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Abstract: The altered glucose metabolism characterising cancer cells determines an increased amount
of methylglyoxal in their secretome. Previous studies have demonstrated that the methylglyoxal, in
turn, modifies the protonation state (PS) of soluble proteins contained in the secretomes of cultivated
circulating tumour cells (CTCs). In this study, we describe a method to assess the content of methyl-
glyoxal adducts (MAs) in the secretome by near-infrared (NIR) portable handheld spectroscopy and
the extreme learning machine (ELM) algorithm. By measuring the vibration absorption functional
groups containing hydrogen, such as C-H, O-H and N-H, NIR generates specific spectra. These
spectra reflect alterations of the energy frequency of a sample bringing information about its MAs
concentration levels. The algorithm deciphers the information encoded in the spectra and yields a
quantitative estimate of the concentration of MAs in the sample. This procedure was used for the
comparative analysis of different biological fluids extracted from patients suspected of having cancer
(secretome, plasma, serum, interstitial fluid and whole blood) measured directly on the solute left on
a surface upon a sample-drop cast and evaporation, without any sample pretreatment. Qualitative
and quantitative regression models were built and tested to characterise the different levels of MAs
by ELM. The final model we selected was able to automatically segregate tumour from non-tumour
patients. The method is simple, rapid and repeatable; moreover, it can be integrated in portable
electronic devices for point-of-care and remote testing of patients.

Keywords: methylglyoxal adducts; near-infrared spectroscopy; secretome; early cancer detection;
point-of-care

1. Introduction

Several different approaches have been developed for fast, efficient and reliable early
cancer detection. Separation techniques including 2D gel electrophoresis, liquid chromatog-
raphy (LC) hyphenated to electrospray ionization mass spectrometry (ESI-MS) [1], capillary
electrophoresis [2], enrichment techniques and MALDI-imaging MS techniques [3], have
been shown to be too time-consuming for fast high-throughput online analysis. Plasmonic
biosensors and fluorescence coupled vibrational spectroscopy techniques can provide non-
destructive, rapid, clinically relevant diagnostic information but are not easily affordable
due to the need for highly sophisticated laboratories [4,5]. Nonetheless, in the last decade,
near-infrared spectroscopy (NIRS) has gained importance for non-invasive or minimally
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invasive diagnostic applications in cancer [6,7]. Near-infrared in the electromagnetic spec-
trum is the region neighbouring the visible (Vis) energy range. The near-infrared spectral
range (780–2500 nm, 12,800–4000 cm−1) contains absorption bands from weaker overtone
and combination vibrations, making longer optical pathlengths between 0.5 and 10 mm
necessary for spectrum measurements. From a general point of view, NIR spectroscopy
is concerned with the absorption, emission, reflection and diffuse reflection of light, but
differently from other spectroscopic procedures, it is highly versatile. The number of
applications of infrared spectroscopy to the biomedical field has considerably increased in
the last few years. The interaction of matter with infrared radiation may be used to achieve
different goals, and one important objective has been to investigate the transformation of
healthy cells and tissues into diseased biological matter [8] and to develop IR-spectroscopic
methods for laboratory diagnostic [9]. The IR spectroscopic measurement of metabolites in
fluids offers two advantages in comparison with the conventional enzymatic methodol-
ogy, because several components can be determined simultaneously and the assay is also
reagent-free. Along with high sensitivity, low amount of sample required, short testing
time and the suitability for in situ testing, this technology can offer great perspective in
the cancer diagnosis field. The first applications of this technology to early cancer detec-
tion were based on differences of endogenous chromophores between cancer and normal
tissues, mainly using either oxyhemoglobin or deoxyhemoglobin, lipid or water bands
or a combination of other different diagnostic markers [10]. These spectra, coupled with
chemometric algorithms, had provided the basis for the whole cancer analytical strategy.
Unfortunately, the predictive performances of these methods were poor, and the procedure
was limited by the need of complex, huge, room-filling machines. Things began to change
over the next four decades with many exciting hardware and software developments for
vibrational spectroscopy appearing, leading rapidly to extremely miniaturised devices that
can perform with high sensitivity and accuracy and to the elaboration of highly accurate
chemometrics models [11,12]. Here, we describe the use of the NIR infrared portable
spectroscopic system to assess MAs levels on peripheral blood samples of categorised
cancer-risk cohorts.

