
Distributed versus Centralized Computing of Coverage in

Mobile CrowdSensing

Michele Girolami1, Alexander Kocian2*, Stefano Chessa1,2

1ISTI-CNR, Institute of Information Science and Technologies, 56124 Pisa, Italy, Moruzzi,
Pisa, 56124, Italy, Italy.

2*Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo, Pisa,
56127, Italy, Italy.

*Corresponding author(s). E-mail(s): alexander.kocian@unipi.it;
Contributing authors: michele.girolami@isti.cnr.it; stefano.chessa@unipi.it;

Abstract

The expected spatial coverage of a crowdsensing platform is an important parameter that derives from
the mobility data of the crowdsensing platform users. We tackle the challenge of estimating the antic-
ipated coverage while adhering to privacy constraints, where the platform is restricted from accessing
detailed mobility data of individual users. Specifically, we model the coverage as the probability that
a user detours to a point of interest if the user is present in a certain region around that point. Fol-
lowing this approach, we propose and evaluate a centralized as well as a distributed implementation
model. We examine real-world mobility data employed for assessing the coverage performance of the
two models, and we show that the two implementation models provide different privacy requirements
but are equivalent in terms of their outputs.
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1 Introduction

Mobile CrowdSensing (MCS) Capponi et al.
(2019); Liu et al. (2019); Belli et al. (2019) is
a widely used computational paradigm designed
to exploit data provided by the crowd, through
their mobile devices, giving rise to a collabora-
tive approach. More precisely, users, referred to
as MCS subscribers, actively participate in the
crowdsensing platform by installing a mobile app
on their smartphones. Through this app, they can
respond to specific tasks requested by the plat-
form and receive services as a reward. A task
involves activating sensors present in the smart-
phone, such as GPS, and can operate without

direct user intervention. In such cases, the app ini-
tiates data sampling from the sensors and sends
the collected data to the MCS in accordance
with the specified request, continuing until the
task concludes or until the user manually stops
it. Alternatively, certain tasks may necessitate
explicit user engagement, requiring them to phys-
ically reach a specified location and perform a
designated action, such as taking a picture at that
particular place.

Given the widespread usage of smartphones,
the potential for MCS to collect user-generated
data on a broad and detailed scale, especially in
urban areas, is very high Cardone et al. (2014);
Chessa et al. (2017). This is coupled with the
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advantage of requiring limited investments for the
management and maintenance of the crowdsens-
ing platform. Nevertheless, the effective coverage
of the environment by such a platform remains
constrained by the number of subscribed users
along with their mobility. With the term cover-
age, we refer to the probability that a site is
covered within a confidence region using sensed
data. As a general observation, dense areas tend
to have high coverage due to the presence of many
users who can collect data. Conversely, periph-
eral regions might lack coverage, resulting in no
expected data from such places. For these reasons,
constructing a coverage map of the monitored
environment is a promising approach to identify
covered and uncovered regions. Subsequently, this
can aid in planning a data-driven CrowdSensing
data collection campaign.

In this study, we explore the methodology of
constructing a coverage map for a crowdsensing
platform by leveraging knowledge of user mobil-
ity. From a practical standpoint, the computation
of the coverage map can be achieved through both
a centralized and a distributed approach. In the
former, the crowdsensing platform retrieves all
mobility data from participating users, such as
GPS traces, irrespective of their engagement in a
task or the task’s requirement for mobility data.
This approach, which was preliminarily investi-
gated in our prior work Girolami et al. (2022a),
albeit in a different context, namely Edge com-
puting Girolami et al. (2022b); Bellavista et al.
(2019), involves centrally analyzing the collected
mobility data to derive the coverage map of the
environment. Specifically, the crowdsensing plat-
form designates a region as covered based on the
frequency of user visits and the likelihood of users
diverting toward that region. The higher the prob-
ability of users detouring towards a region, the
greater the likelihood of collecting data from that
specific area.

