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Abstract: Edible jellyfish are a traditional Southeast Asian food, usually prepared as a rehydrated
product using a salt and alum mixture, whereas they are uncommon in Western Countries and
considered as a novel food in Europe. Here, a recently developed, new approach for jellyfish
processing and stabilization with calcium salt brining was upgraded by modifying the pre-treatment
step of freshly caught jellyfish and successfully applied to several edible species. Treated jellyfish
obtained by the application of the optimized version of this method respected both quality and
safety parameters set by EU law, including no pathogenic microorganisms, absence or negligible
levels of histamine and of total volatile basic nitrogen, no heavy metals; and the total bacterial, yeast,
and mold counts were either negligible or undetectable. Jellyfish treated by the presented method
exhibited unique protein content, amino acid and fatty acid profiles, antioxidant activity, and texture.
The optimized method, initially set up on Rhiszostoma pulmo, was also successfully applied to other
edible jellyfish species (such as Cotylorhiza tuberculata, Phyllorhiza punctata, and Rhopilema nomadica)
present in the Mediterranean Sea. This study discloses an innovative process for the preparation of
jellyfish-based food products for potential future distribution in Europe.

Keywords: jellyfish; novel food; safety; quality; nutritional traits; organic calcium salts

1. Introduction
Jellyfish (JF) are mainly available and consumed as food in Asian countries. However,

their use in food preparation has recently spread widely worldwide in the form of ready-
to-use products, also attributed to the availability on internet market channels [1,2]. In
recent years, JF food products have also become more popular in Western Countries [3],
possibly due to an increase in JF populations related to environmental factors, such as rising
temperatures, marine pollution, oxygen depletion, and a reduction of marine predator
populations [4].

Jellyfish blooms and the invasive behavior of some species make them a good candi-
date for potential resources for food and other applications [5–7].

JF for human consumption are generally prepared by separating the umbrella from
the oral arms and washing them extensively in order to eliminate mucus, gonads, sand,
and superficial microorganisms. Then, these highly perishable JF tissues are treated with

Foods 2022, 11, 2697. https://doi.org/10.3390/foods11172697 https://www.mdpi.com/journal/foods



Foods 2022, 11, 2697 2 of 20

mixtures of NaCl and aluminum salts (alum) [1,8] in order to stabilize them, thus extending
their shelf life, reducing any microbial issues, and promoting the expected organoleptic
characteristics and texture so highly appreciated by Eastern people. In Asia, although
ancient recipes and empirical procedures are still followed [9], new methods still based
on the use of alum have been developed [1], since Eastern cuisines pay high attention to
product texture and taste. However, the traditionally preserved JF products available on
the market contain high levels of aluminum, which is strongly bound to the tissue [10] and
cannot be eliminated through the usual washes applied before consumption.

The research on new JF stabilization procedures and treatments for food uses is recently
moving to limit the use of alum, due to its toxicity [11,12], and to obtain semi-finished and
finished products closer to Western Countries’ style and expectations. Pedersen et al. [13]
reported the possible substitution of alum with other tanning salts, such as iron salts, with a
mechanism similar to a tanning process. In addition, the same authors produced alum-free
crisps by soaking the jellyfish in ethanol and drying it afterward.

At present, JF is a novel food in Europe [14] and is limited by several issues, such
as the (i) very high aluminum content of Asian traditionally preserved JF products and
(ii) lack of safe stabilization methods for treating and processing JF tissues according
to EU safety standards. Consequently, the development of a new, safe, and validated
technology for processing JF could encourage regulatory authorities to approve the use
and commercialization of edible JF species.

In our previous work, we proposed new parameters for the risk assessment of JF
as food in Europe [15]. They were newly identified and applied to JF and JF-derived
products not already included in the European regulation on seafood safety [16,17]. More
recently, we proposed a new procedure [18] to process JF raw materials using calcium salts,
which were selected from the food additives allowed in several Western Countries (the EU,
Australia, USA, and New Zealand). It was observed that calcium salts were able to work as
firming and stabilizing agents for JF biomasses, thus opening the opportunity to prepare
safe semi-finished products suitable for subsequent food applications. Bleve et al. [18] set
up the procedure under controlled conditions, thus demonstrating the microbiological
safety of the method.

In this paper, the above-mentioned method was further optimized by modifying the
JF pre-treatment step and including washes with sterile seawater; furthermore, the whole
procedure was validated by using several JF species with different characteristics. Two
different strategies are described here in order to substitute the use of sterile seawater for
JF washing, with this step being quite challenging and not applicable on an industrial
scale. Additionally, JF treated with calcium salts were tested for safety and quality aspects—
the treated tissues were analyzed for protein, fatty acids, amino acids, element content,
and antioxidant activity. The process efficacy was initially tested on the model species
Rhizostoma pulmo and successively verified on three other potentially edible JF species
(Cothyloriza tuberculata, Phylloriza punctata, and Rophilema nomadica). A comparison of the JF
treated with the optimized processing method proposed here with JF prepared with the
traditional Asian methods was also carried out.

2. Materials and Methods
2.1. Sample Collection and Pre-Treatment

Rhizostoma pulmo, Macrì 1778 (Cnidaria, Scyphozoa, Rhizostomatidiae) specimens
were hand-collected from a motorboat in the Ionian Sea (Ginosa Marina, Italy 40�24037.500 N
16�53004.200 E) using a nylon landing net (3.5 cm mesh size) during samplings in the 2019–
2020 summer period and processed by either of the two procedures described below.

In the absence of specific slaughter guidelines for cnidarians [19], the traditional
method used in Asian Countries to kill the jellyfish [1] was applied to R. pulmo specimens
by cutting the oral arms from the umbrella and removing the gastric content. For Cotylorhiza
tuberculata, Phyllorhiza punctata, and Rhopilema nomadica samples, also sampled during the
2019–2020 summer period, whole JF were immediately frozen at �40 �C. At least 5 different
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specimens from each species were used; for Rhizostoma pulmo, randomized sampling was
conducted as in Leone et al. [20].

All the procedures followed in this study are summarized in the scheme reported in
Figure 1.
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Figure 1. Diagram illustrating the procedure of the JF treatment procedures.

Procedure 1 (JF-B). JF oral arms were separated from the umbrellas, immersed in
refrigerated seawater, and transported to the laboratory (max 3–6 h). At the laboratory,
jellyfish parts were extensively washed for 3–5 min in drinking water.

Procedure 2 (JF-DW). Whole JF were immersed in refrigerated seawater immediately
after capture and transported to the laboratory (max 3–6 h). At the laboratory, the jellyfish
were immersed in drinking water, the umbrellas were separated from the oral arms, and
these parts were extensively washed for 3–5 min.

Following both procedures, the umbrellas and oral arms were placed in sterile food-
grade plastic bags and stored at �80 �C or immediately treated in the newly formulated
brines with a firming agent.
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Procedure 2 (JF-DW) was also applied to Cotylorhiza tuberculata samples harvested
from the Gulf of Trieste (northern Adriatic Sea, Slovenia) and the Ionian Sea (Italy), and
to Rhopilema nomadica and Phyllorhiza punctata harvested from the Eastern Mediterranean
(Israeli coastal waters), frozen at �40 �C, and shipped on dry ice to Italy. Frozen material
was thawed overnight on ice and then extensively washed with drinking water.

Aliquots of all untreated and treated JF samples (see below) were freeze-dried in order
to analyze the elemental, lipid, and amino acid compositions or immediately frozen to
evaluate the protein content and antioxidant activity. A commercial product, jellyfish stored
in brine, from Japan (Salt-Alum Jp) was also analyzed and used for comparison.

2.2. Microbiological Analyses of Pre-Treated Jellyfish
Ten grams from each JF sample were added to 90 mL of buffered peptone water

(Biolife Italiana, Milano, Italy) as a diluent (1:10). For total bacterial counts (TBCs), samples
were diluted and plated by the pour plate technique on plate count agar (PCA) (Biolife
Italiana, Milano, Italy) at pH 7.0 and incubated at 30 �C for 72 h; the enumeration of yeast
and molds was performed by incubation at 25 �C for 5 days on dichloran Rose–Bengal
chloramphenicol agar (DRBC, Thermo Fisher Scientific, Monza, Italy). The presence of
Enterobacteriaceae, Escherichia coli, Salmonella enteritidis, Coagulase-positive staphylococci,
Staphylococcus aureus, Vibrio spp. (V. cholerae, fluvialis, parahemolyticus, and vulnificus),
Bacillus spp. (B. cereus, turigensis, megaterium, and subtilis), Shewanella putrefacens, Aereomonas
hydrophila, and Pseudomonas fluorescens was assessed following the procedure described by
Bleve et al. [18].