2. Materials and Methods
2.1. Patients and Control

Enrolled subjects provided written informed consent and were given a patient infor-
mation sheet detailing the following aspects of the study. Patients with tumour diagnosis
of carcinomas and subjects belonging to the healthy cohort were enrolled in the prospec-
tive project Characterization of Circulating Tumor cells and Expansion (CHARACTEX),
approved by Regional Institutional Research Ethical Committee with the number 2013.34.
Peripheral blood samples (total volume of 5 mL) were drawn from both controls (20 vol-
unteer healthy subjects) and 40 untreated patients with a primary diagnosis of cancer,
placed into tubes containing EDTA as an anticoagulant. Since methylglyoxal adducts are
metabolic products derived from an altered glucose metabolism, all subjects enrolled in
this study, had a ‘normal’ glucose level of 70–85 mg/dL and family history without cases
of diabetes and/or neurodegenerative diseases. Subsequently, the samples were processed
following the procedure described previously by Malara et al. [13].

2.2. Blood-Derived Cell Culture (BDC)

Blood samples were submitted to a gradient procedure. This phase is useful to reduce
haematological cell contamination. The phase taken during this procedure was enriched for
non-haematological cells, as previously reported [14]. The isolated cells were washed and
seeded in a culture plate with the addition of a specific culture medium. The cultures were
performed for 14 days of cultivation. This timing was assessed to permit the transformed
cells to become visible through their self-altered proliferation feature
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2.3. Secretome Collection and Characterisation

The cell cultures were monitored at 48 h intervals, and each time, 10% of total volume
of the culture medium was collected and replaced with fresh medium. This 10% of collected
medium was placed in a cuvette and stored at 4 ◦C. After a 2-week incubation, the culture
was harvested and the media separated from the cellular elements by centrifugation at
1870× g rpm for 15 min. The supernatant was added to the previous collected medium,
filtered and stored at −80 ◦C. The pellet obtained was collected and used for successive
characterisations.

2.4. SeOECT Chip Operation

In order to select a reference model for our NIR study, cancer risk level based on
protonation state as described by Malara et al. [15–17] was used. Briefly samples containing
cell culture liquids were gently positioned upon the active surface of a Surface-enhanced
organic electrochemical transistors (SeOECT) fabricated using micro and nano fabrication
techniques [18] in the form of drops of volume V < 10 µL. The electrical response of biosen-
sors was measured using a two-channel source/measure precision unit (Agilent B2902A),
controlled by LabVIEW NXG 5.1 National Instruments [19]. Biosensor measurements were
acquired by measuring the drain current Ids versus time under a constant drain voltage
Vds =−0.1 V, while varying the voltage at the gate Vgs between 0 V and a positive value that
was gradually increased from 0 V to 1 V with a step of 0.2 V, with a time interval of 120 s.
Biosensor current response was expressed as current modulation ∆I/Io = (I − Io)/Io, where
I is the drain current value measured for Vgs > 0 V and Io is the Ids value at Vgs = 0 V.

2.5. Analysis of Variance of Biochip Data

Modulation and time constant variables acquired for the entire population of control
(CS), patients (Pts) and intermediate (IS) samples (dataset) were subjected to a multifac-
torial analysis of variance (ANOVA), in order to individuate the experimental variables
significantly correlated with the sample label. ANOVA was performed using the Statgraph-
ics Centurion v.19 statistical software (Statpoint Technologies Inc., Warrenton, VA, USA).
In the ANOVA analysis, the modulation and time constant outputs from the five sensors
(pooled in this stage of data management) were considered. Intermediate samples were
intentionally excluded from the model development to improve its predictive power. The
classification factors for ANOVA were the applied gate potential and sample typology. A
Bonferroni post hoc test for time constant and modulation outputs was carried out, consid-
ering the factors with p < 0.01 as significant. Two-way ANOVA interaction plots of time
constant outputs and modulation outputs were realised according to the significance found
in the test, reporting the mean value and the Bonferroni confidence intervals (p = 0.01).

