| s MRCWo
CESKOSLOVENSKA VEDECKOTECHNICKA SPOLECNOST
(Pl-06

(7= =N\~

FAULT TOLERANT SYSTEMS & DIAGNOSTICS

= =/ =J

DIAGNOSTIKA A ZABEZPECENI
CISLICOVYCH SYSTEMU

1981

- 49 -

INTEGRATED DESIGN METHODOLOGY
OF FAILURE TOLERANT SYSTEMS

A, Ciuffoletti*, L. Simoncini**

#Selenia S.p.A., Roma, Italy
**Istituto di Elaborazione della Informazione, C.N.R., Pisa, Italy

Introduction

The treatment of malfunctioning machines has usually been consid-
ered as relevant only for the design of critical application systems,
supposing that a careful design and debug were sufficient in most cases
for a correct working of a system /1/.

The spreading of applications of computer systems and their
growing hardware and software complexity has shown the need of coping
with residual bugs and failures.

Nevertheless, the failure tolerance attributes are still taken
into account only once the functional design of a system has been
completed. In our opinion this attitude 1s wrong: in fact in this way
the attention of the designer is concentrated on specific levels of
abstraction of the system (typically the hardware level), while the
correct implementation of failure tolerance derives only from the
integrated design of the several abstraction levels of the system /2/,
/3/, /4/.

Of course such integration of different levels designs may be too
difficult, if the design is not adequately structured. But if any level
is realized according to specific and general rules, the duty of
integration will be greatly simplified, since it will be easy to have
an intuitive outline of the whole system.

General philosophy for structured design

We model a system as a hierarchy of successive levels of
abstraction. To structure the compcsition of any level, two concepts
are introduced: the machine and the interaction; together they model
the functionality of a parallel processing environment, since any
machine cooperates with the others through interactions.

At a given level any machine 1is considered as an atomic
functionality, whose response 1is checkable through its partial
"predictability". In this way any machine at a given level will check
the correct working of any other interacting machine through
expectation criteria. Expectation can effectively model both the
redundancy (a concept very bound to the hardware) or the assertions (a
typical software concept). If the expectation is not satisfied, a
failure is detected and a diagnosis is performed by the machine which
has detected the anomaly. A failure tolerant interaction (FTI) 1is

- 50 =

defined as an interaction which can be submitted to conditional
acceptance.

Two main characteristics are outlined by the previous discussion;
any FTI will distinguish subjects and objects; that is, the one whose
behaviour 1s controlled and which produces the information and the
other which uses the information, performing a control on it through an
expectation.

Both the objects and the subjects of an FTI have their own kind
of activity; we exclude the existence of passive visible items; in fact
their existence always poses serious problems of safety.

For the same reasons, it is necessary that any FTI is definitely
explicit, since the control of the interaction object can be performed
only on completely visible interactions. This constraint does not
exclude the possibility of anonymous interactions, even if this circum-
stance can make difficult the diagnosis. Anonymity is needed in case of
interaction channels shared among several machines. In this case we
cannot rely on the ‘"subject field" eventually present in the
information record.

The first phase of the diagnosis may be a preliminary
identification of the subject of the anomalous interaction. Then a
retry phase will be executed between both the object and the subject of
the anomalous interaction. To this aim they must be able to perform a
retry action, that is to recover a possibly correct previous situation.
If the retry is not sufficient to the resumption of a correct working,
as the failure appears permanent, a replacement can be operated.

What 1s relevant in the whole diagnosis phase, is that every
machine interested in it acts independently, with no possibility of
actions stronger than an interaction as previously defined. The
reconfiguration too must be developed under the condition that a wrong
protective activity cannot damage any function but the one of the
machine which executes such action. So the highest protective action a
machine can realize is to cut the logical channel connecting it with
the machine it considers as failed.

As previously specified, spares are necessary only if permanent
failures are present. The spares can be either previously passive
machines, or machines which were performing the same work of the failed
one (as in the TMR) or previously active machines which are able to
carry on the function of the failed machine. In general in the case of
a machine which will experience only transient failures, spares can be
obviously avoided.

Among different levels of abstraction, an implementation relation
exists, so that machines at higher 1level of abstraction '"use' the
functionalities which the machines at 1lower 1level make available
through their interactions.

Let's consider the behaviour of a machine which is implemented on
machines at lower level which interact through FTIs. Should an
anomalous behaviour of one of the implementing machines, have effect at
higher level, these effects will alter the machine at higher level only

- 51 -

in a transient mode and these effects will disappear when the failure
is fixed at the right level. We will call failure tolerant machine

(FTM) a machine which is implemented starting from FTIs. Its main
feature is that it exhibits a sort of "self-repairing" ability, that
is, at most transient failures may be present. Nevertheless the ability
of retry must be provided for this kind of machines too, to recover a
correct state after a failure, but spares are no more necessary.

Since FTMs can be introduced through FTIs we can outline the
following bottom up structure of the whole system:

1) NFTMs cooperating through NFTIs;

2) NFTMs cooperating through FTIs; spares are needed;

3) FTMs cooperating through FTIs; if the implementation is reliable no
spare is needed.

These conclusions move the attention of the design to the realization

of the interactions, more precisely to the implementation of their

support. The most relevant features of a FTI are:

a) transparence to the interaction: if the channel has to be passive 1t
must be completely transparent: otherwise, it should be considered
as a machine, someway responsible of the carried information;

b) the correct working of the whole system relies on the consistence of
the above specifications with the real working. At most, transient
anomalies can be tolerated without serious drawbacks.

