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The 2021 Nobel prize for physics was awarded to two climate scientists, Syukuro Manabe
and Klaus Hasselmann, and the physicist Giorgio Parisi. While at first sight the work of
Parisi seems not to be related to climate science, this is not the case. Giorgio Parisi
developed and contributed to many complexity science methods which are nowadays
widely used in climate science. Giorgi Parisi also was involved in the development of the
“stochastic resonance” idea to explain paleoclimate variability, while Klaus Hasselmann
developed stochastic climate models. Here we review and discuss their work from a
complex and stochastic systems perspective in order to highlight those aspects of their
work. For instance, fractal and multi-fractal analysis of climate data is now widely used and
many weather prediction and climate models contain stochastic parameterizations, topics
Parisi and Hasselmann have pioneered. Furthermore, Manabe’s work was key to
understanding the effects of anthropogenic climate change by the development of key
advances in the parameterization of convection and radiative forcing in climate models. We
discuss also how their inventive research has shaped current climate research and is still
influencing climate modeling and future research directions.

Keywords: climate change, climatemodeling, stochastic climatemodel, subgrid-scale parameterization, stochastic
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1 INTRODUCTION

In 2021 the Nobel prize for physics was awarded to Klaus Hasselmann, SyukuroManabe and Giorgio
Parisi for major contributions to complexity science and the understanding and modelling of the
climate system [1]. Syukuro Manabe and Klaus Hasselmann have pioneered “the physical modelling
of Earth’s climate, quantifying variability and reliably predicting global warming”, while Giorgio
Parisi made breakthrough advances in the “discovery of the interplay of disorder and fluctuations in
physical systems from atomic to planetary scales” [1]. This was the first Nobel prize for physics
awarded to climate scientists. In 1995, Paul Crutzen, Mario Molina, and Sherwood Rowland got
awarded the Nobel Prize in Chemistry “for their work in atmospheric chemistry, particularly
concerning the formation and decomposition of ozone” [2]; and in 2007 the Intergovernmental
Panel on Climate Change was awarded the Nobel Peace prize “for their efforts to build up and
disseminate greater knowledge about man-made climate change, and to lay the foundations for the
measures that are needed to counteract such change” [3].

The continuing relevance of Syukuro Manabe’s and Klaus Hasselmann’s work can be seen in the
latest IPCC reports [4,5], which rely heavily on coupled climate model simulations. Their work was
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essential in our ability to simulate potential and plausible future
evolutions of the coupled Earth system and to unequivocally
demonstrate humanities responsibility for global climate change.

The medalists made groundbreaking contributions to climate
science, stochastic methods and complexity science for a better
understanding of the complex climate system. [6] performed a
systematic publication review of the three Nobel laureates;
discussing their publication behavior. She also lists their ten
most cited papers, which is an indication for their most
important work, and they will be discussed in more detail below.

The 2021 Nobel prize is a testimony of the power and wide
applicability of physical principles for better understanding and
predicting our precious world. We will discuss and review their
scientific work from this perspective. We will show how their
work has contributed to modern stochastic and complexity
science methods and climate modelling, now enabling us to
better understand the Earth system and make skillful
predictions. They performed this work decades ago, but their
work still shapes current research and we believe that it will still be
relevant for future research. For this reason a synthesis of these
aspects of their work is necessary and useful.

2 THE DEVELOPMENT OF STOCHASTIC
CLIMATE MODELS AND RANDOM WAVE
FIELD METHODS
Klaus Hasselmann pioneered multiple areas of climate science;
among others he developed optimal finger-printing [7,8] which
enables the optimal identification of climate change signals,
nonlinear ocean wave dynamics [9,10], Integrated Assessment
Models [11], and stochastic climate models [12].

An important topic in climate modelling is the use of
stochastic models to represent model error and model
uncertainty [13,14]. Klaus Hasselmann’s paper on stochastic
climate models [12] is a modern classic and started a new
field of climate science and improved our understanding of
the origin of climate variability. Hasselmann was motivated to
provide an explanation for the observed spectra of climate
variability on long time scales, from decadal-scale variability to
ice ages and beyond. He observed that these spectra reveal “a
continuous variance distribution encompassing all resolvable
frequencies, with higher levels at lower frequencies” [12]. This
is already a link to fractal methods [15], and the work by Giorgio
Parisi, since it has been shown that many climate time series are
scaling, which is an imprint of fractals [15,16]. Fractal methods is
an area to which Giorgio Parisi also made contributions (e.g.,
[17]), and which is nowadays widely applied in climate research
(e.g., [15,16]).

Stochastic models of climate variability are based on the idea
that climate can be decomposed into fast fluctuations,
i.e., weather disturbances, and slow variations, i.e., sea-ice or
oceanic variations. The fast weather disturbances then produce an
integral response of the slow climate variables. Here the fast
weather disturbances are represented by a stochastic process. The
usefulness of a stochastic process for numerically representing a
physically deterministic process can be intuitively understood as

follows: from a numerical point of view, the slow variables can be
modeled with a much larger time step than the fast variables; the
fastest process in a numerical model determines the time step size.
While both, slow and fast, processes are deterministic, the fast
process decorrelates quickly on the time scale of the slow process.
Due to this decorrelation, the fast process can effectively be
represented by a stochastic process. On the long time scale the
exact physical process representation of the fast process becomes
unnecessary. A schematic of this idea is given in Figure 1.

Hasselmann [12] also argued that the evolution of the
corresponding probability density distribution is described by
a Fokker-Planck equation [14,18,19]. In the Fokker-Planck
equation the stochastic terms appear as diffusion terms. The
stochastic term, which has the form of a Wiener process or
Brownian motion [14,19–21] would lead to unlimited growth
without negative feedbacks or damping. Such stabilising
feedbacks lead to a bounded climate probability distribution
and consistency with conservation laws, such as energy
conservation [22–24]. Thus, it is important that stochastic
climate models contain all important physical feedback
processes of the climate system. Hasselmann’s stochastic
climate model was the first model which reproduced and
explained the observed continuous climate variability “without
invoking internal instabilities or variable external boundary
conditions” [12].

Mathematically, the basic assumption of the Hasselmann
stochastic climate model is that the complete state vector z
can be decomposed into a fast y and a slow x component: z =
(x, y). The equations of motion can now be written as follows:

dx
dt

� F x, y( ) (1)
dy
dt

� G x, y( ), (2)

where F and G are nonlinear functions. Under the assumption of
a time scale separation between x and y the following effective
stochastic climate model can be written:

dx � H x( )dt + Σ x( )dW (3)

FIGURE 1 | Schematic illustration of the underlying idea of stochastic
climate modeling. The slow climate model can numerically be modelled with a
time step ΔtC (top line), while the fast fluctuation needs a much smaller time
step ΔtF (bottom line). While both processes are deterministic, the fast
process decorrelates on the slow time scale ΔtC and, thus, can be
represented by a stochastic process in an effective climate model which only
simulates the slow climate mode.
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where H and Σ are nonlinear functions and W is the Wiener
process [20]. Later, Andrew J. Majda (1949–2021) and
collaborators developed a systematic approach of deriving
stochastic climate models with good predictive skill
[14,19,21,22,25–30] which is based on the mathematical theory
of adiabatic elimination [20,31–38] which was developed at the
same time as Hasselmann’s paper was published.

Hasselmann’s stochastic climate model then pioneered the
explanation of climate variability [39–41] and sea ice variability
[42]. The importance of Hasselmann’s work lies in the fact, that
the stochasic climate model shows that climate as an integrated
response to fast weather fluctuation is transforming the white
weather noise spectrum into a red spectrum which is widely
observed in nature [12].

While the original Hasselmann model is with additive noise,
the more general derivation of stochastic climate models showed
that the nonlinear interactions between slow and fast fluctuations
create multiplicative or state-dependent noise [19,21]. Using the
heat budget equation, [43] showed that the Hasselmann model
can be extended to include multiplicative noise when considering
higher order terms in a Taylor expansion.

Hasselmann’s seminal papers inspired a large body of work
leading to stochastic processes nowadays being routinely
implemented into operational models [44–48,48–59]. Also
empirical approaches are common in fitting stochastic models
[22,60–68]. Hence, the Hasselmann’s pioneering work on
stochastic climate models is still relevant today.

Klaus Hasselmann also made important contributions to
model reduction which is to this day widely used in the
development of reduced order stochastic models and data
analysis. In a seminal paper [69], he developed a systematic
approach to identify the most dynamically important modes
of dynamical systems, Principal Interaction Patterns (PIP).
PIPs are able to capture the nonlinear dynamics of the full
dimensional system in a reduced order subspace [70–75].
While PIPs are a very powerful method, they are
computationally expensive to estimate and require the
dynamical equations for their estimation. A linearization of
PIPs are the Principal Oscillation Patterns (POP) developed by
Hasselmann in the same paper [69]. POPs are based on the lagged
covariance matrix, where the nonlinearities are represented as a
Gaussian white noise forcing [69,76]. Hence, POPs can be
straightforwardly estimated directly from data; no knowledge
of the underlying dynamical equations are needed. POPs have
subsequently been used for a better understanding of climate
variability [77–81], and have been further developed into Linear
Inverse Models (LIM), which are linear stochastic models where
the covariance matrix of the stochastic noise is derived via the
Lyapounov equation [82–88]. It has also been shown that PIP,
POPs and LIMs can be related to the Koopman operator [89–91].
The Koopman operator is a infinite-dimensional linear operator
whose spectral decomposition describes the behavior of nonlinear
dynamical systems [91,92]. The approximation of the Koopman
operator by Dynamic Mode Decomposition (DMD) [91–94] can
be related to the PIP and POP decompositions [91]. This shows
the deep connection of PIPs and POPs to the underlying

nonlinear dynamics of the system. DMDs are now also getting
more popular in climate research [92,95–97].

In earlier work, Hasselmann was one of the first to apply
diagrammatic methods to examine energy transfers due to weak
nonlinear interactions in random wave fields in order to quantify
the surface ocean wave spectra. Hasselmann [10] considered the
special case of conservative wave-wave interactions using normal
mode coordinates, where the scattering theory is first presented in
a Hamiltonian form and the analogy is made to quantum field
theory via the interpretation of the transfer expressions in terms
of collision processes between hypothetical “particles,”
“antiparticles,” and “virtual particles.” A formal perturbation
expansion is then applied to the physical energy and
momentum transfer rates facilitating expressions for all
scattering processes to only a few general interaction rules.

Moving beyond the particle interpretation, this approach was
subsequently generalized to include non-conservative
interactions between waves and external fields. In this
framework, the transfer expressions, summarized in terms of
“transfer” diagrams, may still be regarded as corresponding to
collision diagrams in the particle picture [98]. Considering
interactions between gravity waves and the turbulent
atmospheric boundary layer, and applying a closure hypothesis
in terms of assumptions of Gaussianity with respect to the
cumulants and the linear wave field, Hasselmann was able to
derive a complete set of more general lowest order transfer
diagrams. At lowest order, these interactions (diagrams) were
shown to contain both the Phillips mechanism for the scattering
of surface gravity waves by turbulent currents [99–101] and the
Miles mechanism of wave generation [101,102]. The combined
theory was checked against experimental data by Gilchrist [104].
Hasselmann’s theory extended the Miles-Phillips theory for the
directional spectrum of wind-driven surface waves by including
additional wave-turbulence interactions associated with energy
exchange and production.