2.6. NIR Sample Preparation and Chemometric Calibration Procedures

To develop the chemometric model, 20 samples of secretome, characterised by SeOECT
chip and identified as negative or control sample (Cts)-negative for the presence of MG
adducts, 20, intermediate sample (IS) chosen by low concentration of MG adducts, and
20 positive samples (PS) chosen by high levels of MG adducts, were analysed. A total
of 50 µL of each sample was blotted onto an Ahlstrom 226 paper support (DBS) in five
replicates for each sample to minimise the variation due to the manual deposition. After
24 h under an airflow cabinet, the dried secretome spots were sent to the NIR scan. To
evaluate the matrix effect, 50 µL of secretome, plasma, serum, interstitial fluid and blood
(diluted and undiluted) from a previously characterised positive patient were used. For the
spike experiments, different concentrations of MAs ranging from 0.03% to 2.5% v/v final
concentration were added to 50 µL of secretome, plasma and blood (diluted and undiluted)
of a control patient before the paper support preparation.
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2.7. NIR Spectra Acquisition

The NIR spectra were taken by a SCiO pocket-sized near-infrared spectrometer system
(Consumer Physics, Herzliya, Tel Aviv, Israel) with an operational distance of 2 cm and a
typical 3 s scan time. The device is specifically designed to operate in the first region of
the NIR zone, from 800–1200 nm (12,500–8500 cm−1), also called the “Herschel” region,
therefore avoiding all the interferences coming from the classical presence of overtones
and combination bands. It is the only region where electronic transitions can be observed.
The SCiO sensor is operated by a wireless connection to a peripheric control device such
as a smartphone, via Bluetooth and controlled using either the SCiO or the SCiO Lab app.
Each spectrum consisted of an average of 50 scans, with a resolution of 8 cm−1 that in our
preliminary experiments produced the highest spectral sensitivity.

2.8. Spectral Pretreatments

Different combinations of spectral pretreatment options were applied to improve
the signal quality [20]. Next, descriptive statistics, which is an implemented tool in the
software, was applied to identify necessary additional spectral pretreatments. The optimal
number of latent variables, which were later used for the model, was selected in the
range of 2–12 to obtain the lowest error of prediction. The option of cross-validation as a
calibration evaluation tool was also examined but cross-validation was not representative
to the test set, which is typical with bioprocess-related spectral data. Therefore, instead
of optimising the cross-validation method, the test set of the spectra was immediately
used to evaluate the calibration model [21]. Standard normal variate (SNV) was applied to
reduce multiplicative scatter effects. No other pretreatments were necessary as they did
not improve the model much.

2.9. Regression Model

Partial least squares regression (PLS-R) was applied to the respective calibration sets to
establish calibration models. Specifically, in the SCiO Lab web application the dataset was
first manually split into a calibration and validation set. The calibration set was also used
to build a PLS-R. For the evaluation of the established PLS-R models, different statistical
quality parameters were consulted. R2 is a measure of the linearity, RMSECV and RMSEP
are indicators of the accuracy of the established model and the Bias can point to methodical
errors. The RMSECV is similar to a standard deviation, showing how great the differences
between expected and actual values are. The RMSEP denotes the difference between the
actual reference value and the predicted value by the established reference method.

2.10. Data Analysis

Principal component analysis (PCA) was used to overcome the low numerosity of the
sample, to reduce the dimensions of the data and to facilitate the discovery of hidden vari-
abilities and uncover similarities and dissimilarities between spectra sets of experiments.
To this goal, raw Nir data were loaded and analysed by the Spectragryph software v.1.2.15
(2016 Spectroscopy Ninja) Oberdoff Germany.

2.11. Theory of the Machine Learning Algorithm (ML)

In machine learning, the goal of classification is to group items that have similar
feature values into groups. Timothy et al. [22] stated that a linear classifier achieves this
by making a classification decision based on the value of the linear combination of the
features. If the input feature vector to the classifier is a real vector, then the output score is

y = f ( ω·x) = f (∑J ωj·xj)

where
→
ω is a real vector of weights and f is a function that converts the dot product of

the two vectors into the desired output. The weight vector
→
ω is learned from a set of

labelled training samples. Often, f is a simple function that maps all values above a certain
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threshold to the first class and all other values to the second class. A more complex f
might give the probability that an item belongs to a certain class. In this context, a support
vector machine (SVM) performs classification by constructing a model as an N-dimensional
hyper plane that optimally separates the data into two categories [23]. Using a kernel
function, SVMs are an alternative training method for polynomial, radial basis function
and multi-layer classifiers in which the weights of the network are found by solving a
quadratic programming problem with linear constraints, rather than by solving a non-
convex, unconstrained minimisation problem as in standard neural network training.