The centralized approach, however, raises pri-
vacy concerns for users, as it necessitates the
disclosure of their mobility data to create a global
coverage map. Therefore, in this study, we intro-
duce an alternative distributed approach to con-
struct a coverage map. In this latter approach,
the crowdsensing platform only gathers aggre-
gated data from users, comprising user-generated
coverage maps. The individual users indepen-
dently compute a coverage map by analyzing their

own trajectories. The coverage maps are then
uploaded to the crowdsensing platform, which
subsequently generates an aggregated-anonymous
map. We analyze both models and provide analyt-
ical proof that the two models converge, meaning
the aggregate map computed with the distributed
approach is identical to the map computed with
the centralized model.

We evaluate the performance of both models
in an experimental setting utilizing real mobility
data from a public dataset. Firstly, we define three
experimental scenarios of increasing complexity,
demonstrating the equivalence of the centralized
and distributed models under similar conditions.
Secondly, we examine the performance of the dis-
tributed model by varying the two key model
parameters. Additionally, we analyze the dataset
used for our experiments from a mobility perspec-
tive.

The reminder of this work is organized as
follows. Section 2 frames the state-of-the-art of
coverage computation with crowdsensing scenar-
ios. Section 3 reports our reference scenarios and
a first introduction to the centralized and dis-
tributed models. Section 4 formally describes the
two models and Section 5 details our experimental
settings.

2 Related Work

Network coverage, specifically the sensor set with
the maximal residual energy to cover all points-
of-interest, is a critical Quality-of-Service param-
eter, attracting significant research interest in
recent years. Beginning with Wireless Sensor
Networks (WSN), Chen et al. (2010) proposes
sensor deployment strategies to maximize resid-
ual energy when covering all points-of-interests
(POIs). The work by Senouci et al. (2012) intro-
duces an evidence-based sensor coverage model
that addresses deployment-related issues, includ-
ing sensor reliability. Yang et al. (2019) suggests
a model for coverage degree, representing the
number of sensors required to cover a POI, specif-
ically for visual WSNs deployed in line-of-sight
communication Yang et al. (2019). Akbarzadeh
et al. (2013) incorporates terrain information into
visual WSN deployment, employing a probabilis-
tic approach to model binary coverage. The cov-
erage area can be significantly expanded when

2



end-devices operate in Multiple-Input Multiple-
Output Space Division Multiplex (MIMO-SDMA)
mode Kocian et al. (2017). However, mobility in
WSNs is typically very limited.

The presence of mobile embedded sensors in
smartphones and wearable devices enables the
monitoring of environmental parameters on a
large scale. User mobility, coupled with ubiq-
uitous computing, enhances context awareness
and understanding of user behavior compared
to network-connected wireless sensor networks,
thereby creating shared value. The success of MCS
relies on the extensive participation of users. To
effectively motivate users in sensing and reporting
information, incentive mechanisms are employed
Capponi et al. (2019). Various research works sug-
gest three types of rewards that encourage users
to share their data, including location tagging and
activity tracking: i) gamification; ii) services; or
iii) monetary rewards Zhang et al. (2016). Chal-
lenges in MCS encompass data quality in terms of
accuracy, latency, and data security Zhang et al.
(2021). A comprehensive review, focusing on tax-
onomy, applications, and challenges, can be found
in Boubiche et al. (2019). Finally, an MCS cam-
paign may deploy a combination of static and
mobile sensors and utilize sensing interpolation
strategies to ensure coverage in less frequented
areas Girolami et al. (2017).

Focusing on MCS applications that explore
network coverage, it is worth noting the work of
Wu et al. (2021), which addresses fine-grained user
profiling for personalized task matching. In con-
trast, Xu et al. (2022) employs a reinforcement-
learning approach to maximize rewards in an
online participant selection scheme, incorporating
both area coverage ratio and degree. Wang et al.
(2018) maximizes the future location coverage of
the mobile crowd under a guaranteed location
privacy protection scheme. The issue of Coverage-
Aware Stable Task Assignment in Opportunistic
MCS is addressed by Yucel et al. (2021). Finally,
we want to highlight the coverage-guaranteed
and energy-efficient participant selection strategy
proposed by Ko et al. (2019).

Many current Mobile CrowdSensing (MCS)
solutions heavily depend on some form of central-
ized data fusion. However, this approach encoun-
ters three issues: i) to guarantee spatial coverage
of the targeted area, the MCS cloud requires loca-
tion information of the assigned tasks, inevitably

revealing participants’ locations; ii) raw sensor
readings can be easily intercepted, leading to the
disclosure of sensitive information to adversaries;
iii) in scenarios where Internet bandwidth is low
or the geographical environment causes deep chan-
nel fades, the number of active connections can
overwhelm the network.

