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ABSTRACT

In this paper, we describe the data management practices and services developed for making FAIR 
compliant a scientific archive of Scanning Tunneling Microscopy (STM) images. As a first step, we extracted 
the instrument metadata of each image of the dataset to create a structured database. We then enriched these 
metadata with information on the structure and composition of the surface by means of a pipeline that 
leverages human annotation, machine learning techniques, and instrument metadata filtering. To visually 
explore both images and metadata, as well as to improve the accessibility and usability of the dataset, we 
developed “STM explorer” as a web service integrated within the Trieste Advanced Data services (TriDAS) 
website. On top of these data services and tools, we propose an implementation of the W3C PROV standard 
to describe provenance metadata of STM images.

1. INTRODUCTION

Data management procedures are fundamental for high-quality research, especially in the case of great
volumes of scientific data produced. A critical role to ensure good data management is given by metadata 
and provenance information which add value to the data and allow data to be found, interpreted, re-used 
and reproduced. For these reasons, annotating data by means of a specific metadata standard improves 
their ability to meet the FAIR (Findable, Accessible, Interoperable, Reusable) guiding principles [1].
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In this paper, we report on the activities carried out on a scientific archive of scanning tunnelling 
microscopy (STM) images with the objective of organizing it in a more structured and convenient dataset 
from a FAIR point of view [2]. Since the experimental technique has not substantially changed over the 
last 20 years, our effort towards the FAIRification of legacy data is relevant both for current research 
activity in STM and for guiding the FAIR-by-design workflow under active development following current 
standards [3, 4]. To achieve this goal metadata is a key driver; in the following, we will present our approach 
in collecting metadata for our STM dataset and our initial effort in defining our own metadata schema.

The images were generated using an Omicron Variable Temperature STM (VT-STM) microscope [5] 
located at the Istituto Officina dei Materiali (CNR-IOM) in Trieste, Italy. In total, researchers generated about 
420,000 images over twenty years of research activity, consisting in 228 GB of raw data. From this sample, 
an initial batch of about 110,000 STM images recorded in constant current mode was selected and curated 
in an organized dataset along with 59 instrument metadata for each image. These metadata alone provide 
valuable information about the conditions in which images were obtained and are useful to make data 
findable and accessible. Unfortunately, the type of materials that compose the sample, the most relevant 
information associated with STM images, has been historically registered on a paper logbook. In such a 
state, it is unfeasible to integrate this information into an automated data management system. To improve 
the scientific value and FAIRness of the dataset, we annotated images with this specific metadata with a 
pipeline that leverages human annotation, machine learning (ML) techniques, and instrument metadata 
filtering. After this labelling procedure, the final dataset consists of 7,287 STM images assigned to three 
categories of materials, with a total size of 4.7 GB and organized with data files and original instrument 
metadata files for each individual image, along with provenance metadata for the whole dataset.

Another crucial improvement for the accessibility and usability of the dataset consisted in the creation 
of a metadata explorer, developed as an integrated service within the TriDAS website [6], which allows 
users to visually explore images’ metadata through interactive and downloadable plots. The core logic of 
the web service is initially designed around a subset of 11 image metadata, carefully selected together with 
nanoscience researchers to provide significant information about image characteristics and microscope 
settings relevant to image quality and context. The functionality of the web application, and its relevance 
as an interactive tool with the dataset, are then further improved to include images visualization on the 
browser without the need for any additional software. Besides these activities carried out to increase the 
dataset usability, we present an application of a provenance standard for the case study of STM images. 
Intended as a type of structured metadata, provenance tracks the origin and all the intermediate procedures 
applied to produce a data product, thus becoming fundamental for the reproducibility of the scientific 
experiment and for the analysis and interpretation of the results. During the FAIRification workflow, the 
W3C PROV standard [7] is applied to describe the provenance of metadata, from the original STM images 
to the ones curated and available on the TriDAS website.

