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Abstract8

The giant squid (Architeuthis) has been reported since even before the 16th

century, and has recently been observed live in its habitat for the �rst time.

Among the species belonging to this genus, Architeuthis dux has received

special attention from biologists. The distribution of this species is poorly

understood, as most of our information stems from stranded animals or stom-

ach remains. Predicting the habitat and distribution of this species, and more

in general of di�cult to observe species, is important from a biological con-

servation perspective. In this paper, we present an approach to estimate

the potential distribution of A. dux at global scale, with relative high res-

olution (1-degree). Our approach relies on a complex preparation phase,

which improves the reliability of presence, absence and environmental data

correlated to the species habitat. We compare our distribution with those

produced by state-of-the-art approaches (MaxEnt and AquaMaps), and use

an expert-drawn map as reference. We demonstrate that our model projec-
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tion is in agreement with the expert's map and is also compliant with several

biological assessments of the species habitat and with recent observations.

Furthermore, we show that our approach can be generalized as a paradigm

that is applicable to other rare species.

Keywords: Ecological Niche Modelling, AquaMaps, Neural Networks, rare9

species, Maximum Entropy10

1. Introduction11

In recent years, niche models that estimate species distribution have be-12

come widely used in conservation biology (Guisan and Zimmermann, 2000).13

Rare species are examples where the prediction of suitable habitats is paramount14

to support �sheries management policies and conservation strategies (Pearce15

and Boyce, 2006; Márcia Barbosa et al., 2003). De�ned by Cao et al. (Cao16

et al., 1998) as species that occur at lower frequency or in low number in a17

sample of certain size, rare species have a key role in a�ecting biodiversity18

richness and by consequence they are indicators of degradation for aquatic19

ecosystems (Lyons et al., 1995; Cao et al., 1998). In this context, predictive20

models can considerably support the qualitative and quantitative criteria21

used to assign a �status� to a species (IUCN Species Survival Commission22

and Natural Resources. Species Survival, 2001), by providing accurate, ap-23

plicable and reliable spatial predictions to species population monitoring and24

sampling (Guisan et al., 2006). As discussed in many studies, the method-25

ological progresses of Species Distribution Models (SDMs) allow nowadays to26
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apply robust techniques to rare and endangered species (Guisan and Thuiller,27

2005; Ferrier, 2002; Gibson et al., 2007; Razgour et al., 2011; Ovaskainen and28

Soininen, 2011; Rebelo and Jones, 2010; Wisz et al., 2008; Lomba et al., 2010).29

Here, we propose a procedure to generate a niche model for a species30

of the giant squid family (Architeuthis dux ), based on both presence and31

estimated absence locations. Our aim is to produce a map that is more32

accurate with respect to the ones that can be produced by commonly used33

models. Although giant squids have recently received special attention, little34

has been published regarding the population demographics and the ecology35

of these rare species. Most of the records refer to dead stranded animals,36

individuals captured alive by nets or from the remains found in the stomach37

of marine mammals (Clarke, 2006). When modelling the distribution of38

these species, high quality data are crucial but very scarce. This problem39

is especially important for rare species prediction, where models training is40

highly dependent on data quality.41

Given this context, our study investigates a combination of presence only42

and presence/absences techniques to identify potentially suitable areas for43

A. dux subsistence. We also expect the results to help de�ning guidelines for44

use of SDMs for rare species.45

We illustrate our approach using data from authoritative sources of ob-46

servation records. Furthermore, we use an expert system to produce absence47

locations. In order to ensure high quality for the environmental variables48

associated to presence information, we use the Maximum Entropy (MaxEnt)49
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model (Phillips et al., 2006; Berger, 1996) as a �lter to select the variables50

that are important to de�ne the potential habitat of the species. These are51

the variables that are mostly correlated to the species observations, among52

those we selected from reference studies. When possible, we make environ-53

mental variables values range from 450 to 1000 m, encompassing the deep54

ocean waters usually inhabited by A.dux (Guerra et al., 2010). Finally, we55

train an Arti�cial Neural Network on these datasets and compare the results56

with (i) a presence-only method, (ii) an expert system and (iii) an expert57

drawn map.58

The paper is organized as follows: Section 2 reports the e�ort made to59

model or understand the potential habitat of rare species, and in particular60

of A. dux. Section 3 reports the details of our method and its expandability61

as a general approach to rare species modelling. Section 4 reports the results62

of both a qualitative and a quantitative comparison with other distribution63

maps for A. dux. Section 5 discusses the results and Section 6 draws the64

conclusions.65

2. Overview66

This Section is divided into two subsections. The �rst reports the current67

understanding of the distribution of Architeuthis dux. The second describes68

the niche modelling approaches that have been applied or that can be applied69

to rare species.70
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2.1. Species overview71