For the determination of halophilic microorganisms, JF samples were homogenized
with a sterilized blender, and 25 g of each sample was added to peptone seawater 0.1%
(w/v peptone) and artificial seawater. All samples and their respective serial dilutions were
plated in different media dissolved in artificial seawater as described by Bleve et al. [15,18].
For each plate, the number of colony-forming units (CFU) per gram of JF was determined.

The JF samples were also submitted to an accredited external laboratory for indepen-
dent analyses (Laboratori Artas Società Cooperativa, Poggiardo, Lecce, Italy). Ten grams of
each JF sample were added to 90 mL of buffered peptone water (Biolife Italiana, Milano,
Italy) as a diluent (1:10) and homogenized for 2 min in a Stomacher in accordance with
specific standard methods for the total bacterial count (UNI EN ISO 4833-1:2013), coliforms
(ISO 4832:2006), �-glucuronidase-positive Escherichia coli (ISO 16649-2:2001), coagulase-
positive staphylococci (UNI EN ISO 6888-2:1999), and yeast and molds (ISO 21527-1:2008,
ISO 21527-2:2008). For the detection of the pathogenic bacteria Salmonella spp. (UNI EN ISO
6579-1:2017) and Listeria monocytogenes (ISO 11290-1:2017), 25 g of jellyfish samples were
suspended in 225 mL of buffered peptone water (Biolife Italiana, Milano, Italy) and Fraser
broth at half concentration (Biomerieux, Marcy l’Etoile, France), respectively, as diluents.

2.3. Jellyfish Treatment in Brine
Solutions of calcium citrate and calcium lactate were prepared using 0.1 M calcium-

citrate solution or 0.1 M calcium–lactate hydrate solution and adjusted to pH 5.0 by using
the corresponding alpha organic acids, 1 M citric acid or 1 M lactic acid 85% (v/v), all from
Sigma-Aldrich (Darmstadt, Germany). These concentrations were arbitrarily chosen and
tested for JF stabilization treatment, as already previously described by Bleve et al. [18].

In order to determine these treatment conditions, JF tissue samples were soaked in
calcium salt brines at different pH values ranging from 3 to 6 for 10 days. A starting brine
pH value of 5 was determined as the best compromise, obtained after the evaluation of the
effects produced by calcium salts on JF tissue’s traits, such as texture and appearance, and
safety aspects. More acidic pH values (<5) exerted undesirable effects on JF consistency by
damaging (attacking and corroding) the tissue (data not shown).

Pre-treated jellyfish (umbrella and oral arms washed for 3–5 min in drinking water,
JF-B, or JF-DW) were immersed in brines at a 1:1 ratio (v/v, JF tissue:brine) in food-grade
glass or plastic containers. These technological phases were arbitrarily transferred from the
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conditions generally used for vegetable stabilization treatment and directly tested for the
first time for their possible adaptation to JF tissues. The containers were stored at 4 �C for
5 days and then JF tissues (umbrella and oral arms) were removed, washed with drinking
water to eliminate excess salts, sealed in food-grade plastic bags, and stored at �80 �C for
further tests. Aliquots of each sample were also freeze-dried and stored.

2.4. JF Treatment with NaCl and Aluminum Salt
R. pulmo specimens were also processed by the traditional Asian method [21,22] using

salt and alum (Salt–Alum JF-DW). Briefly, R. pulmo umbrellas were separated from the oral
arms and extensively washed for 3–5 min with drinking water. The washed umbrellas
were covered with a salt mix containing 90% (w/w) NaCl and 10% KAl(SO4)2·12H2O
(alum) (w/w) (Cruciani Prodotti Crual, Roma, Italy) using about 100 g of salt–alum mix
per 1 kg of JF biomass and incubated at 4 �C in a food-grade glass container. After 4 days,
brines released from the JF tissues were removed and the umbrellas were covered with a
salt mixture containing 92.5% (w/w) NaCl and 7.5% alum (w/w). After 4 days, the same
procedure was repeated, but the percentage of alum in the salt mix was reduced to 5%
(w/w) and finally to 2.5% (w/w). At the end of the process, the salted jellyfish samples
were left to dry on a draining rack at room temperature for 4 days, inverting them several
times to drain and remove excess water. The entire process took 20 days. Aliquots of each
sample were also lyophilized.

2.5. Physical–Chemical Analyses
The histamine concentration in the JF was determined according to the AOAC N�

021402 2014 method (HistaSure ELISA, LDN, Germany). The total volatile base nitrogen
(TVBN) was determined by treating each jellyfish sample (100 g) with 0.6 M perchloric
acid (Merck KGaA, Darmstadt, Germany). After alkalinization, the extract was exposed to
steam distillation and an acid receiver absorbed the volatile base components. The TVBN
concentration was determined by the titration of the absorbed bases [23].

For salinity and pH determination, 15 g of JF tissue was collected and stored at �80 �C
for further analysis. The texture was measured as described in Bleve et al. [18], using a
digital penetrometer (model 53205, TR Turoni, Srl Forlì, Italy). The penetration test was
performed using a three-bar probe (3 ⇥ 22 mm) for a total plunger area of 1.98 cm2 by
operating on samples consisting of radial triangular slices of the JF tissues. Firmness values
were reported as the means of three different measures, expressed in Newtons (N). All
analyses were carried out in triplicate.

2.6. Elemental Analyses
The elemental composition (Al, As, B, Ba, Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Na,

Ni, Pb, Sr, V, and Zn) of the JF samples was measured using inductively coupled plasma–
atomic emission spectroscopy (ICP-AES). Lyophilized JF samples were weighed and mixed
with 4 mL of H2O2 and 6 mL of super-pure HNO3 69%, digested at 180 �C for 10 min
using a microwave digestion system (START D, Milestone Srl, Sorisole (BG), Italy), cooled,
diluted with super pure water, and filtered through 0.45 µm syringe filters. A spectrometer
(Thermo Fisher Scientific, iCap 6000 Series, Monza, Italy) was previously calibrated for
quantitative analysis with five standard solutions containing known concentrations of
the elements (0.001, 0.01, 0.1, 0.5, and 1.0 mg/L). The calibration lines showed correla-
tion coefficients (r) greater than 0.99 for all the measured elements. The analysis results
were expressed as the average (+/� standard deviation of three different measurements)
element concentrations, expressed in ppm (mg/kg of sample weight). JF supernatants
obtained after the centrifugation of the JF samples were also analyzed, corresponding to
the lyophilized samples.
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2.7. Protein Content Determination
Jellyfish samples were homogenized in a blender and diluted in distilled water until

a homogeneous solution was obtained. The total protein content in each sample was
evaluated using the Bradford assay [24], set for an Infinite 200 PRO microplate reader
(TECAN, Männedorf, Switzerland) and using bovine serum albumin (BSA) as a standard.

2.8. Antioxidant Activity Determination
In the diluted JF samples (protein assays), the antioxidant activity (AA) was evaluated

using the Trolox Equivalent Antioxidant Capacity (TEAC) method based on the radical
cation ABTS•+ and Trolox as a standard. The assay was adapted for an Infinite 200 PRO
microplate reader (TECAN, Männedorf, Switzerland), and both samples and the standard
were assayed as described in De Domenico et al. [25]. The results were expressed in nmol
of Trolox equivalents per gram of JF fresh weight (nmol TE/g FW).

2.9. Lipid Extraction
Total lipids were extracted using a modified Bligh and Dyer method [26]: lyophilized

samples (200 mg) were mixed with 12 mL of a solution of chloroform:methanol (2:1) and
3 mL KCl (0.88%), shaken, and centrifuged at 5140⇥ g for 5 min. The lower phase was
set aside, and the upper phase was subjected to further extraction with one volume of a
solution of chloroform:methanol (2:1, v/v). After phase separation, the lower phase was
isolated and added to the first one, and mixed with one-quarter volume of a solution of
methanol:water (1:1, v/v). The lower phase was dried using nitrogen and analyzed for
lipid composition.

