
            

PAPER • OPEN ACCESS

Experimental test of fluctuation relations for driven
open quantum systems with an NV center
To cite this article: Santiago Hernández-Gómez et al 2021 New J. Phys. 23 065004

 

View the article online for updates and enhancements.

You may also like
Nonequilibrium quantum fluctuation
relations for harmonic systems in
nonthermal environments
D Pagel, P Nalbach, A Alvermann et al.

-

Verification of the quantum nonequilibrium
work relation in the presence of
decoherence
Andrew Smith, Yao Lu, Shuoming An et al.

-

Fluctuation relations for equilibrium states
with broken discrete or continuous
symmetries
D Lacoste and P Gaspard

-

This content was downloaded from IP address 150.146.205.185 on 30/09/2022 at 15:11

https://doi.org/10.1088/1367-2630/abfc6a
/article/10.1088/1367-2630/15/10/105008
/article/10.1088/1367-2630/15/10/105008
/article/10.1088/1367-2630/15/10/105008
/article/10.1088/1367-2630/aa9cd6
/article/10.1088/1367-2630/aa9cd6
/article/10.1088/1367-2630/aa9cd6
/article/10.1088/1742-5468/2015/11/P11018
/article/10.1088/1742-5468/2015/11/P11018
/article/10.1088/1742-5468/2015/11/P11018


New J. Phys. 23 (2021) 065004 https://doi.org/10.1088/1367-2630/abfc6a

OPEN ACCESS

RECEIVED

11 March 2021

REVISED

20 April 2021

ACCEPTED FOR PUBLICATION

28 April 2021

PUBLISHED

7 June 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Experimental test of fluctuation relations for driven open
quantum systems with an NV center
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Abstract
The experimental verification of quantum fluctuation relations for driven open quantum system is
currently a challenge, due to the conceptual and operative difficulty of distinguishing work and
heat. The nitrogen-vacancy (NV) center in diamond has been recently proposed as a controlled
test bed to study fluctuation relations in the presence of an engineered dissipative channel, in
absence of work (Hernández-Gómez et al 2020 Phys. Rev. Res. 2 023327). Here, we extend those
studies to exploring the validity of quantum fluctuation relations in a driven-dissipative scenario,
where the spin exchanges energy both with its surroundings because of a thermal gradient, and
with an external work source. We experimentally prove the validity of the quantum fluctuation
relations in the presence of cyclic driving in two cases, when the spin exchanges energy with an
effective infinite-temperature reservoir, and when the total work vanishes at stroboscopic
times—although the power delivered to the NV center is non-null. Our results represent the first
experimental study of quantum fluctuation relation in driven open quantum systems.

1. Introduction

Quantum fluctuation relations [1–4] are exact relations in quantum statistical mechanics that allow for a
compact and effective description of a plethora of non-equilibrium phenomena such as the statistical nature
of the second law of thermodynamics and the emergence of an arrow of time [5], Onsager relations,
Green–Kubo relations and high order relations between responses and multi-point correlation functions [6,
7], the microscopic mechanisms at the basis of Clausius inequality [8], and the Carnot theorem imposing
the celebrated Carnot efficiency as the universal upper bound to efficiency of heat engines [9, 10]. Recently,
they have been shown to be at the basis of thermodynamic uncertainty relations expressing lower bounds
on entropy production in terms of the precision (signal-to-noise ratio) of fluctuating non-equilibrium
charges (i.e., integrated non-equilibrium currents) [11, 12], or the asymmetry of their statistics [13].

Generally speaking, quantum fluctuation relations refer to a scenario where a quantum system, prepared
in thermal equilibrium at some inverse temperature β1, is then placed in contact (sequentially or at the
same time) with several thermal baths at various temperatures β2, . . . ,βN while being possibly acted upon
by a work source resulting in a time-dependent forcing [8]. In integral form, the quantum fluctuation
relation reads [4]:

〈e−
∑

iβiΔEi〉 = e−
∑

iβiΔFi , (1)
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where ΔFi is the free energy change between the (hypothetical) equilibrium state of component i of the
global system + bath compound at the protocol’s end time, and its initial free energy7, while ΔEi is the
according stochastic energy change as obtained by taking the difference of projectively measured
eigen-energies of component i at the beginning and end of the driving protocol (here the so called
two-point measurement scheme is implied [4]). The symbol 〈·〉 denotes average over the statistics of the
joint probability distribution p(ΔE1, . . . ,ΔEN) for the energy change of each component.

The above relation encompasses a number of typical situations encountered in non-equilibrium
thermodynamics. For example, a system initially in equilibrium and in contact with a thermal bath at some
inverse temperature β is acted upon by a time dependent force: in this case β1 = β2 = β, and since the
work done by the external source is given by W = ΔE1 +ΔE2, the Jarzynski relation follows
〈e−βW〉 = e−βΔF, with ΔF the global free energy variation [14]. This relation has been verified
experimentally with closed quantum systems (namely in absence of a thermal bath) [15, 16], and for a
quantum system in contact with a dephasing environment that does not modify the system energy [17].
However, the verification of this relation with an open quantum system that exchanges energy with its
environment is still elusive, due to the fact that the measurement of total energy injected in system and bath
is typically very challenging. Possible solutions to this challenge are offered by the interferometric method
for the measurement of work statistics [18, 19] as discussed in [20], or with reference to superconducting
circuit setups, by calorimetric measurements of energy exchanges between a qubit and a resistor [21].

