

EXPRESSING EVENT ABSTRACTIONS
IN A DEBUGGING ENVIRONMENT

B. Lazzerini

Istituto di Elettronica e Telecomunicazioni
Facolta', di Ingegneria, Uni versita'· di Pisa

Via Diotisalvi, 2 ~ 56100 Pisa ~ Italy

L. Lopriore

Istituto di Elaborazione della Informazione
Consiglio Nazionale delle Ricerche

Via Santa Maria, 46 ~ 56100 Pisa r. Italy

Abstract ~ A debugging environment is presented, based on the event~action

model for interaction between the debugging system and the program being
debugged (target program). Events are defined at two different levels of
abstraction. At the lower level, we have the simple events. These events are
expressed in terms of the values of the program~defined entities, and the
values of a set of variables, called instruction address (ia) variables. An
ia variable is associated by the debugging system to each program block. The
ia variable for a given block is accessed when a statement of that block is

executed, and its value is replaced by the label of that statement. At the
higher level, we have the compound events, expressed in terms of simple events
and a set of operators, the instantaneous/deferring (_id) operators. At any
given time, an instantaneous operator will produce a result which depends on
the value(s) of its factor(s) at that time, whereas a deferring operator
produces a result which depends not only on the value(s) assumed at that time,
but also on the values assumed from another given time, called the origin of
the operatore

On the occurrence of a given event, the actions connected to that event
will be performed. Possible actions can be moving the origins of the deferring
operators, and generating traps. A trace trap displays a portion of the
program state. A break trap returns control to the programmer at the console.

Instruction address variables and instantaneous/deferring operators are
powerful mechanisms for monitoring the activity of the target program. They
make it possible to construct event abstractions in terms of the path followed
by the flow of control (flow history) and the sequence of the program states
(state history). Rather than offering a fixed set of special-purpose tools,
tailored to a specific program debugging approach, the resulting environment
adequately supports different debugging techniques, and offers the user a
considerable degree of control over the debugging experiment.

Index Terms ~ Action, break trap, debugging, event, flow history, state
history, trace trap.

This work has been supported in part by the Italian Ministry of Educa~
tion, and in part by the research contract of Selenia, Industrie Elettroniche
Associate, S.p.A., Rome, Italy, and Consiglio Nazionale delle Ricerche, Pisa,
Italy.