To address these challenges, network require-
ments are often better met by employing dis-
tributed or fog computing Baresi et al. (2016). The
burden on back-end cloud servers can be reduced
by providing distributed analysis for submitted
data at the fog level Jayaraman et al. (2015).
Based on the Quality-of-Service provided by par-
ticipants, their selection can be offloaded to the
mobile edge nodes Lamaazi et al. (2020). How-
ever, these frameworks assume trust among users,
fog nodes, or cloud servers, which is not always
the case. To address this issue, Lamaazi et al.
(2022) proposes adopting a feedback mechanism
to ensure cooperation between edge nodes, aiming
to eliminate untrustworthy participants. To safe-
guard data in MCS, recent research has focused
on credible and distributed incentive mechanisms
based on blockchain technology Kadadha et al.
(2020); Chen et al. (2022). Distributed Mobile
CrowdSensing (MCS) has found numerous real-
life applications. For instance, the application
discussed in Mowafi et al. (2022) utilizes built-
in cameras in smartphones to capture images
of environmental disasters from various perspec-
tives. Instead of transmitting all images to the
server, they are exchanged with other nodes to
avoid sharing redundant photos. This approach
results in traffic reduction and energy savings
exceeding 20% and 25%, respectively, compared
to centralized fusion.

In the application highlighted in Paricio and
Lopez-Carmona (2019), individual (static) traffic-
weighted multimap creation is employed to pre-
cisely control vehicle routes. This multimap
reflects link costs based on historic real-time
data about the network, traffic status, and driver
behavior obtained from distributed embedded
measurement rootkits.

Another notable application of MCS involves
influencing participant behavior. For example, in
Ji et al. (2022), tools from the Mental Account-
ing Theory are deployed to create accounts for
task execution profit and bonus, which are then
used to motivate workers to alter their original
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Table 1 An overview on recent distributed MCS:
location of algorithm deployment and application.

Reference architecture application

Jayaraman et al.
(2015)

fog generic

Baresi et al. (2016) fog generic
Paricio and Lopez-
Carmona (2019)

cloud traffic control

Kadadha et al. (2020) fog-cloud trusted repu-
tation

Qian et al. (2020) edge task alloca-
tion

Wang et al. (2020) emulation generic
Shao et al. (2021) simulation generic
Chen et al. (2022) simulation trusted repu-

tation
Guo et al. (2022) simulation fake news
Ji et al. (2022) simulation generic
Lamaazi et al. (2022) emulation edge selection
Mowafi et al. (2022) simulation area coverage
Ning et al. (2022) edge-cloud traffic man-

agement
Zhou et al. (2022) emulation environmental

data
Wu et al. (2023) cloud federated

learning
our work emulation coverage map

travel schedules. In Guo et al. (2022), distributed
MCS, combined with machine learning tools such
as Bidirectional Encoder Representations from
Transformers (BERT), is proposed for tracking
down fake news.

To safeguard participant privacy, it is crucial
to ensure the uncorrelation of their location data.
In line with this approach, Qian et al. (2020) pro-
poses obfuscating participants’ real locations as
disturbed locations and achieving optimal task
allocation based on these perturbed locations.
Differential privacy and distributed user location
obfuscation are suggested by Zhou et al. (2022).
On the other hand, Shao et al. (2021); Wu et al.
(2023) propose using k-anonymity to protect the
privacy of datasets. Sparse Mobile CrowdSensing
(MCS) with Differential and Distortion Location
Privacy is addressed in Wang et al. (2020).

To simultaneously address user data security
and system latency, the work presented in Ning
et al. (2022) proposes a blockchain-enabled dis-
tributed MCS framework for traffic management.