A complementary situation is when two quantum systems prepared initially at different temperatures,
are placed in thermal contact for some time τ . Provided the interaction energy is negligible, no work is
associated to this process, and the general relation takes the form of the so called exchange fluctuation
relation 〈eΔβΔE〉 = 1 [22], where Δβ = β2 − β1 and ΔE = ΔE1 = −ΔE2. This relation has been recently
verified in the quantum regime with NMR setup [23] and with nitrogen vacancy (NV) centers in diamond
[24].

A situation of central interest in quantum thermodynamics combines the previous two scenarios,
namely when not only a system exchanges energy with its surroundings because of a thermal gradient, but
also with an external work source. That is indeed what happens during the operation of a heat engine. The
experimental verification of equation (1) when there is a simultaneous exchange of heat and work poses
significant challenges, as typical quantum platforms allow to experimentally access the system energy
change ΔE = W − Q, but not the individual terms W and Q.

In this work, we address this challenge and experimentally explore the validity the quantum fluctuation
relation for a driven-dissipative dynamics (equation (1)) realized by the ground state of a single
negatively-charged NV center in diamond. The NV center is well established as a biocompatible quantum
sensor [25–27], single-photon source [28], as well as building block for quantum registers [29–31], thanks
to the coherent control of its ground state spin and optical addressability. The capability of coherently
manipulating a two or three level spin system, and to engineer dissipative channels to mimic the thermal
contact with a quantum reservoir, make the NV center also an excellent platform to explore quantum
thermodynamics processes [24, 32]. Here, we use an NV center spin qubit to prove the validity of the
fluctuation relation in equation (1) in two special cases of driven-dissipative dynamics, where the
measurement of the spin energy change ΔE suffices: (i) when the environment with which the system
exchanges energy has infinite temperature; (ii) when the duration of the process is chosen in such a
way that the total work done on the system amounts to zero, although generally the power delivered to it is
non-null.

The results obtained in this work expand the experimental basis over which quantum fluctuation
relations have been tested, and prepare the ground for a fully fledged testing of equation (1) in the general
case when energy is exchanged both in the form of heat and work.

2. Experimental setup and protocol

To engineer a driven-dissipative dynamics, we use the electronic spin ground state of a single NV center in
diamond at room temperature. An external magnetic field, B = 38.9 mT, is aligned along the NV spin
quantization axis to remove the degeneracy between the spin projections mS = ±1. The two states
|mS = +1〉 ≡ |1〉 and |mS = 0〉 ≡ |0〉 form the basis of a two-level system. The two-level system is optically

7 Generally, as a consequence of the applied driving, the Hamiltonian of each subpart acquires a time dependence, Hi = Hi(t), and
each subpart is driven away from the corresponding equilibrium, described by the density operator e−βiHi(t)/Zi(t), with Zi(t) the
according partition function. The free energy ΔFi appearing in equation (1), is the difference between Fi(tf) = −β−1

i ln Zi(tf) the
free energy that the system would have if it hypothetically were at equilibrium at the protocol end-time tf , and its actual initial free
energy Fi(0) = −β−1

i ln Zi(0).
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Figure 1. Scheme of the experimental protocol. The NV spin qubit is initially prepared in one of the Hamiltonian eigenstates.
Then, the map M is applied, given by a combination of coherent microwave driving (blue) and a train of NL equidistant short
laser pulses that result in quantum projective measurements and a dissipative channel (green). We vary NL, and thus the total
evolution time tf under the map M, while keeping fixed the interpulse delay time τ . At the end of the protocol, the spin energy is
measured.

initialized into |0〉 before each experiment, and its state is read out by measuring the NV spin-selective
photoluminescence intensity [33, 34].

We apply a continuous resonant microwave (mw) driving field, described by a Hamiltonian that, in the
mw rotating frame, reads

H(t) =
�ω(t)

2

(
σx cos θt + σy sin θt

)
, (2)

where σi are Pauli matrices, ω(t) is the Rabi frequency that is set by the mw amplitude, and θ is an angular
frequency of the mw phase variation. We denote the instantaneous eigenstates of the Hamiltonian in
equation (2) as ρ±(t) ≡ |E±(t)〉〈E±(t)|, and their corresponding eigenvalues as E±(t) = ±�ω(t)/2.

Besides the unitary evolution, the system interacts with a train of NL temporally-equidistant short laser
pulses, as depicted in figure 1. In a previous work [24], we have demonstrated that a photon absorption
from each laser pulse results in the application of a quantum projective measurement and the opening of a
dissipative channel. The application of a train of short laser pulses brings the spin into an asymptotic Gibbs
state with inverse (pseudo)temperature βR [24] and, as such, is analogous to the dissipation channel caused
by the interaction with a heat reservoir R. The value of βR is determined by a combination of factors, which
are the relative orientation of the driving Hamiltonian operator with respect to the NV quantization axis
(σz), the Rabi frequency of the driving field, the laser absorption probability pa, and the time between
pulses [24].