The Architeuthis genus has been recorded since before the 16th century72

(Guerra et al., 2011), and has recently been observed live in its natural habi-73

tat for the �rst time (Kubodera and Mori, 2005). Literature studies have74

recognized up to �ve species of this genus (Robson, 1933), although Nesis75

(Nesis, 1987) and Aldrich (Aldrich, 1991) suggested them to be identi�ed as76

Architeuthis dux. Most of the records refer to stranded animals or stomach77

remains, and are located in the North Atlantic (e.g. Norway), in the North-78

East Atlantic (o� northern Spain), in the South Atlantic (e.g. Namibia and79

South Africa) and in the South-West Paci�c, around New Zealand and Tas-80

mania (Gonzalez et al., 2000; Clarke, 2006; Förch, 1998; Guerra et al., 2004;81

Bolstad and O'Shea, 2004; Guerra et al., 2004). Most of these animals have82

been classi�ed as A. dux (Cherel, 2003; Clarke, 2006; Bolstad and O'Shea,83

2004; Guerra et al., 2010; Clarke, 2006; Nesis, 2003; Aldrich, 1991), but many84

more refer to the genus level (Architeuthis spp.) without further speci�ca-85

tion (Lordan et al., 1998; Gonzalez et al., 2000; Ré et al., 1998; Arfelli et al.,86

1991; Kubodera and Mori, 2005; Roeleveld and Lipinski, 1991). In 2003,87

Nesis (Nesis, 2003) published the distribution of Architeuthis dux by corre-88

lating latitudinal zones and zoogeographic provinces in the pelagic realm.89

The identi�ed zonality mainly re�ects the general oceanic circulation, and90

no temperature data was used for the selection of the latitudinal zones. The91

author identi�ed rate of speciation among the Cephalopoda taxon caused by92

climatic and orogenic isolation and bi-subtropical species of Architeuthis dux93
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in the North Atlantic, the South Paci�c and the Southern Ocean. In this94

paper, we take the map of Nesis as a reference to assess the performance of95

our models.96

Several authors have suggested thatArchiteuthis is an epipelagic/mesopelagic97

species, living in correspondence with continental slopes, submarine channels98

or canyons (Roeleveld and Lipinski, 1991; Kubodera and Mori, 2005). Guerra99

et al. (Guerra et al., 2011) examined the relationship between the number100

of recorded specimens and some of the main characteristics of the observa-101

tion areas. The authors report the close association of giant squids with102

sperm whales sights (Clarke and Pascoe, 1997). They indicate correlation of103

Architeuthis spp. sighting with places presenting high primary production104

and close to shallow �shing grounds. They also report low incidence of genus105

sighting, in locations where deep channels or canyons are not present (Guerra106

et al., 2004). On the basis of the distribution of the strandings, Robson (Rob-107

son, 1933) noticed that Architeuthis is adapted to temperate waters of about108

10 °C. This biological information is in agreement with later studies, that109

correlate the giant squid presence with the increase of the temperature in110

some locations (Brix, 1983; Guerra et al., 2004).111

In this paper, we demonstrate that our results are in agreement with most112

of these considerations.113
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2.2. Modelling approaches114

SDMs produce species distributions at global or local scale, by relating115

species occurrence records with a set of environmental parameters. Many116

methods are available (Pearson, 2012), some using only presence records and117

others using both presence and absence records (Ready et al., 2010; Coro118

et al., 2013b; Guisan and Zimmermann, 2000; Hirzel and Le Lay, 2008).119

Niche models usually report either the potential or the actual distribution of120

a species (Elith and Leathwick, 2009; Pearson, 2012). In the case of the po-121

tential distribution, the model searches for locations with a suitable habitat,122

rather than detecting locations where the species is really present (actual123

distribution).124

Presence-absence methods have been recognized to be the best in produc-125

ing the potential niche of a species, especially for wide-ranging and tolerant126

species when the quality of the data is high (Elith and Leathwick, 2009;127

Brotons et al., 2004). Nevertheless, scarcity of data is a common issue when128

modelling rare species: few records are present in biodiversity databases, and129

often scarce in both quality and geospatial reliability (Engler et al., 2004).130

Providing reliable presence and absence data, enhances the performance of131

niche models (Guisan and Zimmermann, 2000). However, the identi�cation132

of absences should be carefully addressed, since they bear strong imprints133

of biotic interactions, dispersal constraints and disturbances (Pulliam, 2000;134

Gibson et al., 2007; Hirzel and Le Lay, 2008; Cianfrani et al., 2010).135

In this paper, we use di�erent approaches to model the potential distri-136
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bution of A. dux. We take the AquaMaps expert system as reference for the137

comparison. The AquaMaps algorithms (Kaschner et al., 2006, 2008) are138

presence-only models that include scienti�c expert knowledge into species139

habitats modelling (Ready et al., 2010). The AquaMaps algorithms include140

two models: AquaMaps Suitable and AquaMaps Native, addressing the po-141

tential and the actual distribution of a species respectively. Expert knowl-142

edge is used in modelling species-habitat relations at global scale with 0.5°143

resolution, relying on the following environmental variables: depth, salinity,144

temperature, primary production, distance from land and sea ice concentra-145

tion (Corsi et al., 2000). AquaMaps combines mechanistic assumptions and146

automatic procedures for habitat parameters and species values estimations,147

making the modelling approach usually reliable, but less accurate when ex-148

pert knowledge at global scale is missing. In the experiment for this paper, we149