These investigations formed the basis of the so-called resonant
interaction formalism [10,105] which has proven to provide a key
framework for understanding the oceanic internal gravity wave
field. The assumption that the timescale for interactions is much
longer than the component wave periods, i.e., weak interaction,
was challenged in situations where nonlinear effects dominate,
such as for interactions between internal gravity waves and
turbulence [106,107]. In order to develop a statistical
dynamical theory in which all scales and strengths of
interactions between waves and turbulence were handled self
consistently, Carnevale and Frederiksen [108] employed the
prior-time fluctuation dissipation theorem (FDT)

Ck t, t′( ) ≡ Rk t, t′( )Ck t′, t′( ) (4)
to relate the two-time spectral covariance Ck(t, t′) at wavenumber
k to the response function Rk (t, t′) and the prior single-time
covariance Ck(t′, t′). In this way the general nonlinear field treats
the larger scales as wavelike with turbulence dominating the small
scales. Formally, the theory makes no distinction between waves
and turbulence. The choice of FDT distinguishes the various
statistical closures [109], be they for two- [110] or three-
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dimensional [111] turbulence or for the two-dimensional internal
gravity wave turbulence problem [106,108]. An important class of
closures, the Eddy DampedQuasi-NormalMarkovian (EDQNM)
approximation, has been used to study turbulence interacting
with Rossby waves [108,112,113]. The EDQNM reduces to the
resonant wave interaction limit of [10] as the damping vanishes
(i.e. steady state form of the triad relaxation time μ → 0)
[114,115].

The work of Hasselmann occurred at a time when applications
of field theoretic methods to problems in geophysical flows were
leading to major advances in understanding turbulent flows
including the seminal closure works of Kraichnan [110,116],
the use of Feynman diagrams for homogeneous isotropic
turbulence (HIT) [117] and application to magneto-
hydrodynamic turbulence [118]. This work has laid the
foundations for subsequent advances in field theoretic
approaches to HIT [10,111,119] including functional operator
[121,122] and functional (path) integral [123] formalisms. More
recent efforts have developed explicit turbulence closures for
inhomogeneous turbulence [124,125], including
computationally efficient Markovian variants [109] as well as
subgrid scale parameterizations directly based on closures
[126,127] or data driven approaches inspired by field theoretic
approaches for geophysical flows [128–130]. For a
comprehensive review of turbulence theories and statistical
closures see [131].

Finally it remains to be noted that, in order to be realizable,
that is to guarantee non-negative energies in the kinetic energy
spectrum, the above mentioned statistical-dynamical approaches
must be underpinned by an exact stochastic model
representation, i.e., an Ornstein-Uhlenbeck process, or
generalised Langevin equation. In this way, statistical and
stochastic dynamical systems have a shared underpinning
framework.

3 COMPLEXITY SCIENCE AND
STOCHASTIC RESONANCE

Giorgio Parisi was awarded the Nobel Prize in Physics in 2021 for
his work on disordered systems, and in particular random Ising
models and the replica method for the understanding of spin
glasses. Nevertheless, Parisi’s connection to climate sciences is
manifold, and it descends from his interests on some very
fundamental aspects of dynamical systems, especially non-
equilibrium and “slightly” non-equilibrium systems. Here, we
will focus on disordered systems, as per the scope of the present
work, and stochastic resonance, given its close connection to the
stochastic models introduced by Hasselmann in the late 70s.

Before we move to these topics, we want to mention, although
we will not touch it for sake of brevity, Parisi’s contribution to the
modern development of the theory of turbulence. In fact, he was
the first, together with Uriel Frisch, to introduce the multifractal
formalism [132] to explain the intermittency of velocity
fluctuations, overcoming the traditional Kolmogorov’s spectral
framework. The rigorous mathematical derivation, though, can
be traced back to the works of Frisch [133] and successive studies

of Parisi and colleagues (e.g. [17]). This approach has been
applied in several studies of turbulence in the atmosphere
[134,135], and has been particularly successful in its
applications to precipitation (e.g. Venugopal et al. [136]) and
clouds (e.g. Lovejoy [137]).

3.1 Spin Glasses: Disorder and Fluctuations
A major part of Giorgio Parisi’s scientific work is devoted to
statistical physics of spin glasses, which are disordered magnetic
systems formulated within the Ising model with random spin-
spin interactions (see the thorough and pedagogical introduction
by Castellani and Cavagna [138]). Spin glasses can be modelled by
an Ising model with frozen random interactions. The Ising model
is a mathematical model for spins σ(i) = ±1, arranged typically on
a lattice with grid points i, and with nearest neighbour
interactions Jij contributing to the total energy. The complete
state of N spins is given by the configuration σ = {σ(i), i = 1 . . . ,
N}. The response to an external magnetic field h is probed with
the interaction energy contribution − hσ(i) in the Hamiltonian

H σ[ ] � − ∑
<ij>

Jijσ i( )σ j( ) − h∑
i

σ i( ) (5)

where Jij are the coupling coefficients in the sum for adjacent
spins 〈ij〉. In two dimensions, the Ising model shows a phase
transition between aligned and disordered spins.

In spin glasses the coupling coefficients Jij are random
numbers which remain constant in a quenched spin-glass. In
this state of matter a system can be in one of many local minima
Nmin separated by large barriers [139] (growing withN), coined as
pure states. Complexity Σ (or configurational entropy) is defined
by the dependency Nmin ~ exp (NΣ). Thus, ergodicity is broken
and spin glasses are not in a definite pure thermodynamic state,
but in a mixture of pure states [140].

Replicas are physically equivalent configurations σa of the
system subjected to the same random interactions. The
Hamiltonian for a set with n replicas is the sum H �∑n

a�1H[σa] [141]. Due to the disorder, the average
magnetization m � (1/N)∑i〈σ(i)〉 vanishes (the bar denotes
averaging of interaction coefficients Jij), since all directions are
equally probable at low temperatures and cannot be used as order
parameter. Therefore, Parisi defined order parameters as the
overlap between replicas by a n × n matrix as

Qab � 1
N

∑N
i�1

〈σa i( )σb i( )〉, a ≠ b, Qaa � 0 (6)

for the replicas a, b and where 〈. . . 〉 denotes thermal averages
[140]. In the thermodynamic limit the free energy is a
function of Q.

The existence of infinitely many pure states can be associated
with a spontaneous replica symmetry break. A symmetry break
can be detected by a discontinuity in the correlations between two
replicas 1 and 2 when the Hamiltonian is perturbed by a small
symmetric term, H � H[σ1] +H[σ2] + ϵ∑N

i�1σ1(i)σ2(i). This
Hamiltonian remains invariant for changes of 1 and 2. The
states in a spin glass are described as a branching process,
where branching points are phase transitions [140,142].
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The calculation of thermodynamic properties of spin glasses is
achieved with the so-called replica trick. For a model in contact
with a heat bath at temperature T, the partition function Z
describes the statistical properties of a system in
thermodynamic equilibrium, Z = ∑σ exp (−H [σ]/kbT) and
observables can be derived through the free energy F =
−kBT lnZ. A main difficulty is the calculation of the mean lnZ
averaging the interaction coefficients. This is solved by the replica
trick which uses the limit lnZ = limn→0 (Zn − 1)/n, and the
calculation of the means Zn for the number n of replicas by
Gaussian integrals [142].

The Ising model has been applied to various problems in
geosciences with unresolved small scale processes.

• Pleimling et al. [143] consider convection cells in an Ising
lattice gas in contact with two thermal reservoirs. In the
non-equilibrium stationary state, convection cells emerge
which are driven by spontaneous symmetry breaking below
the critical temperature.

• Ma et al. [144] describe the formation of ponds in Arctic
sea ice during melting in late spring which determine the
albedo through their geometric structure. The authors
use a binary Ising model which predicts observed power
law scaling of the pond size distribution, correlation
lengths and fractal dimensions of the clustered ponds.
Such results may be useful for the parameterization in
global climate models.

• Khouider [145] applies the Ising model as a stochastic
multicloud model for organized tropical convection
introduced recently to improve the variability in climate
models. Each lattice is either clear sky or occupied by one of
three cloud types. The coarse-graining could be extended to
multi-type particle systems with nearest neighbour
interactions and a multi-dimensional birth-death process.
Local interactions induce a shift in the climatology and
intermittency through coherent cloud clusters and long time
excursions.

The idea of long-lived metastable states found in spin glasses
has been applied in climate science to explain the recovery from a
snow ball Earth, a climatic state with an Earth covered by ice or
snow which ended 700Mio years ago [146]. This state is stable on
long time scales due to the ice albedo effect and transitions can be
excited by stochastic solar forcing Lucarini and Bódai [147] with a
hysteresis effect [148].

Atmospheric circulation regimes [149–151], are metastable
states [152] of the atmosphere having a significant impact on
surface conditions and predictability, particularly as the
formation and decay of such structures on synoptic scales,
commonly referred to as “blockings”, are often associated with
significant reductions in operational forecast skill. The concept of
metastability, i.e., states that are coherent and locally stationary in
time, has also been applied to enable the construction of reduced
order stochastic models directly from data thereby enabling an
understanding of the predictability of atmospheric circulation
regimes [22,152–154,156–158] including error growth in weather
prediction [159,160] and for the detection and attribution of the

external drivers of trends in the frequency of occurrence,
persistence and structure of said regimes over time [14].

3.2 Stochastic Resonance
The idea for what would have been later referred to as “stochastic
resonance”, arose when an important aspect of the Milankovitch
explanation of glacial-interglacial periods succession, was left
unanswered, given that the periodicities in orbital parameters
were unable to capture the 105 year periodicity in the
Milankovitch spectrum [161]. When Parisi, together with his
colleagues Roberto Benzi, Alfonso Sutera and Angelo Vulpiani at
Rome La Sapienza University, started to work on a possible
solution to this problem, the seminal work by Hasselmann
[12] (see section 2) had already stressed that the long-term
variability of the climate system could be treated as long-term
forced variations with a stochastic fast-scale perturbation
superimposed on it. Sutera [162] had already demonstrated
that such fast-scale stochastic perturbations would be able to
induce random transitions in a Budyko-Sellers type Energy
Balance Model (EBM) [163,164], for which multiple stable
states, namely a glacial and an inter-glacial state, were
identified. Similar arguments were also brought up by Nicolis
and Nicolis [165] in the very same year. Despite being able to
exhibit random transitions induced by stochastic noise, this
model was not capable of transitioning between glacial and
interglacial states, no matter what the variance attributed to
the noise was. Indeed, Parisi and his colleagues demonstrated
that no transition would occur in this stochastically perturbed
EBM, unless a periodic forcing (the Milankovitch forcing, in their
probe at the 105 year frequency) would be introduced. In other
words, the concept of “stochastic resonance” relies on the fact that
the stochastic noise introduced in the model introduces the
possibility of a transition between observable states of the
system, when the variance of the noise “couples” with the
amplitude of a periodic forcing. For a rigorous derivation of
the concept, one might refer to Benzi et al. [166]. In the following,
we will discuss some of the fundamental passages of the
application in the context of paleoclimate, as described in
Benzi et al. [167].

As a starting point, they consider a Battacharya-Ghil model
[168,169], that relies on a parametrization of the albedo allowing
for two stable states separated by a 10 K global mean temperature
difference. The model can be written as:

dT

dt
� F T, t( )

� ϵT
C

μ t( )
1 + β 1 − T/T1( ) 1 − T/T2( ) 1 − T/T3( )[ ] − 1{ }

+ ση t( ) (7)
where:

• F (T, t) is a function of temperature and time, whose integral
is the pseudo-potential Φ(T, t). Maxima and minima of Φ
represent the stable and unstable solutions of the budget
Equation (7);

• C is the thermal capacity of the Earth;
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• ϵ is the global mean emissivity of the Earth;
• μ(t) is the Milankovitch periodic forcing, in our case written
as μ(t) = 1 + 0.0005 cos (ωt) with ω = 2π/105 year, thus
representing the 50,000 years periodicity;

• T1, T2 and T3 are the global mean equilibrium temperatures
for two stable regimes (T1, T3) and one unstable state (T2).
Here, it is assumed that ΔT = (T3 − T1)/2 is equal to 5 K;

• β is a dimensionless parameter, a function of the decaying
time τ, so that τ−1 � dF

dT|T�T3
;

• σ is the variance associated with a Wiener process
represented by η(t). This member of the equation
represents the stochastic part of the model.

It is worth noticing that similar results were achieved through
the usage of a Fokker-Planck equation, and that the Equation 7
can be non-dimensionalized, noticing that we can define a new
variable ϕ � T−T0

ΔT , where T0 is the median temperature between T1
and T3 and a time t′ = tτs, with τs an observational-based
relaxation time. We eventually obtain:

dT

dt
� ϕ 1 − ϕ2( ) + ση t( ) + A t( ) (8)

where A(t) is again the Milankovitch forcing, that we assume for
the sake of simplicity to oscillate between A0 and − A0.

