
Audition of Web Services for Testing

Conformance to Open Specified Protocols?

Antonia Bertolino1, Lars Frantzen2, Andrea Polini1, and Jan Tretmans2

1 Istituto di Scienza e Tecnologie della Informazione “Alessandro Faedo”
Consiglio Nazionale delle Ricerche
via Moruzzi, 1 – 56124 Pisa, Italy

{antonia.bertolino, andrea.polini}@isti.cnr.it
2 Institute for Computing and Information Sciences,

Radboud University Nijmegen, The Netherlands
{lf, tretmans}@cs.ru.nl

Abstract. Web Services are a type of components specifically conceived
for distributed machine-to-machine interaction. Interoperability between
WSs involves both data and messages exchanged and protocols of usage,
and is pursued via the establishment of standard specifications to which
service providers must conform. In previous work we have envisaged a
framework for WS testing. Within this framework, this paper focuses
on how the intended protocol of access for a standard service could be
specified, and especially on how the conformance of a service instance to
this specified protocol can then be tested. We propose to augment the
WSDL description with a UML2.0 Protocol State Machine (PSM) dia-
gram. The PSM is intended to express how, and under which conditions,
the service provided by a component through its ports and interfaces
can be accessed by a client. We then propose to translate the PSM to
a Symbolic Transition System, to which existing formal testing theory
and tools can be readily applied for conformance evaluation. A simple
example illustrates the approach and highlights the peculiar challenges
raised by WS conformance testing.

1 Introduction

Service Oriented Architecture (SOA) is the emerging paradigm for the realization
of heterogeneous, distributed systems, obtained from the dynamic combination
of remote applications owned and operated by distinct organizations. Today the
Web Service Architecture (WSA) certainly constitutes the most relevant and
widely adopted instance of such a paradigm.

A Web Service (WS) is essentially characterized by the capability to “sup-
port interoperable machine-to-machine interaction over a network”[4]. This ca-
pability is achieved due to the agreement of all major players on the usage of

? This work has been supported by the European Project TELCERT (FP6 STREP
507128), by Marie Curie Network TAROT (MRTN-CT-2004-505121), and by the
Netherlands Organisation for Scientific Research (NWO) under project: STRESS –
Systematic Testing of Realtime Embedded Software Systems.



uniform WS interfaces, coded into the standard machine-processable Web Ser-
vice Definition Language (WSDL) format [8], and of the Simple Object Access
Protocol (SOAP). [16] for WS communication. Moreover, WSA interconnects
service providers and service requesters via a standard Service Broker called the
UDDI (Universal Description and Discovery Integration)[9]. The information in
this catalogue follows the yellow, green or white pages paradigms open technol-
ogy, and defines a common mechanism to publish and retrieve information about
available Web Services.

From a methodology viewpoint, WSA builds on the extensive framework
of the Component-based Software Development (CBSD) paradigm, of which it
can be considered as an attractive successor. Where in fact CBSD pursued the
development of a composite system by the assembly of pre-existing (black-box)
components, WSA chases the dynamic composition of services at client requests.
The two paradigms share the underlying philosophy of developing building blocks
(either components or services) of a system for external generalized reuse, whose
implementation details are hidden behind a published interface.

By building on the extensive results of CBSD, WSs can today rely on a much
more mature culture for compositional development, as testified by the emer-
gence of established standard access and communication protocols. On the other
hand, by exacerbating the aspects of loose coupling, distribution and dynamism,
WSs have also inherited the most challenging issues of the component-based ap-
proach, directly descending here from the need of dynamically composing the in-
teractions between services whose internal behavior is unknown. This fact brings
several consequences on the trustability and reliability of WSA; in particular, it
calls for new approaches to validate the behavior of black-box components whose
services are invoked by heterogeneous clients in a variety of unforeseen contexts.

Although similar problems have been encountered and tackled in the area
of software components, testing of WSs is even more difficult since the differ-
ent machines participating to the interaction could be dispersed among different
organizations, so even a simple monitoring strategy or the insertion of probes
into the middleware is not generally feasible. Moreover, the notion of the WSA
establishes rigid limitations on the kind of documentation that can be provided
and used for integrating services. In particular, a service must not include infor-
mation on how it has been implemented. This obviously is desirable to enable
the decoupling between requesters and providers of services, but obviously makes
integration testing more difficult.

Speaking in general, it is clear that the capability of testing a software arte-
fact is strongly influenced by the information available [3]. In fact, different kinds
of testing techniques can be applied depending on the extent and formalization
degree of the information available [3]. The technique applied will also be differ-
ent depending on the quality aspects evaluating, e.g. functionality, performance,
interoperability, etc.

In CBSD, different proposals have been made to increase the information
available with software components [21], following what we generally refer to as
the metadata-based testing approach [23]. Fortunately, as already said, today the



area of WS can rely on a more mature attitude towards the need for standardized
documentation, with respect to the situation faced by early component develop-
ers, and in fact the interaction among WSs is based on a standardized protocol
stack and discovery service. Current practice is that the information shared to
develop interacting WSs are stored in WSDL files. However such documents
mainly report signatures (or syntax) for the available services, but no informa-
tion concerning specific constraints about the usage of the described service can
be retrieved. Obviously this way of documenting a service raises problems re-
garding the capability of correctly integrating different services. In particular,
the technology today relies on the restrictive assumption that a client knows in
advance the semantics of the operations provided by a service or other properties
of it [1].

To facilitate the definition of the collaborations among different services,
various approaches are being proposed for enriching the information that should
be provided with a WS. Languages such as the Business Process and Execution
Language for Web Services (BPEL4WS) and the Web Service - Choreography
Description Languages (WS-CDL) are emerging [1], which permit to express
how the cooperation among the services should take place. The availability of
languages permitting to define legal interactions among WSs is also particularly
important to increase the capabilities for verifying the interoperability among
WSs through the application of specific conformance evaluation instruments.

We claim, however, that it would be highly useful to attach this description
in the form of an XML Metadata Interchange (XMI [27]) file, since in this form
it can be easily reused by UML based technologies. XMI is becoming the de
facto standard for enabling interaction between UML tools, and it can be auto-
matically generated from widespread UML editors such as IBM Rational Rose
XDE or Poseidon.

It is indeed somewhat surprising how two broad standardization efforts, such
as the UML and the WSA, are following almost independent paths within dis-
tinct communities. Our motivating goal is the investigation of the possibility to
find a common ground for both communities. Hence our proposal is that the
WS description (including the WSDL file) will report some additional informa-
tion documented by the WS developer in UML, and in particular, as we explain
below, as a Protocol State Machine, that is a UML behavior diagram newly
introduced into the latest version of this language [10]. In this way an XMI file
representing the associated PSM could be inserted in the UDDI registry along
with the other WS documentation.

