computing Enviromnment", Proceedings
of the Third International Conference on Distributed Computing Systems,
Miami, Florida, October 1982, pp. 330+310.

P. Brinch Hansen, "Testing a Multiprogramming System", Software=
Practice and Experience, Vol. 3, No. 3 (July-September 1973), pp. 145«
150.

A. R. Brown, W. A. Sampson, Program Debugging, Macdonald/American
Elsevier (1973).

R. P. Case, A. Padegs, "Architecture of the IBM System/370",
Communications of the ACM, Vol. 21, No. 1 (January 1978), pp. 73#96.

B. Elliot, "A High=mLevel Debugger for PL/I, Fortran and Basic",
Software~Practice and Experience, Vol. 12, No. 4 (1982), pp. 331~340.

E. A, Feustel, "On the Advantages of Tagged Architecture", IEEE
Transactions on Computers, Vol. C=22, No. 7 (July 1973), pp. 644~ 656

48

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Experience, Vol. 15, No. 6 (June 1985), pp. 539#554,

J. Gait, "A Debugger for Concurrent Programs", SoftwaresPractice and

M. E. Garcia, W. J. Berman, "An Approach to Concurrent Systems
Debugging", Proceedings of the Fifth "International Conference on
Distributed Computing Systems, Denver, Colorado, May 1985, pp. 507~514.

H. Garcia=Molina, F. Germano, W. H. Kohler, "Debugging a Distributed
Computing System", IEEE Transactions on Software Engineering, Vol. SEx
10, No. 2 (March 1984), pp. 210~219.

C. Ghezzi, M. Jazayeri, Programming Language Concepts, Wiley, 1982.

R. L. Glass, "Real~Time: The 'Lost World' of Software Debugging and

Testing", Communications of the ACM, Vol. 23, No. 5 (May 1980), pp.
264e271.

W. C. Gramlich, "Debugging Methodology", Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on High Level Debugging,
Pacific Grove, California (March 1983), in: Software Engineering Notes,
Vol. 8, No. 4 (August 1983), SIGPLAN Notices, Vol. 18, No. 8 (August
1983), pp. 1#3.

J. J. Hart, "The Advanced Interactive Debugging System (AIDS)", ACM
Sigplan Notices, Vol. 14, No. 12 (December 1979), pp. 110&121.

D. D. Hill, "A Hardware Mechanism for Supporting Range Checks",
Computer Architecture News, Vol. 9, No. 4 (June 1981), pp. 15+#21.

C. R. Hill, "A RealsTime Microprocessor Debugging Technique",
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
High Level Debugging, Pacific Grove, California (March 1983), in:
Software Engineering Notes, Vol. 8, No. 4 (August 1983), SIGPLAN
Notices, Vol. 18, No. 8 (August 1983), pp. 145#148,

D. Holdsworth, "A System for Analysing Ada Programs at Run=time",
Software-Practice and Experience, Vol. 13, No. 5 (May 1983), pp. 407+
a1,

M. S. Johnson, "Some Requirements for Architectural Support of Software
Debugging", Proceedings of the Symposium on Architectural Support for
Programming Languages and Operating Systems, Palo Alto, California

(March 1982), in: Computer Architecture News, Vol. 10, No. 2 (March
1982), SIGPLAN Notices, Vol. 17, No. 4 (April 1982), pp. 140#148,

J. D. Johnson, G. W. Kenney, "Implementation Issues for a Source Level
Symbolic Debugger", Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on High Level Debugging, Pacific Grove, California

(March 1983), 1in: Software Engineering Notes, Vol. 8, No. 4 (August
1983), SIGPLAN Notices, Vol. 18, No. 8 (August 1983), pp. 149¢151.

S. Lauesen, "Debugging Techniques'", Software=Practice and Experience,
Vol. 9, No. 1 (January 1979), pp. 51#63.

B. Lazzerini, C. A. Prete, L. Lopriore, "A Programmable Debugging Aid
for RealsTime Software Development", IEEE Micro, Vol. 6, No. 3 (June
1986), pp. 34-42,

g

26.

27.

28.

29.

30.
31.

32.

33.

34,

35.

36.

R. J. LeBlanc, A. D. Robbins, "Event-Driven Monitoring of Distributed
Programs"®, Proceedings of the Fifth Internaticonal Conference on
Distributed Computing Systems, Denver, Colorado, May 1985, pp. 515-522.

H. M. Levy, Capability=Based Computer Systems, Digital Press, 1984.

L. Lopriore, "Capability Based Tagged Architectures", IEEE Transactions
on Computers, Vol. C-33, No. 9 (September 1984), pp. 786-803.

M. A. F. Mullerburg, "The Role of Debugging Within Software Engineering
Environments", Proceedings of the ACM SIGSOFT/SIGPLAN Software

Engineering Symposium on High Level Debugging, Pacific Grove, California

(March 1983), in: Software Engineering Notes, Vol. 8, No. 4 (August
1983), SIGPLAN Notices, Vol. 18, No. 8 (August 1983), pp. 81=90.

G. J. Myers, Software Reliability, Wiley, 1976.

G. J. Myers, The Art of Software Testing, Wiley, 1979.

G. J. Myers, Advances in Computer Architecture, 2nd Edition, Wiley-
Interscience (1982).

R. Seidner, N. Tindall, "Interactive Debug Requirements", Proceedings
of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on High Level
Debugging, Pacific Grove, California (March 1983), in: = Software
Engineering Notes, Vol. 8, No. 4 (August 1983), SIGPLAN Notices, Vol.
18, No. 8 (August 1983), pp. 9+=22.

J. L. Steffen, "Experience with a Portable Debugging Tool", Software-=
Practice and Experience, Vol. 14, No. 4 (April 198Y4), pp. 323-334.

J. Tremblay, P. G. Sorenson, An Introduction to Data Structures With
Applications, McGrawsHill, 1984,

F. van der Linden, I. Wilson, "An Interactive Debugging Environment",
IEEE Micro, Vol. 5, No. 4 (August 1985), pp. 18=31.

50

NN NN
+20 AN

B SANNANNNNNRN

true’ level

(el)

"false’ level

(e2)

(e6)

(e7)

Fig. 1. Timing diagrams for variable A and events (el)~(e7)
considered in Example 2.1.

tﬂ t] tQ t3 t4 t5
"true’ level
E1
"false’ level
E2
(e8)
(e9)

Fig. 2. Timing diagrams for events E1, E2, (e8) and (e9)
considered in Example 2.2.

"true’ level
S
"false’ level
39
C

Fig. 3. Timing diagrams for events St, S2 and C
considered in Example A.1.

DESCR

Fig.

.

T_LIST32

6.LISTgy

DESCR,

E_LISTp
e
I; Iy
Ge Le
T
Be
T_LISTp
. DESCR,
),
Event value List
Flag Empty list

Descriptor graph for events S1, $S2 and C

considered in Example A.1.