3 System Model

In this study, we focus on a typical MCS sce-
nario in which platform users are equipped with
a mobile device, typically a smartphone. These
devices are capable of performing various sens-
ing tasks through an MCS app. The term task in
this context refers to a specific action executed
by a device, such as collecting sensing information
using on-board sensors or capturing a picture with
the embedded camera. Tasks can be autonomously
performed by a device, or they may necessitate
explicit user intervention. A MCS architecture
also includes a back-end server in charge of:

• sending tasks to users: this action is required
to start a data collection campaign. Some note-
worthy examples include gathering information
about the quality of WiFi networks in a particu-
lar area or collecting data on the noise intensity
in a specific region;

• retrieving collected data: this action is neces-
sary for retrieving and storing data collected
by users. The data can be stored on the
back-end and subsequently analyzed using post-
processing analytics.

Typical MCS systems necessitate a mobile appli-
cation to transfer the collected information from
the user’s device to the back-end, similar to nav-
igation, sports tracker, or recommendation apps.
The amount of retrievable data and the regions
from which data are collected depend on the num-
ber of participating users. Specifically, the higher
the number of users in a MCS campaign, the
greater the expected data and the broader the
covered area. Refer to Table 2 for the adopted
notation.

For the coverage, peripheral regions not visited
by any user are likely to be uncovered, as no sens-
ing information is collected from those areas using
the user’s device. In contrast, popular areas are
likely to be highly covered, as a significant amount
of data is retrieved from user’s device. The con-
cept of data coverage is prevalent in popular MCS
applications like Google Maps. These applications
are built on the idea of collecting and sharing user
contributions, such as real-time traffic conditions,
road accidents, or slowdowns.

We now turn our attention to the primary
objective of this paper, which is to predict the
coverage in an MCS system by leveraging user
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mobility. We quantify the probability of collecting
data from a specific set of locations L = {lh : h ∈
[1, H]}, |L| = H given users U = {uk : k ∈ [1,K]},
|U | = K. Let the coverage Ch ∈ [0, 1] be defined
as the event where at least one user visits location
lh ∈ L. Moreover, let P(Ch) denote the prob-
ability of coverage at location lh. The coverage
map, designed to indicate the service area of all
locations L, corresponds to the 2-dim. probability
density function of the site coverage if a user is
present in a region around the site. As an example,
Figure 1 illustrates the coverage map forH = 1954
locations assuming that each site is equally likely
visited. Each entry in the map is specified by the
triple (lh,x, lh,y,

1
HP(Ch)).

Fig. 1 Example of coverage map C for L locations, we
report on x and y -axes the longitude and latitude and on
the z-axis the coverage value for the corresponding location.

To achieve this, we propose a mobility-based
approach to measure Ch by identifying highly vis-
ited or scarcely visited locations and, in turn,
estimating the expected coverage. This approach
assumes a positive correlation between a location’s
visits and the expected coverage: the more likely
a location is visited, the more likely a user will
collect data from there.

As anticipated in the introduction, we con-
sider two approaches for the prediction of the
coverage that are based on centralized and on
a distributed model, respectively. The centralized
model requires that the back-end has the full

knowledge of the user’s mobility, e.g. the users’
trajectories as GPS coordinates. By analyzing the
user’s mobility, it is possible to identify crowded
areas and to assume that visited locations are also
covered locations. The model also introduces the
concept of detour as the possibility for a user to
deviate from its original trajectory and to pass
close to location lh ∈ L. Detouring increases the
possibility of collecting data from lh, and hence of
increasing the coverage Ch. MCS typically adopts
this approach by providing reward to the par-
ticipants Dasari et al. (2020); Hu et al. (2020).
We report in Figure 2 a graphical representation
of detour. In the figure we show 2 users: ui, uj

and location lh as a red box. Users travel along
a different trajectory. We can identify for each
user’s trajectory the nearest point j with respect
to lh, namely dhi,j , d

h
i′,j′ . Such points are those from

which users will likely accept or decline a detour
toward lh. The advantage of the centralized model
is the possibility of building an accurate coverage
map, as full details of the user’s mobility are stored
on the back-end. Nevertheless, the main drawback
is that user’s mobility represents highly personal
information, as it can reveal the identity of a sub-
ject Peng et al. (2017). Under this respect, it is
worth to mention the strict rules applied with the
GDPR framework.