Moreover, as we show in this paper, the PSM provides a formal description of
the legal protocol for WS interaction, and following some translation step it can
be used as a reference model for test case derivation, applying well established
algorithms from formal testing theory.

The paper is structured as follows: Section 2 provides an overview of the dif-
ferent flavors of the interoperability notion for WSs, and in particular introduces
WS conformance testing; Section 3 presents PSMs and their proposed usage for
WS protocol specification; Section 4 synthesizes the general framework we pro-



pose for WS testing and Section 5 outlines related work. In Section 6 a short
survey of formal approaches to conformance testing is given, before focusing
on the specific formalism which we are going to exploit for WS conformance
testing, called Symbolic Transition Systems (STSs). In Section 7 we relate the
PSM specification to the presented STS one. Finally, Section 8 summarizes our
conclusions and the lot of work remaining to be done.

2 Interoperability of Web Services

Web Services are cooperating pieces of software that are generally developed
and distributed among different organizations for machine-to-machine coopera-
tion, and which can act, at different times, as servers, providing a service upon
request, or as clients, invoking some others’ services. The top most concern in
development of WSA is certainly WS interoperability. Actually, WS interoper-
ability is a wide notion, embracing several flavors, all of them important. In
particular, a first type of interoperability may refer to the format of the infor-
mation stored in the relevant documents (such as WSDL files, UDDI entry), and
to the format of the the exchanged SOAP messages. This interoperability flavor
is briefly presented below in Section 2.1, in which the approach defined by the
WS-I organization to ensure this kind of interoperability is outlined. A second
interoperability issue, discussed in Section 2.2, is instead relative to the correct
usage of a WS on the client’s side, in terms of the sequencing of invocations of
the provided services.

2.1 Data and Messaging Conformance

As said, a first factor influencing the interoperability of WSs is obviously related
to the way the information is reported in the different documents (such as SOAP
messages, WSDL files, UDDI entries) necessary to enable WS interactions, and
to the manner this information is interpreted by cooperating WSs.

This concern is at the heart of the activities carried on by the WS-I consor-
tium (where the “I” stands for Interoperability), an open industry organization
which joins diverse communities of Web Services leaders interested in promoting
Web Services interoperability. WS-I provides several resources for helping Web
Service developers to create interoperable Web Services and verify that their
results are compliant with the WS-I provided guidelines. In particular, WS-I has
recently defined several profiles [11] that define specific relations that must hold
among the information contained in different documents and used to enable the
interaction between two or more WSs. Besides, it has defined a set of require-
ments on how specific information reported in these files must be interpreted so
to originate specific actions by the WS that gets such information.

Just to show the kind of interoperability addressed by WS-I we report below
without explanation a couple of examples from the specification of the Basic
Profile. Label R1011 identifies a requirement taken from the messaging part of
the profile, which states:



R1011 - An ENVELOPE MUST NOT have any element children of soap:

Envelope following the soap:Body element.

The second example has been taken from the service description part and
describes relations between the WSDL file and the related SOAP action:
R2720 - A wsdl:binding in a DESCRIPTION MUST use the part

attribute with a schema type of "NMTOKEN" on all contained

soapbind:header and soapbind:headerfault elements.

Alongside the Basic Profile, the WS-I consortium also provides a test suite
(that is also freely downloadable from the WS-I site) that permits to verify the
conformance of a WS implementation with respect to the requirements defined
in the profile. In order to be able to verify the conformance of the exchanged
messages, part of the test suite acts as a proxy filtering the messages and verifying
that the conditions defined in the profile are respected.

2.2 Protocol Conformance

A different interoperability flavor concerns the correct usage of a WS on the
client’s side, in terms of the sequencing of invocations of the provided services.
A correct usage of a WS must generally follow a specified protocol defining the
intended sequences of invocations for the provided interface methods, and possi-
bly the pre- and post-conditions that must hold before and after each invocation,
respectively.

This is the kind of interoperability we focus on in the rest of this paper.
Generally speaking a protocol describes the rules with which interacting enti-
ties must comply in their communication in order to have guarantees on the
actual success of the interaction. Such rules are generally defined by organiza-
tions that act as (de facto) standard bodies. The aim of companies joining these
organizations is to allow different vendors produce components that can inter-
act with each other. Often the rules released by such organizations are actually
established as standards and adopted by all the stakeholders operating in the
interested domain.

It is obvious to everybody though that the definition of a standard per se
does not guarantee correct interaction. What is needed is a way to assess the
conformance of an implementation to the corresponding specification. Different
ways can be explored to verify such conformance, among them testing deserves
particular attention. Protocol testing is an example of functional testing in which
the objective is to verify that components in the protocol correctly respond to
invocations made in correspondence to the protocol specification.

Conformance of an implementation to a specification is one of the most stud-
ied subjects from a formal and empirical point of view. Several studies have been
carried on for assessing conformance when protocol specifications are considered.

Conformance testing is a kind of functional testing in which an implemen-
tation of a protocol entity is solely tested with respect to its specification. It
is important to note that only the observable behavior of the implementation
is tested. No reference is made to the internal structure of the protocol imple-
mentation. In [24] the parties are listed which are involved in the conformance



testing process. In a SOA paradigm this can be partially revised in the following
way:

1. the implementer or supplier of a service that need to test the implementation
before selling it;

2. the user of a service, who claims to be conformant, can be interested in
retesting the service to be sure that it can actually cooperate with the other
entities already in his/her system;

3. organizations that act as broker of services and that would like to assess
the conformance of a service before inserting it in the list of the available
services;

4. third parties laboratories that can perform conformance testing for any of
the previously mentioned parties.

It is worth noting that the standard may provide different levels of confor-
mance, for instance defining optional features that may or may not be imple-
mented by an organization. This has to be taken in to account when it comes to
conformance testing.

3 UML and Web Services

As said in the Introduction, an important topic that is not receiving adequate
attention in the research agenda of WS developers and researchers is how the
Unified Modeling Language (UML) can be fruitfully used to describe a WS spec-
ification and interaction scenarios. The basic idea is to increase the documenta-
tion of a WS using UML diagrams. The motivation is to find a trade-off between
a notation which is widespread and industrially usable on one side, but that is
also apt to formal treatment and automated analysis on the other. Therefore, a
wealth of existing UML editors and analysis tools can be exploited also for WS
development. Moreover, from these diagrams a tester should be able to generate
useful test suites that, when run on a specific implementation, would provide a
meaningful judgment about conformance with the “standard” specification.

