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Abstract

OWL ontologies are a quite popular way to describe structured knowledge in terms of
classes, relations among classes and class instances.

In this paper, given a target class T of an OWL ontology, with a focus on ontologies
with real- and boolean-valued data properties, we address the problem of learning graded
fuzzy concept inclusion axioms with the aim of describing enough conditions for being an
individual classified as instance of the class T .

To do so, we present PN-OWL that is a two-stage learning algorithm made of a P-stage
and an N-stage. Roughly, in the P-stage the algorithm tries to cover as many positive
examples as possible (increase recall), without compromising too much precision, while in
the N-stage, the algorithm tries to rule out as many false positives, covered by the P-stage,
as possible. PN-OWL then aggregates the fuzzy inclusion axioms learnt at the P-stage
and the N-stage by combining them via aggregation functions to allow for a final decision
whether an individual is instance of T or not.

We also illustrate its effectiveness by means of an experimentation. An interesting feature
is that fuzzy datatypes are built automatically, the learnt fuzzy concept inclusions can be
represented directly into Fuzzy OWL 2 and, thus, any Fuzzy OWL 2 reasoner can then
be used to automatically determine/classify (and to which degree) whether an individual
belongs to the target class T or not.

1 Introduction

OWL 2 ontologies [67] are a popular means to represent structured knowledge and its formal
semantics is based on Description Logics (DLs) [6]. The basic ingredients of DLs are concept
descriptions, inheritance relationships among them and instances of them.

In this work, we focus on the problem of automatically learning fuzzy EL(D) concept inclusion
axioms from OWL 2 ontologies based on the terminology and instances within it. Despite an
important amount of work has been carried about DLs, the application of machine learning
techniques to OWL 2 ontologies is relatively less addressed compared to the Inductive Logic
Programming (ILP) setting (see e.g. [69, 70] for more insights on ILP). We refer the reader
to [54, 71] for an overview and to Section 5.

In this paper, the problem we address is the following: given a target class T of an OWL
ontology, learn rule-like graded fuzzy EL(D) [13, 16, 86] concept inclusion axioms with the aim
of describing sufficient conditions for being an individual classified as instance of the class T .
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Figure 1: Excerpt of the mammographic ontology.

The following example illustrates the problem we are going to address.1

Example 1.1 Consider an ontology [18, 20] that describes the meaningful entities of mammog-
raphy image analysis. An excerpt of this ontology is given in Fig. 1. Now, suppose we have a set
of patients that exhibit a cancer (positive examples) and another set which does not (negative
examples). Now, one may ask about what characterises the patients with cancer (our target
class T ). Then one may learn from the ontology the following fuzzy EL(D) concept inclusion
(expressed in the so-called Fuzzy OWL 2 syntax [13])2

(implies (and (some hasDensity fat-containing) (some hasMargin spiculated)

(some hasShape irregular) (some hasAge hasAge high)) Cancer 0.86) ,

where the fuzzy set hasAge high is defined as

(define-fuzzy-concept hasAge high right- (0,150,60,80))

In words,

“if the density is fat-containing, the margin is spiculated, the shape is irregular and
the age is high then it is cancer, with confidence 0.86”.

In this work, the objective is the same as in e.g. [20, 53, 87] except that now we propose to
rely on an adaptation of the PN-rule [2, 3, 40, 41] algorithm to the (fuzzy) OWL case. Further,
like in [51, 87], we continue to support so-called fuzzy concept descriptions and fuzzy concrete
domains [59, 85, 86], such as the expression (some hasAge hasAge high) (viz. an aged person)

1See also e.g. [20, 51, 53, 87] for an analogous example.
2http://www.umbertostraccia.it/cs/software/fuzzyDL/fuzzyDL.html
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in Example 1.1 above, which is a fuzzy concept, i.e. a concept for which the belonging of an
individual to the class is not necessarily a binary yes/no question, but rather a matter of (truth)
degree in [0, 1].

For instance, in our example, the degree depends on the person’s age: the higher the age the
older is the person, e.g. modelled via a so-called right shoulder function (see Figure 2(d)). Here,
the range of the ‘attribute’ hasAge becomes a so-called fuzzy concrete domain [85, 86].

Let us recap that the basic principle of PN-rule consists of a P-stage in which positive rules
(called P-rules) are learnt to cover as many as possible instances of a target class, and keeping the
non-positive rate at a reasonable level, and an N-stage in which negative rules (called N-rules)
are learnt to remove most of the non-positive examples covered by the P-stage. The two rule sets
are then used to build up a decision method to classify an object being instance of the target
class or not [2, 3, 40, 41]. It is worth noting that what differentiates this method from all others
is its second stage. It learns N-rules that essentially remove the non-positive examples (so-called
false positives) collectively covered by the union of all the P-rules.

The following are the main features of our two stage algorithm, called PN-OWL:

• at the P-stage, it generates a set of fuzzy EL(D) inclusion axioms, the P-rules, that cover as
many as possible instances of a target class T without compromising too much the amount
on non-positives (i.e. , try to increase the so-called recall);

• at the N-stage, it generates a set of fuzzy EL(D) inclusion axioms, the N-rules, that cover
as many as possible of non-positive instances of class T (i.e. , then try to increase the
so-called precision);

• the fuzzy inclusion axioms are then combined (aggregated) into a new fuzzy inclusion axiom
describing sufficient conditions for being an individual classified as an instance of the target
class T (i.e. the combination aims at increasing the overall effectiveness, e.g. the so-called
F1-measure);

• all fuzzy inclusion axioms may possibly include fuzzy concepts and fuzzy concrete domains,
where each axiom has a leveraging weight (specifically, called confidence or precision);

• all generated fuzzy concept inclusion axioms can be directly encoded as Fuzzy OWL 2
axioms [12, 13]. Therefore, a Fuzzy OWL 2 reasoner, such as fuzzyDL [11, 15], can then
be used to automatically determine (and to which degree) whether an individual belongs
to the target class T .

We will illustrate the effectiveness of PN-OWL by means of an experimentation that shows that
the effectiveness of the combined approach increases w.r.t. a baseline based on the P-stage only.

In the following, we proceed as follows: in Section 2, for the sake of completeness, we recap
the salient notions we will rely on this paper. Then, in Section 3 we will present our algorithm
PN-OWL, which is evaluated in Section 4. In Section 5 we compare our work with closely
related work appeared so far. Section 6 concludes and points to some topics of further research.

2 Background

We introduce the main notions related to (Mathematical) Fuzzy Logics and Fuzzy Description
Logics we will use in this work (see also [16, 86]).
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Figure 2: (a) Trapezoidal function trz (a, b, c, d), (b) triangular function tri(a, b, c), (c) left shoul-
der function ls(a, b), and (d) right shoulder function rs(a, b).

Figure 3: Uniform fuzzy sets over salaries: trapezoidal (left) or triangular (right).

Mathematical Fuzzy Logic. Fuzzy Logic is the logic of fuzzy sets [93]. A fuzzy set A over
a countable crisp set X is a function A : X → [0, 1], called fuzzy membership function of A. A
crisp set A is characterised by a membership function A : X → {0, 1} instead. Often, fuzzy
set operations conform to (A ∩ B)(x) = min(A(x), B(x)), (A ∪ B)(x) = max(A(x), B(x)) and
Ā(x) = 1 − A(x) (Ā is the set complement of A), the cardinality of a fuzzy set is defined as

|A| = ∑
x∈X A(x), while the inclusion degree between A and B is defined as deg(A,B) = |A∩B|

|A| .

The trapezoidal, the triangular, the left-shoulder function, and the right-shoulder function
are frequently used to specify membership functions of fuzzy sets (see Figure 2).

One easy and typically satisfactory method to define the membership functions is to uniformly
partition the range of, e.g. person’s age values (bounded by a minimum and maximum value),
into 3, 5 or 7 fuzzy sets using triangular (or trapezoidal) functions (see Figure 3). Another
popular approach may consist in using the so-called c-means fuzzy clustering algorithm (see, e.g.
[8]) with 3,5 or 7 clusters, where the fuzzy membership functions are triangular functions built
around the centroids of the clusters (see also [38]).