The need of transparence is quite straight, while the need of

non-permanent failures of the channel must be discussed in short.

First, let's consider the behaviour of a distributed channel
connecting several NFTMS, provided with spares, through FTIs. If both a
machine and its spares interface the same channel, then a permanent
failure of the channel will probably collapse the system. So, in this
case, non permanently failing channels are needed. The same arguments
can be used to show that non permanently failing channels are needed to
support FTIs among FTMs. In fact, a FTM has, in general, no spares; SO
the definite failure of the channel accessing it can destroy a
necessary function. If the distributed channel supports FTIs between
NFTMs, but not all the machines which can perform certain functions are
connected at this channel, than its failure can be tolerated and
assimilated with the failure of all connected machines. In this case
the channel can definitely fail, without catastrophic damage for the
system.

In conclusion, permanently failing channels are consistent with
our structure only if the machines connected to them are replicated
elsewhere on different channels. Such an attitute brings to the
“"privatization'" of the channel itself. The trend is to split a common
channel into several private channels, as realized in the Pluribus
system /5/. The eventual failure of one of these private channels will
bring, at most, to the loss of one of the set of connected machines;
this loss is tolerated, since we are in the case of FTIs among NFTMs
provided with spares.

Further, once the problem of building FTIs on permanently failing

- 52 -

channels has been solved at a given level, it is possible to implement
non permanently failing channels at higher levels.

Example of level structuring

To explain the philosophy outlined in the previous section, let
us consider a very general example of 1level structuring. Let us
consider a program which implements a routine. In our view, the program
can be structured as a machine. In fact other routines at the same
level will interact with it, exchanging informations and commands. At
run time this program will be present, as any other compiled program,

in the program memory as a sequence of words. In this way an entity
belonging to an higher level will be mapped in a set of functiocnalities
at a lower one. At this lower level the program consists of a stream of
instructions {(i.e. commands and informations) sent to machines at the
same level. More precisely the program will be present, at this level,
as the internal state of a program support machine, namely the program
storage. This machine will be the object of interaction from the
sequence controller which will send to him the address of the next
instruction and it will send this information to the instruction deco-
der. This machine will interorete the coded instruction and will send
commands to the data manipulation-register unit and to the sequence
controller. Using a directed graph representation, where the arrows
represent directed interaction capabilities, and the nodes are the
machines, the situation can be outlined as in Fig. 1.

DECODER

INSTRUCTIO OPERATIONAL UNIT
SEQUENCER ¢
Y/

T SEQUENCE CONTROLLER
Fig. 1

In this outline all the machine are represented as logical
entities and are still independent by their phisical realization. This
structuring is therefore strictly correlated with the semantics of the
level. It must be pointed out that the implementation relation is not
concerned neither with the compilation nor the interpretation. In fact
the interpretation always resides at the same level with the "coded"
program, while the compilation simply "translates'" one coding in anoth-
er coding, regardless the level where the coded object resides. The
only relevant feature to determine the level which a given machine
belongs to depends from its specification and implementation basis. In

- 53 =

fact the duty of the programmer and of the compiler, 1is to map the
machine specification in a set of functionalities available as
implementation basis. So, from our point of view, levels can be really
called ‘“abstraction level" and they are not language dependent: that
is, two programs, both written in assembler language can reside at
different levels. A typical example of this statement is a kernel
primitive and a user program, both written in PLM. Requests of
separation between implementations of different levels are
inconsistent, since any machine is mapped in a set of lower level
machines, in such a way that lower level data implement upper level
data. It would be like to forbid the updating of the program counter at
the kernel 1level: such an action would be uncontrollable and
unavoidable, as any kernel machine uses the program counter without
knowledge of it.

An example of expectation, which the instruction sequence machine
can exhibit on the interactions from the sequence controller machine,
can be based on the regquirement that the program has a bounded
locality. If no reference is allowed outside a given range around any
instruction, the instruction seguence machine may check that the
address coming from the sequence controller is in this range. Otherwise
the expectation is not fulfilled and an anomalous behaviour is detected.

Conclusion

In this paper we have presented a structured methodology for the
design of failure tolerant systems. This methodology is useful in the
structuring of any abstraction level, since it does not differenciate
between hard or soft objects. In some way it may be considered
recursive, in the sense that its application at a given level helps the
designer to respect the same approach at the next level.

References

/1/ A. Avizienis, "Fault Tolerance: The Survival Attribute of Digital
Systems", Proceedings of the IEEE, Vol. 66, n°® 10, Oct. 1978, pp.

1109-1125.
/2/ W.C. Carter, "Fault Dstection and Recovery Algorithms for Fault
Tolerant Systems', IFIP Working Conference on "Reliable Computing

and Fault Tolerance in the '80's", London, Sept. 1979.
/3/ B, Randell, P.A. Lee, P.C. Treleaven, "Reliability Issues in
Computing Systems Design'", Comp. Surveys, Vol. 10, n° 2, June 1978,
pp. 123-164.
{4/ A.L. Hopkins, "On Virtual Levels of Fault Processing for Very
Reliable Systems'", IFIP Working Conference on '"Reliable Computing
and Fault Tolerance in the '80's'", London, Sept. 1879.
/5/ D. Katsuki et al., "Pluribus - An Operational Fault Tolerant
Multiprocessor" Proceedings of the IEEE, Vol. 686, n® 10, Oct.
1978, pp. 1146-1159

This work has been supported by the National Computer Science

Program of the Italian National Research Council.

