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A B S T R A C T

In this study, we present an analysis of the relationship between the linguistic profile of a text and the
physiological and acoustic characteristics of the reader to improve the emotion recognition systems. To this
aim, we recorded the speech and electrodermal activity (EDA) signals from 33 healthy volunteers reading
neutral and affective texts aloud. We used the BioVoice toolbox and cvxEDA algorithm to estimate some of
the main speech and EDA features, respectively. The selected texts were analyzed to quantify their lexical,
morpho-syntactic, and syntactic properties. Correlation and Support Vector Regression analyses between
linguistic and speech and EDA features have shown a significant bidirectional association between the morpho-
syntactic structure of the text and both sympathetic markers and voice acoustic properties. Specifically,
significant relationships were observed between linguistic properties and certain EDA and speech features
commonly used to evaluate human emotional state (e.g., edaSymp, mean tonic, F0). These findings suggest that
lexical, morpho-syntactic, and syntactic properties may have a significant impact on an individual’s emotional
dynamics.
1. Introduction

Emotions play a crucial role in shaping our verbal communication
and can greatly influence the effectiveness of speech and reading
activities. Traditionally, assessing emotions has relied on subjective
self-report measures, which may be limited by subjective biases and
individual differences. However, technological advancements have en-
abled the integration of speech prosody and autonomic nervous system
(ANS) correlates offering objective and reliable means to estimate
emotional states.

ANS provides a physiological foundation for emotional regulation.
Indeed, it is responsible for regulating bodily functions and plays a
pivotal role in emotional responses [1]. EDA represents one of the most
extensively studied ANS correlates of emotional arousal and measures
change in skin’s electrical conductance resulting from sweat gland
activity regulated by the sympathetic branch of the ANS. EDA offers
objective measures of emotional states, providing valuable insights into
the physiological manifestations of emotions. The complex process that
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involves ANS and somatic regulation [2] is also responsible for speech
production. Accordingly, variations in speech prosody can express and
convey emotions [3], mood [4], stress [5,6], and personality [7] ex-
perienced by speakers or implied in the text during reading. Ana-
lyzing speech prosody [8] offers valuable insights into the emotional
content [3] and intentions underlying verbal communication.

However, the linguistic structure of the pronounced text, including
syntactic and semantic aspects, exerts a profound influence on speech
prosody and, consequently, emotional expression. Therefore, investi-
gating how the linguistic structure of the pronounced text influences
speech prosody and ANS correlates provides a relevant pathway to
understanding the interplay between language, emotions, and com-
munication. Specifically, exploring how the linguistic structure of the
pronounced text influences speech prosody, and ANS correlates, such
as EDA, unravels the mechanisms through which language and emo-
tions interact. This knowledge holds crucial implications across various
practical applications. For instance, in the field of human–computer
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interaction, understanding how linguistic cues influence emotional re-
sponses can inform the design of emotionally intelligent systems that
adapt to users’ affective states. In healthcare settings, monitoring the
emotional responses of patients during speech or reading tasks can
aid in the diagnosis and treatment of emotional disorders. In order to
capture the diverse layers of information embedded in a text, includ-
ing linguistic, lexical, and stylistic aspects, increasingly sophisticated
Natural Language Processing (NLP) and machine learning techniques
have been developed. The advancements in these fields have led to
the development of sophisticated techniques that enable the charac-
terization of a text’s linguistic profile by extracting a large number
of features modeling underlying lexical, grammatical, and semantic
phenomena [9]. Linguistic profiling has been successfully applied in
various theoretical and application scenarios, such as automatically
classifying textual genres and registers [10], as well as modeling cog-
nitive aspects of human language. For instance, in [11], the authors
have shown that linguistic features capturing lexical and (morpho-
)syntactic properties of a sentence can be effectively used to predict the
perception of its complexity by humans. Such evidence has been further
confirmed by a subsequent study [12], which also proved the reliability
of linguistic features extracted from the context in predicting humans’
judgments of sentence complexity. Recently, Singh et al. [13] have
proposed a deep learning hierarchy for emotion recognition, combining
text analysis computed by the language model ELMo [14] with prosody,
voice quality, and spectral features. However, formal modeling of
the relationship between features describing linguistic profiles, ANS
response, and speech prosody could unravel some specific mechanisms
that influence a speaker’s emotional response.

In this paper, we investigated whether physiological and acous-
tic features, commonly used to characterize ANS activity and speech
production prosody, can be significantly modulated by the linguistic
structure of the pronounced text. To this aim, we asked healthy vol-
unteers to read emotional texts designed to evoke different levels of
arousal and valence. Particularly, we used neutral and highly negative
arousing text. Due to their contents and linguistic characteristics, the
texts could elicit a sympathetic reaction from the subjects and modulate
the speech signals (e.g., fundamental frequency and formants, speech
duration). We analyzed a widely used sympathetic nervous system
(SNS) correlate, electrodermal activity (EDA), to quantify the sympa-
thetic reaction. This latter reflects the activity of the sympathetic nerve
on sweat glands in terms of skin conductance changes [15]. As our main
objective is to understand the interaction between the linguistic profile
of the texts and the speech prosody and ASN correlates, in this work we
do not focus on a comparison between the features extracted during the
readings of the different texts [16]. Instead, we applied correlation and
regression methods to understand how the features characterizing the
linguistic profiles of a text interact and influence the speech prosody
and the sympathetic response elicited by the same texts.