Fatty Acids Analysis
Fatty acid methyl esters (FAME) were obtained according to Leone et al. [27] using

boron trifluoride (BF3), as follows. The total lipid extract in hexane (200 µL) was saponified
at 90 �C for 20 min with 0.5 M KOH in methanol (3 mL) with a known quantity of internal
standard (methyl-tricosanoate). Fatty acids were methylated with 2 mL of BF3 in methanol
(14%), and the samples were evaporated under a stream of nitrogen and dissolved in 50 µL
of hexane, and 1 µL was analyzed by gas chromatography–mass spectrometry (GC-MS).
GC–MS analyses were performed using an AGILENT 5977E gas chromatograph (Agilent
Technologies, Santa Clara, CA, USA) on a VF-WAXms (60 m, 0.25 mm i.d., 0.25 mm film
thickness, Agilent) with the following parameters: the column temperature was maintained
at 160 �C for 1 min, programmed at 4 �C/min to 240 �C for 30 min. Helium was used as
a carrier gas at a constant flow rate of 1 mL/min. The mass spectrometer was operated
in the electron impact mode with a scan range of 50–700 m/z. The temperature of the
MS source and quadrupole were set at 230 �C and 150 �C, respectively. Analyses were
performed in the full-scan mode. Compounds were identified by comparing the retention
times of the chromatographic peaks with those of authentic standards (F.A.M.E. Mix C8-
C24, Sigma-Aldrich Corporation, St. Louis, MO, USA) analyzed under the same conditions.
The MS fragmentation patterns were compared with those of pure compounds, and a mass
spectrum database search was performed using the National Institute of Standards and
Technology (NIST) MS 98 spectral database.

2.10. Amino Acid Analysis
The amino acid profile in lyophilized samples was analyzed with an HPLC system (Ag-

ilent Infinity 1260, Agilent Technologies) coupled with an online post-column derivatization
module (Pinnacle PCX, Pickering Laboratories, Mountain View, CA, USA), using ninhydrin
(Trione) as a derivatizing reagent and a Na+ ion-exchange column (4.6 ⇥ 110 mm, 5 µm).
Eighteen standard amino acids, ammonia, and taurine were quantified from standard
curves measured with the amino acid standards. Prior to the analysis, the samples were
hydrolyzed in 6 M HCl containing 0.4% mercaptoethanol for 24 h at 110 �C (HCl hydroly-
sis). Glutamine and asparagine were converted to glutamic and aspartic acid, respectively.
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Cysteine (Cys) was quantified as cystin (Cys-Cys). The samples were filtered via a micro
filter, the pH was adjusted to 2.2, and the samples were further diluted with a citrate buffer
(pH 2.2) for HPLC analysis.

2.11. Statistical Analysis
All data presented are the means of three independent replicates (n = 3). Statistical

analysis was based on one-way analysis of variance. Tukey’s post hoc method was applied
to establish significant differences among the means (p < 0.05, p < 0.01 and p < 0.001). All
statistical comparisons were performed using Sigma-Stat, version 3.11 (Systat Software Inc.,
Chicago, IL, USA).

Statistical analyses on the protein content and antioxidant activity were performed in
Graphpad Prism 6.0 using an analysis of variance (ANOVA) followed by Dunnett’s multi-
ple comparison post hoc test to compare each treatment with the control, and Bonferroni’s
multiple comparison post hoc test to compare the samples with each other. Differences
were considered statistically significant for p values of < 0.05. All assays were replicated
(n = 3) and data were represented as the mean ± standard deviation (SD). Principal compo-
nent analysis (PCA) to compare important physical parameters and chemical compounds
associated with the samples was carried out using XLSTAT software (Addinsoft Inc., Long
Island City, NY, USA).

3. Results and Discussion
3.1. Safety Traits of Rhizostoma Pulmo JF Treated Samples

Two pre-treatment strategies are described here in order to set up an optimized
stabilization method for jellyfish intended for food use. In particular, in the first approach
(JF-B, procedure 1), jellyfish were immediately washed with refrigerated seawater just after
being harvested, and their umbrellas were promptly separated from their oral arms, an
operation that can be carried out on the freshly caught jellyfish directly on board. This
approach can greatly reduce the ashore disposal of possibly large quantities of JF by-
products, thus returning unused JF material directly to the sea. In the second approach
(JF-DW, procedure 2), whole JF were transported in chilled seawater to the laboratory,
where the use of drinking water was tested for washing JF after transport.

This study proposes the combination of washing with drinking water, a procedure
commonly used in the fishing industry, and subsequent treatment with calcium salts. It was
observed that this method helped to stabilize the JF tissues, to improve their texture and
nutraceutical traits, and to reduce undesired microorganisms in the processed JF products.
Moreover, this approach represents an optimization of the recently proposed method for
stabilizing and processing JF as food products for human consumption [18].

The main phases of the two procedures for JF preparation proposed in this study are
presented in Figure 1 from the starting material to the final products.

In both pre-treatments proposed in this article, JF samples were washed with drinking
water, although at different times. In the JF-B procedure, this washing step occurred after
cleaning, cutting, and storing the animals in seawater, and before placing them in calcium
salt solutions in the laboratory; in the JF-DW approach, instead, whole JF were firstly
transported to the laboratory in chilled seawater and were then immersed in drinking
water for the time necessary to wash and prepare the JF tissues before soaking them in
calcium salt solutions.

At the starting point, both JF-B and JF-DW pre-treatments ensured negligible lev-
els of JF-associated microorganisms, also in terms of halophilic microbes (Tables S1 and
S2). This evidence demonstrates a better ability of both JF-B and JF-DW pre-treatments
in reducing the initial JF microbial load compared with the seawater treatment (JF-SW)
used in Bleve et al. [18]. Moreover, the use of calcium lactate and calcium citrate brines
prevented the growth of potential pathogens (Vibrio spp., Salmonella spp., Listeria monocy-
togenes, and staphylococci) and spoiling microbial contaminants in both JF-B and JF-DW
(Tables S1 and S2). The latter evidence was verified by applying the accredited standard
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parameters established by the law in force for food safety and process hygiene criteria to the
Ca-Lactate and Ca-Citrate R. pulmo samples treated with both JF-B and JF-DW methods [15].
The approach with calcium salt brines had already been explored by Bleve et al. [18], where
calcium lactate E327 and calcium citrate E333 were successfully tested on the edible JF
species R. pulmo, being both included among the list of food additives and firming agents
permitted in the European Union, U.S.A., Australia, and New Zealand.

The total counts of staphylococci were acceptable and showed a similar trend in all JF
samples. Escherichia coli, coliforms, yeast, molds, and the pathogens Salmonella spp. and L.
monocytogenes were not detected in any of the tested samples treated with either the JF-B or
JF-DW methods (Table 1).

Table 1. Safety and quality parameters applied to JF-B (JF directly pre-treated on the boat) and JF-DW
(JF washed with drinking water). Samples were treated for 5 days with calcium citrate (Ca-Citrate) or
calcium lactate (Ca-Lactate) brines, following accredited conventional assays used for seafood and
fish-derived products (as already described by Bleve et al. [15]). The different letters in line indicate
significant differences between samples (p < 0.05).

Accredited Analysis

Ca-Citrate Ca-Lactate

JF-B JF-DW JF-B JF-DW

CFU/g CFU/g CFU/g CFU/g

Total bacteria <10 (a) 1.30 ⇥ 103 ± 1.23 ⇥ 101

(b) <10 (a) 3.70 ⇥ 102 ± 2.31 (c)

Coliforms <10 (a) <10 (a) <10 (a) <10 (a)
Escherichia coli <10 (a) <10 (a) <10 (a) <10 (a)
Staphylococci 1.60 ⇥ 102 ± 5.21 (a) 1.00 x 102 ± 7.25 (a) 1.00 ⇥ 102 ± 8.32 (a) 7.30 ⇥ 101 ± 6.15 (a)

Yeast and Molds <10 (a) <10(a) <10 (a) <10 (a)
presence/25 g presence/25 g presence/25 g presence/25 g

Salmonella spp. 0 (a) 0 (a) 0 (a) 0 (a)
Listeria

monocytogenes

0 (a) 0 (a) 0 (a) 0 (a)

mg/Kg mg/Kg mg/Kg mg/Kg
Histamine <3 (a) <3 (a) <3 (a) <3 (a)

mg/100 g mg/100 g mg/100 g mg/100 g
TBVN <0.1 (a) <0.1 (a) 2.5 ± 0.1 (b) <0.1 (a)

Several other studies have reported the presence of both bacteria [28] and fungi
associated with JF tissues (body and mucus), which may present a risk to humans [15].