We made available the dataset containing 7,287 STM images together with their provenance description [8] 
and all source code used in this paper [9].
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2.  METHODS AND RESULTS

2.1  STM Dataset

STM images presented in the dataset were recorded, over twenty years of research activity, by the Surface 
sTructure and Reactivity at the Atomic Scale (STRAS) research group of the CNR-IOM Institute in Trieste, 
using an Omicron Variable Temperature STM (VT-STM) microscope. Raw data are composed of forward 
and backward topography scan arrays stored in binary format in files with extension .tf0 and .tb0, and a 
.par file that contains instrument variables and other information in text format. For some of these topographic 
images, the related tunneling current images, stored in files with extension .tf1 and .tb1, are also present. 
By filtering metadata of images, we retrieved a reference dataset of 111,415 constant-current STM images 
from a vast collection of measurements. The structure and composition of the imaged surface cannot be 
recorded in an automated way, as such, it has been historically registered on a paper logbook. To obtain 
this crucial information for STM images, we developed a workflow based on human annotation, machine 
learning techniques and metadata information. The starting point was to manually label groups of images 
into different categories according to the sample material. Researchers, within the same day, typically 
measured samples of the same material, and, considering the typical workflow of the group, it is then 
reasonable to assume that samples should be of the same category also within a limited time period. Given 
these assumptions, we created a total of 188 plots composed of at most 100 images sampled from each 
month of activity. This collection was manually labeled and used to obtain a broad division of the dataset 
in 18 sample material categories, as shown in Figure 1.

Then we selected a subset of 10 images for each of three specific material categories, namely Gr_Ni100, 
Gr_Ni111 and N_Gr_Ni111 for a total of 30 images, as shown in Figure 2. In particular, Gr_Ni100 includes 
images taken on monolayer graphene grown by chemical vapour deposition on Ni (100). Due to the square 
symmetry of the substrate, the resulting layer is composed of patches of aligned graphene (aligned with the 
substrate crystallographic structure and showing a typical wavy 1D moiré pattern) and rotated graphene 
(identifiable in the images by a 2D moiré pattern) [10, 11, 12, 13, 14]. The Gr_Ni111 category contains 
STM images taken on monolayer graphene grown by chemical vapour deposition on Ni (111) single 
crystals. The layer is composed of patches of epitaxial graphene (in register with the substrate lattice), 
appearing as a triangular arrangement of spots, and rotated graphene identifiable in the images by the 
presence of a 2D moiré pattern [15, 16, 17, 18, 19, 20, 21]. Finally, the N_Gr_Ni111 category represents 
images taken on monolayer graphene grown by chemical vapour deposition on a Ni (111) single crystal 
previously doped with atomic nitrogen. During the growth, some nitrogen atoms present in the Ni bulk 
are trapped in the graphene mesh, doping the layer and originating characteristic defects, visible as dark 
triangles and bright clover-like features [22, 23].

With the aim of associating the type of material composing the sample to a larger set of images, we 
developed an approach based on recent developments in representation learning [24] for image recognition. 
Representation learning techniques leverage only the availability of large datasets to train a model that 
automatically detects features of the images which are relevant for a detection or classification task. The 
pioneering work of Le Cun [25], as well as more recent progress in the field [26], led to convolutional 
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Figure 1. Monthly activity of TASC laboratory color coded by sample material category. Months where more than 
one sample material was recorded are labelled as “mixed”.

neural networks, a family of deep-learning models particularly suited for image feature analysis thanks to 
their translation equivariance and locality properties.

In absence of a sufficiently large set of STM images in the dataset carrying information on the sample 
material, we focused on the technique of transfer learning [27]. Transfer learning consists in employing 
the weights learned on a network trained on a generic enough dataset, to target a compatible task on a 
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different set of images. A plethora of theoretical results [28], as well as applications to datasets of microscopy 
images [29, 30, 31], show that models trained on ImageNet [32] capture features that are relevant in an 
extremely heterogeneous set of image classification tasks.

From preliminary analysis, it emerges that a Resnet50 model trained on ImageNet [33] has sufficient 
expressive power for extracting relevant features in the specific case of STM images. More specifically, the 
representation extracted from the input of the last-but-one linear layer of the network, consisting of a vector 
of length 4,096, encodes attributes of the images that are sensitive to their thematic content. Formally, this 
very construction yields a non-linear map 

 × × →� � �224 224 3 4096: , : ( ),f f x f xh h h
 (1)

sending each image of 224×224 pixels and 3-color channels to the corresponding representation. Since 
the visual characteristics of an image and the nature of the material composing the sample are strongly 
correlated, images with similar representations are likely to correspond to the same material category.

Following this line of thought, we started from a set of 30 elements of the STM dataset, composed of 10 
manually labeled images for each of the three material categories described above.