In addition, we performed a complementary analysis aimed at as-
sessing the strength of this relationship but from the opposite per-
spective, namely by testing the feasibility of exploiting speech and
physiological signals to predict a set of features characterizing the
linguistic structure of the pronounced text. This analysis goes in the
recent direction of using cognitive signals for the grounding of NLP
models in multi-modal settings to improve their performance across
multiple tasks and supply more cognitive-oriented benchmarks for their
evaluation. To date, the vast majority of these studies have relied on
eye-tracking data, which have been proven effective in many sequence
labeling and sequence-to-sequence scenarios, such as sentiment analy-
sis and irony detection, Part–of–speech (POS) tagging, Named Entity
Recognition and relation extraction [17]. On the other hand, other
sources of physiological data, such as ANS correlates, still need to be
2

investigated more.
2. Methods

A group of 33 healthy volunteers was enrolled in the study (17
females, 16 males), aged between 26.6 and 30.0. None of them suffered
from heart diseases, mental disorders, or phobias. Each participant gave
their written informed consent, and the study was approved by the
Ethical Committee of the University of Pisa.

We selected four texts, two describing medieval tortures and two de-
scribing textual genres and writing styles. Based on the topics covered,
two texts were classified as high arousal and negative valence, whereas
the other two were classified as neutral. Moreover, before starting the
experiment, a group of 22 subjects, other than those enrolled in this
study, evaluated the texts in terms of arousal and value, confirming
the arousal and valence levels supposed a-priori based on the reading
topic (see Supplementary Materials).

Each participant was asked to read aloud two randomly chosen
texts, one neutral and one affective [16]. All texts have similar lengths
to make the duration of the reading homogeneous among subjects.
After each reading, each subject was asked to score the text in terms
of arousal (from 1 to 5) and valence (from −2 to 2) using the Self-
Assessment Manikin (SAM) model [18]. During the reading task, the
speech signal and the EDA were recorded.

2.1. Linguistic analysis

The texts were divided into sentences, using the full stop as a split-
ting criterion, i.e., identifying a sentence as the part of text comprised
between two full stops. After the splitting, neutral texts contained 25
sentences, with an average length of 28 tokens; affective texts contained
40 sentences, with an average of 21 tokens.

Each sentence was analyzed from a linguistic point of view and rep-
resented as a vector of ∼140 features, corresponding to a subset of the
features described in [9]. These features model a wide range of proper-
ties extracted from the text linguistically annotated according to the
Universal Dependencies (UD)1 formalism. Specifically, these features
capture, on the one hand, complex phenomena related to the syntactic
structure of a text (e.g., use of subordination, the average depth of the
parse tree and the length of dependency relations, the structure of the
verbal predicates) and the morpho-syntactic structure (e.g., distribution
of grammatical categories across the text, fine-grained aspects related
to verb inflection), on the other hand, they refer to raw text properties,
like the length of the text and its fundamental components (sentences
and words). We chose to rely on these features as they have already
been proven to be effectively involved in modeling language processing
effects during natural reading, such as the user’s cognitive load inferred
from eye-tracking data [19], as well as from explicit judgments of
perceived sentence complexity given by human annotators [11]. Ac-
cordingly, we assumed they could also offer insights into the speaker’s
hidden emotional dynamics.

More in detail, the considered features, which were computed at
sentence level, can be grouped into the following typologies according
to the linguistic phenomena they describe:
(1) Raw Text Properties. Features about the length of the sentences
and of the words therein contained. For each sentence, sentence length
corresponds to the number of tokens comprised in the sentence, and
word length to the average number of characters per token.
(2) Lexical Richness. Features on how varied the vocabulary of a
text is, determined by computing: (i) the Type/Token Ratio (TTR),
i.e., the ratio between the number of lexical types and the number of
tokens within the sentence, (ii) the Distribution of words and lemmas
belonging to a reference frequency dictionary of the Italian language,
i.e., the Basic Italian Vocabulary (BIV Tok, BIV Types), also considering
the internal repertories in which it is articulated (i.e., fundamental,