Histamine and TVNB were not detected in the tested JF samples (<3 mg/Kg and
<0.1 mg/100 g, respectively) (Table 1), thus indicating that there was no tissue degradation
and also confirming that the used procedure maintained the freshness of the JF raw material.

In order to compare this optimized process with the traditional Asian procedure,
a batch of R. pulmo was treated in parallel using mixtures of NaCl and alum for tissue
stabilization (Salt-Alum JF-DW) as described by Hsieh et al. [8] and Pedersen et al. [13].
The Salt-Alum JF-DW samples exhibited low counts of Bacillus spp. (4 ⇥ 101 CFU/g) and
discrete levels of halophilic bacteria (4.4–9.9 ⇥ 102 CFU/g) and yeasts (2 ⇥ 102–103 CFU/g),
although no microbial pathogens were detected (Table S3).

Additional tested parameters [15,18], including the total bacterial count, yeasts, En-
terobacteriaceae, Vibrio spp., coagulase-positive staphylococci, and Bacillus spp., indicated
that the Salt-Alum JF-DW samples were safe for consumption.

3.2. Chemical–Physical Characteristics of Treated R. pulmo Samples
The two proposed pre-treatments (JF-B and JF-DW) exerted different effects on the

texture, pH, and salinity of the obtained samples (Table 2).
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Table 2. Texture, pH, and salinity values of R. pulmo JF-B (JF directly pre-treated on the boat) and JF-
DW (JF washed with drinking water). JF samples were untreated and treated with brines containing
different calcium salts at 5 days of treatment (Ca-Citrate: calcium citrate; Ca-Lactate: calcium lactate),
and JF-DW was treated with salt–alum (obtained after 20 days at 4 �C and 2 days of air drying, as
described in the Material and Methods section).

Pre-Treatments
Treatments

Untreated Ca-Citrate Ca-Lactate Salt-Alum

Texture (N)
JF-B �74 ± 15 (a) �34 ± 11 (b) �53 ± 8 (b) n.d.

JF-DW �75 ± 10 (a) �137 ± 15 (b) �117 ± 5 (b) �43 ± 11(c)
Salinity (%)

JF-B 3.5 ± 0.1 (a) 2 ± 0.2 (b) 2.4 ± 0.1 (b) n.d.
JF-DW 3.5 ± 0.2 (a) 1.5 ± 0.3 (b) 1.8 ± 0.2 (b) 2.5 ± 0.1 (c)

pH
JF-B 7.1 ± 0.2 (a) 4.72 ± 0.2 (b) 7.06 ± 0.3 (a) n.d.

JF-DW 6.9 ± 0.3 (a) 5.2 ± 0.1 (b) 5.56 ± 0.4 (b) 3.65 ± 0.4 (c)
The different letters in line indicate significant differences between the samples (p < 0.05). N: Newton; n.d., not
determined.

The optimized calcium citrate and calcium lactate brine treatments exerted different
effects on the chemical–physical features of the JF tissues. The preliminary results reported
here showed that salt treatment in the JF-B samples reduced the tissue texture (in terms
of penetration force); moreover, salinity values of around 2% were measured and the
pH values were very different between the two calcium treatments (Table 2). In Ca-
Citrate and Ca-Lactate JF-DW samples instead, both brine preparations increased the tissue
texture, achieving values of 1.8 and 1.6-fold, respectively, higher than the untreated samples.
Additionally, these samples showed reduced salinity values and pH values equal to the
initial ones (Table 2). As a result, the JF-DW procedure was selected as the preferred
pre-treatment method for further experiments.

Lee et al. [29] already demonstrated the ability of calcium-based food additives (in-
cluding calcium acetate, calcium carbonate, calcium–casein, calcium chloride, calcium
citrate, calcium lactate, calcium sulfate, and calcium phosphate) to improve gelation and
polymerization, as occurs during the preparation of surimi from codfish. The increased
texture in both Ca-Citrate and Ca-Lactate JF-DW samples, in terms of higher penetration
force, can be considered a good index of quality, since those products became denser and
more manageable for the subsequent steps. However, Ca-Citrate and Ca-Lactate JF-DW
samples showed a gel-like consistency very different from the rubbery and elastic texture
of Salt-Alum JF-DW produced following the traditional Asian method. The pH was main-
tained at around 5 in the Ca-Citrate-treated JF-DW, whereas higher pH levels were obtained
in the Ca-Lactate samples. Although being higher than those of the Salt-Alum JF-DW sam-
ples, these pH values ensured the expected safety level requested for the semi-finished
product (as already shown in Table 1 and Table S1). The appearance of both semi-finished
products obtained either by the methods proposed here (Ca-Citrate and Ca-Lactate JF-DW)
and by Salt-Alum JF-DW are shown in Figure S1. The two JF-B and JF-DW pre-treatments
exerted opposite effects on the texture of the Ca-Citrate- and Ca-Lactate-treated samples in
comparison with the corresponding JF-SW samples [18]. In fact, the texture (in terms of
penetration force) increased in the JF-DW samples, whilst it decreased in the JF-B samples.
The latter evidence seems to indicate that prolonged exposure of JF tissues to drinking
water during the JF-B procedure could affect their structure. Regarding the pH values,
the JF-B samples showed values very close to those of JF-SW samples, thus evidencing a
significant difference with respect to the samples treated with either of the two calcium
salts [18]. Additionally, the JF-DW samples exhibited similar pH values, independent of
the calcium salts used for the treatment.
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3.3. Nutritional Analyses of Treated R. pulmo Samples
In order to characterize their nutritional values, the JF samples treated by different

procedures were analyzed to evaluate their protein content, amino acid composition,
antioxidant activity, lipid content, and fatty acids composition. The moisture contents
of the different JF samples were: 96.88 ± 1.12 g/100 g FW for the untreated R. pulmo
JF-DW, 97.85 ± 0.35 g/100 g FW for Ca-Citrate R. pulmo JF-DW, 97.6 ± 0.2 g/100 g FW for
Ca-Lactate R. pulmo JF-DW, 81.94 ± 0.56 g/100 g FW for Salt-Alum R. pulmo JF-DW, and
73 ± 0.61 g/100 g FW for Salt-Alum Jp. These data reveal that there were no statistically
significant differences existing between the untreated and Ca-Citrate and Ca-Lactate JF-
DW R. pulmo samples, whereas a substantial reduction in moisture was obtained in both
alum-treated JF samples, thus revealing a further difference between the final products
obtained by the two types of procedures. The different moisture contents were considered
during the analyses and comparisons of nutrient compounds.

3.3.1. Protein Content, Amino Acid Composition, and Antioxidant Activity
The R. pulmo tissues washed with drinking water only (JF-DW) contained 253.2 mg

protein per 100 g of fresh weight (FW) (Figure 2a). This value is comparable with the
protein content detected by Bleve et al. [18] in JF samples pre-treated with seawater, thus
demonstrating that the step of washing with drinking water did not affect the initial protein
content. Calcium salt treatment (Ca-Lactate JF-DW and Ca-Citrate JF-DW) significantly
reduced the protein content to 60% of the initial value in both samples (88 mg/100 g FW),
whereas the traditional salt–alum treatment (Salt-Alum JF-DW) did not affect the protein
content (272.9 mg/100 g FW). The commercial ready-to-eat jellyfish sample from Japan
(Salt-Alum Jp) contained 178.2 mg protein/100 g FW (Figure 2a), slightly lower than that of
the JF-DW and Salt-Alum JF-DW samples, but higher than those of the Ca-Lactate JF-DW
and Ca-Citrate JF-DW samples. This evidence suggests that washing with drinking water
followed by treatment with calcium salts treatment could lead to a loss of proteins in the
processed JF. On the contrary, JF washed with sea water (JF-SW) followed by a 5-day soaking
step with Ca-Citrate and Ca-Lactate did not show a significant loss in protein level [18]. This
result can be probably explained by a combination of two simultaneous events occurring
during the treatments: on one hand, the leakage of solubilized proteinaceous compounds
into the brines, and on the other hand, the release of small peptides [30] due to the local
denaturation of collagen, being highly susceptible to enzymatic proteolysis [31] under
these conditions.