Given two images x1 and x2, their similarity in content is well described by the cosine similarity between 
the corresponding representations defined in Equation 2.1: 
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For each image x, the elements of the dataset on which the function Scox(x,_) assumes a higher value 
corresponding to putative images in the same class of x. For each of the 30 labeled images, 24 images were 
selected with this automatic method and manually verified. On the 720 images obtained following this 
procedure a further manual verification has been applied to avoid the following behaviours: choice of 

Figure 2. From left to right: example images of (a) N_Gr_Ni111, (b) Gr_Ni111 and (c) Gr_Ni100 categories from 
the labeled set of 30 images. 
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images which are almost identical to the retrieval seed, choice of images in different material classes from 
the seed but visually similar as taken at a different scale. This procedure leaves us with a final collection 
of 290 images labeled with the corresponding material category recorded in 64 days. Using this collection, 
we selected images recorded in the same days and labeled them correspondingly, and after a final manual 
verification, we obtained the final dataset of 7,287 images.

Despite our strategy being tailored to the specific case of the STM Dataset, each aspect of the selection 
process, from the manual annotation to the ML procedure, can be generalized to similar contexts upon 
slight modification of [9], in particular when dealing with annotations of microscopy images required for a 
FAIRification workflow. A more detailed description of the methodology, the technical specification and the 
validation criteria of the entire pipeline is available in the master thesis of the first author of this article [34].

2.2 STM meta data explorer

The STM dataset is enriched with useful metadata that increase the findability of relevant images. 
However, it is fundamental to provide scientists with a web service to facilitate and simplify the search 
process. Here, we present STM Metadata Explorer, an easy-to-use and interactive web service developed 
as an integrated service within Trieste Advanced Data Services (TriDAS) to visually explore images’ metadata 
through interactive and downloadable plots. The core logic of the web service is designed around the 
metadata that users can select through the platform to find the relevant images. We selected a small subset 
of metadata that provide significant information about image characteristics and microscope settings, listed 
and described in Table 1. 

Table 1. STM Explorer metadata available.

Metadata Description 

Date image acquisition date 
FieldXSizeinnm X dimension in nanometers of the scan size 
FieldYSizeinnm Y dimension in nanometers of the scan size 
XOffset X coordinate of the tip offset in nanometers from the center of the scan axes 
YOffset Y coordinate of the tip offset in nanometers from the center of the scan axes 
ScanSpeed speed measured in nanometers per second of the scan 
ScanAngle rotation angle of the fast scan direction in the XY plane measured in degrees 
GapVoltage bias voltage applied between tip and sample in the constant current scan mode, measured 

in Volts 
LoopGain integral term of the PID feedback loop controller of the tunneling current 
FeedbackSet setpoint of the tunneling current, measured in nanoamperes 
Label sample material composition 

The web service workflow is summarized in Figure 3 and allows users to visually explore images’ 
metadata through a quantile plot for a single metadata field and a scatter plot that shows the distribution 
of images between two chosen metadata fields. In both plots, hovering on top of plot objects creates a pop 
up that shows information about that object: the number of images and value intervals for quantiles plots 
and the number of images and metadata values for each field in the scatter plot. The right toolbar lets users 
interact with the plots by moving, zooming in and out, and saving plots as images.
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These features are useful for a first exploration of the dataset which then should be downloaded for 
further analysis and image visualization. To address this issue, the scatter plot features the selection of a 
specific metadata combination to retrieve a new page containing a table with metadata fields for each 
image in that subset. On this page, researchers can select, order, filter, and search images based on their 
metadata values. Moreover, the ID column consists of each image unique identifier in the database and, 
by clicking on it, the corresponding STM image is rendered and shown in a new page, where a download 
feature is included to obtain data, metadata, plot and provenance metadata for each image.

Figure 3. The web service workfl ow on the TriDAS website. Users select metadata and based on the fi elds selected, 
can explore the images metadata through a quantile plot for a single metadata fi eld and a scatter plot that shows 
the distribution of images between two chosen metadata fi elds. 

TriDAS is implemented in Python, use Bokeh [35] for data visualization, spym [36] to process and plot 
images, and Flask [37] framework as backend. The source code, as well as a list of all used software 
packages are publicly available [9] and reported in the provenance metadata.

2.3 A pplication of W3C PROV to STM case study

Provenance is a kind of metadata that describes the history of data from the original data sources to data 
products. Provenance information, that tracks the processes applied to data, from the origin to the final 
results, is critical to enable reproducibility [38] and reusability in scientific research experiments. In relation 
to these needs, we present an approach to describe the provenance of our use case on STM images by 
applying the PROV-DM [39], a generic data model of the W3C PROV standard [40].
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As a first step, we designed the workflow of the principal events performed during the FAIRification 
process of STM images, from the raw data folder generated by VT-STM measurements to the final image 
that can be visualised on the TriDAS website.

For each of the above activities, we first identified the actors responsible together with the generated 
outputs, and secondly, mapped them with the W3C PROV core concepts described in Table 2.