1 https://universaldependencies.org/.
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high usage and high availability lexicon) [20] (iii) the lexical density,
calculated as the ratio of content words (nouns, verbs, adjectives, and
adverbs) over the total number of words in the sentence;
(3) Morpho-syntactic information. Features on:
(i) the distribution of grammatical categories for each sentence (e.g.,
adjectives, nouns, determiners, pronouns);
(ii) the inflectional morphology, i.e., the distribution, for lexical verbs
and auxiliaries, of a set of inflectional features (e.g., mood, tense, and
person);
(4) Verbal Predicate Structure. Features on:
(i) the distribution of verbal heads, i.e., the average number of propo-
sitions (main or subordinate) co-occurring in a sentence;
(ii) the distribution of verbal roots, i.e., the percentage of verbal roots
out of the total of sentence roots;
(iii) verb arity, i.e., the average number of instantiated dependency
links sharing the same verbal head;
(5) Global and local parsed tree structures. Features on:
(i) the depth of the whole parse tree, i.e., calculated as the longest
path (in terms of occurring dependency links) from the root of the
dependency tree to some leaf;
(ii) the average clause length calculated as the number of tokens per
clause, where the number of clauses is the ratio between the number
of tokens in a sentence and the number of verbal or copular heads;
(iii) the average length of dependency links, i.e., the average number
of words occurring between the syntactic head and its dependent(s);
(iv) the average depth of complement chains (a list of consecutive
prepositional complements modifying a nominal head);
(v) the relative order of the subject and the object in a sentence with
respect to their syntactic head (i.e., the verb).
(6) Syntactic relations. The percentage distribution of the 37 syntactic
relations comprised in the UD annotation scheme (e.g., subject, object,
nominal modifier).
(7) Subordination phenomena. Features on:
i) the distribution of main vs. subordinate clauses;
ii) the distribution of subordinates following or preceding the main
lause;
iii) the number of subordinates recursively embedded in the top sub-
rdinate clause.

.2. Speech signal processing

To analyze the speech time series and extract acoustic parameters
rom each sentence, we used the BioVoice toolbox [21]. The toolbox
etected first only voiced parts of each segment. These segments have
ean duration 0.81 ± 0.90 in the first emotive text, 0.83 ± 0.81 in the

econd emotive text, 0.67± 0.75 in the first neutral text, and 0.64± 0.70
in the second neutral text. Then, F0, F1, F2 and F3 were calculated.
In each voiced frame, F0 was estimated with a two-step procedure.
First, Simple Inverse Filter Tracking (SIFT) was applied to signal time
windows of length as 3𝐹𝑠∕𝐹𝑚𝑖𝑛, where 𝐹𝑠 is the signal sampling
frequency and 𝐹𝑚𝑖𝑛 is the minimum F0 value allowed for the signal
under consideration (i.e., 40 Hz) [22]. Secondly, F0 was adaptively
estimated on signal frames through the Average Magnitude Differ-
ence Function (AMDF) within the range provided by the SIFT [22].
Autoregressive Power Spectral Density (AR PSD) was considered to
extract formants values over time. Furthermore, in each sentence, the
total time duration of reading, the overall voiced duration within the
sentence time window (signal duration), and the average duration of the
voiced segments were extracted (mean duration).

Of note, due to their subject-dependency, the frequency features
(F0, F1, F2, and F3) were scaled according to: 𝐹 𝑠𝑐𝑎𝑙𝑒𝑑

𝑖 = 𝐹𝑖∕𝐹0𝑛𝑒𝑢 where
𝑖 represents the frequency feature of interest (in neutral or emotional
est in each sentence) and 𝐹 𝑖𝑛𝑒𝑢 the mean of the frequency of the
orresponding neutral texts, computed for all time duration.
3
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2.3. EDA signal processing

The EDA represents changes in the skin conductance of the non-
dominant hand due to the activity of the sweat gland. This latter is
controlled directly by the activity of the ANS and, more specifically,
of the SNS. The EDA comprises two components, the tonic and the
phasic signals, which contain complementary information about the
SNS. In particular, the tonic represents the EDA slow varying baseline
and reflects the subjects’ general psychophysiological state [23]. The
phasic, instead, are relatively quick stimulus-evoked changes in the
EDA signal [24]. In this study, to decompose the EDA signal into the
phasic and tonic components, we applied the cvxEDA algorithm [25].
After the decomposition process, several features were extracted within
the time window corresponding to each sentence: the mean (mean ph,
mean ton), standard deviation (std ph, std ton), and maximum value
(max ph, max ton) of both component; the number of phasic peaks (no
pks) and the sum of their amplitudes (sum pks); the power spectrum

ithin the 0.045–0.25 Hz interval (edaSymp), which reflects the sym-
pathetic activity [26]. These features were normalized according to the
time window length.

2.4. Statistical analysis and modeling

Using a Wilcoxon signed rank test, the SAM valence and arousal
scores were statistically compared between the a priori neutral and
negative texts. As a first statistical analysis of the features, we examined
the relationship between linguistic features and both EDA and speech
features. This investigation aimed to identify which linguistic proper-
ties of the text are most related to physiological arousal and speech
production, thus allowing us to discover the underlying interaction
between linguistic structure and SNS dynamics and speech. To do so,
we computed the correlation between each linguistic feature and every
EDA and speech one, using Spearman’s correlation coefficient as the
evaluation metric.

We selected all pairwise correlations that were statistically signifi-
cant (with a 𝑝-value < 0.05 after FDR correction for multiple hypothesis
testing [27]) and had a correlation coefficient different from zero. For
each feature, we calculated the percentage of subjects for which the
pairwise correlation was significant to deeply investigate whether some
patterns are more stable across participants and which phenomena they
involve.