used AquaMaps Native to produce absence locations and AquaMaps Suitable150

as reference to assess the performance of the other models.151

One largely used presence-only technique is Maximum Entropy (MaxEnt)152

(Phillips et al., 2006; Phillips and Dudik, 2008). The general idea of MaxEnt153

is to approximate a probability density function, de�ned on an environmental154

features vectorial space, ensuring that this function is compliant with the155

mean values at the presence locations, and that the entropy of the probability156

distribution is maximum (Elith et al., 2011). The algorithm relies on unbiased157

samples, so e�ort in collecting a set of high quality presence records is critical158

to avoid estimation errors (Elith and Leathwick, 2009). We used MaxEnt as159
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a reference model to assess the performance of our approach. On the other160

hand, MaxEnt is a fundamental part of our approach, because we used it to161

help a presence-absence model by providing features that are important to162

assess habitat suitability. We give more details about our MaxEnt usage in163

Section 3.3.164

Among the many presence/absence models, Arti�cial Neural Networks165

(ANNs) have demonstrated to gain good performance with respect to other166

approaches, especially for rare species (Pearson et al., 2002; Coro et al.,167

2013b). ANNs try to automatically simulate the probability of occurrence of168

a species, given certain environmental conditions. They learn on the basis of169

the environmental characteristics of positive and negative examples. We used170

ANNs to combine the outputs of our presence/absence data production and171

of the environmental features �ltering phase. In Section 3.5 we give details172

about our usage of ANNs.173

3. Method174

In this Section we describe the technology which supported the exper-175

iments, and we also report our procedures for data preparation and envi-176

ronmental features selection. Furthermore, we explain our presence/absence177

approach to model the distribution of A.dux and its relevance for other rare178

species.179
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3.1. Technology and tools180

Preparing an experimental setup to model the distribution of a rare181

species requires expertise in several disciplines. The model requires highly182

reliable presence records. The environmental features describing the ecolog-183

ical niche of the species should be of high quality and with the appropriate184

spatial resolution (Kamino et al., 2012; Elith and Leathwick, 2009). Since185

environmental features are distributed as geospatial datasets, their projec-186

tions should be perfectly aligned in order to correctly retrieve correspondent187

values. During the training phase, di�erent models need to be tested and188

reapplied to avoid problems of local minimum of the �tting curve (Bishop,189

1995) and if several models are combined, the output of a model must agree190

with the input of the next.191

We overcame these issues of high quality environmental features sets192

and their alignment by using an e-Infrastructure for biodiversity conserva-193

tion (D4science) (Candela et al., 2009). D4Science supplies several mod-194

els as-a-service. The model compatibility is guaranteed by specialized e-195

Infrastructure services. Furthermore, D4Science uses Cloud computing to196

speed processing up (Coro et al., 2013b; Candela et al., 2013). D4Science197

provides automatic alignment and comparison of geospatial datasets (Coro,198

2014), by re-projecting environmental features into a common coordinates199

system.200

D4Science hosts a large variety of environmental features at global scale,201

with resolution varying from 0.01 degrees to 1 degree (Castelli et al., 2013).202
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D4Science also allows retrieving species presence information from heteroge-203

neous biodiversity data collections (e.g. OBIS (Berghe et al., 2010), GBIF204

(Edwards et al., 2000) and the Catalog of Life (Wilson, 2003)), under the205

same format (Candela et al., 2014). Information is attached to each presence206

record, to indicate the ownership of the observation, its source (e.g. hu-207

man observation, specimen etc.) and possibly if the record underwent expert208

review.209

3.2. Occurrence data preparation210

We used a presence-absence modelling approach, to �nd correlation be-211

tween the presence records of Architeuthis dux and a multidimensional space212

made up of environmental features. We decided to use high quality presence213

points and reliable absence locations as input to our models, according to214

the indications reported in Section 2.2. Using the D4Science web services215

(Candela et al., 2014), we retrieved human observations for A. dux from216

authoritative sources. We came up with 11 records from OBIS and 1 from217

GBIF. The records are reported in Table 1, along with the name of the sub-218

collection hosting each record. The records had indication about the experts219

that identi�ed the species. Most points belong to the area around the Gulf220

of Mexico and one is in North-West Atlantic. The point from GBIF is in221

agreement with the records from OBIS, thus we decided to use it. We lim-222

ited the records to the ones for A. dux only. In the context of improving223

data quality, we did not include the other Architeuthis species.224
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It is notable that both OBIS and GBIF contain few of the recent live225

observations of Architeuthis dux. In particular, the observations from Ceph-226

Base in Table 1 are the only direct observations, whereas the records from227

the Smithsonian Institute and the Florida Museum of Natural History come228

from specimens that have been found in the stomach of sperm whales or229

�oating on the sea surface. The other observation records are reliable esti-230

mates from the Biodiversity of the Gulf of Mexico Database, derived from231

literary studies or unregistered observations that have been later validated232

by experts. The points in Table 1 are associated to the species presence in233

a depth range between 700 and 475 meters. In our SDM, we used a large234

resolution of 1° and this softens errors due to the usage of non-exact presence235

locations. Thus we decided to employ all the points in Table 1 in our model.236

On the other hand, we used recent live observations of A. dux, not included237

in OBIS and GBIF, to validate our model (see Section 4.1).238

Data retrieved using D4Science follow the Darwin Core format (Wiec-239

zorek et al., 2012) and can be provided as input to the D4Science models di-240

rectly. All models accept the same format of input data of presence records,241

which makes the data preparation phase faster.242

3.3. Environmental data selection243

The environmental characteristics in our model refer to geospatially ex-244

plicit chemical and physical measurements. During its training session, our245

model learns from positive and negative examples that are based only on en-246
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vironmental features. In the subsequent projection session, a real value from247