In Mathematical Fuzzy Logic [37], the convention prescribing that a formula φ is either true
or false (w.r.t. an interpretation I) is changed and is a matter of degree measured on an ordered
scale that is no longer {0, 1}, but typically [0, 1]. This degree is called degree of truth of the
formula φ in the interpretation I. A fuzzy formula has the form 〈φ, α〉, where α∈ (0, 1] and φ
is a First-Order Logic (FOL) formula, encoding that the degree of truth of φ is greater than or
equal to α. From a semantics point of view, a fuzzy interpretation I maps each atomic formula
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Table 1: Truth combination functions for fuzzy logics.

�Lukasiewicz Gödel Product
α1 ⊗ α2 max(α1 + α2 − 1, 0) min(α1, α2) α1 · α2

α1 ⊕ α2 min(α1 + α2, 1) max(α1, α2) α1 + α2 − α1 · α2

α1 ⇒ α2 min(1− α1 + α2, 1)

{
1 if α1 ≤ α2

α2 otherwise

{
1 if α1 ≤ α2

α2/α1 otherwise

�α 1− α

{
1 if α = 0

0 otherwise

{
1 if α = 0

0 otherwise

into [0, 1] and is then extended inductively to all FOL formulae as follows:

I(φ ∧ ψ) = I(φ)⊗ I(ψ) , I(φ ∨ ψ) = I(φ)⊕ I(ψ)
I(φ→ ψ) = I(φ) ⇒ I(ψ) , I(¬φ) = 
I(φ)

I(∃x.φ(x)) = sup
y∈ΔI

I(φ(y)) , I(∀x.φ(x)) = inf
y∈ΔI

I(φ(y)) ,

where ΔI is the (non-empty) domain of I, and ⊗, ⊕, ⇒, and 
 are so-called t-norms, t-
conorms, implication functions, and negation functions, respectively, which extend the Boolean
conjunction, disjunction, implication, and negation, respectively, to the fuzzy case.

One usually distinguishes three different logics, namely �Lukasiewicz, Gödel, and Product
logics [37],3 whose truth combination functions are reported in Table 1.

An r-implication is an implication function obtained as the residuum of a continuous t-norm
⊗, i.e. α1 ⇒ α2 = sup{α3 | α1 ⊗ α3 ≤ α2}. Note also, that given an r-implication ⇒r, we may
also define its related negation 
rα by means of α⇒r 0 for every α ∈ [0, 1].

The notions of satisfiability and logical consequence are defined in the standard way, where
a fuzzy interpretation I satisfies a fuzzy formula 〈φ, α〉, or I is a model of 〈φ, α〉, denoted as
I |= 〈φ, α〉, iff I(φ) ≥ α. Notably, from 〈φ, α1〉 and 〈φ→ ψ, α2〉 one may conclude (if → is
interpreted as an r-implication) 〈ψ, α1 ⊗ α2〉 (this inference is called fuzzy modus ponens).

Fuzzy Description Logics basics. We recap here the fuzzy DL ALC@(D), which extends
the well-known fuzzy DL ALC(D) [85] with the aggregated concept construct [14] (indicated with
the symbol @). ALC@(D) is expressive enough to capture the main ingredients of fuzzy DLs we
are going to consider here.

We start with the notion of fuzzy concrete domain, that is a tupleD= 〈ΔD, ·D〉 with datatype
domain ΔD and a mapping ·D that assigns to each data value an element of ΔD, and to every
1-ary datatype predicate d a 1-ary fuzzy relation over ΔD. Therefore, ·D maps indeed each
datatype predicate into a function from ΔD to [0, 1]. In the domain of numbers, typical datatypes
predicates d are characterized by the well known membership functions (see also Fig. 2)

d → ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d)
| ≥v | ≤v | =v ,

3Notably, a theorem states that any other continuous t-norm can be obtained as a combination of them.

5



where additionally ≥v (resp. ≤v and =v) corresponds to the crisp set of data values that are no
less than (resp. no greater than and equal to) the value v.

Aggregation Operators (AOs) are mathematical functions that are used to combine different
pieces of information. There exist large number of different AOs that differ on the assumptions
on the data (data types) and about the type of information that we can incorporate in the
model [90]. There is no standard definition of AO. Usually, given a domain D (such as the reals),
an AO of dimension n is a mapping @ : Dn → D. For us, D = [0, 1]. Thus, an AO aggregates
n values of n different criteria. In our scenario, such criteria will be represented by using fuzzy
concepts from a fuzzy ontology and we assume to have a finite family @1, . . . ,@l of AOs within
our language.

Now, consider pairwise disjoint alphabets I,A and R, where I is the set of individuals, A is
the set of concept names (also called atomic concepts or class names) and R is the set of role
names. Each role is either an object property or a datatype property. The set of concepts are built
from concept names A using connectives and quantification constructs over object properties R
and datatype properties S, as described by the following syntactic rule (ni ≥ 1):

C → � | ⊥ | A | C1 � C2 | C1 � C2 | ¬C | C1 → C2 |
∃R.C | ∀R.C | ∃S.d | ∀S.d |
@i(C1, . . . , Cni) .

An ABox A consists of a finite set of assertion axioms. An assertion axiom is an expression
of the form 〈a:C,α〉 (called concept assertion, a is an instance of concept C to degree greater
than or equal to α) or of the form 〈(a1, a2):R,α〉 (called role assertion, (a1, a2) is an instance of
object property R to degree greater than or equal to α), where a, a1, a2 are individual names,
C is a concept, R is an object property and α ∈ (0, 1] is a truth value. A Terminological Box
or TBox T is a finite set of General Concept Inclusion (GCI) axioms, where a fuzzy GCI is of
the form 〈C1 � C2, α〉 (C1 is a sub-concept of C2 to degree greater than or equal to α), where
Ci is a concept and α ∈ (0, 1]. We may omit the truth degree α of an axiom; in this case α = 1
is assumed and we call the axiom crisp. We also write C1 = C2 as a macro for the two GCIs
C1 � C2 and C2 � C1. We may also call a fuzzy GCI of the form 〈C � A,α〉, where A is a
concept name, a rule and C its body. A Knowledge Base (KB) is a pair K = 〈T ,A〉, where T is
a TBox and A is an ABox. With IK we denote the set of individuals occurring in K.

Concerning the semantics, let us fix a fuzzy logic, a fuzzy concrete domain D= 〈ΔD, ·D〉 and
aggregation operators @i : [0, 1]

ni → [0, 1]. Now, unlike classical DLs in which an interpretation
I maps e.g. a concept C into a set of individuals CI ⊆ ΔI , i.e. I maps C into a function
CI : ΔI → {0, 1} (either an individual belongs to the extension of C or does not belong to it),
in fuzzy DLs, I maps C into a function CI : ΔI → [0, 1] and, thus, an individual belongs to the
extension of C to some degree in [0, 1], i.e. CI is a fuzzy set. Specifically, a fuzzy interpretation
is a pair I = (ΔI , ·I) consisting of a nonempty (crisp) set ΔI (the domain) and of a fuzzy
interpretation function ·I that assigns: (i) to each atomic concept A a function AI : ΔI → [0, 1];
(ii) to each object property R a function RI : ΔI ×ΔI → [0, 1]; (iii) to each datatype property
S a function SI : ΔI × ΔD → [0, 1]; (iv) to each individual a an element aI ∈ ΔI such that
aI �= bI if a �= b (the so-called Unique Name Assumption); and (v) to each data value v an
element vI ∈ ΔD. Now, a fuzzy interpretation function is extended to concepts as specified
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below (where x ∈ ΔI):

�I(x) = 1 , ⊥I(x) = 0 , (C �D)
I
(x) = CI(x)⊗DI(x)

(C �D)
I
(x) = CI(x)⊕DI(x) , (¬C)I(x) = 
CI(x)

(C → D)
I
(x) = CI(x) ⇒ DI(x) , (∀R.C)I(x) = inf

y∈ΔI
{RI(x, y) ⇒ CI(y)}

(∃R.C)I(x) = sup
y∈ΔI

{RI(x, y)⊗ CI(y)} , (∀S.d)I(x) = inf
y∈ΔD

{SI(x, y) ⇒ dD(y)}

(∃S.d)I(x) = sup
y∈ΔD

{SI(x, y)⊗ dD(y)} ,

(@i(C1, . . . , Cni
))

I
(x) = @i(C1

I(x), . . . , Cni

I(x)) .