We then assessed the relationship between linguistic, speech, and
EDA features from a modeling standpoint. To this end, we devised
two complementary tasks. The first task aimed to test the predictive
strength of the features characterizing the linguistic profile. Specifi-
cally, we employed a Support Vector Regression (SVR). The SVR was
implemented with a Radial Basis Function (RBF) kernel and standard
parameters. It used all linguistic features as input and predicted the
EDA and acoustic features. To account for within-subject repetitions,
we used leave-one-subject-out (LOSO) cross-validation, training the
model on all subjects minus one and testing on the left-out subject. Of
note, the baseline was calculated by running the model with only the
length of sentences as an input feature. The second task aimed at as-
sessing whether and to which extent physiological and acoustic features
can be effective predictors of features underlying the internal structure
of a text. To this end, we built a regression model leveraging acoustic
and EDA features to predict the whole set of linguistic parameters. As
in the first scenario, we employed RBF-SVR and standard parameters.
The model performance was compared to a baseline SVR model that
used Voiced Duration as the sole input feature.

In addition for each model, we performed a feature importance
analysis. Specifically, after the two aforementioned tasks were per-
formed, we selected for each participant all the features for whom
the predicted value by the RBF-SVR correlated for at least ±0.30 with
heir actual value and were statistically significant (𝑝-value < 0.05). We

hen applied a SVR model with a linear kernel to predict each one of
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these selected features. As in the tasks previously described, we used all
the EDA and speech features to predict the selected linguistic features,
and all the linguistic features to predict the selected EDA and speech
features. We then extracted the coefficients the linear-SVR assigned to
the features used as predictors and used them to build the features
rankings.

3. Results

3.1. SAM statistical analysis

The Wilcoxon test confirms the hypothesis of significant differences
between the a priori neutral and negative texts used in the experiment.
Remarkably, both the valence and the arousal scores were significantly
different between the two classes of texts: the arousal score was signifi-
cantly higher after the negative reading (𝑝 < 0.01), whereas the valence
score was significantly lower (𝑝 < 0.01).

3.2. Correlation analysis

Tables 1 and 2 report an overview of the most significant results of,
respectively, the correlations between speech frequency features and
linguistic features and between EDA features and linguistic features
(the complete results, including the mean correlation values, can be
found in the Supplementary Materials to this paper). In both tables,
linguistic features are grouped according to the linguistic phenomenon
they describe. Notice that, in the tables, each cell does not report
the value of correlation but the percentage of subjects for which the
corresponding linguistic features in the group were significantly corre-
lated with acoustic features and EDA features, independently from the
correlation value.

Comparing the two tables, we observe that linguistic features be-
longing to the same group were significant for a similar and, in some
cases, the very same number of subjects. Moreover, correlations with
features encoding syntactic-related phenomena were, on average, more
significant for a high number of subjects than correlations with lexical
and morpho-syntactic features.

Focusing on the correlations between linguistic and acoustic fea-
tures (Table 1), we can observe that mean and especially signal duration
are the acoustic parameters reporting significant correlations with al-
most all the considered linguistic features for most subjects. Significant
correlations for many subjects were also found for F0 and F3, while F1
and F2 were the least correlated. Focusing on the distinction between
the different typologies of linguistic phenomena, as expected, acoustic
features strongly related to the length of the sentences (Mean and Signal
Duration) were consistently correlated with linguistic features that
encode aspects of sentence length for most subjects. High correlations
were also found with syntactic features regarding the use of subordina-
tion and the structure of the parsed tree. This result is especially true
for F3, with up to 70% of the subjects showing a significant correlation.
Notably, most linguistic features showing significant correlations are
related to aspects of linguistic complexity spanning across different
domains. In particular, beyond sentence length, which is considered
as a shallow proxy of linguistic complexity and text readability [28],
we observe significant correlations with properties of the syntactic
structure (e.g., longer dependency links and prepositional chains) and
verbal morphology (e.g., a past verbal tense may be perceived as more
complex than the present tense). Conversely, features targeting the
use of lexicon like the lexical density, turned out to be significantly
correlated with acoustic parameters for very few subjects.

Concerning the correlations between EDA and linguistic features
4

summarized in Table 2, std ph, sum peaks and no peaks are the three
Table 1
Summary results of the correlations between Speech Features and Linguistic Features.
For each pairwise correlation, each number in the rows corresponds to the percentage of
subjects for which the correlation was statistically significant (with a 𝑝-value < 0.05) and
had a correlation coefficient different from zero. The cells where no number is available
indicate that there were no subjects for whom that correlation was significant.