To measure the statistics of the spin energy change, and to verify the fluctuation relation in equation (1),
we implement an experimental protocol consisting of three steps [24]:

(a) Initialization. The system is initialized into one of the initial Hamiltonian eigenstates {ρ±(0)}, say
{ρ+(0)}, by applying a long laser pulse that optically pumps the spin in |0〉, followed by an opportune
spin-rotating mw gate.

(b) Evolution. The system evolves during a time tf under the action of the mw driving, and is intermittently
perturbed by short laser pulses.

(c) Readout. At time tf , the spin is mapped back to the {|0〉 , |1〉} basis and the NV photoluminescence
intensity under laser illumination is recorded to measure the spin state.

The protocol is repeated several times and the integrated photoluminescence signal gives the probability
for the spin to end up in state ρ+(t). As a result, we experimentally construct the conditional probability
P+|+(tf ) that the state ρ+(t) is detected at time t = tf given that the two-level-system was initialized into
ρ+(0) at time t = 0. The same procedure is applied with the system initialized into ρ−(0) to give P+|−(tf ).

Formally, the conditional probability is expressed as

P+|±(tf) ≡ Tr
[
ρ+(tf)M(tf)[ρ±(0)]

]
, (3)

where M(tf)[ρ±(0)] is the density operator at time tf , expressed as a quantum map M(tf) applied to the
initial state ρ±(0). Notice that, by definition, P−|± = 1 − P+|±. Therefore, measuring P+|+(tf ) and P+|−(tf )
is enough to completely reconstruct the energy jump probabilities.

Together with the initial probability Pi(0), the conditional probability Pj|i(tf ), with j = ± and i = ±,
provides all necessary information to construct the two-level-system energy change probability distribution
function:

p(ΔE) =
∑

i,j

δ(ΔE − Ej(tf) + Ei(0))Pj|i(tf)Pi(0). (4)

During the statistical analysis of the experimental data, the results for each of the initial states are weighted
with the according Gibbs probability P±(0) = e−βE±(0)/Z0 hence emulating a projective measurement being
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performed onto a thermal mixture at inverse temperature β. Given that we measure the conditional
probabilities Pj|i(tf ) for a high number of experimental realizations (∼106) and for each Hamiltonian
eigenstate, this protocol is equivalent to the two-time measurement protocol applied to a thermal mixed
state with inverse temperature β.

The NV center is an open quantum system: during its evolution it exchanges energy in the form of heat
with the laser field (mimicking a thermal reservoir) and in the form of work with the external time
dependent driving. Using the symbol Q to denote the energy gained by the reservoir, equation (1) becomes
in the present case:

〈e−βΔE−βRQ〉 = e−βΔF , (5)

where βR denotes the reservoir inverse (pseudo)temperature, and ΔF = −β−1 ln Z(tf )/Z(0) is the free
energy difference of the NV center, between its reference equilibrium state at time tf and its initial
equilibrium state. Note that the external driving only applies to the NV center and does not affect the
reservoir, therefore the reservoir free energy is constant (ΔFR = 0) and hence it does not appear in the
above equation. In equation (5) the symbol 〈·〉 denotes the average over the joint probability distribution
function p(ΔE, Q), while we only have experimental access to its marginal p(ΔE). So, in principle, in order
to check the validity of equation (5) one needs to perform measurements of both Q and ΔE. The marginal
distribution p(ΔE) is however sufficient to check the validity of equation (1) in two special cases, namely
when the reservoir temperature is infinite (βR = 0), and when the total work W = ΔE + Q performed on
the system is null, and accordingly ΔE = −Q.

In the first case equation (5) reduces to:

〈e−βΔE〉 = e−βΔF. (6)

Since the heat Q does not explicitly appear in equation (6), the average reduces to the one over the marginal
p(ΔE). Note that although this expression appears formally similar to the Jarzynski relation [35], in an open
system as considered here the energy exchange takes into account not only work but also heat flux. In the
second case, equation (5) reduces to:

〈e−(β−βR)ΔE〉 = e−βΔF , (7)

where, for the same reason as above, the average can be understood as an average over the marginal p(ΔE).
Note that in our experiment the power delivered to the NV spin is non-null at all times, namely the NV
spin continuously exchanges energy with the work source. However, we will focus on specific times tf at
which the total work amounts to zero, in which case equation (7) holds.

3. Reservoir at infinite pseudo-temperature

In this section we report on the experimental verification of equation (6) as a special case of the general
fluctuation relation in equation (1). To that end we set an infinite pseudo-temperature of the reservoir that
mimics the thermal environment (βR = 0). That is achieved by applying the following Hamiltonian:

H(t) =
�ω(t)

2
σx. (8)

Applying a sequence of short laser pulses while the system evolves under this Hamiltonian results in our NV
center qubit reaching the completely mixed state, corresponding to βR = 0, as we demonstrate in the
experiment and with numerical simulations, as discussed below. Work is provided via a periodic temporal
variation of the Hamiltonian amplitude ω(t), which in takes the form:

ω(t) =
ω0

2

(
1 + cos2 πt

τA

)
, (9)

with period set to τA = 616 ns, and ω0 = π/τA. Under these conditions, the eigenstates of the Hamiltonian
remain constant in time, while the eigenvalues are time-dependent.