The satisfiability of axioms is then defined by the following conditions: (i) I satisfies an axiom
〈a:C,α〉 if CI(aI) ≥ α; (ii) I satisfies an axiom 〈(a, b):R,α〉 if RI(aI , bI) ≥ α; (iii) I satisfies an

axiom 〈C � D,α〉 if (C � D)
I ≥ α with4 (C � D)

I
= infx∈ΔI{CI(x) ⇒ DI(x)}. I is a model

of K = 〈A, T 〉 iff I satisfies each axiom in K. If K has a model we say that K is satisfiable (or
consistent). We say that K entails axiom τ , denoted K |= τ , if any model of K satisfies τ . The
best entailment degree of τ of the form C � D, a:C or (a, b):R, denoted bed(K, τ), is defined as

bed(K, τ) = sup{α | K |= 〈τ, α〉} .

Remark 1 Please note that bed(K, a:C) = 1 (i.e. K |= a:C) implies that bed(K, a:¬C) = 0
holds, and similarly, bed(K, a:¬C) = 1 (i.e. K |= a:¬C) implies that bed(K, a:C) = 0 holds.
However, in both cases the other way around does not hold. Furthermore, we may well have that
both bed(K, a:C) = α1 > 0 and bed(K, a:¬C) = α2 > 0 hold.

Now, consider concept C, a rule C � A, a KB K and a set of individuals I. Then the cardinality
of C w.r.t. K and I, denoted |C|IK, is defined as

|C|IK =
∑
a∈I

bed(K, a:C) . (1)

The crisp cardinality (denoted �C�IK) is defined similarly by replacing in Eq. 1 the term bed(K, a:C)
with �bed(K, a:C)�.

Eventually, we say that the application of rule C � A to individual a w.r.t. K is bed(K, C:a)
and that rule C � A applies to individual a w.r.t. K if bed(K, C:a) > 0.

3 PN-OWL

At first, we introduce our learning problem.

3.1 The Learning Problem

In general terms, the learning problem we are going to address is stated as follows. Consider

1. a satisfiable crisp KB K and its individuals IK;

2. a target concept name T ;

4However, note that under standard logic � is interpreted as ⇒z and not as ⇒kd.
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3. an associated classification function fT : IK → {−1, 0, 1}, where for each a ∈ IK, the values
(labels) correspond to

fT (a) =

⎧⎪⎨
⎪⎩

1 a is a positive example w.r.t. T

−1 a is a negative example w.r.t. T

0 a is an unlabelled example w.r.t. T

4. the partitioning of the examples into

E+ = {(a, 1) | a ∈ IK, fT (a) = 1} � the positive examples

E− = {(a,−1) | a ∈ IK, fT (a) = −1} � the negative examples

Eu = {(a, 0) | a ∈ IK, fT (a) = 0} � the unlabelled examples

where E+ �= ∅ is assumed. We define E = E+∪E− ∪Eu as the set of all examples, and with
E+ = E \ E+ we denote the set of non-positive examples.

5. the set of individuals IS = {a | (a, l) ∈ S}, where S ⊆ E is a set of examples. Moreover, we
define

IE+ = {a | (a, 1) ∈ E+} � the positive individuals

IE− = {a | (a,−1) | a ∈ E−} � the negative individuals

IEu = {a | (a, 0) | a ∈ Eu} � the unlabelled individuals

IE+ = IK \ IE+ � the non-positive individuals

6. a hypothesis space of classifiers H = {h : IK → [0, 1]};

7. a training set Etrain ⊂ E of individual-label pairs, with Etrain ∩ E+ �= ∅;

8. a test set Etest = E \ Etrain.

We assume that the only axioms involving T in K are either of the form a:T or a:¬T . We write
E(a) = 1 if a is a positive example (i.e. a ∈ IE+), E(a) = −1 if a is a negative example (i.e.
a ∈ IE−) and E(a) = 0 otherwise.

The general goal is to learn a classifier function h̄ ∈ H that is the result of Empirical Risk
Minimisation (ERM) on Etrain, i.e.

h̄ = argmin
h∈H

R(h, Etrain) =
1

|Etrain|
∑

a∈IEtrain

L(h(a), Etrain(a)) ,

where L is a loss function such that L(l̂, l) measures how different the prediction l̂ of a hypothesis
is from the true label l and R(h, Etrain) is the risk associated with hypothesis h over Etrain, defined
as the expectation of the loss function over the training set Etrain.

The effectiveness of the learnt classifier h̄ is then assessed by determining R(h̄, Etest) on the
test set Etest.

8



In our learning setting, a hypothesis h ∈ H is a set of GCIs of the form

〈C1 � P1, α1〉 , . . . , 〈Ch � Ph, αh〉 (2)

@+(P1, . . . , Ph) � P (3)

〈D1 � N1, β1〉 , . . . , 〈Dk � Nk, βk〉 (4)

@−(N1, . . . , Nk) � N (5)

@(P,N) � T (6)

where each Pi, P,Nj , N are new atomic concept names not occurring in K, and αi, βj are the
confidence degree of the relative GCIs, @+,@−,@ are aggregation operators, and each Ci, Dj is
a fuzzy EL(D) concept expression defined as (v is a boolean value)

C −→ � | A | ∃r.C | ∃s.d | C1 � C2

d → ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d) | =v .

Informally, (i) each Pi ‘rule’ will tell us why an individual should be positive; (ii) then we
aggregate the various degrees of positiveness via the aggregator operator @+; (iii) on the other
hand, each Ni ‘rule’ will tell us why an individual should be not positive; (iv) then we aggregate
the various degrees of non-positiveness via the aggregator operator @−. Typically, both @+ and
@− are the max operator; finally, (v) we use the last ‘rule’ to establish whether and individual is
an instance of T or not (viz. is positive or not positive) by combining the degree of being positive
or not via the @ operator. A simple choice for @ is the following and will be the one we will
adopt:

(�) if the degree p of being positive is greater than the degree of being non-positive
n then p, else 0.

Now, for a ∈ IK, the classification prediction value h(a) of a , T and K is defined as

h(a) = bed(K ∪ h, a:T ) . (7)

Remark 2 Note that, as stated above, essentially a hypothesis is a sufficient condition for being
an individual instance of a target concept to some degree. If h(a) = 0 then we say that a is not
a positive instance of T , while if h(a) > 0 then a is a positive instance of T to degree h(a). As a
consequence, we will distinguish between positive and non-positive examples of T only. That is,
negative examples and unlabelled examples are indistinguishable.

Let us note that even if K is a crisp KB, the possible occurrence of fuzzy concrete domains in
expressions of the form ∃S.d in a hypothesis may imply that not necessarily h(a) ∈ {0, 1}. A
similar effect may also be induced by the aggregation operators.

Remark 3 Clearly, the set of hypotheses by this syntax is potentially infinite due, e.g. to
conjunction and the nesting of existential restrictions in the concept expressions. This set is made
finite by imposing further restrictions on the generation process such as the maximal number of
conjuncts and the maximal depth of existential nestings allowed.