The forthcoming UML 2.0 [20] introduces several new concepts and diagrams,
in particular supporting the development of Component-Based software. In our
opinion, Protocol State Machine (PSM) diagrams seem particularly promising
for our purposes. The idea underneath PSMs is to provide the software designer
with a means to express how, and under which conditions, the service provided
by a component through its ports and interfaces can be accessed by a client,
for instance regarding the ordering between invocations of the methods within
the classifier (port or interface). The PSM diagram directly derives from that of
the State Machine but introduces some additional constraints and new features.
The UML 2.0 Superstructure Specification [20] provides the following definition
for this kind of diagram: A PSM specifies which operations of the classifier can
be called in which state and under which condition, thus specifying the allowed
call sequences on the classifier’s operations. A PSM presents the possible and
permitted transitions on the instances of its context classifier, together with the



operations which carry the transitions. In this manner, an instance lifecycle can
be created for a classifier, by specifying the order in which the operations can be
activated and the states through which an instance progresses during its existence.

Another interesting feature of these diagrams is that they support the defi-
nition of pre- and post-conditions associated with the methods in the interface.
This feature provides an improved semantical characterization of the offered ser-
vices and at the same time increases the verification capability of testers by
permitting the application of the well known Design-by-Contract [19] principles.
Using first order logic a contract characterizes a service by specifying the condi-
tions that should hold before the invocation and conditions that will be true after
the execution of the service. At the same time a contract can specify invariant
conditions that remain true during the whole execution of the service. Contracts
have proved to be a useful mechanism in CB development, and in particular for
the testing of COTS, as for instance developed in [15], and its usage for WS
testing is being explored, e.g. [17].

A pre-condition can contain constraints on the parameters passed to the
method or on the values in any way associated to the current status of the
environment. If a pre-condition is fulfilled when the invocation is triggered, the
implementation must guarantee the respect of the constraints expressed in the
post-conditions. In UML this kind of constraints can be naturally expressed
using OCL. When a PSM of a WS is defined also using pre- and post-conditions,
the assumption is that a component interacting with this WS needs to know
these rules, but no more details than these rules, to correctly interact with the
system. In fact, a PSM does not define the detailed behavior elaborated inside a
component, since this kind of information stays in the scope of traditional State
Machines (or more precisely, Behavioral State Machine - BSM - as defined in
UML 2 Superstructure Specification [20]). Instead a state in a PSM represents
the point reached in the foreseen interaction between the client and the server.
Obviously the definition of a PSM will also influence the definition of the BSM
for the object to which the associated port or interface belongs. In order to have
a non conflicting specification, related PSMs and BSMs must in some way be
compatible.

In the specification of a PSM it is important that no assumptions about the
real implementation of the classifier are made, for instance it is incorrect to re-
fer, within a pre- or post-condition, to an internal (state-)variable of a possible
implementation of the classifier. But it is, in principle, possible to use variables
in specifications, however the specification formalism of PSMs does not allow
this. Another way of specifying such state-variable dependent behavior is to in-
troduce special “get”-methods on these variables in the specification PSM of
the associated classifier. Such specified “get”-methods must then also be im-
plemented. This imposes extra work on the implementer for developing these
additional methods, but the advantage of this practice is the possibility of ex-
pressing a more precise definition for the implementation, with corresponding
benefits regarding conformance evaluation. In the example in Section 7 we will
use the latter approach.



Fig. 1. Introduction of a Commodity Class in a Model

It can also be useful to introduce other elements in the model which ease
the specification of pre- and post-conditions in the PSM. For instance, having to
handle parameters representing XML files it could be useful to introduce a class
with methods that can check the well-formedness or the validity of an instance
with respect to a corresponding XML Schema. Obviously this means that for
checking purposes such a commodity class needs to be instantiated at run-time.
Figure 1, for instance, shows an example of a commodity class added in order to
facilitate the expression of XML instance conformance within the pre-condition
of a generic PSM transaction.

4 A Framework for Web Service Testing

Here we briefly summarize a framework for testing of WSs, which we have pre-
viously introduced in [22]. The framework relies on an increased information
model concerning the WS, and is meant for introducing a test phase when WSs
ask for being published on a UDDI registry. In this sense we called it the “Audi-
tion” framework, as if the WS undergoes a monitored trial before being put “on
stage”. It is worth noting that from a technical point of view the implementation
of the framework does not present major problems and even from the scientific
perspective it does not introduce novel methodologies; on the contrary one of its
targets is to reuse sophisticated software tools (such as test generators) in a new
context. The major difficulties we foresee is that a real implementation based



WS1 − PSM

WSProxyn WSn

UDDI
Service BrokerWS1

Description
WS1− WSDL

Registrations
Pending

Registered
services

2

WSn − PSM

WS2 − PSM

Generator Engine
UML Based Test

WS Testing Client3

WSProxy2

WSProxy Factory

WS2
8

Specification
WS1 − PSM

6
4

7

1

5
Description

WS1− WSDL

possible models

??
Other

Description
WS2− WSDL

Fig. 2. The Audition Framework

on accepted standards requires that slight modifications/extensions are made
to such standard specifications as UDDI. This in turn requires wide acceptance
from the WS community and the recognition of the importance of conformance
testing.

Figure 2 shows the main elements of the framework. The figure provides a
logical view, i.e., the arrows do not represent invocations on methods provided
by one element, but a logical step in the process, they point to the element that
will take the responsibility of carrying on the associated operation.

The process is activated by the request made by a WS of being enclosed in
the entries of a registry and is structured in eight main steps, which are also
annotated in Fig. 2 (numbers in the list below correspond to the numbers in the
figure):

1. a web service WS1 asks a UDDI registry to be published among the services
available to accept invocations;

2. the UDDI service puts WS1 in the associated database, but marking the
registration as a pending one, and starts the creation of a specific tester;

3. the WS Testing Client will start to make invocations on WS1, acting as the
driver of the test session;

4. during the audition, WS1 will plausibly ask to the UDDI service for refer-
ences to other services;

5. UDDI checks if the service asking for references is in the pending state. If
not the reference for the WSDL file and relative binding and access point to
the service are provided. In the case that the service is in the pending state
the UDDI will generate, using a WS factory, a WS Proxy for the required
services;



6. for each inquiry made by WS1 the UDDI service returns a binding reference
to a Proxy version of the requested service;

7. WS1 will start to make invocations on the Proxy versions of the required
services. As a consequence the Proxy version can check the content and the
order of any invocation made by WS1;

8. if the current invocation is conforming, the Proxy service invokes the real
implementation of the service and returns the result obtained to the invoking
(WS1) service. Then the process continues driven by the invocations made
by the testing client.