From the theory of stochastic differential equations, it is
known that the average random transition time between one
stable state and another (in the absence of forcing), is given by
(e.g. [170]):

〈τ〉 ~ τs exp ΔT2/στs( ) (9)
When the Milankovitch forcing is also included, and in the

two cases ± A0, we have:

〈τ〉~ τs exp τs ΔT2 + A0( )/σ[ ] � 〈τ〉A�0 exp τsA0/σ( ) (10)
〈τ〉~ τs exp τs ΔT2 − A0( )/σ[ ] � 〈τ〉A�0 exp −τsA0/σ( ) (11)
In other words, it is found that when the amplitude of the

stochastic noise is sufficiently large, and the noise gets in phase
with the Milankovitch periodic forcing, its effect can be
exponentially amplified or dampened, depending on the sign.
This was the main result of the Benzi et al. [167] paper.

A question that was left unanswered, at that time, was whether
a specific physical mechanism had to be invoked, triggering the
transition, or the noise, somehow reaching the phase and
amplitude for the stochastic resonance, was randomly pushing
the system towards a transition. From the theory of stochastic
differential equations, it was shown that the probability for a
random transition with characteristic timescale τ is given by:

P τ( ) � 〈τ〉−1 exp τ/〈τ〉( ) (12)
meaning that the transition could be understood as a “rare event”
and large deviation theory would be sufficient to investigate the
effect of the noise. It was not immediately clear, though, how the
noise generated by turbulence, where the turbulent cascade does
not allow for a clear scale separation between noise and the large-
scale behavior, would ever be useful to obtain this kind of

transitions in the system. This problem was later addressed in
Benzi [171], by showing that a Sabra shell model of turbulence
would exhibit stochastic resonant behavior.

As argued at the beginning of the section, the concept of
stochastic resonance has its roots in paleoclimate studies, and
found a wide range of applications going well beyond this initial
field of research. A few of them are reviewed in Gammaitoni et al.
[172]. Here, we briefly describe a selected number of related
works that have proved their relevance for climate sciences:

• Ganopolski and Rahmstorf [173] propose the stochastic
resonance mechanism to explain the shifts in Northern
Atlantic freshwater formation regions as a trigger of
millennial climate variability during glacial times;

• As reviewed in Crucifix [174], there have been several
studies attempting to investigate the onset of Dansgaard-
Oeschger (DO) events in terms of stochastic resonance,
either relying on the 1,500 occurrence time of these events
[175], or in terms of the synchronisation between noise and
different periodicities of the solar cycle [176,177];

• The large deviation algorithm by Ragone et al. [178] relies
on the probability of rare events to help the detection of
extreme events in modelling studies;

A historical perspective on the achievements by Parisi and his
team on the topic of stochastic resonance, in the context of the
2021 Nobel Prize, is also found in a recent contribution on the
Nature Italy blog [179].

4 STARTING THE MARCH TOWARDS A
DIGITAL TWIN OF EARTH

Syukuro Manabe has, in contrast to Klaus Hasselmann and Giorgio
Parisi, not made any direct contributions to complexity science.
However, he was instrumental in the development of three
dimensional numerical coupled Atmosphere-Ocean models
[180,181], which are some of the most complex numerical
models in science which are running on the fastest and biggest
super computers in the world nowadays. Due to limited computing
power in the 1960s these numerical models of the complex Earth
system had to be simplified in such a way that they were
computationally feasible but still contained the most important
aspects of the climate system. With the model in whose
development he was instrumental, he showed the impact of
increasing greenhouse gases concentrations on Earth climate,
evidencing how they lead to increasing surface temperatures. In
order to accomplish the development of three dimensional models,
Syukuro Manabe had to develop a one-dimensional model of the
atmosphere [182] with which they estimated the climate sensitivity,
i.e. the amount of warming a doubling of CO2 would produce. The
climate sensitivity is nowadays an important aspect of climate
change science [183–186] and is an important parameter of
Integrated Assessment Models [187–192]. To investigate the
climate sensitivity Syukuro Manabe developed a radiative-
convective model. With this model he explored the role played
by atmospheric gases such as water vapor, carbon dioxide and ozone
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in setting the thermal structure of the atmosphere. This model was a
major step towards the development of the three dimensional model
with which he made poineering contributions to understanding of
the anthropogenic greenhouse effect [193–195].

Like Giorgio Parisi, Syukuro Manabe worked on paleoclimate
[196–198]. He was one of the first to simulate abrupt climate
change. Traditionally, it was thought that climate evolved in a
slow and smooth way and abrupt climate changes were
considered unlikely. However, paleoclimate records showed
evidence for abrupt climate changes during glacial periods
[199]. In order to examine such abrupt climate changes, he
simulated the influx of freshwater from melting ice sheets.
This freshwater flux into the North Atlantic caused a
shutdown of the Atlantic Meridional Overturning Circulation
(AMOC). This shutdown of the ocean circulation has a strong
impact on the heat transport, leading to rapid changes in
temperature and, hence abrupt climate change. A shutdown of
the AMOC is considered a potential tipping element in a warmer
world [200] and there is evidence that the AMOC is slowing down
in recent years [201].

His work started numerical modeling of the complex Earth
system. In 2021 European Union scientists started the project
“Destination Earth”, aimed at building a digital twin of the Earth
system by 2030, which will enable the mapping of the evolution of
the climate system and simulation of extreme events in time and
space [202]. In about 50 years the climate science community
made the journey from what we nowadays consider to be very
simplified, if not crude, climate models to aiming to develop a
twin of our Earth in unprecedented high resolution and process
representation and which can resolve and simulate “the regional
impacts of climate change, natural hazards, marine ecosystems or
urban spaces” [202].

5 DISCUSSION

The 2021 Nobel prize for physics was awarded to work mainly
done in the 1970s and 1980s. However, the pioneering work done
by Klaus Hasselmann, Syukuro Manabe and Giorgio Parisi is still
relevant and influential today. For instance, while stochastic

parameterizations are incorporated in more and more
operational weather and climate prediction models [13], there
is still a lot of research going on in this area, involving energy
consistent stochastic schemes [30,59,97,203–209,211] or the
systematic inclusion of memory terms [127,128,130,212].
Combined with complexity science, scaling and fractional
noise ideas are becoming more widespreadly used
[15,213,214,214–216].

Still an important issue, not only of fundamental interest but
also of practical importance, is climate sensitivity. The current
generation of Earth systemmodels has a higher climate sensitivity
than previous generations [217]. This high climate sensitivity is,
however, inconsistent with paleoclimate data [218]. Suggesting, a
problem pioneered using numerical models by Syukuro Manabe,
still is unsolved and implies large uncertainty about the future
evolution of the climate system. Further research is needed, to
reveal whether this uncertainty is intrinsic to the complex Earth
system with its many interlinked components or whether new
generations of models with improved process representation and
stochastic parameterizations will reduce this uncertainty.
Stochastic and complexity science methods will surely prove
essential in this task.

AUTHOR CONTRIBUTIONS

CF conceived the idea of this manuscript. All authors contributed
equally to the writing of the manuscript.

FUNDING

CF was supported by the Institute for Basic Science (IBS),
Republic of Korea, under IBS-R028-D1, and Pusan National
University Research Grant 2021.

ACKNOWLEDGMENTS

We thank two reviewers for their comments.

REFERENCES

1. NobelPrize.org. The Nobel Prize in Physics 2021. In: Tech. Rep. Cambridge,
MA, USA: Nobel Price (2021) (Accessed February 12, 2022).

2. NobelPrize.org. The Nobel Prize in Chemistry 1995. In: Tech. Rep.
Cambridge, MA, USA: Nobel Price (1995) (Accessed April 25, 2022).

3. NobelPrize.org. The Nobel Peace Prize 2007. In: Tech. Rep. Cambridge, MA,
USA: Nobel Price (2007) (Accessed April 25, 2022).

4. Masson-Delmotte V, Zhai P, Pirani A, Connors S, Péan C, Berger S, et al.
Climate Change 2021: The Physical Science Basis: Working Group I
Contribution to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge: Cambridge University Press (2021).

5. Pörtner H, Roberts D, Tignor M, Poloczanska E, Mintenbeck K, Alegría A,
et al. Climate Change 2022: Impacts, Adaptation, and Vulnerability.
Contribution of Working Group II to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, Vol. In Press. Cambridge:
Cambridge University Press (2022).

6. Bohémier KA. Analysis for Science Librarians of the 2021 Nobel Prize in Physics:
Climate, Spin Glass, and Complex Systems. Sci Technol Libraries (2022) 41:1–23.

7. Hasselmann K. On the Signal-To-Noise Problem in Atmospheric Response
Studies. In: D Shaw, editor. Meteorology of Tropical Oceans. London: Royal
Meteorological Society (1979). p. 251–9.

8. Hasselmann K. Optimal Fingerprints for the Detection of Time-dependent
Climate Change. J Clim (1993) 6:1957–71. doi:10.1175/1520-0442(1993)
006<1957:offtdo>2.0.co;2

9. Hasselmann K. On the Non-linear Energy Transfer in a Gravity-Wave
Spectrum Part 1. General Theory. J Fluid Mech (1962) 12:481–500. doi:10.
1017/s0022112062000373

10. Hasselmann K. Feynman Diagrams and Interaction Rules of Wave-Wave
Scattering Processes. Rev Geophys (1966) 4:1–32. doi:10.1029/
rg004i001p00001

11. Weber M, Barth V, Hasselmann K. A Multi-Actor Dynamic Integrated
Assessment Model (Madiam) of Induced Technological Change and
Sustainable Economic Growth. Ecol Econ (2005) 54:306–27. doi:10.1016/j.
ecolecon.2004.12.035

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 9315967

Franzke et al. Stochastic Methods

https://doi.org/10.1175/1520-0442(1993)006<1957:offtdo>2.0.co;2
https://doi.org/10.1175/1520-0442(1993)006<1957:offtdo>2.0.co;2
https://doi.org/10.1017/s0022112062000373
https://doi.org/10.1017/s0022112062000373
https://doi.org/10.1029/rg004i001p00001
https://doi.org/10.1029/rg004i001p00001
https://doi.org/10.1016/j.ecolecon.2004.12.035
https://doi.org/10.1016/j.ecolecon.2004.12.035
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


12. Hasselmann K. Stochastic Climate Models Part I. Theory. Tellus (1976) 28:
473–85. doi:10.3402/tellusa.v28i6.11316

13. Berner J, Achatz U, Batté L, Bengtsson L, Cámara Ad. l., Christensen HM,
et al. Stochastic Parameterization: Toward a New View of Weather and
Climate Models. Bull Amer Meteorol Soc (2017) 98:565–88. doi:10.1175/
bams-d-15-00268.1

14. Franzke CLE, O’Kane TJ, Berner J, Williams PD, Lucarini V. Stochastic
Climate Theory and Modeling. Wires Clim Change (2015) 6:63–78. doi:10.
1002/wcc.318

15. Franzke CLE, Barbosa S, Blender R, Fredriksen H-B, Laepple T, Lambert F,
et al. The Structure of Climate Variability across Scales. Rev Geophys (2021)
2021:e2019RG000657.

16. Lovejoy S, Schertzer D. The Weather and Climate: Emergent Laws and
Multifractal Cascades. Cambridge: Cambridge University Press (2013).

17. Benzi R, Paladin G, Parisi G, Vulpiani A. On the Multifractal Nature of Fully
Developed Turbulence and Chaotic Systems. J Phys A: Math Gen (1984) 17:
3521–31. doi:10.1088/0305-4470/17/18/021

18. Risken H. Fokker-planck Equation. Berlin, Germany: Springer (1984).
19. Majda AJ, Timofeyev I, Vanden Eijnden E. Models for Stochastic Climate

Prediction. Proc Natl Acad Sci U.S.A (1999) 96:14687–91. doi:10.1073/pnas.
96.26.14687

20. Gardiner CW. Stochastic Methods: A Handbook for the Natural and Social
Sciences, Vol. 4. Berlin, Germany: Springer Berlin (2009).