We conclude by saying that a hypothesis h covers (resp. θ-covers, for θ ∈ (0, 1]) an individual
a ∈ IK iff h(a) > 0 (resp. h(a) ≥ θ), and indicate with Cov(h) (resp. Covθ(h)) the set of covered
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(resp. θ-covered) individuals. Moreover, for a GCI C � T , the confidence degree (also called
inclusion degree) of C � T w.r.t. K and a set of positive individuals P , denoted cf(C � T,K, P ),
is defined as

cf(C � T,K, P ) = |C|PK
|C|IKK

, (8)

which is the proportion of positive individuals covered by C w.r.t. the individuals covered by
C. Clearly, cf(C � T,K, P ) ∈ [0, 1] and the closer the confidence is to 1 the ‘more precise’ is
C � T , in the sense the less it covers non-positive individuals. In addition, the support of C � T
w.r.t. K and a set of individuals I, denoted supp(C � T,K, I), is defined as

supp(C � T,K, I) = |C|IK
|I| (9)

3.2 Conceptual Illustration of the Learning Method.

Before presenting our learning algorithm, we will first conceptually illustrate its principle by
relying on Figure 4.

At the beginning, let us consider the sets of all individuals, the positive, the negative and the
unlabelled individuals, respectively the sets IK, IE+ , IE− and IEu , as depicted in Figure 4 (a).

At the first stage, the P-stage, we consider the entire training set E and try to maximise the
covering of positive individuals, while minimising the covering of negative individuals. Specif-
ically, let us assume that we have learnt a hypothesis hP (a set of rules) with a covering
CovθP (hP ), as depicted in Figure 4 (b). Here, the value θP acts as a confidence threshold
for the learnt rules in hypothesis hP . Note that CovθP (hP ) has to contain positive individuals,
i.e. CovθP (hP )∩ IE+ �= ∅, but may also contain negative and unlabelled individuals. We call the
individuals in TP = CovθP (hP ) ∩ IE+ true positives, while call those in FP = CovθP (hP ) \ IE+

false positives, i.e. a false positive is an individual that is erroneously classified by hP as an
instance of the target class T , while in fact it is not (it might be an unlabelled or a negative
example). This phase ends with a set of rules of the form (2)− (3).

Now, in the next stage, the N-stage, with the aim to increase the effectiveness of the classifiers,
we would like to remove as many as possible false positives in FP , while avoiding removing, if
possible, any of the true positives in TP . To do so, we set-up a new learning problem in which
the new target class is FP , where the negatives individuals are those in TP and the positives
are those in FP . Of course, the N-stage applies only if FP �= ∅. The setup of the N-stage is
depicted in Figure 4 (c). Specifically, let us assume that we have learnt now a hypothesis hN with
a covering CovθN (hN ), as depicted in Figure 4 (d). Note that we may have another parameter
θN acting as a confidence threshold for the learnt rules in hypothesis hN . This phase ends with
a set of rules of the form (4)− (5).

So, in general, at the end of the two stages, the situation may be as depicted in Figure 4 (e).
However, in practice one may want likely to impose that none of the initial positive individuals
are covered by hN and, thus, none of the true positives in TP will be removed by hN .

Eventually, we aggregate the P-rules and N-rules via (�). This latter step ends with the rule
of the form (6). At the end of this two-stage process, we aim at to have captured most of the
positive individuals of the target class, with few of the negative and unlabelled individuals (false
positives).

3.3 The Learning Algorithm PN-OWL

We now present our two-stage learning algorithm, called PN-OWL, that we have conceptually
illustrated in the section before. Essentially, at the P-stage (resp. N-stage) our algorithm invokes
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(a) (b)

(c) (d)

(e)

Figure 4: How PN-OWL works. (a) Original training set; (b) Coverage CovθP (hP ) w.r.t. learnt
hypothesis hP after the P-stage; (c) Starting dataset for N-stage: the new target class are the
false positives FP of the P-stage, while the negative individuals are the initial positives; (d)
Coverage CovθN (hN ) w.r.t. learnt hypothesis hN after the N-stage; (e) Final scenario.

a learner, called stage learner, that generates a set hP (resp. hN ) of fuzzy EL(D) candidate GCIs
that has, respectively, the form

hP = {〈C1 � T, α1〉, . . . , 〈Ch � T, αh〉} (10)

hN = {〈D1 � FP, β1〉, . . . , 〈Dk � FP, βk〉} (11)

called stage hypothesis. In the following, we indicate with pi the fuzzy GCI 〈Ci � T, αi〉, while
denote with nj the fuzzy GCI 〈Dj � FP, βj〉. The rules in hP (resp. hN ) will then be aggregated
using the max aggregation operator.

The stage hypotheses are then combined into a final hypothesis for the target class T using
the aggregation operator (�).

As stage learner we will use a modified version of the fuzzy Foil-DL [50, 51, 53] learner that
will be described in Section 3.4.

Then, the PN-OWL algorithm is shown in Algorithm 1. Note that the P-stage are the steps

11



1-5, while the N-stage are the steps 15-19 in which at step 19 we invoke the stage learner trying
to cover as many as false positives as possible. The remaining steps deal with the construction
of the final classifier ensemble as per Eqs. (2)-(6).

Eventually, for an individual a ∈ IK, the classification prediction value of PN-OWL for
individual a is h(a), where h is the returned hypothesis of PN-OWL. Moreover, we say that
PN-OWL classifies a as instance of target class T if h(a) > 0.

Algorithm 1 PN-OWL

Input: KB K, training set E , target concept name T , confidence thresholds θP , θN ∈ [0, 1],
non-positive coverage percentages ηP , ηN ∈ [0, 1]

Output: Hypothesis h as by Eqs. (2)-(6).
1: // P-stage
2: Pos← IE+ ;
3: Neg ← IE− ;
4: U ← IK \ (Pos ∪Neg);
5: hP ← FuzzyStageLearner(K, T , Pos, Neg, U , θP , ηP ); � P-Stage hypothesis hP , i.e.

set of axioms 〈Ci � T, αi〉
6: if hP = ∅ then return ∅; � Nothing learnt, exit

7: Cov ← CovθP (hP ); � P-stage Coverage
8: TP ← CovθP (hP ) ∩ IE+ ; � True positives
9: FP ← CovθP (hP ) \ IE+ ; � False positives

10: // Start building classifier h
11: h← {〈Ci � Pi, αi〉, | 〈Ci � T, αi〉 ∈ hP , Pi new }; � As per Eq. 2
12: if FP = ∅ then � No N-stage, exit with aggregated hP
13: h← h ∪ {@+(P1, . . . , Ph) � T}; � No need of new P in Eq. 3
14: return h;

15: // N-stage
16: Pos← FP ;
17: Neg ← IE+ ;
18: U ← IK \ (Pos ∪Neg);
19: hN ← FuzzyStageLearner(K, FP , Pos, Neg, U , θN , ηN ); � N-Stage hypothesis hN , i.e.

set of axioms 〈Dj � FP, βj〉
20: // Build final classifier ensemble h
21: if hN = ∅ then � No learning in N-stage, return aggregated hP
22: h← h ∪ {@+(P1, . . . , Ph) � T}; � No need of new P in Eq. 3
23: return h;

24: h← h ∪ {@+(P1, . . . , Ph) � P | P new }; � As per Eq. 3
25: h← h ∪ {〈Dj � Nj , βj〉, | 〈Dj � FP, βj〉 ∈ hN , Nj new }; � As per Eq. 4
26: h← h ∪ {@−(N1, . . . , Nk) � N | N new }; � As per Eq. 5
27: h← h ∪ {@(P,N) � T}; � As per Eq. 6
28: return h;

3.4 The Stage Learner pnFoil-DL
As stage learner we will use fuzzy Foil-DL [20, 50, 51, 53], which however will be modified to
adapt to our specific setting (see Algorithm 2), which we call pnFoil-DL. That is, the procedure
invocations FuzzyStageLearner in lines 5 and 19 of the PN-OWL algorithm are indeed calls
to pnFoil-DL.
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Essentially, pnFoil-DL carries on inducing GCIs until as many as positive examples are
covered or nothing new can be learnt. When an axiom is induced (see step 4 in Algorithm 2),
the positive examples still to be covered are updated (steps 10 and 11).