The amino acid composition and content (calculated as the dry weight percentage
of lyophilized R. pulmo samples) were assayed in untreated JF, JF-DW, and in calcium
salts-treated JF (Ca-Citrate JF-DW and Ca-Lactate JF-DW). The total content of amino acids
increased from the untreated JF (6%) to the JF washed with drinking water (JF-DW) (9.2%),
Ca-Citrate JF-DW (15.4 ± 0.7%), and Ca-Lactate JF-DW (15.3 ± 0.8%) (Table S4). Washing in
drinking water and soaking in calcium salt solutions could also cause a leakage of soluble
non-proteinaceous components and increase the proteinaceous/amino acid percentage on
a dry-weight basis.

The percentages of the taurine, leucine, tyrosine, phenylalanine, and lysine amino
acids were higher in the fresh and untreated JF than in the treated JF samples. Increases
in the percentages of proline, hydroxyproline, and glycine were also observed in JF-DW
and the Ca-treated samples (Ca-Citrate JF-DW and Ca-Lactate JF-DW), with proline and
hydroxyproline being abundant in collagen [32], a protein that JF are rich in.
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Figure 2. (a) Protein content expressed in mg per 100 g of fresh weight (mg/100 g FW) and (b)
antioxidant activity expressed in nmol TE per gram of fresh weight (nmol TE/g FW) in differently
treated samples of R. pulmo jellyfish. JF-DW, R. pulmo washed with drinking water; Ca-Lactate JF-DW
and Ca-Citrate JF-DW, JF samples treated with calcium lactate or calcium citrate brines for 5 days,
respectively; Salt-Alum JF-DW, samples of R. pulmo JF-DW treated with salt and alum following
the traditional method; Salt-alum Jp, commercial ready-to-eat sample of JF produced in Japan by a
traditional alum-based method. Values are the means of three independent measurements ± standard
deviation. ANOVA statistical test followed by Dunnett’s multiple comparison post hoc test were
used to compare each treatment with the control (* p < 0.05 and *** p < 0.001).

Antioxidant activity (AA) was also evaluated in the same JF samples and expressed in
nanomoles of Trolox equivalent per gram of fresh weight (nmol TE/g FW, Figure 2b). Both
treatments with either calcium salts or the salt–alum treatment showed similar antioxidant
values to those found in JF-DW of approximately 200 nmol TE/g FW. This result indi-
cates that washing the JF with drinking water and successively soaking them in calcium
salt-based brines did not affect their antioxidant activity. Furthermore, JF-DW-pre-treated
samples showed antioxidant activity levels comparable to those obtained previously by
applying the JF-SW procedure [18]. These results could confirm that proteolytic events,
possibly due to the treatment, together with the release of small peptides [30], did not
affect the final antioxidant activity of the samples. Moreover, the pattern of those re-
leased small peptides may be different from those of the low-molecular-weight JF peptides
obtained by the controlled enzymatic hydrolysis of jellyfish collagen, as described by
De Domenico et al. [25].

It was also observed that the antioxidant activity in the commercial ready-to-eat
jellyfish (Salt-Alum Jp) was much higher than that in the treated R. pulmo JF-DW (Figure 2b).
This evidence could be related to several factors, such as the different JF species used in
the commercial product and its high dehydration level, or artificial antioxidants possibly
added as preservatives by the manufacturer.

3.3.2. Fatty Acids Composition
In JF-DW, saturated fatty acids (SFAs) accounted for about 50% of total fatty acids

(FA), followed by polyunsaturated fatty acids (PUFAs, about 45%) and a small amount of
mono-unsaturated fatty acids (MUFAs, 4.3% of the total FA) (Table 3). In R. pulmo samples,
there was an increase in the SFA percentage, from 50.4% (JF-DW) to 79.3 and 64.4% in
Ca-Citrate JF-DW and Ca-Lactate JF-DW, respectively. The SFA content in Salt-Alum JF-DW
R. pulmo was 81.3% and that in the commercial ready-to-eat jellyfish was 87%. Moreover,
Salt-Alum JF-DW and Salt-Alum Jp samples exhibited a more complex lipid profile, since
they contained several SFAs that were absent from JF-DW, such as nonadecanoic acid
(C19:0), arachidic acid (C20:0), behenic acid (C22:0), and lignoceric acid (C24:0). These
differences should be mainly due to the alum treatment of R. pulmo. The total MUFA
content generally increased in all treated JF samples compared with untreated JF-DW, thus
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indicating that the initial content of oleic acid (C18:1) was preserved, and also that iso-oleic
acid (C18:1 trans-10), palmitoleic acid (C16:1), and vaccenic acid (C18:1 cis-11) appeared.

Table 3. Fatty acid composition of R. pulmo JF samples. They were washed with drinking water
(JF-DW), treated with brines containing calcium salts (Ca-Citrate JF-DW and Ca-Lactate JF-DW), or
treated with the salt–alum method (Salt-Alum JF-DW); a commercial JF sample from Japan treated by
the salt–alum method (Salt-Alum Jp) was also tested. Fatty acid composition data are expressed as
the percentage of the total fatty acids ± SD.

Fatty Acids Composition (%)

Rhizostoma Pulmo Samples Commercial JF

JF-DW Ca-Citrate
JF-DW

Ca-Lactate
JF-DW

Salt-Alum
JF-DW Salt-Alum Jp

Saturated FA (SFA)
Myristic acid C14:0 4.0 ± 0.4 7.5 ± 0.8 7.2 ± 0.7 4.1 ± 0.4 2.6 ± 0.3

Pentadecanoic acid C15:0 —- —- —- 1.7 ± 0.2 —-
Palmitic acid C16:0 23.5 ± 2.5 34.9 ± 4.3 28.4 ± 0.3 35.4 ± 3.5 31.5 ± 3.1
Margaric acid C17:0 1.1 ± 0.2 1.3 ± 0.3 3.6 ± 0.1 4.8 ± 0.5 2.5 ± 0.3

Stearic acid C18:0 21.8 ± 2.1 35.6 ± 4.2 22.4 ± 2.3 32.9 ± 3.3 47.2 ± 4.8
Nonadecanoic acid C19:0 —- —- 2.8 ± 0.3 0.7 ± 0.1 0.6 ± 0.1

Arachidic acid C20:0 —- —- —- 1.1 ± 0.1 1.5 ± 0.1
Behenic acid C22:0 —- —- —- 0.3 ± 0.1 0.7 ± 0.1

Lignoceric acid C24:0 —- —- —- 0.3 ± 0.1 0.6 ± 0.1
Total SFA 50.4 ± 5.1 79.3 ± 0.8 64.4 ± 6.5 81.3 ± 8.2 87.1 ± 8.7

Monounsaturated FA
(MUFA)

Palmitoleic acid C16:1 (!7) —- 2.7± 0.3 4.5± 0.5 3.5 ± 0.4 2.9 ± 0.3
Oleic acid C18:1 (!9) 2.5 ± 2.1 2.0 ± 0.2 3.1 ± 0.3 1.4 ± 0.1 —-
Iso-oleic acid C18:1

trans-10 1.8 ± 0.2 —- 2.0 ± 0.2 —- 1.3 ± 0.1

Vaccenic acid C18:1 cis-11
(!7) —- 1.1 ± 0.1 —- 5.3 ± 0.5 3.8 ± 0.4

Trans-vaccenic acid C18:1
trans-13 —- —- —- 2.8 ± 0.3 —-

Paullinic acid C20:1 (!7) —- —- —- 0.5 ± 0.1 —-
Total MUFA 4.3 ± 0.5 5.8 ± 0.6 9.6 ± 0.1 13.9 ± 1.4 8.0 ± 0.8