The second model we study in this work is a
distributed and privacy-preserving approach. The
idea is to let users locally compute the coverage
map for a given set of locations L and storing
on the back-end only the coverage map for every
user i. Differently from the previous model, the
back-end does not require to store the user’s tra-
jectories, rather the back-end only retrieves the
coverage map from every user. It is worth to
mention that the coverage map does not disclose
detailed information about the user’s mobility,
rather it only provides the probability for user
i of visiting a specific location (locations L are
the same for all the users). In turn, the back-end
aggregates the retrieved converge maps, building
a final map. The two proposed models (central-
ized and distributed) provide the same result: a
coverage map for the set L of locations. However,
With the centralized model we assume to trans-
fer personal data to the back-end, while with the
distributed one we relax this assumption as users
locally compute their partial coverage maps and
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Table 2 The adopted notation for the coverage models.

Symbol Description

U User set
L Location set
C total coverage value
Ch Coverage value of location lh by any user
Ci Coverage value of any locations by user i
P(Ch

i ) Coverage map of location lh by user i
lh,x x-coordinate of location lh
lh,y y-coordinate of location lh
dhi,j Closest point of user i along trajectory j

with respect to location lh

then they transfer this aggregated information to
the back-end.

Fig. 2 Graphical representation of detour toward location
lh.

4 On the Computation of the
Coverage Map

In this section we formalize the distributed cov-
erage model introduced in Section 3, recap the
centralized and demonstrate their equivalence.

4.1 Distributed Model

To start out, we need to make a few definitions
and assumptions. For the sake of simplicity, the
coverage area is resembled as circle with radius R
and centered around the respective POI located
at lh ∈ L. Let the random variable Dh

i,j cap-
ture the distance between the trajectory tj of ui

and the POI at location lh. To model the proba-
bility distribution for Dh

i,j , consider the following

scenario. Suppose that user ui, moving along tra-
jectory tj chooses to leave the trajectory, to visit
location lh. The shorter the detour distance dhi,j ,
the more likely the users leave their trajectories.
The exponential distribution is commonly used to
model this behavior, as preliminary proposed in
Girolami et al. (2022a). However, beyond cover-
age area, the users are too far off the POI. Hence,
a better approach is to truncate the distribution
at the edge of the coverage area R according to

p (t) =

{
λ exp {−λt}

1−exp {−λR} 0 < t ≤ R

0 otherwise
(1)

λ > 0. Finally, let us define the deterministic vari-
able dhi,j denoting the minimum distance between
trajectory tj of user ui and location lh. With
the definitions made above, we are now ready to
compute the probability of the event as the tail
probability of (1),

P
(
Dh

i,j ≥ dhi,j
)
=

∫ ∞

dh
i,j

λ exp {−λt}
1− exp {−λR}

dt

=
exp {−λdhi,j}

1− exp {−λR}

(2)

Note that the closer the user, the higher the prob-
ability to detour. Subsequently, this probability is
dubbed Coverage probability, to match the scope
of the paper.

In the distributed model, the MCS back-end
collects the coverage maps from the individual
users instead of their mobility data. This approach
limits the amount of sensitive information trans-
ferred from users to the back-end. As user ui does
not know the location of ui′ , i ̸= i′, we start with
the probability that user ui along trajectory tj
visits cite lh in (2). Given the users are present
in a region around the site lh, the joint probabil-
ity that lh is not covered by neither of the user’s
trajectory is the product of

P
(
Ch

i

)
=
∏

tj∈Ti

(
1− P

(
Dh

i,j ≥ dhi,j
))

(3)

when the trajectories of ui are independent.
Therefore, the probability that lh is covered by at
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least one trajectory of ui has the form

P
(
Ch

i

)
= 1−

∏
tj∈Ti

(
1− P

(
Dh

i,j ≥ dhi,j
))

. (4)

The coverage map from point-of-view of ui is the
probability of the union of the (mutually exclu-
sive) events located at lh and weighted by the
density that a user is actually present in a region
around the POI:

p (Ci) =
∑
lh

P
(
Ch

i

)
p (lh) . (5)

With no prior information available, the a-priori
density of visited sites, p (lh) is to be assumed uni-
form on the number of possible locations H. The
resulting 2-dim. density has the form of a matrix.
The entry in the latitude-th row and longitude-th
column corresponds to the coverage probability for
the respective location. The pseudo-code of this
distributed fusion algorithm in (5) is outlined in
Algorithm 1.