21. Majda AJ, Timofeyev I, Vanden Eijnden E. A Mathematical Framework for
Stochastic Climate Models. Comm Pure Appl Math (2001) 54:891–974.
doi:10.1002/cpa.1014

22. Majda AJ, Franzke C, Crommelin D (2009). Normal Forms for Reduced
Stochastic Climate Models. Proc Natl Acad Sci U.S.A 106, 3649–53. doi:10.
1073/pnas.0900173106

23. Majda AJ. Statistical Energy Conservation Principle for Inhomogeneous
Turbulent Dynamical Systems. Proc Natl Acad Sci U.S.A (2015) 112:
8937–41. doi:10.1073/pnas.1510465112

24. Peavoy D, Franzke CLE, Roberts GO. Systematic Physics Constrained
Parameter Estimation of Stochastic Differential Equations. Comput Stat
Data Anal (2015) 83:182–99. doi:10.1016/j.csda.2014.10.011

25. Majda A, Timofeyev I, Vanden-Eijnden E. A Priori tests of a Stochastic Mode
Reduction Strategy. Physica D: Nonlinear Phenomena (2002) 170:206–52.
doi:10.1016/s0167-2789(02)00578-x

26. Majda AJ, Timofeyev I, Vanden-Eijnden E. Systematic Strategies for
Stochastic Mode Reduction in Climate. J Atmos Sci (2003) 60:1705–22.
doi:10.1175/1520-0469(2003)060<1705:ssfsmr>2.0.co;2

27. Majda AJ, Franzke C, Khouider B. An Applied Mathematics Perspective on
Stochastic Modelling for Climate. Phil Trans R Soc A (2008) 366:2427–53.
doi:10.1098/rsta.2008.0012

28. Franzke C, Majda AJ, Vanden-Eijnden E. Low-order Stochastic Mode
Reduction for a Realistic Barotropic Model Climate. J Atmos Sci (2005)
62:1722–45. doi:10.1175/jas3438.1

29. Franzke C, Majda AJ. Low-order Stochastic Mode Reduction for a Prototype
Atmospheric GCM. J Atmos Sci (2006) 63:457–79. doi:10.1175/jas3633.1

30. Franzke CLE, Oliver M, Rademacher JDM, Badin G. Multi-scale Methods for
Geophysical Flows. In: A Iske C Eden, editors. Energy Transfers in
Atmosphere and Ocean. Berlin, Germany: Springer (2019). p. 1–51. doi:10.
1007/978-3-030-05704-6_1

31. Kurtz TG. A Limit Theorem for Perturbed Operator Semigroups with
Applications to Random Evolutions. J Funct Anal (1973) 12:55–67. doi:10.
1016/0022-1236(73)90089-x

32. Kurtz TG. Semigroups of Conditioned Shifts and Approximation of Markov
Processes. Ann Probab (1975) 1975:618–42. doi:10.1214/aop/1176996305

33. Papanicolaou GC, Kohler W. Asymptotic Theory of Mixing Stochastic
Ordinary Differential Equations. Commun Pure Appl Maths (1974) 27:
641–68.

34. Papanicolaou GC. Some Probabilistic Problems and Methods in Singular
Perturbations. Rocky Mountain J Maths (1976) 6. doi:10.1216/rmj-1976-6-
4-653

35. Pavliotis GA, Stuart A. Multiscale Methods: Averaging and Homogenization.
Berlin, Germany: Springer Science & Business Media (2008).

36. Monahan AH, Culina J. Stochastic Averaging of Idealized Climate Models.
J Clim (2011) 24:3068–88. doi:10.1175/2011jcli3641.1

37. Culina J, Kravtsov S, Monahan AH. Stochastic Parameterization Schemes for
Use in Realistic Climate Models. J Atmos Sci (2011) 68:284–99. doi:10.1175/
2010jas3509.1

38. Arnold L. Hasselmann’s Program Revisited: the Analysis of Stochasticity in
Deterministic Climate Models. In: Stochastic Climate Models. Berlin,
Germany: Springer (2001). p. 141–57. doi:10.1007/978-3-0348-8287-3_5

39. Frankignoul C, Hasselmann K. Stochastic Climate Models, Part II
Application to Sea-Surface Temperature Anomalies and Thermocline
Variability. Tellus (1977) 29:289–305. doi:10.3402/tellusa.v29i4.11362

40. Lemke P. Stochastic Climate Models, Part 3. Application to Zonally Averaged
Energy Models. Tellus (1977) 29:385–92. doi:10.3402/tellusa.v29i5.11371

41. Hasselmann K. Construction and Verification of Stochastic Climate Models.
In: Climatic Variations and Variability: Facts and Theories. Berlin, Germany:
Springer (1981). p. 481–97. doi:10.1007/978-94-009-8514-8_28

42. Lemke P, Trinkl EW, Hasselmann K. Stochastic Dynamic Analysis of Polar
Sea Ice Variability. J Phys Oceanogr (1980) 10:2100–20. doi:10.1175/1520-
0485(1980)010<2100:sdaops>2.0.co;2

43. Sura P, Sardeshmukh PD. A Global View of Air-Sea thermal Coupling and
Related Non-gaussian SST Variability. Atmos Res (2009) 94:140–9. doi:10.
1016/j.atmosres.2008.08.008

44. Buizza R, Milleer M, Palmer T. Stochastic Representation of Model
Uncertainties in the Ecmwf Ensemble Prediction System. Quart J R
Meteorol Soc (1999) 125:2887–908.

45. Shutts G. A Kinetic Energy Backscatter Algorithm for Use in Ensemble
Prediction Systems. Q.J.R Meteorol Soc (2005) 131:3079–102. doi:10.1256/qj.
04.106

46. Jung T, Palmer TN, Shutts GJ. Influence of a Stochastic Parameterization on
the Frequency of Occurrence of North pacificWeather Regimes in the Ecmwf
Model. Geophys Res Lett (2005) 32:L23811. doi:10.1029/2005GL024248

47. Berner J, Shutts GJ, Leutbecher M, Palmer TN. A Spectral Stochastic Kinetic
Energy Backscatter Scheme and its Impact on Flow-dependent Predictability
in the Ecmwf Ensemble Prediction System. J Atmos Sci (2009) 66:603–26.
doi:10.1175/2008jas2677.1

48. Hermanson L, Hoskins B, Palmer T. A Comparative Method to Evaluate and
Validate Stochastic Parametrizations. Q.J.R Meteorol Soc (2009) 135:
1095–103. doi:10.1002/qj.436

49. Dawson A, Palmer TN. Simulating Weather Regimes: Impact of Model
Resolution and Stochastic Parameterization. Clim Dyn (2015) 44:2177–93.
doi:10.1007/s00382-014-2238-x

50. Davini P, von Hardenberg J, Corti S, Christensen HM, Juricke S,
Subramanian A, et al. Climate Sphinx: Evaluating the Impact of
Resolution and Stochastic Physics Parameterisations in the Ec-Earth
Global Climate Model. Geosci Model Dev (2017) 10:1383–402. doi:10.
5194/gmd-10-1383-2017

51. Christensen HM,Moroz IM, Palmer TN. Stochastic and Perturbed Parameter
Representations of Model Uncertainty in Convection Parameterization*.
J Atmos Sci (2015) 72:2525–44. doi:10.1175/jas-d-14-0250.1

52. Tagle F, Berner J, Grigoriu MD, Mahowald NM, Samorodnitsky G.
Temperature Extremes in the Community Atmosphere Model with
Stochastic Parameterizations*. J Clim (2016) 29:241–58. doi:10.1175/jcli-d-
15-0314.1

53. Christensen HM, Lock SJ, Moroz IM, Palmer TN. Introducing Independent
Patterns into the Stochastically Perturbed Parametrization Tendencies
(SPPT) Scheme. Q.J.R Meteorol Soc (2017) 143:2168–81. doi:10.1002/qj.3075

54. Juricke S, Palmer TN, Zanna L. Stochastic Subgrid-Scale Ocean Mixing:
Impacts on Low-Frequency Variability. J Clim (2017) 30:4997–5019. doi:10.
1175/jcli-d-16-0539.1

55. Strommen K, Christensen HM, MacLeod D, Juricke S, Palmer T. Progress
towards a Probabilistic Earth System Model: Examining the Impact of
Stochasticity in Ec-Earth V3. 2. Geoscientific Model Develop (2019) 12.
doi:10.5194/gmd-12-3099-2019

56. Palmer TN. Stochastic Weather and Climate Models. Nat Rev Phys (2019) 1:
463–71. doi:10.1038/s42254-019-0062-2

57. Sakradzija M, Seifert A, Heus T. Fluctuations in a Quasi-Stationary Shallow
Cumulus Cloud Ensemble. Nonlin Process. Geophys (2015) 22:65–85. doi:10.
5194/npg-22-65-2015

58. Bengtsson L, Bao J-W, Pegion P, Penland C, Michelson S, Whitaker J. A
Model Framework for Stochastic Representation of Uncertainties Associated

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 9315968

Franzke et al. Stochastic Methods

https://doi.org/10.3402/tellusa.v28i6.11316
https://doi.org/10.1175/bams-d-15-00268.1
https://doi.org/10.1175/bams-d-15-00268.1
https://doi.org/10.1002/wcc.318
https://doi.org/10.1002/wcc.318
https://doi.org/10.1088/0305-4470/17/18/021
https://doi.org/10.1073/pnas.96.26.14687
https://doi.org/10.1073/pnas.96.26.14687
https://doi.org/10.1002/cpa.1014
https://doi.org/10.1073/pnas.0900173106
https://doi.org/10.1073/pnas.0900173106
https://doi.org/10.1073/pnas.1510465112
https://doi.org/10.1016/j.csda.2014.10.011
https://doi.org/10.1016/s0167-2789(02)00578-x
https://doi.org/10.1175/1520-0469(2003)060<1705:ssfsmr>2.0.co;2
https://doi.org/10.1098/rsta.2008.0012
https://doi.org/10.1175/jas3438.1
https://doi.org/10.1175/jas3633.1
https://doi.org/10.1007/978-3-030-05704-6_1
https://doi.org/10.1007/978-3-030-05704-6_1
https://doi.org/10.1016/0022-1236(73)90089-x
https://doi.org/10.1016/0022-1236(73)90089-x
https://doi.org/10.1214/aop/1176996305
https://doi.org/10.1216/rmj-1976-6-4-653
https://doi.org/10.1216/rmj-1976-6-4-653
https://doi.org/10.1175/2011jcli3641.1
https://doi.org/10.1175/2010jas3509.1
https://doi.org/10.1175/2010jas3509.1
https://doi.org/10.1007/978-3-0348-8287-3_5
https://doi.org/10.3402/tellusa.v29i4.11362
https://doi.org/10.3402/tellusa.v29i5.11371
https://doi.org/10.1007/978-94-009-8514-8_28
https://doi.org/10.1175/1520-0485(1980)010<2100:sdaops>2.0.co;2
https://doi.org/10.1175/1520-0485(1980)010<2100:sdaops>2.0.co;2
https://doi.org/10.1016/j.atmosres.2008.08.008
https://doi.org/10.1016/j.atmosres.2008.08.008
https://doi.org/10.1256/qj.04.106
https://doi.org/10.1256/qj.04.106
https://doi.org/10.1029/2005GL024248
https://doi.org/10.1175/2008jas2677.1
https://doi.org/10.1002/qj.436
https://doi.org/10.1007/s00382-014-2238-x
https://doi.org/10.5194/gmd-10-1383-2017
https://doi.org/10.5194/gmd-10-1383-2017
https://doi.org/10.1175/jas-d-14-0250.1
https://doi.org/10.1175/jcli-d-15-0314.1
https://doi.org/10.1175/jcli-d-15-0314.1
https://doi.org/10.1002/qj.3075
https://doi.org/10.1175/jcli-d-16-0539.1
https://doi.org/10.1175/jcli-d-16-0539.1
https://doi.org/10.5194/gmd-12-3099-2019
https://doi.org/10.1038/s42254-019-0062-2
https://doi.org/10.5194/npg-22-65-2015
https://doi.org/10.5194/npg-22-65-2015
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


with Physical Processes in NOAA’s Next Generation Global Prediction
System (NGGPS). Mon Wea Rev (2019) 147:893–911. doi:10.1175/mwr-d-
18-0238.1