0 to 1 is associated to several locations to assess their habitat suitability. A248

well performing model is one having good projection on the locations of the249

training set and, at the same time, not su�ering of over�tting issues on the250

training values (Bishop, 1995).251

Environmental features selection requires attention (see Section 2.2) to252

ensure they are not highly correlated: adding a feature that is dependent on253

previous ones would not bring more information to the model, but it could254

add noise during the training session. Furthermore, the spatial resolution255

should �t the precision of the projection: a model that has to produce a map256

with resolution 0.5 degrees, should rely on environmental information with257

the same resolution. This allows not using values coming from rescaling pro-258

cesses or kriging that would add uncertainty to the measurements. Global259

scale maps also contain estimated values, but these have been produced by260

experts. Thus, we recommend using the native resolution of the environ-261

mental datasets in global scale modelling. Furthermore, the reliability of the262

data is crucial. This depends on the data provider, as some providers require263

the dataset to pass a data quality process in order to be published (e.g. My-264

Ocean (Bahurel et al., 2010) and the World Ocean Atlas (Locarnini et al.,265

2006)).266

Features selection methods analyse the features space. Several approaches267

try to reduce the dimensions of this space, for example by recovering the268

most independent features or combining them into new features (Jolli�e,269
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2005; MacLeod, 2010). In our approach, instead, we wanted to reduce the270

dimension of the number of features to use, but at the same time we wanted to271

take the correlation between presence points and random points (background272

points) into account. To such aim, we used the MaxEnt model as a features273

�lter.274

We collected environmental features that could a priori in�uence the275

habitat suitability for A.dux, according to the studies we have reported in276

Section 2.1. We chose the parameters reported in Table 2, averaged on277

annual values. Based on the depth range of our presence points and on278

indications from literature (Guerra et al., 2010), we took parameters values279

in the following ranges: (i) in the entire water column, (ii) averaged between280

450 and 1000 meters, (iii) at surface level. In particular, we used the 450-1000281

m range when the data provider reported information at several depth ranges.282

Table 2 indicates the ranges we used for each parameter. The parameters283

layers come with di�erent projections and reference systems, but the MaxEnt284

implementation on D4Science automatically accounts for making the layers285

projections and reference systems uniform, before training the models. In286

our experiments, the layers from MyOcean and the World Ocean Atlas were287

available in the e-Infrastructure as GIS layers, while we provided the others288

as external datasets, in one of the accepted D4Science input formats (Coro,289

2014).290

During the training phase, MaxEnt minimizes the relative entropy of the291

features at the presence locations, with respect to the features of random292
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points (Phillips et al., 2006). Presence points are taken as constraints during293

this minimization. The model uses a linear combination of the features, where294

the coe�cients of the combination are adapted to re�ect the �importance� of295

each variable in predicting the distribution of the species. After the training296

phase, MaxEnt also reports these coe�cients. We relied on these to select297

the features that provided the most information about the species' habitat298

preferences, from the point of view of a machine learning model. In other299

words, we used MaxEnt to �lter out the features that could bring noise or that300

did not bring more information to a model for A. dux. We set a non-strict301

cut-o� threshold, taking all the features that had coe�cients values higher302

than the 5% of the maximum coe�cient value. In the end, MaxEnt produced303

the following list of features from the ones in Table 2, ranked according to304

a decreasing importance: (i) mole concentration of Silicate, (ii) depth, (iii)305

maximum temperature in the water column, (iv) ph, (v) mole concentration306

of Nitrate, (vi) range of temperature in the water column, (vii) distance from307

land, (viii) mass concentration of Chlorophyll.308

3.4. Absence points309

In order to improve data quality, we searched for a method to produce310

robust absence locations. Several methods exist to estimate absence locations311

(Pearson, 2012), but we avoided introducing biases by using other machine312

learning models. One approach that proved to be e�ective, is to use an expert313

system to generate absence locations (Coro et al., 2013b,a). Expert systems314
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combine automatic processing with expert indications and can be used to315

simulate expert opinion. Thus, we used AquaMaps Native (see Section 2.2)316

to retrieve absence areas by looking at locations having probability lower than317