In this framework several testing exigencies and approaches can be identified.
Specifically, we address the scenario that a standard body has published some
WS specification (adopting the PSM notation) and the conformance to this
specification of a developed WS instance must be validated. Before presenting
our approach we briefly overview recent related work in the field of WS testing.

5 Related Work in Testing of Web Services

WSs testing is an immature discipline in intense need of further research by
academy and industry. Indeed, while on the practitioner’s side WSs are evi-
dently considered a key technology, research in the area seems not to draw an
adequate attention from the testing community, probably due to the contigu-
ity/overlap with other emerging paradigms, especially with component based
software engineering (CBSE), or perhaps to the quite technical details that this
discipline entails. In this section we give a brief overview of those papers that
share some similar views with our work.

The possibility of enhancing the functionality of a UDDI service broker with
logic that permits to perform a testing step before registering a service has been
firstly proposed in [26] and [25], and subsequently in [18]. This idea is also the
basis for the framework introduced in this paper. However the information we
use and the tests we derive are very different from those proposed in the cited
papers. In particular while in the cited works testing is used as a means to
evaluate the input/output behavior of the WS that is under registration, in our
work we mainly monitor the interactions between the WS under registration
with providers of services already registered. In this sense, we are not interested
in assessing if a WS provided is bug-free in its logic, but we focus on verifying
that a WS can correctly cooperate with other services, by checking that a correct
sequence of invocations to the service leads in turn to a correct interaction of the
latter with other services providers, (and that vice versa an incorrect invocation
sequence receives an adequate treatment).

With reference to the information that must be provided with the WS de-
scription, the authors of [26] foresee that the WS developer provides precise
test suites that can be run by the enhanced UDDI. In [18] instead the authors
propose to include Graph Transformation Rules that will enable the automatic
derivation of meaningful test cases that can be used to assess the behavior of
the WS when running in the “real world”. To apply the approach they require



that a WS specifically implements interfaces that increase the testability of the
WS and that permit to bring the WS in a specific state from which it is possible
to apply a specified sequence of tests.

The idea of providing information concerning the right order of the invoca-
tions can be found in a different way also in specifications such as BPEL4WS
and WSCI. The use of such information as main input for analysis activities has
also been proposed in [14]. However the objective of the authors in this case
is to formally verify that some undesired situations are not allowable given the
collaboration rules. To do this the authors, after having translated the BPEL
specifications into Promela (a language that can be accepted by the SPIN model
checker), apply model checking techniques to verify if specific properties are sat-
isfied. Another approach to model based analysis of WS composition is proposed
in [12]. From the integration and cooperation of WSs the authors synthesize Fi-
nite State Machines and then they compare if the obtained result and allowable
traces in the model are compatible with that defined by BPEL4WS-based chore-
ography specification.

6 Model-Based Conformance Testing

As said, conformance verification involves both static conformance to an estab-
lished WSDL interface, and dynamic conformance of exposed behaviors to an
established interaction protocol. Clearly the second aspect is the challenging
one. In the following we first introduce the basic notion of formal conformance
testing and then develop a possible strategy for formal conformance testing of
Web Services based on the existing ioco implementation relation (see below),
and related tools.

We want to test conformance w.r.t. a protocol specification, given as a PSM.
One can see such a PSM as a high-level variant of a simple state machine, such
as a Finite State Machine (FSM) or a Labeled Transition System (LTS). Hence
we can use classical testing techniques based on these simple models to test for
conformance. In this paper we focus on LTS-based testing techniques.

6.1 LTS-based Testing

Labeled Transition Systems serve as a semantic model for several formal lan-
guages and verification- and testing theories, e.g. process algebras and state-
charts. They are formally defined as follows:

Definition 1. A Labeled Transition System is a tuple L = 〈S, s0, Σ,→〉, where

– S is a (possibly infinite) set of states.
– s0 ∈ S is the initial state.
– Σ is a (possibly infinite) set of action labels. The special action label τ /∈ Σ

denotes an unobservable action. In contrast, all other actions are observable.
Στ denotes the set Σ ∪ {τ}.

– →⊆ S×Στ×S is the transition relation.



In formal testing the goal is to compare a specification of a system with its im-
plementation by means of testing. The specification is given as a formal model in
the formalism at hand, so in our case as an LTS or as an expression in a language
with underlying LTS semantics. This formal specification is the basis to test the
implementation (System Under Test – SUT). This implementation, however, is
not given as a formal model but as a real system about which no internal details
are known (hidden in a “black box”), and on which only experiments, or tests,
can be performed. This implies that we cannot directly define a formal imple-
mentation relation between formal specifications and physical implementations.
To define such an implementation relation, expressing which implementations
are conforming, and which are not, we need an additional assumption, referred
to as the test hypothesis. The test hypothesis says that the SUT exhibits a behav-
ior which could be expressed in some chosen formalism. Now conformance can
be formally defined by an implementation relation between formal specification
models and assumed implementation models.

Typically, in LTS testing the formalism assumed for implementations is the
LTS formalism itself. So, an implementation is assumed to behave as if it were
an LTS. Based on this assumption many different implementation relations on
LTS have been defined in the literature, most of them being preorders or equiv-
alences on LTS. These relations differ, for example, in the way they treat non-
determinism, the extent to which they allow partial specifications, whether they
allow ”look-ahead” in behaviors, etc. For several of these implementation rela-
tions also testing scenarios and test generation algorithms have been published.
These testing algorithms are usually proved to be complete in the limit, i.e., the
execution of all (usually infinitely many) test cases constitutes a decision proce-
dure for the relation. For an annotated bibliography for testing based on LTSs
see [5], for a survey on existing test theory in general see [7].

The ioco Implementation Relation — In this paper we use the ioco im-
plementation relation for testing, see [24]. ioco is not a preorder relation, but
it turns out to be highly suited for testing. Several state-of-the-art testing tools
nowadays implement it.

In the ioco setting the specifications are LTSs where the set of action labels
is partitioned into input- and output action labels. The test hypothesis is that
implementations can be modeled as input-output transition systems (IOTS).
IOTSs are a subclass of LTSs for which it is assumed that all input actions
are enabled in all states (input enabledness). A trace is a sequence of observable
actions, starting from the initial state. As an example take the LTSs from Fig. 3.
We have one input action ?but , standing for pushing a button on a machine
supplying chocolate and liquorice. These are the output actions !choc and !liq .
Both r1 and r2 are input enabled, at all states it is possible to push the button,
hence both LTSs are also IOTSs. Some traces of r1 are ?but ·!liq , ?but ·?but ·!choc,
and so on.