Linguistic feature Speech

F0 F1 F2 F3 Mean
duration

Signal
duration

Raw text properties

Sentence length 24 9 3 58 73 100
avg clause length 33 12 3 45 55 100

Lexical variety

Lexical density ⋅ ⋅ ⋅ 12 18 100

Morpho-syntactic information

Auxiliary form 30 9 ⋅ 42 64 100
Auxiliary mood 33 9 ⋅ 39 58 100
Auxiliary person 30 12 3 45 58 100
Auxiliary tense 30 9 3 42 58 100
Adjective (possessive) ⋅ ⋅ ⋅ 9 12 88
Adverb ⋅ ⋅ ⋅ 6 9 70
Conjunction (coordinative) ⋅ ⋅ ⋅ 6 9 79
Conjunction (subordinative) ⋅ ⋅ ⋅ 6 12 79
Preposition ⋅ ⋅ ⋅ 6 9 61
Article (determinative) ⋅ ⋅ ⋅ 12 18 100
Article (indeterminative) ⋅ ⋅ ⋅ 18 30 100
Noun (proper) ⋅ ⋅ ⋅ 6 12 85
Verb (main) ⋅ ⋅ ⋅ 12 21 100

Verbal predicate structure

Verbal arity 61 36 21 73 97 100
Verbal roots dist. 33 12 3 45 58 100

Syntactic relations distributions

Clausal modifier of noun 42 15 9 67 88 100
Adverbial clause modifier 36 18 9 61 82 100
Conjunct 39 15 12 64 85 100
Nominal modifier 36 12 6 58 82 100
Nominal subject 33 12 3 42 55 100
Passive nominal subject 36 21 9 55 82 100
Object 33 12 3 42 64 100
Oblique nominal 33 15 6 45 73 100

Global and local parsed tree structure

avg dependency links length 33 12 3 45 55 100
avg prepositional chains length 45 30 15 70 91 100
Post-verbal object 39 27 12 67 91 100
Pre-verbal object 42 24 12 64 85 100
Post-verbal subject 42 24 9 64 85 100
Pre-verbal subject 42 21 9 64 85 100

Use of subordination

Principals dist. 48 27 15 70 94 100
Subordinates dist. 52 27 15 70 97 100
Post-verbal subordinate 55 30 18 70 97 100
Pre-verbal subordinate 48 30 15 70 97 100

phasic features that report a large number of significant correlations
with linguistic features for more than 50% of the subjects. Conversely,
for max peaks and mean pk, fewer correlations were found for a more
restricted number of participants. For the tonic component, the feature
that reports the higher number of significant correlations is std ton, the
standard deviation of the tonic component, which is especially highly
correlated with linguistic features that describe syntactic phenomena.
The other features of the tonic component, max ton, mean ton, and the
feature of the power spectrum, edaSymp, are significant for fewer sub-
jects. The highest number of significant correlations for these features
is found with the group of linguistic features related to subordination.
As in the previous case, if we take a closer look into the distinct groups
of linguistic features, we notice that features encoding syntactic-related
phenomena, especially related to the use of subordination, are overall

more correlated than morpho-syntactic and especially lexical features.
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Table 2
Summary results of the correlations between EDA Features and Linguistic Features. For each pairwise correlation, each number in the rows
corresponds to the percentage of subjects for which the correlation was statistically significant (with a 𝑝-value < 0.05) and had a correlation
coefficient different from zero. The cells where no number is available indicate that there were no subjects for whom that correlation was
significant.

Linguistic feature Electrodermal Activity (EDA)

eda symp Phasic component Tonic component

max pks no pks sum pks mean ph std ph max ton mean ton std ton

Raw text properties

Sentence length 3 12 39 52 3 64 ⋅ ⋅ 52
avg clause length 3 6 21 27 3 39 3 3 39

Lexical variety

Lexical density ⋅ ⋅ ⋅ ⋅ ⋅ 3 ⋅ ⋅ 3

Morpho-syntactic information

Auxiliary form ⋅ 6 21 3 3 42 3 3 36
Auxiliary mood ⋅ 6 18 24 3 36 3 3 33
Auxiliary person 3 6 21 3 ⋅ 3 42 3 3 33
Auxiliary tense ⋅ 6 18 21 3 36 3 3 36
Article (determinative) ⋅ ⋅ ⋅ ⋅ ⋅ 6 ⋅ ⋅ ⋅
Article (indeterminative) ⋅ ⋅ ⋅ ⋅ ⋅ 6 ⋅ ⋅ 9
Verb (main) ⋅ ⋅ ⋅ ⋅ ⋅ 6 ⋅ ⋅ 6

Verbal predicate structure

Verbal arity 18 48 7 64 27 82 21 18 88
Verbal roots dist. 3 6 21 3 3 42 3 3 36

Syntactic relations distributions

Clausal modifier of noun 12 21 42 45 12 58 9 9 70
Adverbial clause modifier 9 18 36 39 9 52 6 3 58
Conjunct 12 18 45 45 12 55 9 9 61
Nominal modifier 6 18 36 36 6 48 3 3 58
Nominal subject 3 6 18 3 ⋅ 3 39 3 3 39
Passive nominal subject 9 18 42 36 9 52 6 3 55
Object 6 6 21 33 3 39 3 3 42
Oblique nominal 6 12 33 33 6 48 3 3 48