Polyunsaturated FA
(PUFA)

Linoleic acid C18:2 (!6) —- —- 3.1 ± 0.5 2.0 ± 0.2 3.9 ± 0.4
Isolinoleic acid C18:2 trans

8.11 —- 3.9 ± 0.4 —- —- —-

Linolenic acid C18:3 (!3) —- —- 2.0 ± 0.2 —- —-
Stearidonic acid C18:4 (!3) —- —- 2.8 ± 0.3 —- —-

Eicosadienoic acid C20:2
(!6) —- —- —- —- —-

Arachidonic acid C20:4
(!6) 33.8 ± 3.4 3.6 ± 0.4 4.5 ± 0.1 2.0 ± 0.2 1.0 ± 0.1

Eicosapentaenoic acid
C20:5 (!3) 5.4 ± 0.4 4.0 ± 0.4 6.3 ± 0.6 0.4 ± 0.1 —-

Docosapentaenoic acid
C22:5 (!3) 2.1 ± 0.2 —- 1.0 ± 0.1 —- —-

Docosahexaenoic acid
C22:6 (!3) 4.1 ± 0.4 3.4 ± 0.3 6.3 ± 0.6 0.4 ± 0.1 —-

Total PUFA 45.4 ± 4.5 14.9 ± 1.5 26.0 ± 1.9 4.8 ± 0.5 4.9 ± 0.5
S!6 33.8 ± 3.4 3.6 ± 0.4 7.6 ± 0.6 4.0 ± 0.4 4.9 ± 0.5
S!3 11.6 ± 1.0 7.4 ± 0.7 18.4 ± 1.8 0.9 ± 0.2 —-

!6/!3 2.9 0.5 0.4 4.6 4.9
Total Lipids (%DW) 8.3 ± 0.9 13.2 ± 1.2 12.5 ± 1.3 6.3 ± 0.5 3.6 ± 0.4
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The increase in the saturated fatty acids content of all treated samples could be due to
lipid oxidation, which may lead to isomerization events and the production of new SFA
and PUFA species when lipid carbon chains break up and unsaturated FAs are converted
to SFAs [33].

The total PUFA content decreased after all the salt treatments. In the Ca-Lactate JF-DW
and Ca-Citrate JF-DW samples, the PUFA content decreased to 14.9% and 26%, respectively,
from the initial value of 45% in untreated JF-DW. Moreover, PUFAs were heavily reduced in
both Salt-Alum JF-DW and Salt-Alum Jp to 4.8 and 4.9%, respectively. However, despite the
decrease in quantity, the PUFA composition was still preserved in the calcium-salt-treated
JF. Linoleic (C18:2), linolenic (C18:3, ALA), and stearidonic (C18:4) acids were detected in
the calcium-treated samples, but not in the JF-DW, while the contents of other nutritionally
relevant FAs, such as arachidonic (C20:4), eicosapentaenoic (C20:5, EPA), docosapentaenoic
(C22:5, DPA), and docosahexaenoic (C22:6, DHA) acids, were maintained or increased.
Interestingly, the novel !3-PUFA stearidonic acid (C18:4) was detected in the Ca-Lactate
JF-DW sample. This FA species is the substrate for the conversion of alpha-linolenic acid
(ALA) into longer !3-PUFAs (EPA, DPA, and DHA) in humans, and it has attracted great
interest in recent years because it is obtained only from plants [34].

Overall, in comparison with the corresponding samples obtained by the same au-
thors following the JF-SW method [18], JF-DW pre-treatment in both calcium salt samples
exhibited increased values in terms of the total MUFA percentage. This effect was more
pronounced for the total PUFA percentages, where increases of 2.3- and 3.3-fold were ob-
tained for JF-DW Ca-citrate and Ca-lactate samples in comparison with the corresponding
JF-SW samples [18].

In addition, only the treatments with calcium salts yielded !6/!3 ratios less than 1
(0.4 and 0.5 for Ca-Citrate and Ca-Lactate JF-DW, respectively), which represents a healthy
composition, as suggested by the nutritional recommendations. The calcium salt-based
treatments increased the total lipids concentration in the samples and improved the ratio
of essential fatty acids (EFA) naturally present in the untreated material (!6/!3 = 2.9).
Conversely, the previous not-optimized method proposed by Bleve et al. [18] reported
!6/!3 ratios of 3.5 and 1.4 for JF-SW Ca-citrate and Ca-lactate treatments, respectively,
and 4.6 for JF-DW-Salt-Alum and 4.9 Salt-Alum Jp (traditional salt-alum-based treatment),
which are definitely well above the recommended ratio of !6/!3 < 1. Since dietary !3
PUFAs and a balanced !6/!3 ratio are needed for the maintenance of human health,
the combination of JF-DW and calcium salt treatment proposed here preserved these
compounds better than JF-SW and the traditional salt–alum methods. In addition, the
total lipid content increased in the samples treated with calcium salts in comparison with
the untreated JF-DW (Table 3) and even decreased in the salt–alum-treated samples, thus
indicating the protective effects of the calcium salt process on JF lipids, as compared with
the traditional method.

3.3.3. Element Content
The profiles of some elements associated with JF samples treated with calcium citrate

and calcium lactate brines, as well as with JF treated with salt–alum, revealed the absence
or very low levels of cadmium (Cd), lead (Pb) and mercury (Hg) in JF tissues (Table 4). In
R. pulmo treated with the traditional salt–alum traditional method (Salt-Alum JF-DW), a
value of Pb corresponding to 9.748 ppm (or mg/Kg) of dry weight was observed. Notably,
the Ca-Citrate JF-DW and Ca-Lactate JF-DW showed lower contents of metals compared
with the samples produced with the traditional alum-based process (Salt-Alum JF-DW and
Salt-Alum Jp). This evidence was important to demonstrate the unique features of the
products obtained by the optimized method described here, since the element composition
of the food matrix can directly impact human health and is therefore closely related to
food safety.
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Table 4. Elements evaluated in the samples of R. pulmo subjected to different treatments. JF-DW, JF
samples washed with drinking water; Ca-Citrate JF-DW and Ca-Lactate JF-DW, R. pulmo JF treated
with brines containing calcium citrate or calcium lactate, respectively; Salt-Alum JF-DW, JF samples
treated with an alum-based procedure; Salt-Alum Jp, commercial JF treated with alum from Japan.
Data are expressed in ppm ± SD; the different letters in line indicate significant differences between
samples (p < 0.05).

Rhizostoma Pulmo Commercial

Elements Ca-Citrate JF-DW Ca-Lactate JF-DW Salt-Alum JF-DW Salt-Alum Jp

Ppm

Ag 0 (a) 0 (a) 8.554 ± 0.432 (b) 9.844 ± 0.432 (c)
Al 0.05722 ± 0.00411 (a) 0.20558 ± 0.04742 (a) 5213.552 ± 157.573 (b) 5979.045 ± 104.524 (c)
As 0.02667 ± 0.00103 (a) 0.03526 ± 0.00016 (a) 0.202 ± 0.002 (b) 0.236 ± 0.019 (c)
B 0.71483 ± 0.13397 (a) 0.71211 ± 0.16684 (a) 33.981 ± 0.255 (b) 84.628 ± 0.838 (c)

Ba 0.02983 ± 0.00486 (a) 0.02834 ± 0.00413 (a) 44.510 ± 0.289 (b) 8.693± 0.350 (c)
Bi 0 0 0 0
Ca 1480.38 ± 51.1962 (b) 736.053 ± 16.5789 (a) 632.589± 0.178 (c) 141.498 ± 0.090 (d)
Cd 0.0016 ± 0.00036 (a) 0.00163 ± 0.00021 (a) 0 (b) 0 (b)
Co 0.00055 ± 0.00008 (b) 0.00071 ± 0.00008 (a) 0 (c) 0 (c)
Cr 0.00072 ± 0.00005 (a) 0.00226 ±0.00009 (a) 87.544 ± 0.187 (b) 11.906 ± 0.131 (c)
Cu 0.02392 ± 0.00483 (a) 0.02484 ± 0.00563 (a) 8.180 ± 0.037 (b) 8.578 ± 0.124 (c)
Fe 0.09768 ± 0.04256 (a) 0.18979 ± 0.01947 (a) 284.792 ± 8.383 (b) 10.189 ± 1.345 (c)
Hg 0 (b) 0.01079 ± 0.00789 (a) 0 (b) 0 (b)
In 0 0 0 0
K 116.364 ± 29.4737 (a) 121.895 ± 40.5789 (a) 12021.737± 135.355 (b) 1241.373 ± 18.463(c)
Li 0.02682 ± 0.00457 (a) 0.02668 ± 0.00526 (a) 1.145 ± 0.008 (b) 0.536 ± 0.018 (c)