Algorithm 1 Distributed computation of cover-
age map

1: function DistributedFusion(L, ui, T , λ,
R)

2: C ← 0
3: for all lh ∈ L do
4: x← lh,x
5: y ← lh,y
6: C[x, y]← 1
7: for all tj ∈ Ti do
8: dhi,j ←MinDistance(lh, tj)

9: if dhi,j ≤ R then
10: C[x, y] ← C[x, y] ×(

1−
(
exp {−λ dhi,j}/(1− exp {−λR})

))
11: end if
12: end for
13: C[x, y]← 1− C[x, y]
14: end for
15: C ← 1/H × C
16: return C
17: end function

4.2 Centralized Model

For the centralized model, the MCS back-end col-
lects mobility data from all the users, to extract
the coverage map, revealing the users’ identity.
We preliminary recap the coverage map of the
centralized model that is used to benchmark the
distributed model formulated above.

When the trajectories of all users are indepen-
dent, it can be readily seen from (2) that the joint
probability for the location lh to be uncovered is
given by

P
(
Ch
)
=
∏
ui

∏
tj∈Ti

(
1− P

(
Dh

i,j ≥ dhi,j
))

. (6)

Ergo, the probability that lh is covered at least by
one user yields

P
(
Ch
)
= 1−

∏
ui

∏
tj∈Ti

(
1− P

(
Dh

i,j ≥ dhi,j
))

. (7)

The coverage map corresponds to the probability
of the union of the events that any site is covered
weighted by the density of the users’ presence in
the region around the site i.e.,

p (C) =
∑
lh

P
(
Ch
)
p (lh) . (8)

4.3 Proof of Model Equality

The two proposed models provide the same out-
come, a coverage map for a set of L locations. In
this section, we formally proof that the centralized
model and the distributed model are equivalent
in terms of the obtained results. We start with
the distributed model seen from the point-of-view
of user ui. When the users roam around indepen-
dently, the probability that a given POI lh is not
covered by any user has the form

P

(⋂
ui

Ch
i

)
=
∏
ui

(
1− P

(
Ch

i

))
(9)

Substituting (3) for (9), it follows that

P

(⋂
ui

Ch
i

)
=
∏
ui

∏
tj∈Ti

(
1− P

(
Dh

i,j ≥ dhi,j
))

(10)
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The probability that at least one user covers this
POI equals to one minus above result, yielding

1− P

(⋂
ui

Ch
i

)
= 1−

∏
ui

∏
tj∈Ti

(
1− P

(
Dh

i,j ≥ dhi,j
))

(11)

= P
(
Ch
)

which is equal to the corresponding joint proba-
bility for POI lh in (7) of the centralized model.

5 Experimental Settings

We now detail the experimental settings for
the tests executed with the centralized and dis-
tributed models. The objective of the experiments
described in this section is twofold. On the one
hand, we experimentally demonstrate the equiva-
lence of the 2 proposed models. As demonstrated
in Section 4.3, the centralized and the distributed
models provide the same results, but with different
privacy levels. On the other hand, we focus on the
distribute model as it guarantees a higher privacy
level with respect to the centralized model, thus it
represents a valid candidate for a real deployment
in MCS systems.

5.1 The Experimental Mobility
Dataset

Our experiments are based on a real-world exper-
imental mobility dataset, namely GeoLife Zheng
et al. (2009, 2008). The dataset has been collected
by Microsoft Research Asia, and it involves about
182 participants recruited on a volunteer basis, as
shown in Figure 3.

The collected data include GPS coordinates
of participants obtained with GPS trackers or, in
some cases, with the user’s device. The dataset
covers an extended period from April 2007 to
August 2012. Some of the user’s trajectories are
labelled with the adopted transportation mean,
e.g., car, bus, metro etc. Data comes from Beijing
area; the dataset is publicly available and widely
adopted in the current literature.

We show in Figure 4 how the number of GPS
points vary along the time. The graph reports the
variation of the number of GPS traces aggregated
on a monthly basis as reported in Figure 5.

Fig. 3 Overview of the GeoLife dataset (Map data copy-
righted OpenStreetMap contributors and available from
https://www.openstreetmap.org).

Fig. 4 Weekly number of GPS points.

Fig. 5 Number of GPS data aggregated per month.