A special observation embedded in the ioco theory is the observation of
quiescence, meaning the absence of possible output actions. The machine can



/ioco

ioco
?but

?but

!liq

?but

r2

?but

!choc

?but

?but

?but

!liq

?but?but

?but

!choc!liq

r1

?but

?but
?but

?but

?but

Fig. 3. The ioco relation

not produce output, it remains silent, and only input actions are possible. For
instance both r1 and r2 are quiescent in the initial state (the upmost state),
waiting for the button to be pressed. After applying ?but to the systems, both
may be quiescent due to nondeterminism (following the right branch). They
may also nondeterministically chose the left branch and produce liquorice via
the output action !liq . Hence, when it comes to test generation, and the tester
observes quiescence after pushing the button, it knows that the systems chose
the right branch, waiting for the button to be pushed again, and can forget about
the left branch of the specification. This waiting for output before generating
the next input is the principle of on-the-fly testing, which helps in avoiding
a state space explosion when computing test cases out of a given specification.
The test tool TorX implements a test generation algorithm which tests for ioco-
correctness via such an on-the-fly approach, see [2]. The observation of quiescence
is embedded in the notion of traces, leading to so called suspension traces.

We will not give a formal definition of the ioco relation here to keep an
introductory flavor. We refer to [24] for a detailed description and give instead
an informal intuition of it. Let i be an implementation IOTS and s be an LTS
specification of it. Then we have:

i ioco-conforms to s ⇔

– if i produces output x after some suspension trace σ, then s can
produce x after σ

– if i cannot produce any output after suspension trace σ, then s cannot
produce any output after σ (quiescence)

The addition of quiescence increases the discriminating power of ioco, as il-
lustrated by Fig. 3. Taking r2 as the specification for r1, we have that r1 can
produce !liq and !choc after the suspension trace ?but · quiescence · ?but . The
specification though can only produce !choc after pressing the button, observing
quiescence, and pressing the button again. Hence the ioco condition “if i pro-
duces output x after suspension trace σ, then s can produce x after σ” is not
fulfilled, r1 is not ioco-conform to r2.



Extensions of ioco — The model of LTSs has the advantage of being simple
and highly suited for describing the functional behavior of communicating, re-
active systems. But in practice one does not want to specify a system in such
a low-level formalism. Instead high-level description languages like statecharts,
PSMs, or process algebras with data extensions are the preferred choice. Fur-
thermore, non-functional properties like embedding timing constraints into the
model are mandatory means in certain application areas. Recent research activ-
ities have produced first promising results in dealing with these extensions, see
e.g. [6].

In our setting we are interested in testing based on automata allowing for a
symbolic treatment of data, meaning that one can specify using data of different
types like natural numbers, guarded transitions, and so on. This makes the spec-
ification much more compact and readable. At first sight using such formalisms
for testing is no problem, because usually these models have an underlying LTS
semantics, meaning that one just has to convert the high-level model into its
underlying LTS, and then test as usual based on that. The difficulty here is,
that even a small, finite symbolic model has commonly an infinite underlying
LTS semantics. This problem is commonly known as state-space explosion To
address such a problem recent research has been focused on testing a symbolic
specification directly, without mapping it at all to its underlying LTS.

The ioco relation has been recently lifted to such a symbolic setting based on
so called Symbolic Transition Systems (STSs), see [13]. Such an STS has many
similarities with formalisms like PSMs, and hence serves as a promising choice
for testing WSs specified with PSMs.

Symbolic Transition Systems — STSs extend on LTSs by incorporating
an explicit notion of data and data-dependent control flow (such as guarded
transitions), founded on first order logic. The STS model clearly reflects the LTS
model, which is done to smoothly transfer LTS-based test theory concepts to an
STS-based test theory. The underlying first order structure gives formal means
to define both the data part algebraically, and the control flow part logically.
This makes STSs a very general and potent model for describing several aspects
of reactive systems. We do not give here a formal definition of the syntax and
LTS-semantics of STSs due to its extent, and give instead a simple example in
Fig. 4 showing all necessary ingredients. For a formal definition we refer to [13].

The shown STS specifies a counter consisting of three so called locations
(the black dots). The uppermost one is the initial location, distinguished by the
sourceless arrow. Being in this initial location the system is quiescent, it awaits
an input called ?start<>, which has no parameters. For instance one can think
of it as a button. After this button is pressed, the system nondeterministically
chooses the left or right branch (called “switches”), and sets the internal variable
x to zero. Both switches are always enabled because both are unconstrained, the
guards say true. Each switch consists out of three parts: first the name of an
input- or output action together with its parameters; next a guard talking about
the parameters and the internal variables; and finally an update of the internal



variables. As commonly done we precede the names of input actions with a
question mark, and the names of output actions with an exclamation mark.

If the system chooses the left switch it first performs an output via the action
!display<n>. This action has one parameter called n, which is constrained in
the guard [n = x], saying that the display has to show the value of the internal
variable x (which is zero at first). Next it increments x by one, denoted x++,
and loops. The right branch does the same, but decrements x in every loop.
Hence think of x and n as being declared as integer in the underlying first order
structure. Altogether we have a system which, after a button has been pressed,
either displays 0,1,2,..., or 0,-1,-2,... on a display. Another feature not
shown is the use of internal so called τ -switches, which become for instance
important when composing systems.

Fig. 4. An STS counter

In the next section we give a more complex STS, on which we will also
exemplify the ioco test generation algorithm.

7 Testing Based on PSMs

In this section we want to provide an idea of how WS conformance testing can
be based on PSM specifications using the STS testing approach. PSMs serve as
formal specifications of WS behavior. These PSMs are transformed into STSs,
which, in turn, have an LTS semantics. This allows us to formally root our work
in the ioco-testing theory as applicable to STSs [13]. The choice of STSs as
the formal notation to be used for the derivation of test cases has been mainly
influenced by the expressive power of such a formalism which in principle allows
to easily embed in an STS diagram all parts of the information that can be found
in a PSM diagram.

We first introduce the PSM example in subsection 7.1. Then we present,
informally, the transformation of PSM into STS in subsection 7.2. Finally, we
give an example test case in subsection 7.3.