We applied the protocol described in the previous section to measure the conditional probabilities
Pj|i(tf ), considered as functions of tf . Since the Hamiltonian commutes with itself at different time values,
Pj|i(tf ) remain constant during the time in-between laser pulses, while they present discontinuities caused by
the dissipation at the times when laser pulses are applied, as shown in figure 2(a). Each experimental point
shown in this figure was obtained by averaging over an ensemble of ∼106 repetitions of the same protocol.

The asymptotic behavior is such that, in the limit of tf →∞, the conditional probabilities
Pj|i(tf →∞) → 0.5 for any i and j, meaning that our dissipative channel is for practical purposes analogous
to a thermal reservoir of inverse temperature βR = 0, as anticipated above. In figures 2(b) and (c), we show
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Figure 2. Spin evolution under a driven-dissipative map, with a reservoir at infinite pseudo-temperature. The spin is driven by a
Hamiltonian aligned along σx with time-varying amplitude, and short laser pulses are applied. (a) Conditional probabilities P+|i
of the spin to be measured in the eigenstate |E+〉, after initialization in |i〉 = |E±〉 (red dots and black squares, respectively), as a
function of time tf . The vertical dashed lines denote the times at which each laser pulse is applied (interpulse time τ = 410 ns).
The top axis reports the number of applied pulses NL. Blue line: numerical simulation, as detailed in appendix A. Notice how the
conditional probabilities have a jump when a laser pulse is applied. For long evolution time P+|i approach the constant value
P∞
+ = 0.5. (b)–(c) Simulated mean trajectories of the spin after initialization in each of the eigenstates |i〉 = |E±〉, shown on the

Bloch sphere, respectively in red and black (top (b) and front (c) view). The mean trajectories reveal the interplay of two different
kinds of dynamics: (i) the coherent evolution under the Hamiltonian H(tf) aligned along σx, and (ii) the dissipative evolution
directed toward the center of the Bloch sphere, due to the presence of laser pulses. The markers (red dots and black squares)
indicate tf = mτ . The simulated conditional probabilities P+|i shown in (a) (blue lines) are obtained from projecting these
simulated mean spin trajectories onto the Hamiltonian axis.

Figure 3. Energy exchange statistics for a driven-dissipative qubit dynamics, with a reservoir at infinite pseudo-temperature.
Measured mean energy variation 〈ΔE〉 (blue dots); calculated mean work 〈W〉 (orange line), and mean heat flux 〈Q〉 (green
line). The sum 〈W〉+ 〈Q〉 (red line) results in agreement with the measured 〈ΔE〉. The free energy variation ΔF (gray line)
depends only on the amplitude of the Hamiltonian (see text). Interpulse delay time: (a) τ = 410 ns, and (b) τ = 616 ns,
respectively.

the simulated mean trajectory obtained by propagating the density operators |E+〉〈E+|, and |E−〉〈E−|, with
the dissipative map M that describes the dynamics. See appendix A for details on the simulation. The
concatenation of coherent driving and dissipation results in a map that intermittently pushes the state
toward the center of the Bloch sphere.

Having measured the conditional probabilities of energy variation, we can obtain the energy variation
probability distribution function in equation (4). This is enough to reconstruct the mean value of a generic
function of ΔE.

The mean value of the energy variation 〈ΔE〉 is shown in figure 3. The probability associated with the
initial Gibbs state was set to P+(0) = 1/(1 + e2), hence the initial inverse temperature was β = 2/�ω0. The
experimental values retrieved for 〈ΔE〉 are in agreement with the theoretical values of the sum of the mean
work applied on the system plus the mean heat flux, 〈W〉+ 〈Q〉, as expected from the first law of
thermodynamics. These mean values are calculated as 〈W〉 =

∫ tf
0 dt′ Tr[ρ(t′) dH(t′)

dt′ ], and

〈Q〉 =
∫ tf

0 dt′ Tr[ dρ(t′)
dt′ H(t′)] [36]. More details on this calculation can be found in appendix B.

In the case considered here, the Hamiltonian time dependency is reflected in the oscillations of 〈W〉. On
the other hand, the dissipation induced by the interaction with the laser pulses appears as discrete jumps in
〈Q〉. As mentioned before, the dissipation tends to equilibrate the population of the Hamiltonian
eigenstates, thus the energy variation induced by the Hamiltonian driving is gradually reduced, which
explains the damping on 〈W〉. For a time between laser pulses τ = τA carefully chosen to be equal to the
Hamiltonian period (figure 3(b)), the flow of heat is perfectly synchronized to the times when work
vanishes. Instead, when the synchronization is not perfect τ 
= τA (figure 3(a)), the mean work accumulates
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Figure 4. Experimental verification of the quantum fluctuation relation for a driven qubit in contact with a reservoir at infinite
pseudo-temperature. Blue dots: experimental values of the average exponentiated energy variation 〈e−βΔE〉. Orange line:
calculated e−βΔF. As in the previous figure, (a) τ = 410 ns, and (b)τ = 616 ns.

and tends to a finite value. In these experiments, the Hamiltonian is such that Z(t) ≡ Tr
[
e−βH(t)