59. Dwivedi S, Franzke CLE, Lunkeit F. Energetically Consistent Stochastic and
Deterministic Kinetic Energy Backscatter Schemes for Atmospheric Models.
Q J Roy Meteorol Soc (2019) 145:1–11. doi:10.1002/qj.3625

60. Kravtsov S, Kondrashov D, Ghil M. Multilevel Regression Modeling of
Nonlinear Processes: Derivation and Applications to Climatic Variability.
J Clim (2005) 18:4404–24. doi:10.1175/jcli3544.1

61. Kondrashov D, Kravtsov S, Ghil M. Empirical Mode Reduction in a Model of
Extratropical Low-Frequency Variability. J Atmos Sci (2006) 63:1859–77.
doi:10.1175/jas3719.1

62. Crommelin DT, Vanden-Eijnden E. Fitting Timeseries by Continuous-Time
Markov Chains: A Quadratic Programming Approach. J Comput Phys (2006)
217:782–805. doi:10.1016/j.jcp.2006.01.045

63. Crommelin D, Vanden-Eijnden E. Reconstruction of Diffusions Using
Spectral Data from Timeseries. Commun Math Sci (2006) 4:651–68.
doi:10.4310/cms.2006.v4.n3.a9

64. Crommelin D, Vanden-Eijnden E. Diffusion Estimation from Multiscale
Data by Operator Eigenpairs. Multiscale Model Simul (2011) 9:1588–623.
doi:10.1137/100795917

65. Crommelin D. Estimation of Space-dependent Diffusions and Potential
Landscapes from Non-equilibrium Data. J Stat Phys (2012) 149:220–33.
doi:10.1007/s10955-012-0597-4

66. Siegert S, Friedrich R, Peinke J. Analysis of Data Sets of Stochastic Systems.
Phys Lett A (1998) 243:275–80. doi:10.1016/s0375-9601(98)00283-7

67. Siegert S, Friedrich R. Modeling of Nonlinear Lévy Processes by Data
Analysis. Phys Rev E Stat Nonlin Soft Matter Phys (2001) 64:041107.
doi:10.1103/PhysRevE.64.041107

68. Berner J. Linking Nonlinearity and Non-gaussianity of Planetary Wave
Behavior by the Fokker-Planck Equation. J Atmos Sci (2005) 62:2098–117.
doi:10.1175/jas3468.1

69. Hasselmann K. PIPs and POPs: The Reduction of Complex Dynamical
Systems Using Principal Interaction and Oscillation Patterns. J Geophys
Res (1988) 93:11015–21. doi:10.1029/jd093id09p11015

70. Achatz U, Schmitz G, Greisiger K-M. Principal Interaction Patterns in
Baroclinic Wave Life Cycles. J Atmos Sci (1995) 52:3201–13. doi:10.1175/
1520-0469(1995)052<3201:pipibw>2.0.co;2

71. Achatz U, Schmitz G. On the Closure Problem in the Reduction of Complex
Atmospheric Models by Pips and Eofs: A Comparison for the Case of a Two-
Layer Model with Zonally Symmetric Forcing. J Atmos Sci (1997) 54:2452–74.
doi:10.1175/1520-0469(1997)054<2452:otcpit>2.0.co;2

72. Kwasniok F. The Reduction of Complex Dynamical Systems Using Principal
Interaction Patterns. Physica D: Nonlinear Phenomena (1996) 92:28–60.
doi:10.1016/0167-2789(95)00280-4

73. Kwasniok F. Empirical Low-Order Models of Barotropic Flow. J Atmos Sci
(2004) 61:235–45. doi:10.1175/1520-0469(2004)061<0235:elmobf>2.0.co;2

74. Kwasniok F. Reduced Atmospheric Models Using Dynamically Motivated
Basis Functions. J Atmos Sci (2007) 64:3452–74. doi:10.1175/jas4022.1

75. Crommelin DT, Majda AJ. Strategies for Model Reduction: Comparing
Different Optimal Bases. J Atmos Sci (2004) 61:2206–17. doi:10.1175/
1520-0469(2004)061<2206:sfmrcd>2.0.co;2

76. von Storch H, Bruns T, Fischer-Bruns I, Hasselmann K. Principal Oscillation
Pattern Analysis of the 30- to 60-day Oscillation in General Circulation
Model Equatorial Troposphere. J Geophys Res (1988) 93:11022–36. doi:10.
1029/jd093id09p11022

77. von Storch H, Xu J. Principal Oscillation Pattern Analysis of the 30- to 60-day
Oscillation in the Tropical Troposphere. Clim Dyn (1990) 4:175–90. doi:10.
1007/bf00209520

78. von Storch H, Baumhefner DP. Principal Oscillation Pattern Analysis of the
Tropical 30- to 60-day Oscillation. Clim Dyn (1991) 6:1–12. doi:10.1007/
bf00210577

79. Schnur R, Schmitz G, Grieger N, von Storch H. Normal Modes of the
Atmosphere as Estimated by Principal Oscillation Patterns and Derived from
Quasigeostrophic Theory. J Atmos Sci (1993) 50:2386–400. doi:10.1175/1520-
0469(1993)050<2386:nmotaa>2.0.co;2

80. Gehne M, Kleeman R, Trenberth KE. Irregularity and Decadal Variation in
Enso: A Simplified Model Based on Principal Oscillation Patterns. Clim Dyn
(2014) 43:3327–50. doi:10.1007/s00382-014-2108-6

81. Cash BA, Lee S. Observed Nonmodal Growth of the Pacific-North American
Teleconnection Pattern. J Clim (2001) 14:1017–28. doi:10.1175/1520-
0442(2001)014<1017:ongotp>2.0.co;2

82. Penland C. Random Forcing and Forecasting Using Principal Oscillation
Pattern Analysis. Mon Wea Rev (1989) 117:2165–85. doi:10.1175/1520-
0493(1989)117<2165:rfafup>2.0.co;2

83. Penland C, Magorian T. Prediction of Niño 3 Sea Surface Temperatures
Using Linear Inverse Modeling. J Clim (1993) 6:1067–76. doi:10.1175/1520-
0442(1993)006<1067:ponsst>2.0.co;2

84. Penland C, Sardeshmukh PD. The Optimal Growth of Tropical Sea Surface
Temperature Anomalies. J Clim (1995) 8:1999–2024. doi:10.1175/1520-
0442(1995)008<1999:togots>2.0.co;2

85. Penland C. A Stochastic Model of Indopacific Sea Surface Temperature
Anomalies. Physica D: Nonlinear Phenomena (1996) 98:534–58. doi:10.1016/
0167-2789(96)00124-8

86. Alexander MA, Matrosova L, Penland C, Scott JD, Chang P. Forecasting
pacific Ssts: Linear Inverse Model Predictions of the Pdo. J Clim (2008) 21:
385–402. doi:10.1175/2007jcli1849.1

87. Newman M, Sardeshmukh PD, Penland C. Stochastic Forcing of the
Wintertime Extratropical Flow. J Atmos Sci (1997) 54:435–55. doi:10.
1175/1520-0469(1997)054<0435:sfotwe>2.0.co;2

88. Lou J, O’Kane TJ, Holbrook NJ. A Linear Inverse Model of Tropical and
South pacific Climate Variability: Optimal Structure and Stochastic Forcing.
J Clim (2021) 34:143–55. doi:10.1175/JCLI-D-19-0964.1

89. Koopman BO. Hamiltonian Systems and Transformation in hilbert Space.
Proc Natl Acad Sci U.S.A (1931) 17:315–8. doi:10.1073/pnas.17.5.315

90. BudišićM, Mohr R, Mezić I. Applied Koopmanism. Chaos (2012) 22:047510.
91. H. Tu J, Rowley CW, W. Rowley C, M. Luchtenburg D, L. Brunton S, Nathan

Kutz J. On Dynamic Mode Decomposition: Theory and Applications.
J Comput Dyn (2014) 1:391–421. doi:10.3934/jcd.2014.1.391

92. Kutz JN, Brunton SL, Brunton BW, Proctor JL. Dynamic Mode
Decomposition. Philadelphia, PA: Society for Industrial and Applied
Mathematics (2016). doi:10.1137/1.9781611974508

93. Schmid PJ. Dynamic Mode Decomposition of Numerical and Experimental
Data. J Fluid Mech (2010) 656:5–28. doi:10.1017/S0022112010001217

94. Schmid PJ, Li L, Juniper MP, Pust O. Applications of the Dynamic Mode
Decomposition. Theor Comput Fluid Dyn (2011) 25:249–59. doi:10.1007/
s00162-010-0203-9

95. Kutz JN, Fu X, Brunton SL. Multiresolution Dynamic Mode Decomposition.
SIAM J Appl Dyn Syst (2016) 15:713–35. doi:10.1137/15m1023543

96. Gottwald GA, Gugole F. Detecting Regime Transitions in Time Series Using
Dynamic Mode Decomposition. J Stat Phys (2019) 2019:1–18. doi:10.1007/
s10955-019-02392-3

97. Gugole F, Franzke CL. Spatial Covariance Modeling for Stochastic Subgrid-
Scale Parameterizations Using Dynamic Mode Decomposition. J Adv Mod
Earth Sys (2020) 12:e2020MS002115. doi:10.1029/2020ms002115

98. Hasselmann K. Nonlinear Interactions Treated by theMethods of Theoretical
Physics (With Application to the Generation of Waves by Wind). Proc R Soc
Lond A (1967) 299:77–103. doi:10.1098/rspa.1967.0124

99. Phillips OM. On the Generation of Waves by Turbulent Wind. J Fluid Mech
(1957) 2:417–45. doi:10.1017/s0022112057000233

100. Phillips OM. The Scattering of Gravity Waves by Turbulence. J Fluid Mech
(1959) 5:177–92. doi:10.1017/s0022112059000143

101. Phillips OM. On the Dynamics of Unsteady Gravity Waves of Finite
Amplitude Part 1. The Elementary Interactions. J Fluid Mech (1960) 9:
193–217. doi:10.1017/s0022112060001043

102. Miles JW. On the Generation of Surface Waves by Shear Flows. J Fluid Mech
(1957) 3:185–204. doi:10.1017/s0022112057000567

103. Miles JW. On the Generation of Surface Waves by Turbulent Shear Flows.
J Fluid Mech (1960) 7:469–78. doi:10.1017/s0022112060000220

104. Gilchrist AWR. The Directional Spectrum of Ocean Waves: an Experimental
Investigation of Certain Predictions of the Miles-Phillips Theory of Wave
Generation. J Fluid Mech (1965) 25:795–816.