Fig. 5. PSM model for the Coffee Machine example

7.1 An Example PSM

A practical example can aid the comprehension of the approach that we intend
to pursue. In particular Fig. 5 shows a PSM for a Web Service dispensing coffee
without giving back the possible change. Obviously this is just a toy-example
to illustrate our ideas. However, the coffee machine example already exemplifies
most of the features of a Web Service specification for which the protocol can be
dependent on the data provided by the client. In fact the drinks can be provided
only after the specified amount of money has been reached.

Each invocation of a method will return an object of type Status represent-
ing all possible output actions which can be observed by the test system. In



particular there is a variable CoffeeButtonLight expressing the status of the
coffee button, a variable TeaButtonLight expressing the status of the tea but-
ton, a variable Display expressing the value reported by the display, and finally
a variable Drink expressing the possible drink to be dispensed.

Each transition in the PSM is a tuple of the form (actual-state, pre-condition,
method invocation, post-condition, final state). The pre-condition expresses un-
der which constraint a transition is admissible from the given source state. The
post-condition expresses the expected results of the corresponding method in-
vocation, leading to the given target state. For instance transition 1 declares
that entering a coin c greater then 0.80, i.e., 1 or 2 Euro, when being in state
WaitCustomer, the result should be the highlighting of the coffee and tea but-
tons, the visualization of amount ”c” in the display, no dispense of any drink,
and finally an update of the internal state via the invocation of the getMoney()

method. The arriving state for the transition will be CoffeeAvailable.
It is worth noting that the model only specifies the correct sequences of

method-invocations. Nevertheless, since a client of a WS can invoke the meth-
ods in the interface in any order, it becomes important to specify the behavior
also when an incorrect sequence is triggered. This corresponds to the input-
enabledness as introduced in section 6, and would require the introduction of
exceptions to the specification for each method in the interface. In particular for
the coffee machine example the invocation of a method in an incorrect order,
such as the pushing of the dispense button before it becomes highlighted, should
leave the protocol in the same status, notifying the client with an exception.
Such a behavior can be considered similar to that of a real coffee machine that
triggers a beep when a button is incorrectly pushed. However, since the intro-
duction of exceptions would results in an unwieldy increase in the complexity of
the diagram we decided to keep it out of the model.

Our simple example shows the influence of the special “get”-method in the
interface, related to state data that influence protocol transitions, in this case
the getMoney() method. Fig. 6 shows an extract of the resulting PSM when
no such method is provided (omitting return values). In particular the whole
machine contains 17 states and 70 state transitions, a clear complexity increase
with respect to the machine in Fig. 5. Having the possibility of logically express-
ing values through the usage of the getMoney() method permits to produce
manageable models.

7.2 Mapping from PSM to STS

In Fig. 7 the STS variant of the coffee machine example of Fig. 5 is shown. It
consists out of 14 locations and 20 switches. The (linear) increase in the num-
ber of locations and switches is due to the fact that STSs are more fine-grained
than PSMs, which subsume a guarded procedure call together with its post con-
ditions on one transition. In STSs a transition corresponds to either an input
action (i.e. a procedure call), or an output action (i.e. the returned value of the
procedure). Hence every interface method invocation corresponds to an input
action and an output action. For instance, the insertCoin(c: Coin): Status



Fig. 6. PSM and the state explosion problem

method is mapped to an input action ?insertCoin<c: Coin>, and an output
action !insertCoin<s: Status>. This allows to test for more specific interleav-
ings than in the PSM case and has a number of consequences, for instance we
have to remember the values given to procedures. To do so we store them in
variables, an inherent concept of STSs. For instance take transition 1 of the
PSM from Fig. 5. This transition is mapped to the transitions 1.1 and 1.2 in
Fig. 7. Here the method invocation (i.e. input action) insertCoin(c) is executed
with the restriction that c>0.8. We do so via the guarded transition 1.1, and
store the parameter value c in an internal variable c var to remember it. Next
the SUT performs an output action, it returns a Status with certain settings.
This is done via transition 1.2. Here we make use of the remembered parameter
value of the preceding procedure call by referring to the internal variable via
s.Display=c var.

The challenging issue is the mapping of the special “get”-methods in the
interface to STSs. The use of these methods correspond to internal variables
in STSs, which are called location variables. They are used to model state-
dependent behavior, and they can be utilized in guards. In our example this
concerns the getMoney() method, which is mapped onto a location variable
money. After having inserted a coin, like in transition 1.1, we have to update the
internal state. In the PSM this is expressed via getMoney()=getMoney@pre()+c.
In the STS we can express this as money := money + c var, shortly written as
money += c var in transition 1.2.

Doing so we can map the PSM into the given STS. Having done so we can
use the existing ioco-based test theory and algorithm, which was adopted for
STSs in [13].



1.1: ?insertCoin<c> [c>0.8] c_var:=c
1.2: !insertCoin<s> [s.CoffeeButtonLight=true & s.TeaButtonLight=true &

s.Display=c_var & s.Drink=null] money+=c_var
2.1: ?insertCoin<c> [c<=0.5] c_var:=c
2.2: !insertCoin<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=false &

s.Display=c_var & s.Drink=null] money+=c_var
3.1: ?selectDrink<d> [d="Tea"] d_var:=d

3.2: !selectDrink<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=false &
s.Display=0 & s.Drink=d_var] money:=0

4.1: ?selectDrink<d> [d="Coffee"] d_var:=d

4.2: !selectDrink<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=false &
s.Display=0 & s.Drink=d_var] money:=0

5.1: ?insertCoin<c> [0.55<=money+c<0.8] c_var:=c
5.2: !insertCoin<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=true &

s.Display=money+c_var & s.Drink=null] money+=c_var
6.1: ?insertCoin<c> [money+c<0.55] c_var:=c
6.2: !insertCoin<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=false &

s.Display=money+c_var & s.Drink=null] money+=c_var
7.1: ?insertCoin<c> [money+c>=0.8] c_var:=c

7.2: !insertCoin<s> [s.CoffeeButtonLight=true & s.TeaButtonLight=true &
s.Display=money+c_var & s.Drink=null] money+=c_var

8.1: ?insertCoin<c> [money+c>=0.8] c_var:=c

8.2: !insertCoin<s> [s.CoffeeButtonLight=true & s.TeaButtonLight=true &
s.Display=money+c_var & s.Drink=null] money+=c_var

9.1: ?insertCoin<c> [0.55<=money+c<0.8] c_var:=c
9.2: !insertCoin<s> [s.CoffeeButtonLight=false & s.TeaButtonLight=true &

s.Display=money+c_var & s.Drink=null] money+=c_var
10.1: ?insertCoin<c> [true] c_var:=c
10.2: !insertCoin<s> [s.CoffeeButtonLight=true & s.TeaButtonLight=true &

s.Display=money+c_var & s.Drink=null] money+=c_var

Fig. 7. STS model for the Coffee Machine example

Note that this transformation might not always be as easy as in the given
example. One problem is that it is possible to partially specify methods like the
getMoney() in a PSM. For instance we could have simply left out the update
getMoney()=getMoney@pre()+c when applying the insertCoin(c) method in
the PSM. Doing so we could not have developed the given STS without applying



knowledge about this method which is not in the PSM. Hence in future research
we will try to give exact restrictions to PSMs allowing for a guaranteed and
automated translation process.