From Figure 4 we can observe that the time
windows starting from late 2008 to early 2010 rep-
resents the densest period in terms of available
data. For the purpose of this work, we restrict the
analysis to a sub-period, and we also restrict the
geographic extension of the dataset. In particular,
we focus on 2009 and we crop the data to Beijing
city 1. The inset in Figure 4, shows the variation

1min lat = 39.54, max lat = 40.3, min lon = 115.75, max
lon = 117.13, EPSG 4326 reference system
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of GPS collected data only in May 2009. During
this limited period, the dataset provides 982,304
GPS points for a total of 737 distinct trajectories.

5.2 Evaluation Metrics

To quantitatively measure the similarity between
the centralized and the distribute models (see
Section 4.3), we empirically generate coverage
maps and compare their distributions. There are
several statistical tests available in the literature
such as the two-sample Anderson-Darlington and
the two-sample Kolomogorov-Smirnov (KS) tests.
Both tests are non-parametric, and they do not
require normality either. We have chosen to rely
on the latter option, though, as it is simpler to
implement. Subsequently, we briefly review the KS
test Wang and Wang (2010).

To get started, the two empirical coverage
maps are transformed to cumulative density func-
tions (CDFs). The KS test accepts two empirical
CDFs and returns two parameters, namely the so-
called KS statistic and the p-value. The former
statistic corresponds to the maximum absolute
deviation between the two empirical CDFs. To
compute the latter value, suppose that the null
hypothesis is that the two sample vectors are
drawn from populations with same distribution.
Then, the p-value is the probability that the KS
statistics is greater than the observed value under
the null hypothesis of no difference between class
levels or samples. When the two datasets arise
from the same (continuous) distribution, the KS
statistics and the p-value should converge to 0 and
1, respectively.

5.3 Experimental Results

We first assess the equivalence of the two mod-
els. To this purpose, we consider three scenarios of
increasing complexity and of increasing duration.
The goal is to compute the coverage maps result-
ing from the centralized and distributed models,
and to execute the KS test, as detailed in Section
5.2. The result of the KS test provides a reliable
indication of the model’s equality.

The considered scenarios are all based on data
extracted from the GeoLife dataset (see Section
5.1, as reported in Figure 4. The scenarios we
consider are the following:

• Scenario 1: May 1, 2009 to May 7, 2009;

Table 3 Results of the KS test for the three test
scenarios.

Scenario 1 Scenario 2 Scenario 3
KS 0.0009 0.0009 0.0009
p-value 0.99 0.99 0.99

• Scenario 2: May 1, 2009 to May 15, 2009;
• Scenario 3: May 1, 2009 to May 31, 2009;

Concerning the locations of interest L, we extract
from the Beijing area a collection of places labeled
with the following tags: square, monument, mall,
station and bus, extended with a set of ran-
dom points from the city center. As a result, we
obtain 1954 locations that are exploited to com-
pute the coverage map with the two models. For
optimized visualization, both models are config-
ured with detour radius R = 800 and a scale
parameter 1/λ = 50. Table 3 lists the result of the
KS test applied to the three scenarios. In all cases
the p-values are close to one and hence, the two
models are equivalent as anticipated in Section 4.

We also show a graphical representation of
the coverage maps obtained with the centralized
and distributed models. Figure 6 shows a 3D
representation of the models for the 3 scenarios.
The graphs report for each location lh ∈ L, the
corresponding coverage value (z-axis).

Now, our focus shifts to the distributed model,
which serves as a privacy-preserving approach for
computing coverage. In particular, we examine
two orthogonal aspects: the impact of the scale
1/λ and the detour radius R on the resulting cov-
erage maps. To achieve this, we vary the scale
parameter within the range: [50, 100, 500, 800] and
R in the range: [100, 200, 500, 800]. Results have
been obtained by considering Scenario 2, rang-
ing from May 1, 2009 to May 15, 2009 but
similar results also apply to the other scenarios.
The impact of the scale parameter is to modify
the truncated exponential distribution reported in
Equation 1 and shown in Figure 7. In particu-
lar, the scale parameter affects the dispersion of
the exponential distribution that can be used to
model the preferential distance at which a user
will likely accept a detour toward a location. We
observe that, the smaller the scale, the more users
will accept a detour only at short distances. Dif-
ferently, the higher the scale, the more likely users
will accept a detour also at high distances from
the target location.
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Fig. 6 3D representation of the coverage map with the centralized and distributed models and for the 3 testing scenarios.