3. Results
3.1. Evaluation of the NIR Spectroscopic Response of Different Biological Matrices

It is well-known that the performances of the machine learning procedure are strictly
related to the nature (chemical composition, viscosity, pH) of the sample and to the number
of replicates. In order to assess the reliability of the matrix chosen for our study and to set
the best analytical condition (number of replicates and scansions) we evaluated the specific
spectroscopic behaviour of the secretome samples in comparison with other biological
matrices usually exploited in the laboratory cancer procedures.

Figure 1 shows as the secretome elicits a NIR response close to that of plasma, intersti-
tial fluid and serum, suggesting the possibility to apply to our matrix the same chemometric
calibration procedures already established for other biological sources [24].
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Figure 1. Matrix score plot comparison. Distribution analysis of NIR spectra produced by different
biological matrices. A total of 50 µL of interstitial fluid, plasma, serum, secretome and undiluted blood
from the same positive patient was layered on 5 different DBS cards and scanned. PCA analysis clearly
shows a close distribution between secretome/plasma (Orange) and interstitial fluid/sera. (Green)
suggesting the possibility to apply to these different matrices the same chemometric prediction model.
Undiluted blood shows a distinct score of distribution.

To acquire information on the specificity and sensitivity of the NIR response, a set
of NIR spectra acquisitions on a preconstitutive sample (Spike) from secretome, plasma,
diluted and undiluted blood was performed by adding known concentrations of MAs. The
PCA analysis shows that all of the tested biological fluids, (secretome Figure 2, Plasma
Figure 3, diluted blood Figure 4 and undiluted blood Figure 5) have a clear-cut distribu-
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tion as function of the increasing amount of glyoxal spiked into the sample. The same
PCA distribution was obtained by reanalysing the single sample spots after one month
storage in the dark and at room temperature, highlighting the great sample stability due
to the DBS support. In our experiments, the smallest amount of glyoxal able to produce a
well-defined NIR spectrum (Limit of Detection (LOD)) for all of the tested matrices was
of 0.03% v/v, demonstrating a good sensitivity as well (data not shown). Taken together,
our results strongly supported the possibility to exploit the advantages coming from the
combination of the liquid biopsy procedure with a NIR spectroscopic system to set a predic-
tive qualitative chemometric model for a glyoxal-based rapid assessment of personalised
cancer risk.
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Figure 2. Glyoxal spike on secretome matrix. Near-infrared spectra datasets were collected for
developing an NIR calibration by using 50 µL of CS (Control Secretome) samples treated with 0,
0.3, 0.6, 1.25 and 2.5% v/v of pure MAs. (a) Combined NIR spectra obtained from the acquisition of
5 different spiked secretome samples. (b) PCA analysis of the spectra distribution for 0, 0.3, 0.6, 1.25
and 2.5% v/v of spiked samples.
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Figure 3. Glyoxal spike on plasma matrix. Near-infrared spectra datasets were collected for devel-
oping an NIR calibration by using 50 µL of normal plasma samples treated with 0.0.3, 0.6, 1.25 and
2.5% v/v of pure Mas. (a) Combined NIR spectra obtained from the acquisition of 5 different spiked
plasma samples. (b) PCA analysis of the raw spectra distribution for 0.0.3, 0.6, 1.25 and 2.5% v/v of
spiked samples.
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based on the previously assessed level of risk derived from the protonation state of the 
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Figure 4. Glyoxal spike on diluted blood matrix. Near-infrared spectra datasets were collected for
developing an NIR calibration by using 50 µL of normal blood samples diluted 1:2 with (x) and
treated with 0, 0.3, 0.6, 1.25 and 2.5% v/v of pure Mas. (a) Combined NIR spectra obtained from
the acquisition of 5 different spiked diluted blood samples. (b) PCA analysis of the raw spectra
distribution for 0, 0.3, 0.6, 1.25 and 2.5% v/v of spiked samples.
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Figure 5. Glyoxal spike on undiluted blood matrix. Near-infrared spectra datasets were collected for
developing an NIR calibration by using 50 µL of normal blood samples treated with 0, 0.3, 0.6, 1.25
and 2.5% v/v of pure Mas. (a) Combined NIR spectra obtained from the acquisition of 5 different
spiked blood samples. (b) PCA analysis of the raw spectra distribution for 0, 0.3, 0.6, 1.25 and 2.5%
v/v of spiked samples.