Global and local parsed tree structure

avg dependency links length 3 6 18 3 3 39 3 3 39
avg prepositional chains length 15 3 ⋅ 52 55 15 64 9 6 79
Post-verbal object 15 24 52 52 15 61 9 6 79
Pre-verbal object 9 24 52 45 9 55 6 6 67
Post-verbal subject 9 24 48 45 12 55 6 6 70
Pre-verbal subject 9 24 45 45 12 58 6 6 67

Use of subordination

Principals dist. 15 39 64 58 18 79 12 12 88
Subordinates dist. 15 39 64 58 21 79 12 15 88
Post-verbal subordinate 15 45 64 58 24 82 15 15 88
Pre-verbal subordinate 12 42 64 58 21 82 12 15 88
s

3.3. SVR prediction of EDA and speech features using linguistic features as
independent variables

In this section, we report the regression analysis results to investi-
gate the feasibility of predicting the acoustic and the EDA features using
our set of multi-level linguistic properties. To evaluate the goodness of
the implemented SVR models, we correlated each model’s predictions
with the actual values of the features under examination, calculating
the mean Spearman’s correlation and variance over all subjects. For
both types of signals, we present the results as percentages that indicate
the number of subjects for which the predictions were significantly
correlated, independently from the correlation value.

Table 3 presents the results of predicting acoustic features using
linguistic features. It includes the percentage of subjects that exhibit
a significant correlation between the predicted variable and the target
variable. Additionally, it provides the mean and variance of the corre-
lation coefficient, as well as the correlation achieved by the baseline
model. Of note, the predicting model always performed better than
the baseline. The robustness of the model is also confirmed by the low
correlation variance across subjects, indicating that the acoustic values
predicted are consistent among the different subjects. The prediction
of mean duration and signal duration was significant for almost every
5

s

Table 3
Regression results for the prediction of speech features using linguistic features as
independent variables. Highlighted in bold are the features that obtain a mean
correlation value across subjects > 0.50.

% significant
subjects

Mean
correlation

Correlation
variance

Baseline

F0 15% 0.4032 0.0027 0.3622
F1 61% 0.5419 0.0181 −0.0272
F2 97% 0.5424 0.0089 0.0524
F3 27% 0.4593 0.0061 0.3264
Mean duration 91% 0.5836 0.0123 0.4399
Signal duration 100% 0.9559 0.0008 0.9447

subject, as expected from the correlation results. Indeed, these features
are directly linked to the length of sentences, a feature that the model
could see in input. However, the model that uses all linguistic features
slightly outperformed the baseline, especially for the prediction of mean
duration, suggesting that also signals are influenced by text properties
that go beyond sentence length. The predictions of F1 and F2 were
significant for a large number of subjects (>60%). Contrary to what was
een previously in the correlation analysis, where F0 and F3 obtained

ignificant results for a high number of subjects, when predicting them
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Table 4
Regression results for the prediction of EDA features. Highlighted in bold are the
features that obtain a mean correlation value across subjects > 0.50.

% significant
subjects

Mean
correlation

Correlation
variance

Baseline

edasymp 64% 0.5033 0.0082 0.0561
max_pks 33% 0.4836 0.0118 0.2790
no_pks 76% 0.5394 0.0103 0.4453
sum_pks 67% 0.5357 0.0184 0.3532
mean_ph 42% 0.2607 0.2291 0.0524
std_ph 82% 0.5785 0.0207 0.4947
max_ton 48% 0.1956 0.1982 0.0342
mean_ton 58% 0.1664 0.2455 0.0429
std_ton 73% 0.5558 0.0202 0.5066

with the SVR their predictions are significant for a low number of
subjects (<30%).

Table 4 shows the results for the prediction of EDA features. Also
n this case, our predictions are always higher than the baseline, which
as previously mentioned – corresponds to the scores of a SVR model
sing only the sentence’s length in input. This is especially the case
f edaSymp and sum_pks, which are among the best-predicted ones if
ompared to the baseline results. Nevertheless, the variance of the
redictions is higher for some features (e.g., mean_ph, mean_ton) com-
ared to the relatively low variance obtained by the model predicting
peech features. We can also see that, except for mean ph, features
eferring to the phasic component are generally predicted with higher
ccuracy. On the contrary, both the mean and the maximum value of
he tonic component showed to be less predictable by our set of lin-
uistic features. This result reflects the correlation analysis results (see
able 2), where we observed that the pairwise correlations between
hese features and the whole set of linguistic features were significant
or a lower percentage of subjects (from 3 to 30%, on average).

By inspecting the results of the feature importance analysis for the
rediction of speech features, we found a clear impact coming from
eatures connected to the length of the sentence. This includes not
nly the sentence length itself, but also other related aspects such as
he number of verbal heads, as longer sentences tend to exhibit more
lauses combined through coordination or subordination. We further
bserved that the distribution of subjects and their position (pre- or
ost-verbal) within the sentence turned out to be highly predictive.
s regards the feature importance analysis for the prediction of the
DA, the tonic component does not exhibit a clear pattern of influence.
nstead, the prediction of the EDA phasic component is found to be
ore related to the length of the sentence and features associated
ith it, such as the number of prepositional chains, and subordination
henomena. Additionally, punctuation seems to have some level of
nfluence, although it is assumed to be related to the sentence length,
s longer sentence tend to have more punctuation.