]
= 2

cosh[β �ω(t)/2], with ω(t) defined in equation (9). Therefore, the values of ΔF = −β−1 ln(Z(tf )/Z(0)) can
be computed analytically (gray lines in figure 3). The periodic time-variation of the Hamiltonian induces an
oscillation with constant amplitude on ΔF. Notice that, before the very first laser pulse, when the system is
closed, the difference 〈W〉irr ≡ 〈W〉 −ΔF � 0 is caused by the inner friction during the unitary evolution
[37]. Given that the Hamiltonian eigenstates remain constant in time, the initial state remains unaltered by
the unitary evolution. However, since the Hamiltonian eigenvalues change for a time 0 < tf < τA, then the
system is, on average, in a non-equilibrium state ρtf = e−βH(0)/Z(0) (only describing an equilibrium
thermal state for tf = 0, τA, 2τA, . . .). The quantum relative entropy between ρtf and the actual thermal state
ρth

tf
= e−βH(tf)/Z(tf) defines the value of 〈W〉irr [37, 38]. After the first laser pulse the system is no longer

closed, and ΔF can exceed 〈W〉. In contrast, the free energy variation is always smaller or equal than the
mean energy variation, as expected from Jensen’s inequality applied to equation (6).

In order to effectively verify the validity of the FR in equation (6), we used the experimental values of
the energy variation probability distribution to obtain 〈e−βΔE〉, and we compared it with the values of
e−βΔF = Z(tf )/Z(0) computed analytically, as shown in figure 4. Notice that the oscillating e−βΔF depends
only on the time-varying Hamiltonian, therefore, its values are the same in figures 4(a) and (b). In contrast,
〈e−βΔE〉 depends on the time-varying Hamiltonian, and on the energy variation probability distribution
function, which in turns depends on the time between laser pulses, and the strength of the dissipation, i.e.,
the mean amplitude of the energy jumps induced by the interaction with a single laser pulse. The fact that
work and heat flux are perfectly compensated to allow equation (6) to be valid, is a consequence of the
infinite pseudo-temperature of the environment. The agreement between the predicted values of e−βΔF and
the experimental values of 〈e−βΔE〉 verifies the validity of the FR in equation (6).

4. Work vanishing at stroboscopic times

Now we consider a driving Hamiltonian with fixed amplitude ω(t) ≡ ω0 and a time varying phase such
that,

H(t) =
�ω0

2

(
σx cos θt + σy sin θt

)
. (10)

In contrast to the case treated in the previous section, here the instantaneous eigenstates |E±(t)〉 of H(t) are
changing in time while the eigenvalues remain constant in time. The Hamiltonian, and accordingly its
eigenvectors, are periodic functions of time, with period τ θ = 2π/θ. As long as only the discrete times
tn = nτ θ are concerned, the discrete-time dynamics of the system, due to its periodicity, can be conveniently
expressed in terms of an effective Floquet-type Hamiltonian, reading, in this case

Hθ =
�

2
(ω0σx + θσz) . (11)

The according unitary Uθ = e−iHθτθ/� advances the system from time nτ θ to (n + 1)τθ . As opposed to the
original Hamiltonian H(t), the discrete-time Hamiltonian Hθ is time-independent. Accordingly, in the
discrete-time picture no work source appears to be at play.

In our experiment the two-level system is prepared in one of the two eigenstates of Hθ, reading

|Eθ,↑〉 ≡ sin(α/2) |1〉+ cos(α/2) |0〉 (12)

|Eθ,↓〉 ≡ cos(α/2) |1〉 − sin(α/2) |0〉 , (13)

6
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Figure 5. Conditional probabilities P↑|i for the spin qubit to be measured in the Floquet eigenstate |Eθ,↑〉, for an initial state
|i〉 = |Eθ,↑〉 (blue circles) or |i〉 = |Eθ,↓〉 (green squares), for a Hamiltonian rotating in the xy-plane with period τθ = 2π/θ. (a)
Without laser pulses. τ θ = 616 ns, and α = arctan(1/2). The spin qubit evolves in time performing Rabi oscillations. For
synchronized stroboscopic measurements, the spin does not evolve (see black markers). (b)–(d) With short laser pulses.
Interpulse time τ = τθ . Data are reported as a function of discrete times tf = NLτθ . (b) τ θ = 1296 ns, α = π/4; (c) τθ = 616 ns,
α = arctan(1/2); and (d) τ θ = 308 ns, α = arctan(1/4). For long times, P↑|i approaches a constant value P∞

↑ that determines the
reservoir inverse temperature: (b) P∞

↑ = 0.276 ± 0.003; (c) P∞
↑ = 0.138 ± 0.002; and (d) P∞

↑ = 0.050 ± 0.003. The crosses
represent the result of Monte-Carlo simulations. Inset of (b): numerical simulation of the evolution between laser pulses. The
bare Rabi frequency of the driving mw field is ω0  (2π)800 kHz in all the cases.

where α = − arctan
(
ω0/θ

)
. The probability P↑|↑ to start in the |↑〉 state and find the system again in the |↑〉

state after a time tf reads P↑|↑ = 1 − ω2
0

ω2
0+θ2 sin2 tθ

2 . Similarly, it is P↑|↓ =
ω2

0
ω2

0+θ2 sin2 tθ
2 . Note that these

quantities are, as expected, periodic with period τ θ . In addition, P↑|↑ = 1 and P↓|↑ = 0 at stroboscopic times
tn = nτ θ , in accordance with the fact that |Eθ,↑〉 and |Eθ,↓〉 are eigenvectors of the discrete-time Hamiltonian
Hθ . Figure 5(a) shows the conditional probabilities P↑|↑ and P↑|↓ measured in absence of laser pulses. Note
the agreement with the analytic expressions, confirming that H(t) well describes the dynamics in absence of
laser pulses.