In order to induce an axiom (step 4), Learn-One-Axiom is invoked (see Algorithm 3), which
in general terms operates as follows:

1. start from concept �;

2. apply a refinement operator to find more specific fuzzy EL(D) concept description candi-
dates;

3. exploit a scoring function to choose the best candidate;

4. re-apply the refinement operator until a good candidate is found;

5. iterate the whole procedure until a satisfactory coverage of the positive examples is achieved.

Algorithm 2 pnFoil-DL
Input: KB K, target concept name T , a set P (resp. N and U) of positive (resp. negative

and unlabelled) examples, confidence threshold θ ∈ [0, 1], non-positive coverage percentage
η ∈ [0, 1]

Output: A hypothesis, i.e. a set h = {〈Ci � T, δi〉|1 ≤ i ≤ k} of fuzzy EL(D) GCIs
1: h← ∅, Pos← P, φ← � � T ;
2: //Loop until no improvement
3: while (Pos �= ∅) and (φ �= null) do
4: φ← Learn-One-Axiom(K, T, Pos, P,N,U, θ, η); � Learn one fuzzy EL(D) GCI of the

form C � T
5: if φ ∈ h then � axiom already learnt
6: φ← null;

7: if φ �= null then
8: δ ← cf(φ,K, P ); � Compute confidence of φ
9: h← h ∪ {〈φ, δ〉}; � Update hypothesis

10: Posφ ← Pos ∩ Cov(〈φ, δ〉); � Positives covered by 〈φ, δ〉)
11: Pos← Pos \ Posφ; � Update positives still to be covered

12: return h;

We now detail the steps of Learn-One-Axiom (Algorithm 3).

Computing fuzzy datatypes. For a numerical datatype s, we consider equal width triangular
partitions of values Vs = {v | K |= a:∃s. =v} into a finite number of fuzzy sets (3, 5 or 7 sets),
which is identical to [50, 53, 87] (see, e.g. Fig. 3). We additionally also consider the use of the
c-means fuzzy clustering algorithm over Vs, where the fuzzy membership function is a triangular
function build around the centroid of a cluster [20, 50, 53, 87].

The refinement operator. The refinement operator we employ is essentially the same as
in [20, 50, 51, 57, 87]. Specifically, it takes as input a concept C and generates new, more specific
concept description candidates D (i.e. , K |= D � C). For the sake of completeness, we recap
the refinement operator here. Let K be a knowledge base, AK be the set of all atomic concepts
in K, RK the set of all object properties in K, SK the set of all numeric datatype properties in
K, BK the set of all boolean datatype properties in K and D a set of (fuzzy) datatypes. The
refinement operator ρ is shown in Table 2.
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Table 2: Downward Refinement Operator.

ρ(C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AK ∪ {∃r.� | r ∈ RK} ∪ {∃s.d | s ∈ SK, d ∈ D}∪
{∃s. =b, | s ∈ BK, b ∈ {true, false}} if C = �

{A′ | A′ ∈ AK,K |= A′ � A}∪
{A �A′′ | A′′ ∈ ρ(�)} if C = A

{∃r.D′ | D′ ∈ ρ(D)} ∪ {(∃r.D) �D′′ | D′′ ∈ ρ(�)} if C = ∃r.D, r ∈ RK
{(∃s.d) �D | D ∈ ρ(�)} if C = ∃s.d, s ∈ SK, d ∈ D
{(∃s. =b) �D | D ∈ ρ(�)} if C = ∃s. =b, s ∈ BK,

b ∈ {true, false}
{C1 � ... � C′

i � ... � Cn | i = 1, ..., n, C′
i ∈ ρ(Ci)} if C = C1 � ... � Cn

The scoring function. The scoring function we use to assign a score to each candidate hy-
pothesis is essentially a gain function, like to the one employed in [20, 50, 51, 57, 87], and it
implements an information-theoretic criterion for selecting the best candidate at each refinement
step. Specifically, given a fuzzy EL(D) GCI φ of the form C � T chosen at the previous step, a
KB K, a set of positive examples Pos still to be covered and a candidate fuzzy EL(D) GCI φ′

of the form C ′ � T , then

gain(φ′, φ,K, Pos) = p ∗ (log2(cf(φ′,K, Pos))− log2(cf(φ,K, Pos))) , (12)

where p = |C ′ �C|Pos
K is the fuzzy cardinality of positive examples in Pos covered by φ that are

still covered by φ′.
Please note that in Eq. 12, the confidence degrees are calculated w.r.t. the positive examples

still to be covered (Pos). In this way, Learn-One-Axiom is somewhat guided towards positives
not yet covered so far by pnFoil-DL. Note also that the gain is positive if the confidence degree
increases.

Stop criterion. Learn-One-Axiom stops when the confidence degree is above a given thresh-
old θ ∈ [0, 1] and the non-positive coverage percentage is below η ∈ [0, 1], or no GCI can be
learnt anymore.

The Learn-One-Axiom algorithm. The Learn-One-Axiom algorithm just like defined in
Algorithm 3: steps 1 - 3 are simple initialisation steps. Please note here that NP are the non-
positives in accordance with Remark 2, which states that we will distinguish among positives
and non-positives only (cf. also step. 18, where the non-positive coverage percentage is used).
Steps 5-21 are the main loop from which we may exit in case the stopping criterion is satisfied,
in step 8 we determine all new refinements, which then are scored in steps 10-15 in order to
determine the one with the best gain. At the end of the algorithm, once we exit from the main
loop, the best found GCI is returned (step 22).

Remark 4 pnFoil-DL also allows to use a backtracking mechanism (step 19), which, for ease of
presentation, we omit to include. The mechanism is the same as for the pFoil-DL-learnOneAxiom
described in [87, Algorithm 3]. Essentially, a stack of top-k refinements is maintained, ranked in
decreasing order of the confidence degree from which we pop the next best refinement (if the stack
is not empty) in case no improvement has occurred. Cbest becomes the popped-up refinement.

14



Algorithm 3 Learn-One-Axiom

Input: KB K, target concept name T , set Pos of positive examples still to be covered, training
sets P,N,U of positive, negative and unlabelled examples, respectively, confidence threshold
θ ∈ [0, 1], non-positive coverage percentage η ∈ [0, 1]

Output: A fuzzy EL(D) GCI of the form C � T
1: NP ← N ∪ U ; � Note: NP are the non-positives
2: C ← �; � Start from �
3: φ← C � T ;
4: //Loop until no improvement
5: while C �= null do
6: Cbest ← C;
7: maxgain← 0;
8: C ← ρ(C); � Compute all refinements of C
9: // Compute the score of the refinements and select the best one

10: for all C ′ ∈ C do
11: φ′ ← C ′ � T ;
12: gain← gain(φ′, φ,K, Pos);
13: if (gain > maxgain) then
14: maxgain← gain;
15: Cbest ← C ′;
16: if Cbest = C then � No improvement
17: //Stop if confidence degree above threshold or non-positive coverage below threshold
18: if (cf(Cbest � T,K, P ) ≥ θ) and supp(Cbest � T,K, NP ) ≤ η) then break;

19: // Manage backtrack here, if foreseen

20: C ← Cbest;
21: φ← C � T ;

22: return φ;

4 Evaluation

We have implemented the algorithm within the FuzzyDL-Learner5 system and have evaluated it
over a set of (crisp) OWL ontologies.

Datasets. Several OWL ontologies from different domains have been selected as illustrated in
Table 3. In it, we report the DL the ontology refers to, the number of concept/class names,
object properties, datatype properties and individuals in the ontology. For each ontology K
we indicate also the number |E+| of positive examples. All others are non-positive and we set
E− = E+ = IK\IE+ . The ontologies Iris, Wine, Wine Quality and Yeast are built from the well-
known UC Irvine Machine Learning Repository (UCIMLR) [27] and have been transformed from
the CSV format, provided by that repository, into OWL ontologies according to the procedure
described in [20]. In the Wine Quality ontology, the quality attribute has been removed as the
positive examples (the GoodRedWines) are those having “quality” greater than or equal to 7.