Mg 642.584 ± 91.866 (a) 545.632 ± 156.474 (a) 1664.770 ± 62.521 (b) 352.398 ± 9.879 (a,d)
Mn 0.00653 ± 0.00022 (a) 0.02137 ± 0.00153 (a) 140.681 ± 0.071 (b) 3.532 ± 0.203 (c)
Mo 0.0028 ± 0.00008 (a) 0.00339 ± 0.00008 (a) 2.084 ± 0.100 (b) 5.286 ± 0.551 (c)
Na 3858.61 ± 715.55 (a) 3165.26 ± 1127.89 (a) >10000 (b) >10000 (b)
Ni 0.00069 ± 0.00017 (b) 0.00147 ± 0.00011 (a) 0 (c) 0 (c)
Pb 0 (a) 0 (a) 9.748 ± 0.372 (b) 0 (a)
Sr 2.88278 ± 0.47129 (a) 2.77105 ± 0.48684 (a) 25.813 ± 9.1158 (b) 5.960 ± 0.157 (a,b)
Te 0.00012 ± 0.0002 (b) 0.00103 ± 0.0005 (a) 0 (b,c) 0 (b,c)
Tl 0 0 0 0
V 0.47493 ± 0.08632 (a) 0.46234 ± 0.10503 (a) 12.180 ± 0.034 (b) 81.073 ± 0.002 (b)
Zn 0.34144 ± 0.03876 (a) 0.47313 ± 0.02434 (a) 36.019 ± 0.221 (b) 2.606 ± 0.033 (b)

Chromium (Cr) is considered an essential element, playing a role in the maintenance of
carbohydrates, fats, and protein metabolism. However, the levels of this element in Asian-
style produced JF should be supervised, since the European suggested daily intake range
for humans is 25–200 mg/day [35]. The same considerations can be applied to Vanadium
(V), which has a mean dietary intake of about 10–20 µg/person/day or 0.2–0.3 µg/kg body
weight/day. Studies in humans revealed gastrointestinal disturbances deriving from the
oral intake of vanadium compounds, as well as adverse effects on kidneys and other organs
in rats, at relatively low doses. These compounds are not considered essential for humans.

All the tested JF samples did not contain significant levels of Pb, Cd, and Hg, which
are considered critical contaminants in foodstuffs [36,37].

Notably, very low levels of aluminum were detected in the Ca-Citrate and Ca-Lactate
JF-DW samples. In accordance with other studies [10,38], the data reported here showed
very high levels of aluminum in both salt–alum-treated JF, the Salt-Alum JF-DW, and the
commercial Salt-Alum Jp, as expected. Regarding the use of alum as a structuring agent for
human food, allowed as aluminum sulfates (E 520–523) and sodium aluminum phosphate
(E 541), the European Union is very restrictive due to the possible neurotoxic effects of
aluminum salts [11], whereas the Joint FAO/WHO Expert Committee on Food Additives
(JECFA) set a provisional tolerable weekly intake (PTWI) of 2 mg/kg of body weight [39].
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3.4. Principal Component Analysis Applied to JF Treated Samples
A principal component analysis (PCA) was carried out in order to thoroughly compare

the JF products obtained by the different treatment methods. The PCA was applied to
many relevant parameters, such as the texture, pH, salinity, protein content, fatty acid
content, antioxidant activity, and metal content, that can describe the JF samples: JF-DW, Ca-
Lactate JF-DW, Ca-Citrate JF-DW, JF treated by the traditional salt–alum method (Salt-Alum
JF-DW), and the commercial JF (Salt-Alum Jp) (Figure 3).
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data obtained from the analysis of the values of physical traits and the concentrations of chemical
compounds at the end of the process. The figure displays the sample scores and variable loadings in
the planes formed by PC1–PC2.

A bi-plot is used to show the projection of the variables on the plane defined by the
first and second principal components. The total variance of the two main components
was 80.3 % (Figure 3). PC1 clustered samples treated with both calcium salts (Ca-Lactate
and Ca-Citrate JF-DW) with the untreated JF-DW on the negative semi-axis of the first
component, discriminating them from the two salt–alum-treated JF. The clustered group of
untreated JF-DW, Ca-Lactate-JF-DW, and Ca-Citrate JF-DW samples were evidently located
in the portion of the plane characterized by the pH, texture, antioxidant activity (AA), and
PUFA content. The second and the third groups containing Salt-Alum JF-DW and the
commercial Salt-Alum Jp, respectively, were located in the opposite portion of the plane,
mainly associated with metal ions, particularly aluminum, salinity, SFAs, and MUFAs, and
an unfavorable !6/!3 ratio.

The application of this unsupervised technique disclosed the considerable difference
between the products obtained by the newly proposed method and the traditional methods
used to prepare JF for human food uses. The Ca-Lactate-JF-DW and Ca-Citrate JF-DW final
products were very close to the fresh untreated JF and were characterized by peculiar food
safety and food quality traits.
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3.5. Application of the New Treatment to Different JF Species
The described JF treatments were also applied to three other putatively edible JF

species: Cotylorhiza tuberculate, Rhopilema nomadica, and Phyllorhiza punctata. These three
scyphozoa are consumed by humans as food in different areas of the world [1] and were
chosen in this study as their presence has also been detected in the Mediterranean Sea.

Food safety and several product features (such as microbiology, texture, pH, and
salinity), together with basic nutritional characteristics (such as the fatty acids profile,
protein content, and antioxidant activity) were assessed for these samples to evaluate them
as potential sea-derived food.

Safety and quality traits. The loads of potential pathogenic species, spoilage microbes,
and halophilic microbes were not significant in the untreated samples for any of the
analyzed JF (Tables S5–S7). After calcium citrate and lactate treatments, the final microbial
counts in terms of halophilic species were very low in all three tested JF species, thus
suggesting that brine treatment exerts efficient microbial control in all of the different
analyzed JF species, despite their distinctive features.

Calcium citrate and calcium lactate treatments improved the texture value of Coty-
lorhiza tuberculata samples by 2.1- and 1.8-fold, respectively. On the other hand, the same
treatments led to a decrease in the texture value in the Rhopilema nomadica and Phyllorhiza
punctata samples (Table S8). The latter results are probably related to the non-optimal
conditions for storing the samples, having been shipped as frozen material from Israel to
Italy and subject to an extended transit time. Therefore, additional tests are planned to
confirm the applicability of the proposed procedures to R. nomadica and P. punctata species.

Nutritional traits. R. nomadica and C. tuberculata washed with drinking water (JF-
DW) showed protein contents of 176.8 mg/100 g FW and 170.3 mg/100 g FW, respec-
tively, (Figure S2a), values that were slightly lower than that measured for R. pulmo JF-DW
(Figure 2a. On the other hand, P. punctata showed a protein content about 2.2-fold higher
than that of the other two analyzed species (393.6 mg/100 g FW, Figure S2a). The calcium
salt brine treatments decreased the protein content by 60–70% in almost all three JF species,
as was previously observed also for R. pulmo samples (Figure 2a), with the only excep-
tion of R. nomadica treated with calcium citrate, where the original value was preserved
(Figure S2a).

Additionally, R. nomadica treated with calcium citrate kept the same antioxidant activity
(AA) value (about 130 nmol TE/g FW, Figure S2b) as that before treatment, whilst the
same treatment on P. punctata and C. tuberculata caused a reduction in AA of about 50%
(Ca-Citrate JF-DW, Figure S2b). Furthermore, both R. nomadica and P. punctata showed a
reduction of 40% in the initial AA after calcium lactate treatment, whereas in C. tuberculate,
the reduction was only about 20%. These data, together with the values obtained for
R. pulmo (Figure 2), suggested that the calcium brines significantly affected the protein
concentration and the choice of calcium salt for the treatment should be adapted to the
different JF species.