.4. SVR prediction of linguistic features using EDA and speech features as
ndependent variables

As the last analysis, we discuss the results of the prediction of
inguistic features using speech features and EDA features as input. Also
n this scenario, the goodness of the model is evaluated by correlating
he model’s predictions with the true values of the predicted features
y calculating the mean Spearman’s correlation and its variance for
ll subjects. These results are shown in Table 5, which reports only
he features for which the number of significant subjects was ≥15.

Complete results are shown in the Supplementary Materials of this
paper.

We observed that the predictions of our model are always better
than the baseline for all features. The very low variance of the correla-
tion coefficients across the different subjects also shows that the model
is quite robust in its predictions. The highest correlations are found
6

for sentence length, as well as for features still related to length but
modeling more complex properties of the global and local structure of
the parse tree. These features include: the depth of the whole parse tree,
the average length of dependency links, and the presence, and internal
structure, of complex nominal complements headed by a preposition
(i.e., avg prepositional chains length, prepositional chain number). These
features are also the ones for which the correlations are significant
for a high percentage of subjects (≥90%). Overall, considering the
distinction of linguistic features into the different groups of phenomena,
the best results are found in the predictions of features covering the
use of subordination, for which the mean correlation is above 0.60,
and the prediction is significant for almost all subjects. Conversely,
EDA and voice features contribute to a small extent to the prediction
of morpho-syntactic properties. Indeed, focusing on the distribution
of grammatical categories, although the correlations are around 0.4
or above, these correlations are significant only for a few subjects.
As shown in Table 5, the only two exceptions are represented by the
presence of subordinating conjunctions and of auxiliaries in the present
tense, which are significantly correlated for a high number of subjects
(i.e., 20 out of 33 and 16 subjects out of 33, respectively).

The feature importance analysis reveals patterns of influence on
the different type of linguistic features. Features regarding the lexical
density have as most relevant predictors F1, F3, signal duration, and
the EDA tonic component. In the case of morpho-syntactic features,
the most influential predictors are F2 and signal duration, with no clear
pattern observed from the EDA features. For what concerns syntactic re-
lations features and the local and global parsed tree structure features,
F2 and signal duration are identified as the most relevant predictors,
but also the EDA phasic component exhibits a great impact. Lastly, in
the context of subordination phenomena, signal duration emerges as
the most relevant predictor, while no distinct pattern is observed from
the EDA features.

4. Discussion and conclusion

In this study, we combined the analysis of the linguistic profile of
neutral and emotional texts with the reader’s EDA and speech signal
analysis. We assumed that both EDA and speech signal reflected the
emotional elicitation induced by the task and assessed by the SAM.
Correlation and regression methods were used to understand how the
linguistic structure of the texts interacts with both signals.

As regards the correlation analysis, we found a statistically signifi-
cant relationship with some of the linguistic properties of the text. In
particular, significance was found between linguistic features related to
aspects of syntactic complexity, including the use of subordination and
the verbal predicate structure, and the speech features that describe
some prosodic aspects of speech often related to the human emotional
state (e.g., F0, F3 variation over time). The results also show how
speech features like the signal duration can be indicators of linguistic
complexity, because of its strict relationship with the sentence length.
Indeed, sentence length serves as an indicator of complexity because
longer sentences typically involve more intricate dependencies and syn-
tactic structures, such as multiple subordinate clauses. This increases
the cognitive effort required to process and comprehend the sentence
and its underlying structure. As a result, since sentence length and
signal duration share a direct correlation, signal duration can also
be regarded as a measure of complexity. Likewise, the EDA features
describing the variability of both phasic and tonic components (std
ph, std ton), as well as the number of phasic responses, were strongly
correlated with most of the linguistic properties of the texts. These
features often reflect arousing states such as fear and anxiety [29].

The strong significant relationship between linguistic characteristics
and acoustic and EDA features was also confirmed by the prediction
performance of the linguistic-driven SVR models. Indeed, the combina-
tion of linguistic features showed a significant and relevant prediction
ability of the ANS-related features both when they described some
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Table 5
Regression results for the prediction of Linguistic Features using in input speech features and EDA features. Highlighted in
bold are the features that obtain a mean correlation value > 0.50.