Table 2. Mapping between the elements of STM case study with W3C PROV concept types and relations.

W3C PROV concepts STM elements

PROV types Entities • Raw data 
• Reference dataset 
• Structured & FAIR dataset 
• Filtered image 

Activities • VT-STM measurements
• Image selection & retrieval
• Image labelling process
• Metadata selection 

Agents • STRAS research group
• Data scientist
• Research user
• VT-STM microscope
• Analysis software

Usage • Image selection & retrieval used Raw data
• Image labelling process used the Reference dataset
• Metadata selection used the Structured & FAIR dataset

PROV relations Derivation • Reference dataset derived from Raw data
• Structured and FAIR dataset derived from the Reference dataset 
• Filtered image derived from Structured & FAIR dataset

Generation • Raw data was generated by VT-STM measurements
• Reference dataset was generated by Image selection & retrieval
• Structured & FAIR dataset was generated by Image labelling process
• Filtered image was generated by Metadata selection

Attribution • Raw data was attributed to STRAS research group
• Reference dataset was attributed to STRAS research group and Data 

scientist
• Structured & FAIR dataset was attributed to STRAS research group and 

Data scientist
• Filtered image was attributed to Research user

Association • VT-STM measurements were associated with STRAS research group and 
VT-STM microscope

• Image selection & retrieval was associated with Data scientist
• Image labelling process was associated with STRAS research group and 

Data scientist
• Metadata selection was associated with Research user

Delegation • VT-STM microscope acted on behalf of STRAS research group
• Analysis software acted on behalf of Data scientist
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Part of the terms we used in the provenance workflow has been already agreed upon among the NFFA-
Europe community as they have been defined in the NFFA-Europe Glossary [41] developed in collaboration 
with the Joint Lab “Integrated Model and Data Driven Materials Characterization” (MDMC) of the Helmholtz 
Association of German Research Centers [42]. For the mapping, we considered three components of 
PROV-DM: entities and activities, derivations, and agents with their responsibilities.

Entities: In PROV, an Entity is defined as “a physical, digital, conceptual, or other kind of thing with 
some fixed aspects” [39]. From PROV-DM core descriptions, we identified the following entities: Raw data, 
Reference dataset, Structured & FAIR dataset and Filtered image. In our case study, Raw data refers to the 
unorganized collection of 420,000 STM images acquired using the VT-STM microscope. Reference dataset 
groups together 110,000 images acquired in constant-current mode, while Structured & FAIR dataset 
includes 7,287 images manually labeled in three sample material categories. Finally, Filtered image 
corresponds to single images downloadable from the STM Metadata Explorer on the TriDAS website.

Activities: An Activity is “something that occurs over a period of time and acts upon or with entities” [43]. 
In our case, we mapped as Activities four events represented by: VT-STM measurements, Image selection 
& retrieval, Image labeling process, and Metadata selection. The first activity, VT-STM measurements, 
corresponds to image acquisition at CNR-IOM. It is followed by Image selection & retrieval, which describes 
the actions taken to obtain the Reference dataset from Raw data. The image labeling process is the pipeline 
used to enrich a subset of the Reference dataset with material composition metadata and finally, Metadata 
selection represents the workflow of the web APP to find a particular image of interest from the Structured 
& FAIR dataset.

Agents: In PROV, an Agent [39] can be a person, an organization, software or other entity that has some 
responsibility for a given activity or entity. We identified STRAS research group, VT-STM microscope, Data 
scientist and Research user as prov:Agents and Analysis software as prov:softwareAgent. STRAS research 
group indicates the researchers of the laboratory where the Raw data were generated. Data scientist is the 
person responsible for the FAIRification of the dataset while the Research user is the person interested in 
the data collected from the Structured & FAIR STM dataset.

The roadmap of the FAIRification activities and the subsequent mapping with W3C components leads 
to the provenance workflow presented in the graphical illustration (Figure 5).

PROV Activities are represented as lilac rectangles, PROV Agents as light orange pentagons and PROV 
Entities in light yellow ovals. The responsibility properties are depicted in pink. The workflow starts with 
VT-STM measurements attributed to STRAS research group and is associated with both STRAS research 
group and VT-STM microscope that acts on behalf of STRAS research group. VT-STM measurements 
generated Raw data that were used during Image selection & retrieval to generate the Reference dataset. 
The Reference dataset, which was derived from Raw data, was attributed both to STRAS research group 
and Data scientist. Analysis software acts on behalf of Data scientist and Research user. The image labelling 
process, associated with Data scientist and STRAS research group, used the Reference dataset to generate 
the Structured & FAIR dataset. Therefore, Structured & FAIR dataset derived from Reference dataset. At last, 
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Metadata selection associated with Research user used the Structured & FAIR dataset to generate a Filtered 
image that was attributed to the Research user.