The FA profiles, reported as the percentage of total FA, were very different between the
three JF species (Table S9). R. nomadica and C. tuberculata JF-DW showed a higher content of
SFA than P. punctata. PUFAs detected in the JF were probably correlated with the presence
of symbiotic species of zooxanthellae microalgae in C. tuberculata and P. punctata. Calcium
salt treatments, mainly calcium citrate, led to a slight increase in the SFA percentage and
a reduction in the PUFA content in R. nomadica and C. tuberculata. In R. nomadica, these
treatments also led to a reduction in MUFA. On the contrary, C. tuberculata, which did
not contain any detectable MUFAs in untreated material, contained iso-oleic acid (C18:1
trans-10) and the PUFA isolinolenic acid (C18:2 trans 8,11) when treated with calcium
lactate. P. punctata treated with calcium salts exhibited a decrease in the SFA content and an
increase in the PUFA contents, whereas the levels of MUFAs did not vary compared with
the untreated sample. Remarkably, the MUFA iso-oleic acid (C18:1) and PUFA eicosadienoic
acid (C20:2) appeared in P. punctata Ca-Lactate JF-DW, although they were not initially
detectable in the untreated JF sample. However, as shown in Table S9, the essential fatty
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acids’ (EFAs’) !-6 to !-3 ratio in untreated P. punctata was less than 1 (!6/!3 < 1) and was
maintained after the samples were treated with calcium salts (0.4 and 0.3 for Ca-Citrate and
Ca-Lactate JFDW, respectively). Among all other treatments, C. tuberculata JF-DW treated
with calcium citrate was the only species having yielded a favorable ratio of !6/!3 < 1
(0.7, Table S9). On the contrary, both R. nomadica and C. tuberculata samples treated with
calcium lactate always achieved a !6/!3 ratio higher than the recommended score of 1
(Table S9).

4. Conclusions
An optimized method that combines pre-treatment with drinking water followed by a

soaking step in calcium salt brine was proposed to stabilize and treat JF for possible food
uses in Europe and Western countries. The described procedure for JF-DW pre-treatment
improved the fundamental aspects of JF tissue stabilization. The significant reductions
in any microbiological growth and undesired enzymatic risks, increased texture values,
and desirable antioxidant and fatty acid profiles are some relevant improvements with
respect to the very recently proposed JF-SW method [18]. Moreover, the presented approach
allowed the content of toxic heavy metals, and especially aluminum, to be strongly reduced.
This new, safe approach was initially set up on R. pulmo JF species, and later successfully
applied to other JF species present in the Mediterranean Sea, thus leading to a preliminary
validation of the proposed method. The products obtained by the method described here
were used for the formulation of new food prototypes. The characterization of the safety,
quality, nutritional, and sensory aspects is ongoing. This study can offer a contribution to
fill the knowledge gap in the assessment of JF use as human food in Western countries,
even though further important evidence needs to be gathered in terms of toxicological
and allergen testing. In addition, the technological simplicity of this process will allow
its application in poor coastal environments. As a potential future application, a new
commercial kit based on the procedure proposed here could be easily developed and
retailed by the same fish shops selling freshly harvested edible JF as a helpful tool for
consumers interested in preparing homemade and safe JF-based dishes.

5. Patents
The optimized method for JF treatment and stabilization described in this manuscript

is part of the European Patent EP 3763224, deposited on 2020 [40].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11172697/s1, Figure S1. Rhizostoma pulmo jellyfish products
obtained by the new proposed method. Ca-Citrate JF-DW: JF after treatment with calcium citrate
brine; Ca-Lactate JF-DW: JF after treatment with calcium lactate brine; Salt-Alum JF-DW: JF obtained
by the salt–alum-based traditional method. Figure S2. Proteins content (a) and Antioxidant activity
(b) in Cotylorhiza tuberculata, Rhopilema nomadica and Phyllorhiza punctata JF-DW samples and the
corresponding calcium salt treated samples (Ca-Lactate JF-DW and Ca-Citrate JF-DW). Protein con-
tents were expressed as mg per 100 g of fresh weight (mg/100 g FW) and antioxidant activity was
expressed as nmol TE per gram of FW (nmol TE/g FW). Values are the means of three independent
measurements, ±standard deviation. ANOVA statistic test followed by Bonferroni’s multiple com-
parison post-hoc test was used to compare each treatment with the others for each JF species. Table
S1. Microbiological analyses of JF-DW (JF transported on lab and pre-treated with drinking water)
untreated and treated with brines containing different calcium salts at 5 days treatment at 4 �C (Ca-
Citrate: calcium citrate; Ca-Lactate: calcium lactate). The different letters in line indicate significant
differences between samples (p < 0.05). TBC: total bacterial count at 30 �C; sCMA: saline Corn Meal
Agar; sSDA: saline Sabouraud Dextrose Agar. Table S2. Microbiological analyses of JF-B (JF directly
pre-treated on boat) untreated and treated with brines containing different calcium salts at 5 days
treatment at 4 �C (Ca-Citrate: calcium citrate; Ca-Lactate: calcium lactate). The different letters in line
indicate significant differences between samples (p < 0.05). TBC: total bacterial count at 30 �C; sCMA:
saline Corn Meal Agar; sSDA: saline Sabouraud Dextrose Agar. Table S3. Microbiological analyses of
Rhizostoma pulmo JF sample washed in drinking water and then treated with NaCl-alum (Salt-Alum
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JF-DW). This sample was obtained after 20 days at 4 �C and 2 days air drying (as described in Material
and Methods section). TBC: total bacterial count at 30 �C; sCMA: saline Corn Meal Agar; sSDA:
saline Sabouraud Dextrose Agar. Table S4. Amino acid composition of Rhizostoma pulmo JF fresh
and untreated (Untreated JF), washed in drinking water (JF-DW), and treated with calcium citrate
(Ca-Citrate JF-DW) and calcium lactate (Ca-Lactate JF-DW). Data are mean ± Standard deviation
(±SD) of four independent analyses. AA. amino acids; Nd. Not detected. Table S5. Microbiologi-
cal analyses of Cotylorhiza tuberculata JF sample washed with drinking water (JF-DW) and treated
with brines containing calcium salts (Ca-Citrate: calcium citrate; Ca-Lactate: calcium lactate). The
different letters in line indicate significant differences between samples (p < 0.05). TBC: total bacterial
count at 30 �C; sCMA: saline Corn Meal Agar; sSDA: saline Sabouraud Dextrose Agar. Table S6.
Microbiological analyses of Rhopilema nomadica JF sample washed with drinking water (JF-DW) and
treated with brines containing calcium salts (Ca-Citrate: calcium citrate; Ca-Lactate: calcium lactate).
The different letters in line indicate significant differences between samples (p < 0.05). TBC: total
bacterial count at 30 �C; sCMA: saline Corn Meal Agar; sSDA: saline Sabouraud Dextrose Agar. Table
S7. Microbiological analyses of Phyllorhiza punctata JF sample washed with drinking water (JF-DW)
and treated with brines containing calcium salts (Ca-Citrate: calcium citrate; Ca-Lactate: calcium
lactate). The different letters in line indicate significant differences between samples (p < 0.05). TBC:
total bacterial count at 30 �C; sCMA: saline Corn Meal Agar; sSDA: saline Sabouraud Dextrose Agar.
Table S8. Texture, salinity and pH values of Cotylorhiza tuberculata. Rhopilema nomadica and Phyllorhiza
punctata JF samples washed with drinking water (JF-DW) and treated with brines containing calcium
salts at 5 days treatment (Ca-Citrate: calcium citrate; Ca-Lactate: calcium lactate). The different letters
in line indicate significant differences between samples (p < 0.05). Table S9. Comparison of the fatty
acid composition of and Rhopilema nomadica. Phylloriza punctata and Cothyloriza tuberculata JF samples
washed with drinking water (JF-DW) and treated with brines containing calcium salts at 5 days
treatment (Ca-Citrate: calcium citrate; Ca-Lactate: calcium lactate). Fatty acid composition data are
expressed as percentage of the total fatty acids ± SD.
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