Number (and %) of
significant subjects

Mean correlation Correlation variance Baseline

Raw text properties

Sentence length 33 (100) 0.8447 0.0018 0.4563

Lexical variety

Types fundamental lexicon 15 (45) 0.5103 0.0087 0.1336
Type/token ratio lemma 33 (100) 0.6482 0.0084 0.3439

Morpho-syntactic information

Subordinating conjunctions 20 (61) 0.4416 0.0031 0.0563
Auxiliaries present tense 16 (48) 0.5355 0.0075 0.1362

Syntactic relations

Adverbial clause modifier 28 (85) 0.5355 0.0072 0.2023
Marker 28 (85) 0.5631 0.0099 0.2836
Nominal modifier 20 (61) 0.4226 0.0034 0.1947
Nominal subject 15 (45) 0.5112 0.0103 0.2812
Object 15 (45) 0.4475 0.0049 0.0567

Global and local parsed tree structure

Parsed tree depth 33 (100) 0.7603 0.0032 0.3852
Clause length 19 (58) 0.4995 0.0039 0.2985
avg dependency links length 33 (100) 0.6771 0.0085 0.3486
avg prepositional chains length 32 (97) 0.5248 0.0052 0.2120
Prepositional chains number 33 (100) 0.6316 0.0081 0.2990
Post-verbal object 28 (85) 0.4715 0.0064 0.1816
Prepositions distribution 17 (52) 0.4564 0.0083 0.1760

Subordination phenomena

Principal propositions dist. 32 (97) 0.6581 0.0228 0.2647
Subordinate propositions dist. 33 (100) 0.7234 0.0077 0.2984
Post-verbal subordinates 31 (94) 0.5542 0.0087 0.2350
Subordinate chains length 33 (100) 0.6594 0.0063 0.3098
characteristics of the voice spectrum (i.e., fundamental frequency and
formants) that could be altered by the respiratory activity and when
they describe the physiological arousal manifested by the sweat gland
activity.

Concerning the EDA features, in addition to those already shown by
the correlation analysis, the SVR has shown a remarkable prediction
performance of edaSymp values. Such a feature is indeed a reliable
marker of the activity of the sympathetic system and a proven stress
marker, supporting the hypothesis of a relationship between features
typically recognized as proxies of linguistic complexity, especially at
the syntactic level, and a stress reaction of the subject [26]. However,
this result could suggest a double possible interpretation. On the one
hand, the linguistic structure of the pronounced sentence may be a
confounding factor that masks the actual contribution of voice prosody
and EDA in estimating the emotional state when a subject is speaking.
Indeed, the prosody and EDA dynamics variations could be due to the
speech-related mechanical changes induced in the respiratory activity,
which is known to influence both acoustic and EDA characteristics. On
the other hand, the linguistic structure itself could directly influence
the subject’s emotional state, which would be correctly identified by
the speech and EDA features. This last hypothesis has already been
supported by some studies that have combined the features derived
from speech processing with some linguistic features to feed classi-
fiers for the recognition of the emotional state [13,30]. However, in
these studies, the encoding of the text takes into account the lexi-
cal and contextual aspects of language but does not consider other
important features examined in our studies, such as those encoding
morpho-syntactic or syntactic information. Indeed, these features could
substantially impact an individual’s emotional state because they are
related to a variety of psycholinguistic phenomena and could affect
the cognitive load and processing difficulty of the language user. In
this regard, the results we obtained are in line with previous studies
(see, in particular, [11,12]) in which the same set of linguistic features
on which we relied was shown to be highly correlated with conscious
judgments of perceived sentence complexity given by native speakers.
7

Additional evidence that emerged from our study is that acoustic
and physiological signals are reliable predictors of a large array of
linguistic features, which contribute to encoding the morpho-syntactic
and syntactic structure of the text. This finding emphasizes the strong
interplay between the speaker’s underlying emotional state and the
linguistic structure of the text. Moreover, it holds valuable practi-
cal implications in the realm of computational modeling of language
phenomena. In line with current research trends, cognitive signals
have been shown to enhance NLP models through multi-task learning,
offering informative explanations for distinguishing between human
and machine language processing [17,31]. Multimodal fusion of these
signals with textual data can thus lead to the development of more
comprehensive and context-aware NLP models that can better under-
stand and respond to users in various real-life settings and applications
concerned with affective phenomena: from multimodal sentiment anal-
ysis systems to cognitively-inspired readability assessment tools and
AI technologies in the educational scenario able to adapt to personal-
ized learning paths. Additionally, recognizing which text features elicit
specific emotional responses in readers could assist in regulating the
automated processing and generation of language [32]. The incorpo-
ration of controlled emotions in automatically generated texts can be
beneficial in a variety of scenarios: for instance, for improving the
quality of conversational systems as this technology allows the system
to respond to human users in a more empathetic manner, thereby
fostering more meaningful conversations between the user and the AI-
agent. Moreover, the ability to establish an emotional connection with
the reader holds particular value for conversational therapy bots that
need to generate appropriate emotional responses based on the user’s
mental state.

To expand our theoretical comprehension of human engagement
dynamics and facilitate the advancement of emotionally-aware AI tech-
nologies, our future studies will thus involve a thorough exploration
of the chosen linguistic features to assess their influence on predicting
emotional states. Additionally, we find it intriguing to extend our
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investigation to include other physiological parameters, such as the
electrocardiogram recorded during the reading task. By examining
the correlation between these physiological signals and speech and
linguistic parameters in affective reading, we aim to gain further in-
sights into the interplay between physiological responses and emotional
processing.
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