In the further experiments, short laser pulses are applied at the discrete times tn = nτ θ, and final energy
measurements are performed at a final time tf = NLτθ . Accordingly, the spin free energy difference ΔF is
null, and equation (7) takes on the simpler form

〈e−(β−βR)ΔE〉 = 1. (14)

The experimental data are shown together with a Monte-Carlo simulation (see appendix A).
Figures 5(b)–(d) shows the impact of the laser pulses on the conditional probabilities P↑|↑ and P↑|↓ as a
function of NL. Note how these probabilities converge to the same asymptotic value P∞

↑ , meaning that,
regardless of the initial condition, the system ends up in the |↑〉 state with probability P∞

↑ . In other words,
the system reaches a steady state which conforms to a Gibbs state of inverse temperature βR = − 1

�ω

ln

(
P∞↑

1−P∞↑

)
. The value of P∞

↑ , and therefore the value of βR, depends on the ratio ω0/θ. In the adiabatic

regime, θ � ω0, the Hamiltonian is approximately proportional to σx, and P∞
↑  1/2. Hence, in the

adiabatic regime the value of βR tends to zero. As the value of θ increases with respect to ω0, the dynamics
no longer belongs to the adiabatic regime, and the value P∞

↑ approaches to zero, hence increasing the value
of βR. Note that, although the spin is driven by a time dependent Hamiltonian that delivers power
continuously, at discrete times in which the energy is measured the system evolves as under the influence of
an effective thermal reservoir of inverse temperature βR and as if it were not in contact with any work
source. Given these conditions, the mean energy variation is equal to the mean heat flux 〈Q〉, as

7
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Figure 6. Measurement of the energy exchange statistics and experimental test of the quantum fluctuation relation in a
driven-dissipative system with work vanishing at stroboscopic times. The driving Hamiltonian varies in phase with period τ θ ,
and short laser pulses are applied with interpulse time τ = τθ . (a)–(c) Mean energy variation Δβ〈ΔE〉 (experiment, blue dots)
and mean heat flux Δβ〈Q〉 (numerical simulation, orange diamonds). (d)–(f) Experimental verification of the quantum
fluctuation relation 〈e−ΔβΔE〉 = 1: experimental data (blue dots) versus theoretical prediction (orange diamonds). The value of
Δβ ≡ β − βR is obtained from the probabilities P↑(0) and P∞

↑ to find the spin in |E↑〉 at initial and asymptotic times,
respectively. (a) and (d) P↑(0) = 0.509, τ θ = 1296 ns, α = π/4; (b) and (d) P↑(0) = 0.303, τ θ = 616 ns, α = arctan(1/2); and
(c) and (f) P↑(0) = 0.126, τ θ = 308 ns, α = arctan(1/4). The values of P∞

↑ are those reported in figures 5(b)–(d).

demonstrated in figures 6(a)–(c) by directly comparing 〈ΔE〉, extracted from the experimental data, with
the mean heat flux calculated with the theoretical model. See appendix B for details on how to calculate 〈Q〉
in this case. Remarkably, even when 〈ΔE〉 is different from zero, we demonstrate that the energy variation
statistics follows the quantum fluctuation relation 〈e−(β−βR)ΔE〉 = 1 (equation (14)), as the general theory
predicts. Figures 6(d)–(f) shows the experimental values of the quantity 〈e−(β−βR)ΔE〉, as obtained under
various experimental conditions (specifically with various values of τ θ and α). The experimental data
confirm the validity of the quantum fluctuation relation as expressed in equation (7).

5. Conclusions

The experimental verification of quantum fluctuation relations for open systems that simultaneously
exchange heat—due to a thermal gradient—and work—due to a time-dependent driving—is a formidable
challenge, owing to the general difficulty of measuring heat and work separately, while having typically
experimental access to their difference ΔE.

With this work we establish a first milestone along the way toward a fully fledged experimental
demonstration of fluctuation relations for driven-dissipative systems. The verification becomes feasible (i.e.,
it requires the statistics of ΔE only) in two special cases: (i) the external environment is at infinite
temperature, and (ii) the system is subject to a periodic driving, so that, at multiples of the driving period
the total work amounts to zero (while the power is generally non-null). In those cases the fluctuation
relations boil down to the simplified expressions in equations (6) and (7), respectively, which we have
experimentally verified.

Our experimental platform of choice was a single NV center in diamond. Due to its long coherence
time, and the possibility to finely control its state and its interaction with engineered environments, this
system naturally lend itself to study non-equilibrium thermodynamics in the quantum regime [24].

Our results represent the first experimental study of quantum fluctuation relation in driven open
quantum systems.
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Appendix A. Numerical model of the dynamics

In order to model the qubit dynamics, we separate the evolution into a unitary part, describing the
dynamics between consecutive short laser pulses, and the irreversible dynamics that describe the interaction
with laser pulses.