7.3 Automated Testing Based on STSs

In the remainder of this section we give a simple example run of the test gener-
ation algorithm as given in [13], which tests for ioco-conformance. It generates
and executes test cases on-the-fly. That means that instead of firstly computing
a set of test cases out of the STS, and then applying it to the SUT, it generates
single inputs, applies it to the SUT, and continues w.r.t. the observed response of
the system. As a consequence we avoid the state space explosion when generating
test cases, see also [2].

First of all the system has to be initialized by giving initial values to the in-
ternal variables, in this case money and c var. We assume both to be zero, i.e. no
coin has been entered in the coffee machine, yet. At first the initial semantical
state is computed. Such a state consists out of a set of locations in which the
SUT could currently be, and a valuation of the internal variables. In our case
the STS is fully deterministic, therefore the set of locations will always be a
singleton. The initial state here is (WaitCustomer, (money=0, c var=0)).

The basic principle of the algorithm is to continously choose nondeterminis-
tically one out of these three options:

– Stop testing and give the verdict Pass
– Give an input to the SUT
– Observe output (including quiescence) of the SUT (which may result in Fail)

Let’s assume firstly it is chosen to give an input. The only specified input ac-
tion in the initial location is ?insertCoin<c>. The input constraint is com-
puted for this action, which is a first order formula telling the condition for
the parameters under which the action can be applied. To do so all outgo-
ing switches with this specific action have to be taken into account. We get
here (c>0.8)∨(c≤0.5). If a solution exists, one is chosen and applied to the
system, e.g. ?insertCoin(0.5). Now the set of next possible location is com-
puted, which is only the one location where transition 2.1 leads. The new values
of the variables are (money=0, c var=0.5). Now the tester observes output,
it receives the returned Status object saying that no drink is available and
that the display shows 0.5. This is conformant with the specification, money
is updated to 0.5 and we proceed to the semantical state (NotEnoughMoney,

(money=0.5, c var=0.5)). If we would have observed a different result, for in-
stance a different display value, the test would have stopped with verdict Fail.
Choosing next for another ?insertCoin<c> action we get the input constraint
(0.55≤0.5+c<8)∨(0.5+c<0.55)∨(0.5+c≥0.8), assembled from switches 5.1,
6.1 and 8.1. Again one solution is chosen for c, e.g. 1. We apply insertCoin(1)

and observe in the returned status that coffee and tea are available, we end up
in state (CoffeeAvailable, (money=1.5, c var=1)). Now the algorithm may



else
qui.

Fail Fail

else
qui.

Fail Fail

?insertCoin<0.5>

!insertCoin<false, false, 0.5, null>

?insertCoin<1>

!insertCoin<true, true, 1.5, null>

Pass

Fig. 8. An example test case

choose to stop the testing and give the verdict Pass. In practice the testing con-
tinues in this manner until either a fault is discovered via verdict Fail, or the
testing is stopped after a predefined halting criteria.

In Fig. 8 you find the test case corresponding to the exerted test run. We
have abbreviated the returned Status object and give it as a tuple representing
the values of CoffeeButtonLight, TeaButtonLight, Display, and Drink, re-
spectively. The abbreviation “qui” stands for observed “quiescence”. As seen in
the figure a test case formally corresponds to a tree-like LTS with distinguished
terminal states Pass and Fail. When observing outputs such a test case must
tell the tester how to proceed w.r.t. all possible outputs. For instance in our
case the test case must specify this for all possible resulting Status objects. We
have abbreviated this by the usage of an else transition. Given a system with
a huge (let alone infinite) set of possible output actions, such a test case gener-
ation leads to an explosion of the state space. Due to the on-the-fly testing it is
not necessary to generate such a complete test-case tree out of the specification,
the tester just checks the single observed output for conformance, and continues
accordingly.

This simple example does not reveal the hidden complexity within this pro-
cess, like nondeterminism, or checking for quiescence. It is just presented to
exemplify the basic principle. The detailed algorithmical tasks can be found in
[13].

8 Conclusions and future work

Our research addresses the problem of testing a WS instance for conformance
to a published specification, which could, for instance, be included in the UDDI
registry. We have in fact conceived a possible framework for trustable WSs [22],
in which a WS before UDDI registration undergoes sort of an “audition” to
ascertain both whether it behaves conforming to the specifications when invoked,
and also whether it in turn correctly invokes other published services.

The idea is that for widespread services within an application domain, the
community agrees on some standard features and functions to be provided from



any service provider who wishes to claim conformance to that standard. In this
way interoperability between services provided by different companies can be
achieved, and this is somehow what is being done by the WS-I initiative rel-
atively to data and messaging conformance. Another important aspect of WS
interoperability concerns how the service is used, i.e., the correct sequencing of
invocations of the provided WS interface methods, and possibly the pre- and
post-conditions to be guaranteed before and after each invocation. Hence, a key
open issue in WSA research is currently how to augment the WSDL definition,
so to provide a description of the intended usage for a “standard” service.

To obtain WS interoperability establishing a standardized protocol of us-
age per se is not enough: we also need sound approaches to assess that a WS
implementation actually conforms to the corresponding standard specification.
This is precisely the objective pursued here: we proposed in particular to exploit
the extensive background in formal conformance testing of reactive systems, by
adapting it to the peculiar features of WSs. On the other hand, to foster indus-
trial adoption, we intend to start from a protocol specification written in the
widespread UML notation. In particular, we have identified the PSM diagram of
the UML2.0 as a suitable formalism for expressing how a WS has to be accessed.
Then, to be able to readily apply the existing algorithms and tools for confor-
mance testing, we envisaged to convert the PSM specification to a Symbolic
Transition System model, which in principle possesses an adequate expressive
power. Once the STS is derived, we intend to directly apply the test generation
algorithm given in [13] which tests for ioco-conformance. As discussed, the ad-
vantage of this algorithm is that it generates and executes test cases on-the-fly,
thus preventing state space explosion.