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 9315969

Franzke et al. Stochastic Methods

https://doi.org/10.1175/mwr-d-18-0238.1
https://doi.org/10.1175/mwr-d-18-0238.1
https://doi.org/10.1002/qj.3625
https://doi.org/10.1175/jcli3544.1
https://doi.org/10.1175/jas3719.1
https://doi.org/10.1016/j.jcp.2006.01.045
https://doi.org/10.4310/cms.2006.v4.n3.a9
https://doi.org/10.1137/100795917
https://doi.org/10.1007/s10955-012-0597-4
https://doi.org/10.1016/s0375-9601(98)00283-7
https://doi.org/10.1103/PhysRevE.64.041107
https://doi.org/10.1175/jas3468.1
https://doi.org/10.1029/jd093id09p11015
https://doi.org/10.1175/1520-0469(1995)052<3201:pipibw>2.0.co;2
https://doi.org/10.1175/1520-0469(1995)052<3201:pipibw>2.0.co;2
https://doi.org/10.1175/1520-0469(1997)054<2452:otcpit>2.0.co;2
https://doi.org/10.1016/0167-2789(95)00280-4
https://doi.org/10.1175/1520-0469(2004)061<0235:elmobf>2.0.co;2
https://doi.org/10.1175/jas4022.1
https://doi.org/10.1175/1520-0469(2004)061<2206:sfmrcd>2.0.co;2
https://doi.org/10.1175/1520-0469(2004)061<2206:sfmrcd>2.0.co;2
https://doi.org/10.1029/jd093id09p11022
https://doi.org/10.1029/jd093id09p11022
https://doi.org/10.1007/bf00209520
https://doi.org/10.1007/bf00209520
https://doi.org/10.1007/bf00210577
https://doi.org/10.1007/bf00210577
https://doi.org/10.1175/1520-0469(1993)050<2386:nmotaa>2.0.co;2
https://doi.org/10.1175/1520-0469(1993)050<2386:nmotaa>2.0.co;2
https://doi.org/10.1007/s00382-014-2108-6
https://doi.org/10.1175/1520-0442(2001)014<1017:ongotp>2.0.co;2
https://doi.org/10.1175/1520-0442(2001)014<1017:ongotp>2.0.co;2
https://doi.org/10.1175/1520-0493(1989)117<2165:rfafup>2.0.co;2
https://doi.org/10.1175/1520-0493(1989)117<2165:rfafup>2.0.co;2
https://doi.org/10.1175/1520-0442(1993)006<1067:ponsst>2.0.co;2
https://doi.org/10.1175/1520-0442(1993)006<1067:ponsst>2.0.co;2
https://doi.org/10.1175/1520-0442(1995)008<1999:togots>2.0.co;2
https://doi.org/10.1175/1520-0442(1995)008<1999:togots>2.0.co;2
https://doi.org/10.1016/0167-2789(96)00124-8
https://doi.org/10.1016/0167-2789(96)00124-8
https://doi.org/10.1175/2007jcli1849.1
https://doi.org/10.1175/1520-0469(1997)054<0435:sfotwe>2.0.co;2
https://doi.org/10.1175/1520-0469(1997)054<0435:sfotwe>2.0.co;2
https://doi.org/10.1175/JCLI-D-19-0964.1
https://doi.org/10.1073/pnas.17.5.315
https://doi.org/10.3934/jcd.2014.1.391
https://doi.org/10.1137/1.9781611974508
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1007/s00162-010-0203-9
https://doi.org/10.1007/s00162-010-0203-9
https://doi.org/10.1137/15m1023543
https://doi.org/10.1007/s10955-019-02392-3
https://doi.org/10.1007/s10955-019-02392-3
https://doi.org/10.1029/2020ms002115
https://doi.org/10.1098/rspa.1967.0124
https://doi.org/10.1017/s0022112057000233
https://doi.org/10.1017/s0022112059000143
https://doi.org/10.1017/s0022112060001043
https://doi.org/10.1017/s0022112057000567
https://doi.org/10.1017/s0022112060000220
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


105. Olbers DJ. Nonlinear Energy Transfer and the Energy Balance of the Internal
Wave Field in the Deep Ocean. J Fluid Mech (1976) 74:375–99. doi:10.1017/
s0022112076001857

106. Frederiksen JS. Interactions of Nonlinear Internal Gravity Waves and
Turbulence. Ann Geophysicae (1984) 2:421–32.

107. Finnigan JJ. Kinetic Energy Transfer between Internal Gravity Waves and
Turbulence. J Atmos Sci (1988) 45:486–505. doi:10.1175/1520-0469(1988)
045<0486:ketbig>2.0.co;2

108. Carnevale GF, Frederiksen Jr. S. A Statistical Dynamical Theory of Strongly
Nonlinear Internal Gravity Waves. Geophys Astrophysical Fluid Dyn (1983)
23:175–207. doi:10.1080/03091928308209042

109. Frederiksen JS, O’Kane TJ. Markovian Inhomogeneous Closures for Rossby
Waves and Turbulence over Topography. J Fluid Mech (2019) 858:45–70.
doi:10.1017/jfm.2018.784

110. Kraichnan RH. The Structure of Isotropic Turbulence at Very High reynolds
Numbers. J Fluid Mech (1959) 5:497–543. doi:10.1017/s0022112059000362

111. McComb WD. A Local Energy-Transfer Theory of Isotropic Turbulence.
J Phys A: Math Nucl Gen (1974) 7:632–49. doi:10.1088/0305-4470/7/5/013

112. Holloway G, Hendershott MC. Stochastic Closure for Nonlinear Rossby
Waves. J Fluid Mech (1977) 82:747–65. doi:10.1017/s0022112077000962

113. Carnevale GF, Martin PC. Field Theoretical Techniques in Statistical Fluid
Dynamics: With Application to Nonlinear Wave Dynamics. Geophys
Astrophysical Fluid Dyn (1982) 20:131–63. doi:10.1080/03091928208209002

114. Newell AC, Rumpf B. Wave Turbulence. Annu Rev Fluid Mech (2011) 43:
59–78. doi:10.1146/annurev-fluid-122109-160807

115. Sagaut P, Cambon C. Homogeneous Turbulence Dynamics. Berlin, Germany:
Springer Nature (2018). doi:10.1007/978-3-319-73162-9

116. Kraichnan RH. Decay of Isotropic Turbulence in the Direct-Interaction
Approximation. Phys Fluids (1964) 7:1030–48. doi:10.1063/1.1711319

117. Wyld HW. Formulation of the Theory of Turbulence in an Incompressible
Fluid. Ann Phys (1961) 14:143–65. doi:10.1016/0003-4916(61)90056-2

118. Lee LL. A Formulation of the Theory of Isotropic Hydromagnetic Turbulence
in an Incompressible Fluid. Ann Phys (1965) 32:292–321. doi:10.1016/0003-
4916(65)90019-9

119. Herring JR. Self-consistent-field Approach to Turbulence Theory. Phys Fluids
(1965) 8:2219–25. doi:10.1063/1.1761185

120. Herring JR. Self-consistent-field Approach to Nonstationary Turbulence.
Phys Fluids (1966) 9:2106–10. doi:10.1063/1.1761579

121. Martin PC, Siggia ED, Rose HA. Statistical Dynamics of Classical Systems.
Phys Rev A (1973) 8:423–37. doi:10.1103/physreva.8.423

122. Phythian R. The Operator Formalism of Classical Statistical Dynamics. J Phys
A: Math Gen (1975) 8:1423–32. doi:10.1088/0305-4470/8/9/011

123. Jensen RV. Functional Integral Approach to Classical Statistical Dynamics.
J Stat Phys (1981) 25:183–210. doi:10.1007/bf01022182

124. Okane TJ, Frederiksen JS. The Qdia and Regularized Qdia Closures for
Inhomogeneous Turbulence over Topography. J Fluid Mech (2004) 504:
133–65. doi:10.1017/S0022112004007980

125. Frederiksen JS, O’Kane TJ. Inhomogeneous Closure and Statistical Mechanics
for Rossby Wave Turbulence over Topography. J Fluid Mech (2005) 539:
137–65. doi:10.1017/S0022112005005562

126. Frederiksen JS. Subgrid-scale Parameterizations of Eddy-Topographic Force,
Eddy Viscosity, and Stochastic Backscatter for Flow over Topography.
J Atmos Sci (1999) 56:1481–94. doi:10.1175/1520-0469(1999)056<1481:
sspoet>2.0.co;2

127. O’Kane TJ, Frederiksen JS. Statistical Dynamical Subgrid-Scale
Parameterizations for Geophysical Flows. Phys Scr (2008) T132:014033.
doi:10.1088/0031-8949/2008/T132/014033

128. Zidikheri MJ, Frederiksen JS. Stochastic Subgrid-Scale Modelling for Non-
equilibriumGeophysical Flows. Phil Trans R Soc A (2010) 368:145–60. doi:10.
1098/rsta.2009.0192

129. Frederiksen JS, Kitsios V, O’Kane TJ, Zidikheri MJ. Stochastic Subgrid
Modelling for Geophysical and Three-Dimensional Turbulence. In:
CLE Franzke T O’Kane, editors. Nonlinear and Stochastic Climate
Dynamics. Cambridge: Cambridge University Press (2017). p. 241–75.

130. Kitsios V, Frederiksen JS. Subgrid Parameterizations of the Eddy-Eddy, Eddy-
Mean Field, Eddy-Topographic, Mean Field-Mean Field, and Mean Field-
Topographic Interactions in Atmospheric Models. J Atmos Sci (2019) 76:
457–77. doi:10.1175/jas-d-18-0255.1

131. Zhou Y. Turbulence Theories and Statistical Closure Approaches. Phys Rep
(2021) 935:1–117. doi:10.1016/j.physrep.2021.07.001

132. Frisch U, Parisi G (1985). Turbulence and Predictability of Geophysical Flows
and Climate Dynamics. In Proceedings of the International School of Physics
“Enrico Fermi,” Course LXXXVIII; Varenna. p. 1983.

133. Frisch U. In: N Ghil, R Benzi, G Parisi, editors. Turbulence and Predictability
of Geophysical Flows and Climate Dynamics, Varenna Summer School
LXXXVIII (1983).

134. Lovejoy S, Schertzer D. The Weather and Climate: Emergent Laws and
Multifractal Cascades. Cambridge: Cambridge University Press (2018).

135. Roşu IA, Cazacu MM, Ghenadi AS, Bibire L, Agop M. On a Multifractal
Approach of Turbulent Atmosphere Dynamics. Front Earth Sci (2020) 8:216.

136. Venugopal V, Basu S, Foufoula-Georgiou E. A New Metric for Comparing
Precipitation Patterns with an Application to Ensemble Forecasts. J Geophys
Res Atmospheres (2005) 110. doi:10.1029/2004jd005395

137. Lovejoy S. Scaling Fluctuation Analysis and Statistical Hypothesis Testing of
Anthropogenic Warming. Clim Dyn (2014) 42:2339–51. doi:10.1007/s00382-
014-2128-2

138. Castellani T, Cavagna A. Spin-glass Theory for Pedestrians. J Stat Mech
(2005) 2005:P05012. doi:10.1088/1742-5468/2005/05/p05012

139. Kurchan J, Parisi G, Virasoro MA. Barriers and Metastable States as Saddle
Points in the Replica Approach. J Phys France (1993) 3:1819–38. doi:10.1051/
jp1:1993217

140. Parisi G. Order Parameter for Spin-Glasses. Phys Rev Lett (1983) 50:1946–8.
doi:10.1103/physrevlett.50.1946

141. Parisi G. On the Replica Approach to Glasses. arXiv preprint cond-mat/
9701068 (1997).

142. Mézard M, Parisi G, Sourlas N, Toulouse G, Virasoro M. Nature of the Spin-
Glass Phase. Phys Rev Lett (1984) 52:1156.