3.2. Chemometric Calibration

The support vector machine-based algorithm model was able to differentiate between
defined categories for their spectral fingerprint relative to intrinsic chemical components.
A classification model was built to categorise different categories of cancer risk, based
on the previously assessed level of risk derived from the protonation state of the sample.
According to the guidelines of the ISNS (Italian Society of NIR Spectrometry), the collection
and categorisation of three defined cancer risk level groups of samples was performed
and acquired to obtain their NIR spectra. Specifically, 50 µL of CS (n 27) were obtained.
IS (n 23) and Pts (n 20) secretome samples were layered on DBS cards and scanned by
a NIR portable spectroscopic sensor. After acquisition, every spectrum collection was
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normalised by subtracting the background and the signal outliers by using detrend and
the 1st derivative function. Figure 6 shows the spectra collection dataset associated with
the relative PCA analysis. Strikingly, the system correctly operates, assigning CS, IS and
Pts samples into three different groups.
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Figure 6. NIR spectra analysis. NIR spectra from Control Sample (CS), Intermediate Sample (IS) and Positive Sample (PS) of
secretome. A total of 50 µL of CS (n 27). I (n 23) and H (n 20) secretome samples were layered on DBS cards and scanned by
a NIR portable spectroscopic sensor. (a) Significant differences between the spectra of CS (No MG adducts) and IS (low MG
adducts concentration) or PS (high MG adducts concentration) are highlighted (Merge). (b) principal component analysis of
the CS (green), IS (Blue) and PS (red) spectra collected from 43 different samples and 200 total scans, showing as the system
correctly operates assigning CS, IS and PS samples into three different groups.

3.3. Chemometric Model Construction

Eighteen different CS and IS samples were scanned; the spectra (Figure 7) were
treated as previously described. The variables distribution pattern was evaluated by
PCA (Figure 7a,b) and finally the data were sent to the cloud support vector machine
(Consumer Physics, Herzliya, Tel Aviv, Israel) for model elaboration. Log, SNV and
derivative functions were used to minimise the data dispersion. The log function takes the
natural logarithm of each value in the spectrum. The SNV function calculates and subtracts
the average of each spectrum and divides it by the standard deviation thus giving the
sample a unit standard deviation (s = 1). Finally, the derivative function takes the 1st or
2nd derivative of the spectra. Derivatives of spectra are useful for two reasons. First and
second derivatives may swing with greater amplitude than the primary spectra, making
it possible to separate out peaks of overlapping bands. Moreover, derivative spectra can
be a good noise filter since changes in the baseline have negligible effect on derivatives.
The resulting qualitative model, validated by the internal cross procedure against random
samples of the total collections, is shown in (Table 1). The estimated performance value
R (predicted vs. expected) was of 0.97, with only a 4% of false negative and no bias for
false positive. The above procedure was then applied to develop the qualitative estimation
model for control secretome vs. high-risk positive samples (Figure 7b). The chemometric
model, after validation by internal cross procedure, showed a R value of 0.72%, with no
false negative and no bias for false positive.
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Table 1. Chemometric model score: the estimated performance value is 0.959, with only 3% of false
negative and no bias for false positive.

Classified Known Class High Intermediate None
High 99% 0% 0%

Intermediate 3% 96% 0%
None 0% 0% 100%

In parallel, spectra from CS, I and Pts secretome samples, after minimising the data
dispersion were merged and sent to the cloud support vector machine for the full model
elaboration. Table 1 shows the NIR spectra. To validate the model a second group of MAs
spiked samples was used (external cross validation). Figure 8 shows by PCA the unknown
spiked secretome samples distribution, assigning the 1.25 and 2.5% population (B: red
circle) to the same risk probability of the of Pts and I reference secretomes (A: orange circle)
suggesting a potential quantitative estimation model.

Nanomaterials 2021, 11, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 7. PCA analysis of the spectra distribution. (a) PCA analysis of the spectra distribution for 
CS (Gold) and IS (Blue). (b) For CS (Gold) and PS (Blue) showing a good separation between the 
two classes. model score: the estimated performance value is 0.959, with only 3% of false negative 
and no bias for false positive. 