The unitary operators of the map correspond to

U(tNL−1, tNL) = exp

(
−i

∫ tNL

tNL−1

dt′ H(t′)

)
, (A.1)

with tN ≡ Nτ . We recall that τ is the time between laser pulses. In the case of the Hamiltonian in
equation (8), considered in section 3, each unitary operator describes a rotation around the x axis, such that

U(tNL−1, tNL) = exp
(
−iσx

∫ tNL
tNL−1

dt′ ω(t′)
)

, with ω(t) defined by equation (9). In contrast, in the case

studied in section 4, the unitary evolution is described by the Floquet Hamiltonian Hθ =
�

2 (ω0σx + θσz)
(equation (11)) only for discrete times tn = nτ θ , such that, for interpulse times τ = τ θ, the unitary operator
corresponds to U(tNL−1, tNL) = Uθ = exp

(
−iHθτθ/�

)
. Both of these unitary operators can be solved

analytically and then included in a numerical model of the dynamics.
The dissipative dynamics associated with each laser pulse consists instead in an energy jump that is

modeled as a POVM, with (1 − pa) probability to leave the state unaffected, and a probability pa to absorb
photons. Upon absorption, the spin qubit is subject to a projective measurement of σz followed by an
optical pumping of the spin modeled via Lindbladian master equation, with a Lindbladian jump operator√
Γ |0〉〈1| that transfers spin population to the state |0〉. The numerical simulation is then performed by

using a Monte-Carlo simulation to determine the result of the POVM, hence determining if the laser pulse
is absorbed or not. If the pulse is absorbed, Lindbladian operator is applied to the state of the system. In this
way, we simulate single trajectories followed by the system, and we finally average over several realizations to
obtain the mean trajectories shown in figures 2 and 5.

Appendix B. Mean work and mean heat flux

As described in the main text, the mean values of work and heat flux can be calculated as
〈W〉 =

∫ tf
0 dt′ Tr [ρ(t′) dH(t′)

dt′ ], and 〈Q〉 =
∫ tf

0 dt′ Tr [ dρ(t′)
dt′ H(t′)] [36]. In this appendix we describe how to

compute this quantities for the dynamics described in sections 3 and 4.

B.1. Mean work and mean heat flux for section 3
The spin qubit is driven by the Hamiltonian (equation (8)) H(t) = �ω(t)

2 σx, where ω(t) is a periodic
function such that ω(t) = ω(t + τA). In addition the system interacts with short laser pulses applied at
times tf = NLτ , where τ is the time between consecutive pulses and NL is the number of pulses. Assuming
that the duration of every short laser pulse interaction is given by δ, then the mean work and mean heat
flux after the first laser pulse is given by

〈W〉1 =

∫ τ

0
dt′ Tr

[
ρ(t′)

dH(t′)

dt′

]
+

∫ τ+δ

τ

dt′ Tr

[
ρ(t′)

dH(τ)

dt′

]

=

∫ τ

0
dt′ Tr

[
ρ(t′)

dH(t′)

dt′

]
(B.1)

〈Q〉1 =

∫ τ

0
dt′ Tr

[
dρ(t′)

dt′
H(t′)

]
+

∫ τ+δ

τ

dt′ Tr

[
dρ(t′)

dt′
H(τ)

]

=

∫ τ+δ

τ

dt′ Tr

[
dρ(t′)

dt′
H(τ)

]
. (B.2)

The second term in equation (B.1) vanishes because we assume the interaction with the laser pulses to be
instantaneous, δ � τ and δ � τA, hence the Hamiltonian is kept constant during the interaction with a
single laser pulse. Instead, the first term in equation (B.2) is equal to zero because the system evolves under
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unitary dynamics during the integration interval, meaning that dρ
dt = 1

i� [H, ρ]. Then, the cyclic property of

the trace implies that Tr[ dρ
dt H] = 1

i� (Tr[HρH] − Tr[ρH2]) = 0. Therefore, for a given final time tf such that
NLτ < tf < (NL + 1)τ we can separate the mean work and heat flux as

〈W〉 =
NL∑

n=1

〈W〉n +

∫ tf

τNL

dt′ Tr

[
ρ(t′)

dH(t′)

dt′

]
(B.3)

〈Q〉 =
NL∑

n=1

〈Q〉n, (B.4)

where

〈W〉n ≡
∫ nτ

(n−1)τ
dt′ Tr

[
ρ(t′)

dH(t′)

dt′

]

=
�

2

∫ nτ

(n−1)τ
dt′

dω(t′)

dt′
Tr[ρ(t′)σx] (B.5)

〈Q〉n ≡
∫ nτ+δ

nτ
dt′ Tr

[
dρ(t′)

dt′
H(τ)

]

= Tr[(ρ(nτ + δ) − ρ(nτ))H(τ)]. (B.6)

Note that the density operator at any given time t can be written as

ρ(t) = P+(t) |E+〉〈E+|+ (1 − P+(t)) |E−〉〈E−|+ (q(t) |E−〉〈E+|+ c.c.), (B.7)

where 0 � P+(t) � 1 is the population on the eigenstate |E+〉, and q(t) is a complex number describing the
coherence of the state in the Hamiltonian basis. We recall that |E±〉 are eigenstates of σx with eigenvalues
±1, which implies that Tr[ρ(t)σx] = 2P+(t) − 1. Therefore, equation (B.6) can be rewritten as