143. Pleimling M, Schmittmann B, Zia RKP. Convection Cells Induced by
Spontaneous Symmetry Breaking. Europhys Lett (2010) 89:50001. doi:10.
1209/0295-5075/89/50001

144. Ma Y-P, Sudakov I, Strong C, Golden KM. Ising Model for Melt Ponds on
Arctic Sea Ice. New J Phys (2019) 21:063029. doi:10.1088/1367-2630/ab26db

145. Khouider B. A Coarse Grained Stochastic Multi-type Particle Interacting
Model for Tropical Convection: Nearest Neighbour Interactions. Commun
Math Sci (2014) 12:1379–407. doi:10.4310/cms.2014.v12.n8.a1

146. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP. A Neoproterozoic
Snowball Earth. Science (1998) 281:1342–6. doi:10.1126/science.281.5381.
1342

147. Lucarini V, Bódai T. Transitions across Melancholia States in a Climate
Model: Reconciling the Deterministic and Stochastic Points of View. Phys Rev
Lett (2019) 122:158701. doi:10.1103/physrevlett.122.158701

148. Lucarini V, Fraedrich K, Lunkeit F. Thermodynamic Analysis of Snowball
Earth Hysteresis experiment: Efficiency, Entropy Production and
Irreversibility. Q.J.R Meteorol Soc (2010) 136:2–11. doi:10.1002/qj.543

149. Cheng X, Wallace JM. Cluster Analysis of the Northern Hemisphere
Wintertime 500-hpa Height Field: Spatial Patterns. J Atmos Sci (1993) 50:
2674–96. doi:10.1175/1520-0469(1993)050<2674:caotnh>2.0.co;2

150. Kimoto M, Ghil M. Multiple Flow Regimes in the Northern Hemisphere
winter. Part I: Methodology and Hemispheric Regimes. J Atmos Sci (1993) 50:
2625. doi:10.1175/1520-0469(1993)050<2625:mfritn>2.0.co;2

151. Ghil M, Robertson AW. "Waves" vs. "particles" in the Atmosphere’s Phase
Space: A Pathway to Long-Range Forecasting? Proc Natl Acad Sci U.S.A
(2002) 99:2493–500. doi:10.1073/pnas.012580899

152. Majda AJ, Franzke CL, Fischer A, Crommelin DT. Distinct Metastable
Atmospheric Regimes Despite Nearly Gaussian Statistics: A Paradigm
Model. Proc Natl Acad Sci U.S.A (2006) 103:8309–14. doi:10.1073/pnas.
0602641103

153. Horenko I. On the Identification of Nonstationary Factor Models and Their
Application to Atmospheric Data Analysis. J Atmos Sci (2010) 67:1559–74.
doi:10.1175/2010jas3271.1

154. Franzke C, Crommelin D, Fischer A, Majda AJ. A Hidden Markov Model
Perspective on Regimes and Metastability in Atmospheric Flows. J Clim
(2008) 21:1740–57. doi:10.1175/2007jcli1751.1

155. Franzke C, Horenko I, Majda AJ, Klein R. Systematic Metastable
Atmospheric Regime Identification in an Agcm. J Atmos Sci (2009) 66:
1997–2012. doi:10.1175/2009jas2939.1

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 93159610

Franzke et al. Stochastic Methods

https://doi.org/10.1017/s0022112076001857
https://doi.org/10.1017/s0022112076001857
https://doi.org/10.1175/1520-0469(1988)045<0486:ketbig>2.0.co;2
https://doi.org/10.1175/1520-0469(1988)045<0486:ketbig>2.0.co;2
https://doi.org/10.1080/03091928308209042
https://doi.org/10.1017/jfm.2018.784
https://doi.org/10.1017/s0022112059000362
https://doi.org/10.1088/0305-4470/7/5/013
https://doi.org/10.1017/s0022112077000962
https://doi.org/10.1080/03091928208209002
https://doi.org/10.1146/annurev-fluid-122109-160807
https://doi.org/10.1007/978-3-319-73162-9
https://doi.org/10.1063/1.1711319
https://doi.org/10.1016/0003-4916(61)90056-2
https://doi.org/10.1016/0003-4916(65)90019-9
https://doi.org/10.1016/0003-4916(65)90019-9
https://doi.org/10.1063/1.1761185
https://doi.org/10.1063/1.1761579
https://doi.org/10.1103/physreva.8.423
https://doi.org/10.1088/0305-4470/8/9/011
https://doi.org/10.1007/bf01022182
https://doi.org/10.1017/S0022112004007980
https://doi.org/10.1017/S0022112005005562
https://doi.org/10.1175/1520-0469(1999)056<1481:sspoet>2.0.co;2
https://doi.org/10.1175/1520-0469(1999)056<1481:sspoet>2.0.co;2
https://doi.org/10.1088/0031-8949/2008/T132/014033
https://doi.org/10.1098/rsta.2009.0192
https://doi.org/10.1098/rsta.2009.0192
https://doi.org/10.1175/jas-d-18-0255.1
https://doi.org/10.1016/j.physrep.2021.07.001
https://doi.org/10.1029/2004jd005395
https://doi.org/10.1007/s00382-014-2128-2
https://doi.org/10.1007/s00382-014-2128-2
https://doi.org/10.1088/1742-5468/2005/05/p05012
https://doi.org/10.1051/jp1:1993217
https://doi.org/10.1051/jp1:1993217
https://doi.org/10.1103/physrevlett.50.1946
https://doi.org/10.1209/0295-5075/89/50001
https://doi.org/10.1209/0295-5075/89/50001
https://doi.org/10.1088/1367-2630/ab26db
https://doi.org/10.4310/cms.2014.v12.n8.a1
https://doi.org/10.1126/science.281.5381.1342
https://doi.org/10.1126/science.281.5381.1342
https://doi.org/10.1103/physrevlett.122.158701
https://doi.org/10.1002/qj.543
https://doi.org/10.1175/1520-0469(1993)050<2674:caotnh>2.0.co;2
https://doi.org/10.1175/1520-0469(1993)050<2625:mfritn>2.0.co;2
https://doi.org/10.1073/pnas.012580899
https://doi.org/10.1073/pnas.0602641103
https://doi.org/10.1073/pnas.0602641103
https://doi.org/10.1175/2010jas3271.1
https://doi.org/10.1175/2007jcli1751.1
https://doi.org/10.1175/2009jas2939.1
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


156. Risbey JS, O’Kane TJ, Monselesan DP, Franzke C, Horenko I. Metastability of
Northern Hemisphere Teleconnection Modes. J Atmos Sci (2015) 72:35–54.
doi:10.1175/jas-d-14-0020.1

157. Hannachi A, Straus DM, Franzke CLE, Corti S, Woollings T. Low-frequency
Nonlinearity and Regime Behavior in the Northern Hemisphere Extratropical
Atmosphere. Rev Geophys (2017) 55:199–234. doi:10.1002/2015RG000509

158. O’Kane TJ, Risbey JS, Franzke CLE, Horenko I, Monselesan D. Changes in the
Metastability of the Midlatitude Southern Hemisphere Circulation and the
Utility of Nonstationary Cluster Analysis and Split-Flow Blocking Indices as
Diagnostic Tools. J Atmos Sci (2013) 70:824–42.

159. Quinn CR, O’Kane TJ, Harries D. Dynamical Analysis of a Reduced Model
for the north atlantic Oscillation. J Atmos Sci (2021) 78:1647–71. doi:10.1175/
jas-d-20-0282.1

160. Quinn C, O’Kane TJ, Harries D. Systematic Calculation of Finite-TimeMixed
Singular Vectors and Characterization of Error Growth for Persistent
Coherent Atmospheric Disturbances over Eurasia. Chaos (2022) 32:
023126. doi:10.1063/5.0066150

161. Milankovitch M. Mathematische klimalehre und astronomische theorie der
klimaschwankungen. Handbuch der Klimatologie (1930) 1.

162. Sutera A. On Stochastic Perturbation and Long-Term Climate Behaviour. Q
J R Meteorol Soc (1981) 107:137–51.

163. Budyko MI. The Effect of Solar Radiation Variations on the Climate of the
Earth. Tellus (1969) 21:611–9. doi:10.3402/tellusa.v21i5.10109

164. Sellers WD. A Global Climatic Model Based on the Energy Balance of the
Earth-Atmosphere System. J Appl Meteorol (1969) 8:392–400. doi:10.1175/
1520-0450(1969)008<0392:agcmbo>2.0.co;2

165. Nicolis C, Nicolis G. Stochastic Aspects of Climatic Transitions-Additive
Fluctuations. Tellus (1981) 33:225–34. doi:10.3402/tellusa.v33i3.10710

166. Benzi R, Sutera A, Vulpiani A. The Mechanism of Stochastic Resonance.
J Phys A: Math Gen (1981) 14:L453–L457. doi:10.1088/0305-4470/14/11/006

167. Benzi R, Parisi G, Sutera A, Vulpiani A. Stochastic Resonance in Climatic
Change. Tellus (1982) 34:10–6. doi:10.1111/j.2153-3490.1982.tb01787.x

168. Bhattacharya K, Ghil M. An Energy-Balance Model with Multiply-Periodic
and Quasi-Chaotic Free Oscillations. In: Evolution of planetary atmospheres
and climatology of the earth; International Conference (1979).

169. Bhattacharya K, Ghil M, Vulis IL. Internal Variability of an Energy-Balance
Model with Delayed Albedo Effects. J Atmos Sci (1982) 39:1747–73. doi:10.
1175/1520-0469(1982)039<1747:ivoaeb>2.0.co;2

170. Benzi R. Stochastic Resonance: from Climate to Biology. Nonlin Process.
Geophys (2010) 17:431–41. doi:10.5194/npg-17-431-2010

171. Benzi R. Flow Reversal in a Simple Dynamical Model of Turbulence. Phys Rev
Lett (2005) 95:024502. doi:10.1103/PhysRevLett.95.024502

172. Gammaitoni L, Hänggi P, Jung P, Marchesoni F. Stochastic Resonance. Rev
Mod Phys (1998) 70:223–87. doi:10.1103/revmodphys.70.223

173. Ganopolski A, Rahmstorf S. Abrupt Glacial Climate Changes Due to
Stochastic Resonance. Phys Rev Lett (2002) 88:038501. doi:10.1103/
PhysRevLett.88.038501

174. Crucifix M. Oscillators and Relaxation Phenomena in Pleistocene
Climate Theory. Phil Trans R Soc A (2012) 370:1140–65. doi:10.1098/
rsta.2011.0315

175. Timmermann A, Gildor H, Schulz M, Tziperman E. Coherent Resonant
Millennial-Scale Climate Oscillations Triggered by Massive Meltwater Pulses.
J Clim (2003) 16:2569–85. doi:10.1175/1520-0442(2003)016<2569:crmcot>2.0.co;2

176. Braun H, Ganopolski A, Christl M, Chialvo DR. A Simple Conceptual Model
of Abrupt Glacial Climate Events. Nonlin Process. Geophys (2007) 14:709–21.
doi:10.5194/npg-14-709-2007

177. Braun H, Kurths J. Were Dansgaard-Oeschger Events Forced by the Sun? Eur
Phys J Spec Top (2010) 191:117–29. doi:10.1140/epjst/e2010-01345-5

178. Ragone F, Wouters J, Bouchet F. Computation of Extreme Heat Waves in
Climate Models Using a Large Deviation Algorithm. Proc Natl Acad Sci U.S.A
(2018) 115:24–9. doi:10.1073/pnas.1712645115

179. [Dataset] De Domenico M, Vulpiani A. Understanding Climate and
Turbulence: The Mark of Giorgio Parisi (2021). Available from: https://
www.nature.com/articles/d43978-021-00128-0 (Accessed April 22, 2022).

180. Manabe S. Climate and the Ocean Circulation 1. Mon Wea Rev (1969) 97:
739–74. doi:10.1175/1520-0493(1969)097<0739:catoc>2.3.co;2

181. Manabe S. Climate and the Ocean Circulation. Mon Wea Rev (1969) 97:
775–805. doi:10.1175/1520-0493(1969)097<0775:catoc>2.3.co;2

182. Manabe S, Wetherald RT. Thermal Equilibrium of the Atmosphere with a
Given Distribution of Relative Humidity. J Atmos Sci (1967) 24:241–59.
doi:10.1175/1520-0469(1967)024<0241:teotaw>2.0.co;2

183. Roe GH, Baker MB. Why Is Climate Sensitivity So Unpredictable? Science
(2007) 318:629–32. doi:10.1126/science.1144735

184. Sherwood SC, Webb MJ, Annan JD, Armour KC, Forster PM, Hargreaves JC,
et al. An Assessment of Earth’s Climate Sensitivity Using Multiple Lines of
Evidence. Rev Geophys (2020) 58:e2019RG000678. doi:10.1029/2019RG000678

185. Meehl GA, Senior CA, Eyring V, Flato G, Lamarque JF, Stouffer RJ, et al.
Context for Interpreting Equilibrium Climate Sensitivity and Transient
Climate Response from the Cmip6 Earth System Models. Sci Adv (2020)
6:eaba1981. doi:10.1126/sciadv.aba1981

186. Nijsse FJMM, Cox PM, Williamson MS. Emergent Constraints on Transient
Climate Response (Tcr) and Equilibrium Climate Sensitivity (Ecs) from
Historical Warming in Cmip5 and Cmip6 Models. Earth Syst Dynam
(2020) 11:737–50. doi:10.5194/esd-11-737-2020