0.2 but higher than 0. Setting the threshold over zero, selects areas having318

low values for several environmental envelopes. This approach simulates319

locations where an expert asserts that the habitat is particularly unsuited320

for the species. Furthermore, these locations are reported at a relatively321

high resolution of 0.5 degrees at global scale. From the AquaMaps Native322

distribution, we extracted absence scattered locations, because this allows323

having a wider range of environmental characteristics for low probability324

locations. We took only absences that were two degrees distant at least. In325

another work (Coro et al., 2013a), we demonstrated that this method results326

in better performance than using concentrated absence records.327

In order to balance the number of presence and absence records, we lim-328

ited the absence locations to 25 points, slightly more than two times the329

presence points. These points gave us a wide range of absence environmental330

features and, at the same time, limited possible over-prediction tendency by331

niche models. Figure 1 reports the AquaMaps Native distribution for Archi-332

teuthis dux, and the presence/absence dataset resulting from our selection.333

3.5. Modelling334

In order to produce distribution maps for Architeuthis dux, we used both335

MaxEnt and Arti�cial Neural Networks. As input data, we used the pres-336
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ence dataset described in Section 3.2, the pseudo-absences extracted from337

AquaMaps (see Section 3.4) and the �ltered environmental features described338

in Section 3.3. We assumed that this input was of su�cient quality to ensure339

the reliability of the models.340

We used the MaxEnt model as benchmark to evaluate the performance341

of an Arti�cial Neural Network. Our aim was to compare a state-of-the-art342

model (MaxEnt) that has been yet used to model rare species (Wisz et al.,343

2008; Elith et al., 2011; Phillips and Dudik, 2008), with a new approach using344

MaxEnt only to �lter out noisy environmental features. In our experiment,345

we used the MaxEnt implementation of D4Science (Coro, 2014), which is346

based on the one by the Phillips et al. (Phillips et al., 2006). We trained347

the model at global scale, with 1-degree of resolution, since this was the348

highest degree available for our layers and we wanted to avoid resampling.349

Consequently, also the projection of the model had a 1-degree resolution.350

We assumed a 0.5 value for the default species prevalence parameter and351

executed 1000 learning iterations. We performed several training sessions352

to ensure that the model consistently converged to the same parameters353

estimation.354

In order to evaluate the performance of MaxEnt in distinguishing between355

absences and presences in the training dataset, we referred to the AUC curve356

of the model. This indicates the probability threshold to assert a location357

is suitable to a species. We found that this probability threshold was 0.03358

for our model. Thus, we assumed that all probabilities above this threshold359
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identi�ed a location viable for A. dux to a certain degree. The resulting360

distribution map is displayed in Figure 2.361

Arti�cial Neural Networks, in particular Feed Forward Neural Networks362

(FFNNs) (Bebis and Georgiopoulos, 1994), have proven good performance363

in niche modelling and have been applied to model the distribution of rare364

species (Pearson, 2012; Coro et al., 2013b). Furthermore, with respect to al-365

ternative models, they have proven to perform better when the quality of the366

data is high (Coro et al., 2013b). The aim of an FFNN is to build a hierarchi-367

cal multi-layered network, made up of interconnected nodes, which simulates368

a complex function. The complexity of the function depends on the number369

of layers and neurons in the network. During a training session, the weights370

of the network connections are adapted to produce expected values on the371

training dataset. In our case, the training set consisted of the environmental372

features at presence and absence locations, where features were extracted373

at 1-degree resolution. The FFNN performance depends only on the values374

assumed by the features on the training set, di�erently from MaxEnt. For375

presences, the expected value was set to 1 and for absences it was set to376

0. In order to de�ne the optimal number of layers and neurons per layer377

to use in the network, we adopted a growing strategy (Bishop, 1995). We378

added neurons and layers as far as the error with respect to the training set379

decreased after a training session (up to a certain threshold). The threshold380

was empirically set to 0.01 in order to avoid over�tting. We executed the381

Network training session 10 times for each topology and eventually took the382
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one with the best learning result, i.e. with the lowest mean error with respect383

to the training points. This process ended in two Networks achieving good384

learning capacity: one having two layers, with 10 neurons in the �rst layer385

and 2 in the second, the other having two layers too, with 100 neurons in386

the �rst layer and 2 in the second. We will refer to the �rst as the �simple387

topology FFNN� and to the second as the �complex topology FFNN�. One388

characteristic of the second FFNN is that the learning process is more stable,389

i.e. it usually ends in the same distance from the training set. On the other390

hand, using simpler topologies is better especially to avoid over�tting issues.391

Indeed, in Section 4 we demonstrate that the simpler topology gains overall392

better performance. In the same way we did for MaxEnt, we calculated that393

for the FFNNs the best threshold to �lter out too low habitat suitability was394

0.1. Figure 3 reports the maps associated to the two FFNN topologies when395

we projected the models at global scale, with 1-degree resolution.396

3.6. Applicability to other species397

Our approach can be generalized and applied to rare species and to data-398

limited scenarios that satisfy certain conditions. The main steps and the399

conditions of this generalized process are the following:400

1. Retrieve high quality presence locations by relying on the metadata of401

the records,402

2. Select a number of environmental characteristics correlated to the species403

presence,404
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3. Use MaxEnt to �lter the environmental characteristics that are really405