As a final step, we conducted a practical implementation of the above workflow, by using a PROV Python 
Library for W3C Provenance Data Model [44]. The provenance document created in Python was then 
exported in a JSON representation for PROV, PROV-JSON, thus providing a compact and accurate 
representation of PROV that is particularly suitable for interchanging PROV documents, allowing 
reproducibility.

3. C ONCLUSIONS AND OUTLOOK

In this paper, we describe tools and services designed to improve the overall value of a scientific dataset 
of STM images by implementing different aspects of FAIR principles.

To address findability and accessibility, we used extracted metadata of each image as a filter to create a 
structured dataset from a raw data folder. We focused then on the annotation of images with sample material 
composition. As a result, we obtained a final dataset of 7,287 images of the surface of three materials, 
Gr_Ni100, Gr_Ni111 and N_Gr_Ni111.

We then created a web service to visually explore this information through intuitive graphical 
representations. The crucial component of this web service is metadata enrichment with information on 
sample composition, obtained with machine learning techniques. Moreover, we improved the usability of 
the dataset by including visualization and download functionalities directly in the web browser.

Figure 4. Graphical representation of the provenance workfl ow of STM images based on PROV-DM structures. 
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To address reproducibility, as well as interoperability and reusability we then focused on provenance 
metadata. The use of provenance standards is fundamental to achieve interoperability and encouraging the 
reuse of datasets. For these reasons, we applied to our case study the W3C PROV standard, which is a 
general, high-level standard for provenance. We used an open-source tool called F-UJI [45] to verify and 
assess the level of FAIRness achieved, which supports a programmatic FAIR assessment of research data 
based on a set of core metrics. The FAIR level result was ‘advanced’. Even if we have a total score on 
findability and accessibility, the level of interoperability and reusability is moderate, showing some aspects 
we should improve in future work. 

We foresee several directions for the future development of this case study: generalization of our 
provenance implementation, development of a domain-specific metadata schema for scanning probe 
microscopy, implementation of a FAIR-by-design workflow for the newly acquired data, continuous 
development of the STM Metadata explorer service and, more specifically concerning our case study, label 
propagation with semi-supervised learning [46, 47].

The implementation details of this work, in particular the PROV implementation, are somewhat specific 
to the present STM case study, but, in principle, they can be easily generalized and applied to a large 
number of scanning microscopy experiments (SEM, AFM, etc.), with the possibility to include active 
provenance capture [48].

The FAIRification process described in this work is applied to the legacy data acquired in the past twenty 
years in a STM laboratory. For newly acquired data, we started to actively implement a FAIR-by-design 
workflow starting from data acquisition. This process includes the use of an Electronic Laboratory Notebook 
(ELN) for reusability and provenance and the development of an open-source Python package for data 
reading to improve accessibility and interoperability [36]. A key activity in data management, especially in 
light of compliance with FAIR principles, is the development and adoption of metadata schemas. Currently, 
a metadata schema for STM is missing, and no standards are adopted for data and metadata acquired with 
this technique. Motivated by this lack, we started a coordinated effort to develop a standard STM metadata 
schema [49] with the final aim, after sharing and approval by the involved scientific community, to make 
it a de-facto standard in the field, openly available for reuse and a further extension to other scanning 
(probe) microscopy techniques. With this respect, we are planning to continue the work presented in this 
paper by converting the obtained structured dataset to make it compliant with the new STM metadata 
schema, as soon as it will be defined, thus further carrying on its process of FAIRification. We finally 
mention that an open-source software [50] is already available for loading and performing extensive data 
processing and analysis on several STM data formats, including those reported in this manuscript.

The STM Metadata explorer presented in this work was developed to improve the usability of the dataset. 
We plan to add analytics to assess user experience to further develop the service towards user needs.

Finally, we plan to extend the labelling to the whole dataset by label propagation, a powerful semi-
supervised learning technique. Currently, the labelled samples are a small fraction of the total and its 
collection required extensive human annotation. Extending the labelling to the whole dataset will enable 
the development of more advanced services (such as advanced queries) and large-scale experimentation.
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In conclusion, we believe that this work will inspire and engage a large scientific community in addressing 
the problems of data provenance, metadata schema development and, more in general, the FAIRification 
of scientific data. We are sure that this is an essential endeavour for the development of future research.
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