In this paper we have provided a preliminary overview of the approach and il-
lustrated it through a simple example of a hypothetical Coffee dispenser machine
(admittedly coffee remains something quite difficult to produce via Internet, but
the example is just to be seen as an intuitive illustration of client-server inter-
action). The latter was already sufficient to highlight the crucial point in the
approach we propose: how to specify protocols of interaction between services
without making any assumption on the internal implementation of the specific
service instances.

We will continue investigating the specific issues raised by WS conformance
in general, and the application of the ioco-test theory to it in particular. There
are several issues which require further investigation. First, the use of the spe-
cial “get”-methods to model internal state variables extend the visible interface,
and they moreover put a requirement on the implementers to implement them
correctly, and on the testers to test them. A question is whether there are al-
ternatives to specify this in PSMs, e.g., using something analogous to location
variables in STS. Second, a restriction of the formal testing approach currently
is that only the providing interface of a WS is tested, and not the invocations
to other WSs. Using the PSMs of the invoked services it seems possible to also
consider the conformance of these invocations, both in isolation, or in combina-
tion with its own PSM. Third, a theoretical question is to what extent the test



hypothesis that SUTs behave as input-output transition systems, really hold:
can all methods always be invoked at any time? Finally, the translation from
PSM to STS should, of course, be generalized, and automated in a tool.

Trustable services are the ultimate goal of our research: we wish to increase
the interoperability and testability of WSA by fostering the application of rig-
orous model based testing methodologies. At present, a huge effort is taken
by the various communities towards identifying common standard models for
WSs, allowing for WSs smooth combination and inter-operation 3. It is impor-
tant to raise awareness within the same communities that also common standard
methods for rigorous verification and validation of functional and non-functional
properties of WS must be sought. In this sense, we hope that the approach pro-
posed in this paper, although preliminary, provides first convincing arguments
and interesting directions for further investigations.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services – Concepts,
Architectures and Applications. Springer Verlag, 2004.

2. A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,
and L. Heerink. Formal test automation: A simple experiment. In G. Csopaki,
S. Dibuz, and K. Tarnay, editors, 12th Int. Workshop on Testing of Communicating
Systems, pages 179–196. Kluwer Academic Publishers, 1999.

3. A. Bertolino. Knowledge area description of software testing. In Guide to the Soft-
ware Engineering Body of Knowledge SWEBOK. IEEE Computer Society, 2000.

4. D. Booth et al. Web Services Architecture. http://www.w3.org/TR/ws-arch/,
February 2004.

5. E. Brinksma and J. Tretmans. Testing Transition Systems: An Annotated Bibliog-
raphy. In F. Cassez, C. Jard, B. Rozoy, and M. Dermot, editors, Proceedings of the
4th Summer School on Modeling and Verification of Parallel Processes (MOVEP
2000), volume 2067 of LNCS, pages 187–195. SV, 2001.

6. L. Brandán Briones and E. Brinksma. A test generation framework for quiescent
real-time systems. In Brian Nielsen Jens Grabowski, editor, Formal Approaches to
Software Testing, FATES, Linz, Austria, Sep 2004. Springer-Verlag GmbH.

7. M. Broy, B. Jonsson, J.P. Katoen, M. Leucker, and A. Pretschner, editors. Model-
based Testing of Reactive Systems: Advanced Lectures, volume 3472 of Lecture Notes
in Computer Science. Springer, 2005.

8. E. Christensen et al. Web Service Definition Language (WSDL) ver. 1.1.
http://www.w3.org/TR/wsdl/, March 2001.

9. L. Clement et al. Universal Description Discovery & Integration (UDDI) ver. 3.0.
http://uddi.org/pubs/uddi v3.htm, October 2004.

10. H.E. Eriksson et al. UML 2 Toolkit. John Wiley and Sons, 2004.
11. K. Bellinger et al. WS-I - basic profile, ver. 1.1. http://www.ws-

i.org/Profiles/BasicProfile-1.1-2004-08-24.html, August 2004.
12. H. Foster et al. Model-based verification of web services compositions. In Proc.

ASE2003, pages 152–161, Oct., 6-10 2003. Montreal, Canada.

3 This is for instance currently pursued within the EU Project TELCERT in the
e-Learning domain.



13. L. Frantzen, J. Tretmans, and T.A.C. Willemse. Test generation based on symbolic
specifications. In J. Grabowski and B. Nielsen, editors, FATES 2004, number 3395
in LNCS, pages 1–15. Springer-Verlag, 2005.

14. X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In Proc.
of WWW2004, May, 17-22 2004. New York, New York, USA.

15. H.G. Gross, I. Schieferdecker, and G. Din. Testing Commercial-off-the-Shelf Com-
ponents and Systems, chapter Modeling and Implementation of Built-In Contract
Tests. Springer Verlag, 2005.

16. M. Gudgin et al. Simple Object Access Protocol (SOAP) ver. 1.2.
http://www.w3.org/TR/soap12/, June 2003.

17. R. Heckel and M. Lohman. Towards contract-based testing of web services. In
Proc. TACOS, pages 145–156, 2004. Electr. Notes Theor. Comput. Sci. 116.

18. R. Heckel and L. Mariani. Automatic conformance testing of web services. In Proc.
FASE, Edinburgh, Scotland, Apr., 2-10 2005.

19. B. Meyer. Applying design by contract. IEEE Computer, 25(10):40–51, October
1992.

20. Object Management Group. UML 2.0 Superstructure Specification, ptc/03-08-02
edition. Adopted Specification.

21. A. Orso, M. J. Harrold, and D. Rosenblum. Component metadata for software
engineering tasks. In Proc. EDO 2000, LNCS 1999, pages 129–144, 2000.

22. A. Polini and A. Bertolino. The audition framework for testing web services inter-
operability. In Proc. EUROMICRO-SEAA, Porto, Portugal, September 2005. to
appear.

23. A. Polini and A. Bertolino. Testing Commercial-off-the-Shelf Components and
Systems, chapter A User-Oriented Framework for Component Deployment Testing.
Springer Verlag, 2005.

24. J. Tretmans. Test Generation with Inputs, Outputs and Repetitive Quiescence.
Software – Concepts and Tools, 17(3):103–120, 1996.

25. W. T. Tsai et al. Scenario-based web service testing with distributed agents. IEICE
Transaction on Information and System, E86-D(10):2130–2144, 2003.

26. W.T. Tsai et al. Verification of web services using an enhanced UDDI server. In
Proc. of WORDS 2003, pages 131–138, Jan., 15-17 2003. Guadalajara, Mexico.

27. XML Metadata Interchange (XMI) Specification ver. 2.0.
http://www.omg.org/docs/formal/03-05-02.pdf, May 2003.