important with respect to the presence points,406

4. Use expert knowledge or an expert system to detect absence locations.407

Select absence locations as widespread as possible,408

5. Train a Feed Forward Neural Network on presence and absence loca-409

tions and select the best learning topology,410

6. Project the FFNN at global scale, using the a resolution equal to the411

maximum in the environmental features,412

7. Train a MaxEnt model as comparison system.413

4. Results414

In this Section we describe the qualitative and quantitative approaches415

we used to compare the trained models with existing literature data. First,416

we report a �qualitative� comparison on coarse presence locations reported in417

literature for Architeuthis dux and Architeuthis spp. In order to investigate418

the di�erences between the models in detail, we also report the results of a419

quantitative comparison, with respect to a map drawn by an expert (Nesis,420

2003).421

4.1. Qualitative evaluation422

We used Architeuthis dux and Architeuthis spp. records reported by dif-423

ferent authors (Kjennerud, 1958; Aldrich, 1991; Arfelli et al., 1991; Roeleveld424

and Lipinski, 1991; Lordan et al., 1998; Ré et al., 1998; Gonzalez et al., 2000;425
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Cherel, 2003; Kubodera and Mori, 2005; Clarke, 2006; Guerra et al., 2010)426

in a qualitative analysis of the models performance. The list of reference427

areas resulting from this analysis is reported in Table 3. Architeuthis dux428

was identi�ed in six areas, while the other eight locations refer to the generic429

Architeuthis spp. We compared our models on these areas, reporting 1 when430

there was at least one location having non-zero probability and 0 otherwise.431

Since our models produce potential niche estimations, we also added the432

AquaMaps Suitable model to the comparison, which is depicted in Figure 4.433

In this scenario, the performance of the FFNNs is the same, because they434

predict habitat suitability in almost all the areas where A. dux was recorded,435

and in six of the eight areas where only the genus was reported. Di�erences436

between the behaviours of the two FFNNs are in Kerguelen Islands and o�437

the bay of Biscay. It seems that MaxEnt performs slightly better than the438

FFNNs and AquaMaps, because it matches several areas for both A. dux and439

A. spp. On the other hand, in many locations the probabilities indicated by440

the model are low.441

When we set a probability threshold to �lter out values lower than 0.8,442

the maps highlight only the places with high habitat suitability. In this case,443

the results of the assessments by the models are reported in Table 4. We444

notice that the FFNN with the simple topology and AquaMaps Suitable still445

present high performance. In particular, the FFNN predicts species presence446

in Newfoundland, Norway Sea, South America, South-Eastern Africa and in447

the Mediterranean Sea. Conversely, the AquaMaps Suitable model covers448
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the Eastern-North Atlantic, the Kerguelen Islands, the New Zealand coasts449

and the Tasman Sea. Using this probability threshold, the complex topology450

FFNN and the MaxEnt model predict very few suitable areas, especially451

for Architeuthis spp. This means that, overall, the FFNN with the simple452

topology is more stable and reliable. One evident di�erence between the453

FFNNs and the AquaMaps model is that, according to AquaMaps, the species454

is not present in open ocean but only prefers coastal areas. In order to explore455

more such di�erence, we used a quantitative discrepancy analysis.456

4.2. Quantitative evaluation457

In order to quantitatively compare the similarity between the maps, we458

used also a distribution map drawn by an expert, which is depicted in Figure459

5. Nesis (Nesis, 2003) mapped the distribution of Architeuthis dux relying460

on his knowledge about the species: he identi�ed three main areas corre-461

sponding to the species presence, i.e. North Atlantic Ocean, North Paci�c462

Ocean and Southern Ocean. In order to make a numeric comparison, we463

georeferenced this map using QGIS (Quantum GIS, 2011) and obtained a464

polygonal representation of the distribution. We assigned probability 1 to465

the regions indicated in the map and forced a 0 value to absence areas that466

did not contain locations reported in the qualitative analysis, i.e. the Ara-467

bian Sea, the Indian Ocean and the South Atlantic Ocean. The map by Nesis468

does not have high precision, thus we did not expect a full agreement by the469

models, but it gives a common �eld for an overall comparison of the maps.470
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We assumed that the map closest to this was the most reliable.471

In order to quantitatively measure the distance between the maps, we472

used the maps comparison process described in (Coro et al., 2014). This473

process performs a point-to-point comparison between two maps at a given474

resolution and calculates indicators of their similarity. Among the measure-475

ments produced by this process, we concentrated on �accuracy�, i.e. the476

ratio of locations where the probabilities by two models give the same value,477

according to a certain tolerance threshold. We used several tolerance thresh-478

olds to vary the strictness with respect to presence and absence locations. A479

threshold of 0.3, means that two probability values for a certain location are480

considered as having the same value if they di�er less than 0.3. We performed481

this point-to-point comparison at 1-degree resolution.482

Table 5 reports the performance using several thresholds: 0.8, 0.5 and483

0.3. Furthermore, we made three comparisons with the map of Nesis using484

presence-only, absence-only and presence-absence polygons separately. In485

this way we observed that, even if one model can be in good agreement with486

either presences or absences, it can be in lower agreement with respect to487

both. The FFNN with the simple topology has lower agreement with absence488

locations, but overall is the closest to the expert drawn map, according to489

all the probability thresholds.490
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5. Discussion491