Fig. 7 Impact of the scale parameter and detour radius
to the distribute model.

The detour radius R is employed to deter-
mine which points along the user’s trajectory are
included or excluded, as illustrated in Figure 7.
When R increases, more points can be included in
the coverage computation for a given user, while
a contraction in R results in a reduction of the
included points. The results of the variations in
scale and R are depicted in Figure 8: the rows dis-
play the scale variations in the interval 50 to 800,
while the columns show the variations in R from
100m to 800m. From the figure, we observe two
distinct trends. On one hand, increasing the scale
does not significantly alter the resulting distribu-
tions; they still exhibit the same trend. On the
other hand, increasing R has the effect of modi-
fying the distributions. As R increases, the peak

of the distribution shifts from left to right, indi-
cating that locations become highly covered with
higher values of R.

6 Discussion and Conclusions

The adoption of the MCS paradigm has enabled
the collection of representative datasets by lever-
aging sensing units on user devices. The volume
of data and the set L of regions from which
data are collected are closely tied to user mobil-
ity. Typically, regions that are frequently visited
are considered covered in terms of the data col-
lected from those areas. In contrast, peripheral
regions with low visitation rates are anticipated
to be uncovered. However, a crowdsensing plat-
form may incorporate incentive mechanisms to
motivate users to detour towards specific regions.

One approach to evaluate the coverage of a
MCS system over a set of L locations involves col-
lecting all data related to users’ mobility, such as
GPS trajectories, at the centralized server of the
MCS. This information is then utilized to identify
highly/scarcely visited regions and apply a detour
probability. However, this model raises inherent
privacy concerns, as it necessitates all users to dis-
close their personal mobility, potentially serving

10



Fig. 8 Analysis of the impact of λ and of R to the distributed model.

as a deterrent to user participation in the MCS
platform.

In an effort to provide stronger privacy guar-
antees for users, we propose an alternative dis-
tributed model for computing coverage. This
distributed model is based on the concept of
collecting aggregated and anonymized data to con-
struct the coverage map for the set of L regions.
In this case, users only upload their coverage
maps without including any information about
personal mobility. Subsequently, the obtained cov-
erage maps are merged in the cloud to determine
the aggregated map.

To evaluate the performance of the two models,
we compare their outputs using a publicly avail-
able mobility dataset, namely GeoLife. Specifi-
cally, we define three experimental scenarios of
increasing complexity and apply the KS test to
assess their equivalence. Our tests reveal that the
two models perform similarly but with different
privacy requirements. Furthermore, we analyze
the performance of the distributed model by vary-
ing two core settings: the detour radius and the
scale parameter.

It should be noted, however, that while the
distributed model enhances user privacy, it intro-
duces a potential vulnerability due to malicious
or unfaithful users who may inject poisoned loca-
tion data into the system. The purpose of such
actions could be to alter the resulting coverage

map and launch attacks on the Mobile CrowdSens-
ing (MCS) platform. This vulnerability exists in
both the centralized and distributed models. How-
ever, in the centralized model, the server possesses
the GPS locations of individual users, providing
more opportunities to filter out poisoned data.
In contrast, the distributed model involves the
exchange of poisoned data with other honest users,
potentially affecting the local coverage maps com-
puted by numerous users over time. This is a
limitation of the current work.

Therefore, in our ongoing and future work, we
aim to delve deeper into understanding the impli-
cations of malicious users participating in an MCS
initiative. Specifically, we are investigating scenar-
ios where the intentional dissemination of inac-
curate coverage maps by malicious users, which
do not reflect the actual mobility patterns, could
adversely impact the aggregated coverage map
computed by the back-end server. In addressing
this concern, our plan involves the identification
of attacks initiated by users through data poison-
ing. We intend not only to develop measures for
identifying these malicious users but also to imple-
ment countermeasures for purging the collected
data tainted by false coverage maps. Additionally,
future efforts will also focus on leveraging local,
short-range communication technologies such as
Bluetooth or WiFi to facilitate the exchange and

11



merging of coverage maps among users in proxim-
ity.
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