187. Nordhaus WD. Estimates of the Social Cost of Carbon: Background and
Results from the RICE-2011 Model. In: Tech. Rep. Cambridge, MA, USA:
National Bureau of Economic Research (2011). doi:10.3386/w17540

188. Petschel-Held G, Schellnhuber H-J, Bruckner T, Tóth FL, Hasselmann K. The
TolerableWindows Approach: Theoretical andMethodological Foundations.
Climatic Change (1999) 41:303–31. doi:10.1023/a:1005487123751

189. Czupryna M, Franzke CLE, Hokamp S, Scheffran J. An Agent-Based
Approach to Integrated Assessment Modelling of Climate Change. J Artif
Soc. Soc Simu. (2020) 23:1–7. doi:10.18564/jasss.4325

190. Waldhoff S, Anthoff D, Rose S, Tol RS. The Marginal Damage Costs of
Different Greenhouse Gases: An Application of Fund. Economics (2014) 8:1.
doi:10.5018/economics-ejournal.ja.2014-31

191. WeitzmanML. OnModeling and Interpreting the Economics of Catastrophic
Climate Change. Rev Econ Stat (2009) 91:1–19. doi:10.1162/rest.91.1.1

192. Dietz S, van der Ploeg F, Rezai A, Venmans F. Are Economists Getting
Climate Dynamics Right and Does it Matter? J Assoc Environ Resource
Economists (2021) 8:895–921. doi:10.1086/713977

193. Manabe S, Stouffer RJ. Sensitivity of a Global Climate Model to an Increase of
CO2concentration in the Atmosphere. J Geophys Res (1980) 85:5529–54.
doi:10.1029/jc085ic10p05529

194. Manabe S, Stouffer RJ, Spelman MJ, Bryan K. Transient Responses of a
Coupled Ocean-Atmosphere Model to Gradual Changes of Atmospheric
CO2. Part I. Annual Mean Response. J Clim (1991) 4:785–818. doi:10.1175/
1520-0442(1991)004<0785:troaco>2.0.co;2

195. Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S. Simulated Response of
the Ocean Carbon Cycle to Anthropogenic Climate Warming. Nature (1998)
393:245–9. doi:10.1038/30455

196. Manabe S, Stouffer RJ. Simulation of Abrupt Climate Change Induced by
Freshwater Input to the north atlantic Ocean. Nature (1995) 378:165–7.
doi:10.1038/378165a0

197. Manabe S, Broccoli AJ. The Influence of continental Ice Sheets on the Climate
of an Ice Age. J Geophys Res (1985) 90:2167–90. doi:10.1029/
jd090id01p02167

198. Manabe S, Stouffer RJ. Study of Abrupt Climate Change by a Coupled Ocean-
Atmosphere Model. Quat Sci Rev (2000) 19:285–99. doi:10.1016/s0277-
3791(99)00066-9

199. Broecker WS. Abrupt Climate Change: Causal Constraints provided by the
Paleoclimate Record. Earth-Science Rev (2000) 51:137–54. doi:10.1016/
s0012-8252(00)00019-2

200. Lenton TM, Schellnhuber HJ. Tipping the Scales. Nat Clim Change (2007) 1:
97–8. doi:10.1038/climate.2007.65

201. Boers N. Observation-based Early-Warning Signals for a Collapse of the
atlantic Meridional Overturning Circulation. Nat Clim Chang (2021) 11:
680–8. doi:10.1038/s41558-021-01097-4

202. European Commission. Destination Earth. Tech Rep (2021). Available from:
https://digital-strategy.ec.europa.eu/en/policies/destination-earth (Accessed
04 17, 2022).

203. Holm DD. Variational Principles for Stochastic Fluid Dynamics. Proc R Soc A
(2015) 471:20140963. doi:10.1098/rspa.2014.0963

204. Cotter C, Crisan D, Holm DD, Pan W, Shevchenko I. Numerically Modeling
Stochastic Lie Transport in Fluid Dynamics. Multiscale Model Simul (2019)
17:192–232. doi:10.1137/18m1167929

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 93159611

Franzke et al. Stochastic Methods

https://doi.org/10.1175/jas-d-14-0020.1
https://doi.org/10.1002/2015RG000509
https://doi.org/10.1175/jas-d-20-0282.1
https://doi.org/10.1175/jas-d-20-0282.1
https://doi.org/10.1063/5.0066150
https://doi.org/10.3402/tellusa.v21i5.10109
https://doi.org/10.1175/1520-0450(1969)008<0392:agcmbo>2.0.co;2
https://doi.org/10.1175/1520-0450(1969)008<0392:agcmbo>2.0.co;2
https://doi.org/10.3402/tellusa.v33i3.10710
https://doi.org/10.1088/0305-4470/14/11/006
https://doi.org/10.1111/j.2153-3490.1982.tb01787.x
https://doi.org/10.1175/1520-0469(1982)039<1747:ivoaeb>2.0.co;2
https://doi.org/10.1175/1520-0469(1982)039<1747:ivoaeb>2.0.co;2
https://doi.org/10.5194/npg-17-431-2010
https://doi.org/10.1103/PhysRevLett.95.024502
https://doi.org/10.1103/revmodphys.70.223
https://doi.org/10.1103/PhysRevLett.88.038501
https://doi.org/10.1103/PhysRevLett.88.038501
https://doi.org/10.1098/rsta.2011.0315
https://doi.org/10.1098/rsta.2011.0315
https://doi.org/10.1175/1520-0442(2003)016<2569:crmcot>2.0.co;2
https://doi.org/10.5194/npg-14-709-2007
https://doi.org/10.1140/epjst/e2010-01345-5
https://doi.org/10.1073/pnas.1712645115
https://www.nature.com/articles/d43978-021-00128-0
https://www.nature.com/articles/d43978-021-00128-0
https://doi.org/10.1175/1520-0493(1969)097<0739:catoc>2.3.co;2
https://doi.org/10.1175/1520-0493(1969)097<0775:catoc>2.3.co;2
https://doi.org/10.1175/1520-0469(1967)024<0241:teotaw>2.0.co;2
https://doi.org/10.1126/science.1144735
https://doi.org/10.1029/2019RG000678
https://doi.org/10.1126/sciadv.aba1981
https://doi.org/10.5194/esd-11-737-2020
https://doi.org/10.3386/w17540
https://doi.org/10.1023/a:1005487123751
https://doi.org/10.18564/jasss.4325
https://doi.org/10.5018/economics-ejournal.ja.2014-31
https://doi.org/10.1162/rest.91.1.1
https://doi.org/10.1086/713977
https://doi.org/10.1029/jc085ic10p05529
https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2
https://doi.org/10.1175/1520-0442(1991)004<0785:troaco>2.0.co;2
https://doi.org/10.1038/30455
https://doi.org/10.1038/378165a0
https://doi.org/10.1029/jd090id01p02167
https://doi.org/10.1029/jd090id01p02167
https://doi.org/10.1016/s0277-3791(99)00066-9
https://doi.org/10.1016/s0277-3791(99)00066-9
https://doi.org/10.1016/s0012-8252(00)00019-2
https://doi.org/10.1016/s0012-8252(00)00019-2
https://doi.org/10.1038/climate.2007.65
https://doi.org/10.1038/s41558-021-01097-4
https://digital-strategy.ec.europa.eu/en/policies/destination-earth
https://doi.org/10.1098/rspa.2014.0963
https://doi.org/10.1137/18m1167929
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


205. Mémin E. Fluid Flow Dynamics under Location Uncertainty. Geophys
Astrophysical Fluid Dyn (2014) 108:119–46.

206. Resseguier V, Mémin E, Chapron B. Geophysical Flows under Location
Uncertainty, Part I Random Transport and General Models. Geophys
Astrophysical Fluid Dyn (2017) 111:149–76. doi:10.1080/03091929.2017.
1310210

207. Jansen MF, Held IM. Parameterizing Subgrid-Scale Eddy Effects Using
Energetically Consistent Backscatter. Ocean Model (2014) 80:36–48.
doi:10.1016/j.ocemod.2014.06.002

208. Jansen MF, Held IM, Adcroft A, Hallberg R. Energy Budget-Based
Backscatter in an Eddy Permitting Primitive Equation Model. Ocean
Model (2015) 94:15–26. doi:10.1016/j.ocemod.2015.07.015

209. Zurita-Gotor P, Held IM, Jansen MF. Kinetic Energy-Conserving
Hyperdiffusion Can Improve Low Resolution Atmospheric Models. J Adv
Model Earth Syst (2015) 7:1117–35. doi:10.1002/2015ms000480

210. Gugole F, Franzke CLE. Numerical Development and Evaluation of an
Energy Conserving Conceptual Stochastic Climate Model. Math Clim
Wea Forecast (2019) 5:45–64. doi:10.1515/mcwf-2019-0004

211. Frank JE, Gottwald GA. Stochastic Homogenization for an Energy
Conserving Multi-Scale Toy Model of the Atmosphere. Physica D:
Nonlinear Phenomena (2013) 254:46–56. doi:10.1016/j.physd.2013.03.010

212. Gottwald G, Crommelin D, Franzke CLE. Stochastic Climate Theory. In:
CLE Franzke T O’Kane, editors. Nonlinear and Stochastic Climate Dynamics.
Cambridge: Cambridge University Press (2017). p. 209–40.

213. Franzke CLE, Graves T,Watkins NW, Gramacy RB, Hughes C. Robustness of
Estimators of Long-Range Dependence and Self-Similarity under Non-
gaussianity. Phil Trans R Soc A (2012) 370:1250–67. doi:10.1098/rsta.2011.
0349

214. Penland C, Ewald BD. On Modelling Physical Systems with Stochastic
Models: Diffusion versus Lévy Processes. Phil Trans R Soc A (2008) 366:
2455–74. doi:10.1098/rsta.2008.0051

215. Penland C, Sardeshmukh PD. Alternative Interpretations of Power-Law
Distributions Found in Nature. Chaos (2012) 22:023119. doi:10.1063/1.
4706504

216. Thompson WF, Kuske RA, Monahan AH. Stochastic Averaging of
Dynamical Systems with Multiple Time Scales Forced with $\alpha$-
Stable Noise. Multiscale Model Simul (2015) 13:1194–223. doi:10.1137/
140990632

217. Zelinka MD, Myers TA, McCoy DT, Po-Chedley S, Caldwell PM, Ceppi P,
et al. Causes of Higher Climate Sensitivity in Cmip6Models. Geophys Res Lett
(2020) 47:e2019GL085782. doi:10.1029/2019gl085782

218. Zhu J, Poulsen CJ, Otto-Bliesner BL. High Climate Sensitivity in Cmip6
Model Not Supported by Paleoclimate. Nat Clim Chang (2020) 10:378–9.
doi:10.1038/s41558-020-0764-6

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Franzke, Blender, O’Kane and Lembo. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 93159612

Franzke et al. Stochastic Methods

https://doi.org/10.1080/03091929.2017.1310210
https://doi.org/10.1080/03091929.2017.1310210
https://doi.org/10.1016/j.ocemod.2014.06.002
https://doi.org/10.1016/j.ocemod.2015.07.015
https://doi.org/10.1002/2015ms000480
https://doi.org/10.1515/mcwf-2019-0004
https://doi.org/10.1016/j.physd.2013.03.010
https://doi.org/10.1098/rsta.2011.0349
https://doi.org/10.1098/rsta.2011.0349
https://doi.org/10.1098/rsta.2008.0051
https://doi.org/10.1063/1.4706504
https://doi.org/10.1063/1.4706504
https://doi.org/10.1137/140990632
https://doi.org/10.1137/140990632
https://doi.org/10.1029/2019gl085782
https://doi.org/10.1038/s41558-020-0764-6
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Stochastic Methods and Complexity Science in Climate Research and Modeling
	1 Introduction
	2 The Development of Stochastic Climate Models and Random Wave Field Methods
	3 Complexity Science and Stochastic Resonance
	3.1 Spin Glasses: Disorder and Fluctuations
	3.2 Stochastic Resonance

	4 Starting the March Towards a Digital Twin of Earth
	5 Discussion
	Author Contributions
	Funding
	Acknowledgments
	References