The results demonstrate that, according to a qualitative analysis, the492

simple topology FFNN gives the most promising results. In this scenario, the493

AquaMaps Suitable model is indeed the most stable. On the other hand, if494

we move to a quantitative evaluation with respect to an expert-drawn map,495

we better understand the di�erences between AquaMaps and the FFNN.496

AquaMaps presents few points in open ocean, because the model assigns more497

weight to the proximity of land, while the expert's map indicates many of498

these points as suitable locations. This discrepancy is re�ected in the overall499

better similarity between the expert's map and the FFNN map. MaxEnt500

gains good performance too, but it overestimates absence locations, thus the501

overall accuracy is lower than the FFNN one.502

FFNN identi�es suitable habitat for Architeuthis dux in the Northern and503

Eastern Atlantic Ocean (i.e around Newfoundland and in the Norway Sea).504

This agrees with literature studies that indicate Newfoundland as the original505

centre of dispersal for the European population of A. dux (Robson, 1933).506

Our model also agrees with other studies (Roeleveld and Lipinski, 1991;507

Kubodera and Mori, 2005) reporting records in the North Atlantic Ocean508

(Sweeney and Roper, 2001) and predicts habitat suitability in correspondence509

of continental slopes, canyons and abyssal plains.510

The FFNN is the model that better resembles the expert's map, but more511

information is needed to ensure its reliability: there are some discrepancy lo-512

cations, like the South Africa coasts, that need further investigation. The513
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highest discrepancy with respect to the expert's map is in the South-West514

coast of South Africa, in the Indian Ocean and in North Australia. This515

discrepancy could be explained by the fact that the FFNN predicts potential516

habitat, while the expert indicates the known (actual) habitat. On the other517

hand, there are studies supporting the indications by the FFNN map: Archi-518

teuthis specimens were captured in South-West Paci�c Ocean, and around519

Australian coasts, especially o� the West coasts (Jackson, 1991; Sweeney and520

Roper, 2001). As for the Indian Ocean, several studies report the presence of521

Architeuthis near the Reunion Island, the Mauritius Islands and generally in522

the South-Western Indian Ocean (Sweeney and Roper, 2001; Guerra et al.,523

2011; Cherel, 2003; Mikhalev et al., 1981). In some Indian survey works, it524

is reported that Architeuthis species are present o� the west coasts of India525

(Silas, 1968, 1985).526

Some scientists stress out that di�erent species of Architeuthis cannot527

have overlapping populations (Roeleveld and Lipinski, 1991). Although it528

has been suggested that the West coast of South Africa is a �natural� habitat529

for Architeuthis, no certi�ed record of A. dux has been reported yet.530

In summary, even if we cannot demonstrate the e�ectiveness of the FFNN531

model in this case, we can state that there are good hints about its better532

reliability with respect to AquaMaps and MaxEnt. This e�ect is due to the533

abstraction power of this presence/absence model (Coro et al., 2013b), and534

also to the data preparation phase of our approach.535
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6. Conclusions536

In this paper, we have described a method to predict the distribution537

of Architeuthis dux at global scale. We have used a presence-only model to538

identify important environmental features possibly extracted at Architeuthis539

depth ranges indicated by other studies, we have generated absence locations540

using an expert system and we have retrieved presence records from two au-541

thoritative data sources. By means of a presence/absence model based on an542

Arti�cial Neural Network, we have produced a potential habitat distribution543

for A. dux having reasonably good reliability. This distribution is the one544

that is most in agreement with the opinion of an expert. Common traits in545

the expert's map and in the Neural Network map are visible, e.g. there is a546

common strip of absences from Brazil to the coasts of Guinea-Sierra Leone.547

Agreement between the maps in other regions is lower (e.g. in the Indian548

Ocean), but overall the simple topology FFNN is the best model compared549

to the maps produced with AquaMaps Suitable and MaxEnt. As discussed550

in Section 5, the Neural Network map correctly predicts some known species551

habitat and depicts the potential (not the actual) distribution of the species.552

It covers locations where the species was observed, but that were not included553

in the training set, and it neglects other locations where the observations554

probably did not refer strictly to A. dux.555

In summary, maximising the reliability of presence, absence and environ-556

mental parameters gives good estimate of the distribution of A. dux. This557

maximisation determines reliable patterns of occurrence related to environ-558
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mental gradients, as also supported by other studies (Segurado and Araujo,559