〈Q〉n = �ω(nτ) (P+(nτ) − P+((n − 1)τ)) . (B.8)

In addition, since the Hamiltonian is always parallel to σx, then the population P+(t) during the unitary
evolution is kept constant. Therefore, equation (B.5) can be recast as

〈W〉n =
�

2
(2P+((n − 1)τ) − 1) (ω(nτ) − ω((n − 1)τ)) . (B.9)

This means that knowing the population at times tf = nτ is enough to calculate 〈W〉n and 〈Q〉n. The
population, as we just mentioned, are unaltered by the unitary evolution, so we need to understand how
they are affected by the short laser pulses. As described in appendix A, the interaction with a single laser
pulse has a probability 1 − pa of leaving the system unaltered, and a probability pa to project the state of the
system into one of the eigenstates of σz, and then applying a Lindbladian evolution that pumps population
from |1〉〈1| to |0〉〈0|. Hence, the state of the system after absorbing a laser pulse is diagonal in the σz basis,
meaning that its populations in the σx basis must be equal to 1/2. Therefore, we can write a recursive
equation for the population in the σx basis

P+(nτ) = (1 − pa)P+((n − 1)τ) + pa/2. (B.10)

Notice that P+(0) = 1/(1 + e), as mentioned in the main text. Therefore, equation (B.10) can be used
recursively to obtain

P+(nτ) =
1

2

(
1 − (1 − pa)n(1 − 2P+(0))

)
. (B.11)

Finally, we can recast equations (B.9) and (B.8) as

〈W〉n =
�

2
(ω((n − 1)τ) − ω(nτ)) (1 − pa)n−1(1 − 2P+(0)) (B.12)

〈Q〉n =
�

2
ω(nτ)pa(1 − pa)n−1(1 − 2P+(0)). (B.13)

Equations (B.12) and (B.13) can be used to calculate the values of 〈W〉 and 〈Q〉 (equations (B.3) and (B.4)).
The mean values of work and heat flux are therefore completely defined by the parameters NL, P+(0), tf ,
τ/τA, and pa, the latter being the only free parameter fitted to the experimental data in figure 2.
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B.2. Mean heat flux for section 4
For the stroboscopic times described in section 4, the unitary evolution of the system is described by
Uθ = e−iHθτθ/�, where Hθ is the time independent Floquet Hamiltonian in equation (11), and τ θ is the time
between two consecutive laser pulses, and the time at which the energy of the system is measured. Given
that Hθ is time independent, then the mean work measured at stroboscopic times tf = τNL is equal to zero.
On the other hand, in analogy to appendix B.1, the mean heat flux measured at those stroboscopic times is

〈Q〉 =
NL∑

n=1

〈Q〉n =

NL∑
n=1

∫ nτ+δ

nτ
dt′ Tr

[
dρ(t′)

dt′
Hθ

]

=

NL∑
n=1

2Eθ

(
P↑(nτ) − P↑((n − 1)τ)

)
= 2Eθ

(
P↑(NLτ) − P↑(0)

)
, (B.14)

where Eθ = �
√
ω2

0 + θ2/2.
Let us assume that the density operator ρ(τ) represents the state of the system after applying a single

short laser pulse to the state ρ(0). As explained in appendix A, the qubit interaction with a short laser pulse
is modeled as a POVM with probability (1 − pa) to leave unaltered the state of the qubit and a probability
pa to apply a projective measurement of σz followed by Lindbladian dynamics under the jump operator√
Γ |0〉〈1|. Under this model, the probability to obtain Eθ,↑ = Eθ when measuring the energy of ρ(τ) is

P↑(τ) = Tr[|Eθ,↑〉〈Eθ,↑| ρ(τ)]

= (1 − pak)P↑(0) +
1

2
pa(k − pd cos α), (B.15)

where pd ≡ 1 − e−Γδ is the optical pumping probability associated with the Lindbladian dynamics,
α = − arctan

(
ω0/θ

)
is the angle that defines the ratio between the terms in the Floquet Hamiltonian

(equation (11)), P↑(0) = Tr[|Eθ,↑〉〈Eθ,↑| ρ(0)] is the probability associated with the initial state, and where we
have defined, to simplify notation, a factor

k ≡ 1 + (1 − pd) cos α2. (B.16)

The relation in equation (B.15) can be recursively applied in order to obtain

P↑(NLτ) = (1 − pak)NL P↑(0) +
1

2
(1 − (1 − pak)NL )

(
1 − pd

k
cos α

)
. (B.17)

Therefore, the mean heat flux in equation (B.14) can be recast as

〈Q〉 = Eθ

(
1 − (1 − pak)NL

) (
1 − pd

k
cos α− 2P↑(0)

)
. (B.18)

While pa and pd depend on the laser pulse duration and intensity, all the other parameters are precisely set
in experiment, with negligible uncertainty. Note that pd can be extracted from the asymptotic state
probability P∞

↑ = limNL→∞ P↑(NLτ) = 1
2 (1 − pd

k cos α). Thus, the only free parameter in equation (B.18) is
the laser absorption probability pa, which we fit to the experimental data (see figure 5).
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