Table 1. Chemometric model score: the estimated performance value is 0.959, with only 3% of 
false negative and no bias for false positive. 

Classified Known Class High Intermediate None 
High 99% 0% 0% 

Intermediate 3% 96% 0% 
None 0% 0% 100% 

In parallel, spectra from CS, I and Pts secretome samples, after minimising the data 
dispersion were merged and sent to the cloud support vector machine for the full model 
elaboration. Table 1 shows the NIR spectra. To validate the model a second group of MAs 
spiked samples was used (external cross validation). Figure 8 shows by PCA the unknown 
spiked secretome samples distribution, assigning the 1.25 and 2.5% population (B: red 
circle) to the same risk probability of the of Pts and I reference secretomes (A: orange cir-
cle) suggesting a potential quantitative estimation model. 

 
Figure 8. PCA distribution of categorised secretomes vs. spiked samples. (A) a total of 302 spectra from CS (n 27) I (n 23) 
and Pts (n 20) secretome samples were analysed with PCA distribution. (B) a total of 95 spectra from 5 different spiked 
secretome samples. The 1.25 and 2.5% population (B: red circle) are assigned to the same risk probability of the of Pts and 
I reference secretomes (A: orange circle) suggesting a potential quantitative estimation model. 

  

Figure 8. PCA distribution of categorised secretomes vs. spiked samples. (A) a total of 302 spectra from CS (n 27) I (n 23)
and Pts (n 20) secretome samples were analysed with PCA distribution. (B) a total of 95 spectra from 5 different spiked
secretome samples. The 1.25 and 2.5% population (B: red circle) are assigned to the same risk probability of the of Pts and I
reference secretomes (A: orange circle) suggesting a potential quantitative estimation model.
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4. Discussion

The aim of this study was to analyse the performances of a novel method we de-
veloped by using near-infrared (NIR) portable handheld spectroscopy and the extreme
learning machine (ELM) algorithm, to assess the methylglyoxal adducts (MAs) content in
the secretome collected from short-term culture of circulating cancer cells and previously
characterised by an electrochemical device. Both the novel NIR chemometric models
we settled and the previously described evaluation of the protonation’s state by super-
hydrophobic organic electrochemical device were able to separate high (derived from
secretome of cancer patients), low (derived from secretome of healthy subjects) and an
intermediate score groups of cancer risk. Strikingly the possibility to discriminate the
intermediate score group is evident. In fact, this group includes clinically healthy subjects
characterised by an altered oxidative profile, corresponding to an intermediate grade of
cellular damage. This condition is probably prodromal to a subsequent phase of aggrava-
tion of the damage and completion of the cellular transformation. It is well-known that
an early cancer detection and a precise evaluation of the cancer risk is mandatory for the
effectiveness on any therapeutic treatment. In this view, in the last decade, many different
biochemical approaches have been developed. Unfortunately, most of them, because they
are based on circulating highly specific but extremely rare and diluted biomarkers, deter-
mine the need to develop and apply cost and time-expensive procedures. The diagnostic
approach we describe here, based on the combination of the well-assessed cancer risk
biomarkers (Mas) [13,25] with a novel NIR and a chemometric cloud-based approach, can
overcome these difficulties. First the analytical approach is affordable, sensitive, fast, being
based on NIR spectrometry and chemometrics, and as precise as the biochip-based method.
Second the data acquisition, analysis and storage are safe and limitless because all of the
procedures rely on a well consolidated machine learning algorithm [26] operating from a
cloud station. Third, and, to our understanding, highly promising, the system can be easily
remotely operated by using a cell phone proprietary application that can control the NIR
scanning procedure, acquire, analyse and send results directly to the physician desktop in
less than 1 min [27]. All of the described features could offer the possibility, in the close
future, to exploit the system in a home care program for cancer patients.

5. Conclusions

We are aware that the number of samples we analysed is relatively small and that
further studies are warranted to implement the number of cases involved to confirm, on
a large scale, the predictive power of this novel method. Nonetheless, the possibility to
combine the predictive power of the NIR chemometric model with the MAs levels based on
the corresponding protonation profile modifications constitutes a highly promising novel
tool of investigation. Its application could represent a starting point to implement a novel
highly performing cancer screening system, with all the advantages for a possible home
care program for cancer patients.
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