All other ontologies, except malware, belong to the well-known SML-Bench dataset [91].6

The malware ontology has been described in [88, 89].
For completeness, in Appendix A, a succinct description of what the ontologies are about is

provided.

5Data and implementation http://www.umbertostraccia.it/cs/software/FuzzyDL-Learner/.
6See also, https://github.com/SmartDataAnalytics/SML-Bench
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Table 3: Facts about the ontologies of the evaluation.

ontology DL class. obj. prop. data. prop. ind. target T pos

NTN SHOIN (D) 51 29 9 723 ToLearn Woman 46
Lymphography ALC 50 0 0 148 ToLearn 81
Mammographic ALC(D) 20 3 2 975 ToLearn 445
Malware ALH(D) 192 6 10 5669 malware 500

Iris ALEHF(D) 4 0 5 150
Iris-versicolor
Iris-virginica

50
50

Wine ALEHF(D) 3 0 13 178
1
2
3

59
71
48

Wine Quality ALEHF(D) 7 0 11 6497 GoodRedWine 217
Yeast ALEHF(D) 11 0 8 1462 CYT 444

Remark 5 While evaluating ontology-based learning algorithms is untypical on numerical datatype
properties,7 we believe it is interesting to do so as an important ingredient of our algorithm is
the use of fuzzy concrete datatype properties to improve the human understandability of the clas-
sification decision process.

Remark 6 We leave it for future work to look at e.g. methods to learn from the training data
a threshold 0 ≤ τp ≤ 1 such that h predicts individual a to be a positive example if h(a) > τp.
However, in this paper, we will always have τp = 0.

More generally, unlike we do now, if we would like to distinguish the negative examples from
the unlabelled ones, we may well learn a classifier h− for negative examples and then define
a decision method that predicts an individual a to be a positive (resp. negative) example based
on the prediction value h(a) (resp. h−(a)) of a being a positive (resp. negative) example. That
is, depending on the pair 〈h(a), h−(a)〉, one may then define e decision criteria whether a is
a positive or negative example, or just leave the prediction as unknown if there is not enough
evidence of being one of the two.

Measures. We considered the following effectiveness measures (see also [87, 20]), which, for the
sake of completeness, we recap here. Specifically, consider a learnt classifier h and let us assume
to have added it to the KB K. In our setting, we always have the condition that if the classifier
prediction value h(a) of an individual a is non-zero then the learner classifies a as an instance of
T , i.e. h predicts a to be a positive example iff h(a) > 0.

In line with what we have said above, as all individuals are either positive or non-positive, we
will consider the following measures, all of which are based on crisp cardinality (see also Eq. 1).

True Positives: denoted TP , is defined as the number of instances of T that are positive

TP = �T �IE+

K (13)

False Positives: denoted FP , is defined as the number of instances of T that are not positive

FP = �T �IE+

K (14)

Precision/Confidence: denoted P , is defined as the fraction of true positives w.r.t. the covered
examples of h

P =
TP

�T �IEK
(15)

7To the best of our knowledge, we are unaware of any evaluation of ontology-based methods on those data
sets.
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Recall: denoted R, is defined as fraction of true positives w.r.t. all positives

R =
TP

|IE+ | , (16)

F1-score: denoted F1, is defined as

F1 = 2 · P ·R
P +R

. (17)

For each parameter configuration, a stratified k-fold cross validation design8 was adopted (specif-
ically, k = 5) to determine the macro average of the above described performance measures. In
all tests, we have that IE = IK and that, of course, there is at least one positive example in each
fold. For each fold, during the training phase, we remove all assertions involving test examples
from the ontology, and, thus, restrict the training phase to training examples only.

All configuration parameters for the best runs are available from the downloadable data,
which we do not report here. Some of the salient parameters, used within our algorithm, are
reported in Table 4.

Table 4: Some salient parameters of the PN-OWL algorithm.

θP confidence threshold for positive rules of P-stage
θN confidence threshold for negative rules of N-stage
ηP non-positive coverage percentage threshold for positive rules of P-stage
ηN non-positive coverage percentage threshold for negative rules of N-stage
cP maximal number of conjuncts for positive rules of P-stage
cN maximal number of conjuncts for negative rules of P-stage
dP maximal role depth for positive rules of P-stage
dN maximal role depth for negative rules of P-stage

A typical parameter setup is as follows, but may vary depending on the ontology and may
be subject of a search for the optimal setting.

P-stage. cP = 5, dP = 1, θP = 0.1, ηP = 1.0

N-stage. cN = 10, dN = 1, θN = 0.3, ηN = 0.2

Let us briefly comment them. During the P-stage, we would like to increase recall, that is the
percentage of covered positives w.r.t. all positives. To this end, we choose a low positive rule
confidence threshold θP and high non-positive coverage percentage threshold ηP . In the N-stage
however, we want to be more precise in removing the false positives in order to avoid removing
true positives of the P-Stage. Therefore, we increase the confidence threshold θN , lower the
non-positive coverage percentage threshold ηN and increase the number of maximal conjuncts
cN . The maximal role depth is determined manually a priori by inspecting the ontology.

For @+,@− (resp. @) we used max (resp. (�)), and for concept conjunction � (resp. GCI
operator �) we used the t-norm min (resp. the �Lukasiewicz implication). These could well be
another set of parameters to be optimised. However, the parameter space is already quite large,

8Stratification means here that each fold contains roughly the same proportions of positive and non-positive
instances of the target class.
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so we fixed these logical operators as specified.9 Concerning other parameter settings, we also
varied the number of fuzzy sets (3, 5 or 7). For c-means, we fixed the hyper-parameter to the
default m = 2, the threshold to ε = 0.05 and the number of maximum iterations to 100.

As baseline, we consider Fuzzy Foil-DL [50, 51, 53, 20], with best parameter setup as specified
in [20]. Essentially, Fuzzy Foil-DL, is as PN-OWL, except that it stops after the P-stage and,
thus, is as PN-OWL in which the negative set of rules hN is by definition empty (cf. lines
21-23 of PN-OWL algorithm). This allows us to appreciate the added value (if any) in terms
of effectiveness of the N-stage phase.

The results are reported in Table 5. For the UCIMLR datasets, in case of multiple targets,
the average of the measures has been considered.

Example 4.1 We provide here examples of learnt rules (in Fuzzy OWL syntax) via PN-OWL ap-
plied to the Mammographic ontology. The first one is one of the learnt rules during the P-
stage, while the second one is one of the learnt rules during the N-Stage. In the latter case,
FALSEP ToLearn denotes the class of false positives covered by rules learnt during the P-stage.
The number associated to a rule is its confidence/precision. We also report the specification of
some learnt fuzzy sets via fuzzy c-means.

(implies (and (some hasDensity low)
(some hasShape irregular)
(some hasAge hasAge_veryHigh)
(some hasBiRads hasBiRads_high))

ToLearn 0.965068)

(implies (and (some hasDensity low)
(hasMargin some microlobulated)
(hasShape some oval)
(hasBiRads some hasBiRads_medium))

FALSEP_ToLearn 0.75)

(define-fuzzy-concept hasBiRads_medium triangular(1,6,2.780,3.997,5.022))
(define-fuzzy-concept hasBiRads_high right-shoulder(1,6,3.997,5.022))
(define-fuzzy-concept hasAge_veryHigh right-shoulder(1,6,62.793,71.882))

9A run with fixed parameters, e.g. on the malware ontology, may already take up to 4 days of computation
time.
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Table 5: Results table. The measures are the macro average over the 5 folds w.r.t. the test set.