2004; Franklin, 2010). A large scale distribution for A. dux can also help560

understanding the role of this species on a broader geographic perspective561

(Lordan et al., 2001).562

The work reported in this paper builds on our previous experience on563

modelling the distribution of the Coelacanth (Coro et al., 2013b). In our564

previous work, we used a model combining a Neural Network with absence565

information produced from AquaMaps. The model was trained using only ob-566

servation records near Madagascar and the same environmental parameters567

used by AquaMaps. The approach was promising, because it predicted habi-568

tat suitability in some locations in Indonesia were a variant of the Coelacanth569

has been really observed. In this paper we have enhanced this model, because570

we (i) use other environmental parameters, (ii) select the most in�uential pa-571

rameters and (iii) suggest a method to compare the results with other maps572

and understand complementarity. Furthermore, we have explained how our573

approach can be generalized and extended to other rare species.574

Generally speaking, the presented work can be useful in species conser-575

vation. In fact, model-based approaches for rare species that count on data576

quality have proved to be valuable when used in population management577

and conservation strategies (Austin, 2007). In particular, many conserva-578

tion projects need a complete description of species' geographical distribu-579

tions, and modelling techniques (e.g. MaxEnt, Arti�cial Neural Networks580

and AquaMaps) have already proved to reliably support this activity (Fice-581
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tola et al., 2007; Ward, 2007; Hijmans and Graham, 2006; Fitzpatrick et al.,582

2008; Thorn et al., 2009; Wollan et al., 2008; Echarri et al., 2009; Cordellier583

and Pfenninger, 2009). The produced maps can be also used in �sheries,584

because producing a potential distribution for a rare species like the giant585

squid can help locating vulnerable marine ecosystems (Auster et al., 2010;586

Stevens et al., 2000; Tittensor et al., 2009; Stevens et al., 2000).587

The D4Science e-Infrastructure enabled the prediction of the distribu-588

tion of A. dux with powerful modelling resources, automated data retrieval589

and results sharing. Furthermore, the experiment is fully reproducible. This590

experiment demonstrates how e-Infrastructures can support species distribu-591

tion modelling of rare species.592
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Parameter
Spatial

Resolution
Unit of
Measure

Provider

Minimum temperature
(in the water column)

1° K World Ocean Atlas

Maximum temperature
(in the water column)

1° K World Ocean Atlas

Range of temperature
(in the water column)

1° K World Ocean Atlas

Salinity
(avg 450-1000 m)

1° - World Ocean Atlas

Ph
(avg in the water column)

0.083° - Bio-Oracle

Mass concentration
of Chlorophyll
(avg 450-1000 m)

0.5° m g/m3 MyOcean

Mole concentration
of Nitrate
(avg 450-1000 m)

0.5° m mol/m3 MyOcean

Dissolved
Oxygen
(avg 450-1000 m)

1° m g/l World Ocean Atlas

Mole concentration
of Phosphate
(avg 450-1000 m)

1° µ mol/l World Ocean Atlas

Mole concentration
of Silicate
(avg 450-1000 m)

1° µ mol/l World Ocean Atlas

Wind stress
(surface level)

0.25° Pa MyOcean

Depth
(max in a 0.14° sqr. cell)

0.14° m Marine Geoscience

Distance from land
(centre of a 0.5° sqr. cell)

0.5° m AquaMaps

Table 2: Complete list of environmental characteristics related to the Architeuthis dux
distribution we used in our features selection phase. The datasets come from several and
heterogeneous sources: MyOcean (Bahurel et al., 2010), World Ocean Atlas (Locarnini
et al., 2006), Bio-Oracle (Tyberghein et al., 2012), Marine Geoscience website (IEDA,
2014) and the AquaMaps website (The AquaMaps Consortium, 2014).
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Accuracy with resp. to Nesis (Nesis, 2003).

Comparison thresholds
0.8 0.5 0.3

Presences and Absences
FFNN (10-2) 42.83% 30.56% 26.81%
MaxEnt 21.68% 18.36% 17.65%
AquaMaps Suitable 22.01% 20.19% 18.83%
FFNN (100-2) 29.85% 20.56% 16.3%

Presences-only
FFNN (10-2) 44.42% 31.42% 27.81%
MaxEnt 4.72% 0.78% 0.19%
AquaMaps Suitable 5.35% 3.95% 2.61%
FFNN (100-2) 17.91% 9.24% 6.42%

Absences-only
FFNN (10-2) 38.27% 29.53% 25.09%
MaxEnt 100% 100% 99.21%
AquaMaps Suitable 99.46% 95.78% 94.35%
FFNN (100-2) 87.77% 75.55% 64.5%

Table 5: Accuracy of a point-to-point maps comparison process at 1-degree resolution
(Coro et al., 2014), using presence and absence locations indicated by Nesis (Nesis, 2003).
The performance is reported also on presence and absence locations separately.
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Figure 1: a. The AquaMaps Native distribution for Architeuthis dux. Darker colours
refer to higher probability locations. b. The presences/absence points resulting from our
process. Darker colours refer to presence locations.
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Figure 2: Distribution of A. dux produced with the MaxEnt model, trained using our
�ltered environmental features.
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Figure 3: Distribution of A. dux produced by two Arti�cial Feed Forward Neural Networks:
(a) with 2 layers, containing 10 neurons in the �rst layer and 2 in the second; (b) with 2
layers, containing 100 neurons in the �rst layer and 2 in the second.
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Figure 4: Distribution of A. dux produced with the AquaMaps Suitable model (Kaschner
et al., 2008).
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Figure 5: Distribution of A. dux reported by Nesis (2003).
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