Dataset Algorithm Precision Recall F1 % Improvement

NTN
Fuzzy DL-FOIL 0.661 0.513 0.548

80.47%
PN-OWL 1.000 0.980 0.989

Lymphography
Fuzzy DL-FOIL 0.861 0.851 0.855

-2.57%
PN-OWL 0.836 0.841 0.833

Mammographic
Fuzzy DL-FOIL 0.737 0.692 0.710

11.27%
PN-OWL 0.746 0.831 0.790

Malware
Fuzzy DL-FOIL 0.623 0.830 0.704

5.06%
PN-OWL 0.701 0.818 0.740

Iris
Fuzzy DL-FOIL 0.886 0.910 0.890

4.16%
PN-OWL 0.949 0.910 0.927

Wine
Fuzzy DL-FOIL 0.884 0.971 0.895

0.98%
PN-OWL 0.933 0.904 0.914

Wine Quality
Fuzzy DL-FOIL 0.227 0.917 0.363

27.93%
PN-OWL 0.365 0.659 0.464

YEAST
Fuzzy DL-FOIL 0.427 0.746 0.540

4.37%
PN-OWL 0.432 0.815 0.564

Discussion. In Table 5, the last column reports the improvement of PN-OWL relative to the
measure F1 (see Eq. 17), over our baseline Fuzzy Foil-DL. Overall, PN-OWL performs better
than Fuzzy Foil-DL (with the exception of Lymphography) and in some cases the improvement
is particularly high, such as for NTN, Mammographic and Wine Quality.

Essentially, for PN-OWL we were able to find a better compromise between precision and re-
call than for Foil-DL. In particular, we were able to increase precision confirming our conjecture
that indeed the N-stage is able to remove the false positives.

Concerning Lymphography, we were unable to replicate the results of Fuzzy Foil-DL in [20],
for which we get now an F1 measure of 0.805 in place of 0.855. The difference lies in few miss-
classified examples. We also noted that in this case PN-OWL achieves F1 = 1.0 during the
training phase, which may suggest an over-fitting problem.

Last but not least, let us mention that PN-OWL (so does Fuzzy Foil-DL) does definitely
not yet behave well on the Wine Quality and Yeast datasets, which will be the subject of further
investigation.

The overall lesson learnt with PN-OWL is that indeed the N-stage may provide a non
negligible contribution to improve effectiveness of the classification process, provided one may
find the appropriate balance among precision and recall. Unfortunately, searching the parameter
space of PN-OWL for an optimum is quite time consuming and a brute-force approach may
likely not be feasible (at least not with our computational resources at hand). In fact, we
proceeded one run per time, and by analysing the results tried to figure out whether and how to
change some of the parameters in Table 4 to increase recall and/or precision. On the other-hand,
optimising Foil-DL is much easier as it has half of the parameters of PN-OWL.
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5 Related Work

Concept inclusion axiom learning in DLs is essentially inspired by statistical relational learning,
where classification rules are (possibly weighted) Horn clause theories (see e.g. [69, 70]), and
various methods have been proposed in the DL context so far (see e.g. [54, 24, 71]). The general
idea consists in the exploration of the search space of potential concept descriptions that cover
the available training examples using so-called refinement operators (see, e.g. [7, 22, 45, 46, 47,
48, 49]). The goal is then to learn a concept description of the underlying DL language covering
(possibly) all the provided positive examples and (possibly) not covering any of the provided
negative examples. The fuzzy case (see [50, 53, 87, 20]) is a natural extension relying on fuzzy
DLs [10, 86] and fuzzy ILP (see e.g. [82]) instead.

As already mentioned, our two-stage algorithm is conceptually inspired by PN-rule [2, 3, 40,
41] consisting of a P-stage in which positive rules (called P-rules) are learnt to cover as many as
possible instances of a target class and an N-stage in which negative rules (called N-rules) are
learnt to remove most of the non-positive examples covered by the P-stage. The two rule sets
are then used to build up a decision method to classify an object being instance of the target
class or not [2, 3, 40, 41]. It is worth noting that what differentiates this method from all others
is its second stage. The main differences of PN-OWL w.r.t. PN-rule are: (i) PN-rule operates
with tabular data only, i.e. the data consists of attribute value pairs (A, v), while we are in the
context of OWL ontologies.10; PN-rules are of the form cond → T , where the condition cond is
of the form (A ∈ [l, h]) or (A �∈ [l, h]) for continuous attribute A.11, while we have, conjunction
of conditions in the rule body and each condition may be fuzzy, besides being either a class
name or a restriction on attributes (attributes may be also nested); and (iii) PN-rule considers a
completely different rule scoring and combination strategy than we use in PN-OWL. The latter
can be represented in Fuzzy OWL 2 [12, 13], while for the former we conjecture it cannot: so,
we left this option out as a fuzzy DL reasoner would not be able to reason with those types of
rules.

Other closely related works are [30, 28, 36, 35, 50, 53, 87]. In fact, [30, 28, 36, 78] can be
seen as an adaption to the DL case of the the well-known Foil-algorithm, while [50, 53] that
stem essentially from [51, 52, 55, 56, 57, 58], propose fuzzy Foil-like algorithms instead, and
are inspired by fuzzy ILP variants such as [26, 82, 84].12 Let us note that [50, 56] consider the
weaker hypothesis representation language DL-Lite [5], while here we rely on an aggregation of
fuzzy EL(D) inclusion axioms. Fuzzy EL(D) has also been considered in [87], which however
differs from [50, 53] by the fact that a (fuzzy) probabilistic ensemble evaluation of the fuzzy
concept description candidates has been considered.13 Let us recap that, to our opinion, fuzzy
EL(D) concept expressions are appealing as they can straightforwardly be translated into natural
language and, thus, contribute to the explainability aspect of the induced classifier.

Discrete boosting has been considered in [35] that also shows how to derive a weak learner
(called wDLF) from conventional learners using some sort of random downward refinement
operator covering at least a positive example and yielding a minimal score fixed with a threshold.
Related to this work is [20] that deals with fuzziness in the hypothesis language and a real-valued
variant of AdaBoost and differentiates from the previous one by using a descent-like gradient
algorithm to search for the best alternative. Notably, this also deviates from ‘fuzzy’ rule learning
AdaBoost variants, such as [25, 66, 68, 81, 92] in which the weak learner is required to generate
the whole rules’ search space beforehand the selection of the best current alternative. Such an

10Tabular data can easily be mapped into OWL ontologies as illustrated in [20].
11If A is categorical then obviously cond is either of the form A = v or A �= v.
12See, e.g. [23], for an overview on fuzzy rule learning methods.
13Also, to the best of our knowledge, concrete datatypes were not addressed in the evaluation.
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approach is essentially unfeasible in the OWL case due to the size of the search space.
In [39] a method is described that can learn fuzzy OWL DL concept equivalence axioms from

FuzzyOWL 2 ontologies, by interfacing with the fuzzyDL reasoner [15]. The candidate concept
expressions are provided by the underlying DL-Learner [44, 18, 19] system. However, it has
been tested only on a toy ontology so far. Moreover, let us mention [42] that is based on an
ad-hoc translation of fuzzy �Lukasiewicz ALC DL constructs into fuzzy Logic Programming (fuzzy
LP) and uses a conventional ILP method to learn rules. Unfortunately, the method is not sound
as it has been shown that the mapping from fuzzy DLs to LP is incomplete [64] and entailment
in �Lukasiewicz ALC is undecidable [21]. To be more precise, undecidability holds already for
EL under the infinitely valued �Lukasiewicz semantics [17].14

While it is not our aim to provide an extensive overview about learning w.r.t. ontologies
literature, we nevertheless recap here that there are also alternative methods to what we present
here, but are related only to the extent that they deal with concept description induction in the
context of DLs. So, e.g. , the series of works [32, 33, 75, 74, 76, 72, 80, 77, 79] are inspired on
Decision Trees/Random Forests, [9, 29, 31, 34] consider Kernel Methods for inducing concept
descriptions, while [60, 62, 61, 63, 94] consider essentially a Naive Bayes approach. Last but
not least, [43] is inspired on Genetic Programming to induce concept expressions, while [65] is
based on the Reinforcement Learning framework. Eventually, [73] proposes to use decision trees
to learn so-called disjointness axioms, i.e. expressions of the form C � D �⊥, declaring that
class C and D are disjoint.

6 Conclusions & Future Work

In this work, we addressed the problem of automatically learning fuzzy concept inclusion axioms
from OWL 2 ontologies to describe sufficient condition of being an individual classified as instance
of target class T . That is, given a target class T of an OWL ontology, we have addressed the
problem of inducing fuzzy concept inclusion axioms that describe sufficient conditions for being
an individual instance of T . Specifically, we have presented a two-stage algorithm, called PN-
OWL that is inspired on the PN-rule [2, 3, 40, 41] and adapted to the context of OWL. The
main features of our algorithm are essentially the fact that (i) at the P-stage, it generates a set of
fuzzy inclusion axioms, the P-rules, that cover as many as possible instances of the target class T
without compromising too much the amount on non-positives; (ii) at the N-stage, it generates a
set of fuzzy inclusion axioms, the N-rules, that cover as many as possible of non-positive instances
of class T of the P-stage; (iii) the fuzzy inclusion axioms are then combined (aggregated) into
a new fuzzy inclusion axiom describing sufficient conditions for being an individual classified
as an instance of the target class T . Additionally, all fuzzy inclusion axioms may possibly
include fuzzy concepts and fuzzy concrete domains, where each axiom has a leveraging weight
(specifically, called confidence or precision), and all generated fuzzy concept inclusion axioms
can directly be encoded as Fuzzy OWL 2 axioms.

We have also conducted an extensive evaluation, comparing it with fuzzy Foil-DL. Our
evaluation shows that, PN-OWL performs generally better than fuzzy Foil-DL in terms of
effectiveness, though finding an optimal parameter configuration is much more time consuming
than for Foil-DL as PN-OWL has double as many parameters than fuzzy Foil-DL.

Concerning future work, besides investigating about other learning methods, and future work
listed here and there in the paper, we envisage various aspects worth to be investigated in more
detail: (i) it is still unclear how the construction of fuzzy sets may impact effectiveness. So far,
we did not notice a clear winner between the uniform clustering and c-means clustering algo-

14We recall that EL is a strict sub-logic of ALC.
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rithms used to build fuzzy datatypes. This is somewhat surprising. We would like to investigate
that in more detail by considering various alternatives as well [1] and/or considering clustering
methods based on the aggregation of data properties, i.e. multi-dimensional clustering versus
uni-dimensional clustering; (ii) moreover, we would like to cover more OWL datatypes than
those considered here so far (numerical and boolean) such as strings, dates, etc., possibly in
combination with some classical machine learning methods (see, e.g. [83]); (iii) we would like to
investigate the computational aspect: so far, for some ontologies, a learning run may take even
a week (w.r.t. our available resources). Here, we would like to investigate both parallelization
methods as well as to investigate about the impact, in terms of effectiveness, of efficient, logi-
cally sound, but not necessarily complete, reasoning algorithms; (iv) in principle, our two-stage
algorithm PN-OWL is parametric w.r.t. the learner to be used during both the P-stage and the
N-stage (cf. lines 5 and 19 of the PN-OWL algorithm): here we would like to investigate how
to plug in another alternative such as Fuzzy OWL-Boost [20] and to verify its effectiveness;
(v) we would like to asses also the impact of other alternative scoring functions to information
gain (cf. Eq. 12) within our setting, inclusive various alternative choices of t-norms and r-
implications; and (vi) we are looking for combining our Fuzzy DL-Learning with sub-symbolic
learning methods, such as e.g. Neural Networks, an activity that is already on-going.

Moreover, we really would like to consider extending the hypothesis language EL(D) with
so-called threshold concepts [11] of the form C[≥ d] (resp. C[≤ d]), where d ∈ [0, 1] and C is either
a class name or an existential restriction, with the intended meaning “C[≥ d] (resp. C[≤ d]) is
the fuzzy set of individuals that are instances of C to degree greater (resp. smaller) than or equal
to d.” This would provide us a more fine grained hypothesis language in which a threshold may
be defined for each conjunct of a rule rather than via a rule confidence threshold as it is now. A
Fuzzy OWL 2 example of such a rule may be, by referring to the Wine Quality ontology and
target wine 1

(implies (and (some alcohol alcohol_VH)[<= 0.786]

(some sulphates sulphates_H)[>= 0.289]

(some pH pH_L)[<= 0.106])

1)

with intended meaning ”if, for an individual (wine) a, the alcohol level of being very high is
smaller than or equal to 0.786, the sulphates level of being high is greater than or equal to 0.289
and the pH level of being low is smaller than or equal 0.106 then classify a to some extend (e.g.
the minimum of the degrees of being a an instance of a conjunct) as instance of the target class
1.
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[37] Petr Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.

[38] Ignacio Huitzil, Umberto Straccia, Natalia Dı́az-Rodŕıguez, and Fernando Bobillo. Datil: Learning fuzzy
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A Brief Description of the Datasets

Find below a brief description about the OWL ontologies in Table 3 used in our experiments.

SemanticBible (NTN). New Testament Names (NTN) is an ontology describing each named
thing in the New Testament, about 600 names in all. Each named thing (an entity)
is categorized according to its class, including God, Jesus, individual men and women,
groups of people, and locations. These entities are related to each other by properties
that interconnect the entities into a web of information.15 The target is to learn sufficient
conditions to be a woman.

Lymphography. This ontology is about lymphography patient data and the target is the pre-
diction of a diagnosis class based on the lymphography patient data [91].

15http://semanticbible.com/ntn/ntn-overview.html
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Mammographic. This ontology is about mammography screening data and the target is the
prediction of breast cancer severity based on the screening data [91].

Malware. This ontology is the description of a PE Malware Ontology that offers a reusable
semantic schema for Portable Executable (PE,Windows binary format) malware files [88,
89]. The ontology is inspired by the structure of the data in the EMBER dataset,16 which
is intended for static malware analysis [4].

The following datasets have been taken from the well-known UC Irvine Machine Learning Repos-
itory [27].

Iris. The data set contains 3 classes of 50 instances each, where each class refers to a type of iris
plant. The attributes are: sepal length in cm, sepal width in cm, petal length in cm and
petal width in cm. The target classes are: Iris Setosa, Iris Versicolour and Iris Virginica.

Wine. These data are the results of a chemical analysis of wines grown in the same region in
Italy but derived from three different cultivars. The analysis determined the quantities of
13 constituents found in each of the three types of wines. The attributes are alcohol, malic
acid, ash, alcalinity of ash, magnesium, total phenols, flavonoids, nonflavonoid phenols,
proanthocyanins, color intensity, hue, OD280/OD315 of diluted wines and proline. The
target classes are the three wines 1, 2 and 3.

Wine Quality. The data set is related to red and white variants of the Portuguese “Vinho
Verde” wine. The goal is to model wine quality based on physicochemical tests. Due to
privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables
are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.).
The attributes are: fixed acidity, volatile acidity, citric acid, residual sugar, chlorides,
free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol and quality (score
between 0 and 10). The target is to describe good red wines, which are defined as red wines
having quality score greater than or equal to 7. The quality attribute has been removed
from the ontology during training and tests.

Yeast. The data set is about the prediction of the cellular localization sites of proteins (10 target
classes) The set of attributes is: Sequence Name (accession number for the SWISS-PROT
database), mcg (McGeoch’s method for signal sequence recognition); gvh (von Heijne’s
method for signal sequence recognition); alm (score of the ALOM membrane spanning
region prediction program); mit (Score of discriminant analysis of the amino acid con-
tent of the N-terminal region, 20 residues long, of mitochondrial and non-mitochondrial
proteins); erl (presence of “HDEL” substring, thought to act as a signal for retention in
the endoplasmic reticulum lumen, binary attribute); pox (peroxisomal targeting signal in
the C-terminus); vac (score of discriminant analysis of the amino acid content of vacuolar
and extracellular proteins); and nuc (score of discriminant analysis of nuclear localization
signals of nuclear and non-nuclear proteins).

16https://github.com/elastic/ember
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