Consiglio Nazionale delle Ricerche

A Hybrid Approach for the TSP Combining Genetics
and the Lin-Kerninghan Local Search

Ranieri Baraglia, Jose Ignacio Hidalgo
Raffaele Perego

Technical Report
CNUCE-B4-2000-007

A Hybrid approach for the TSP combining genetics

and the Lin-Kerninghan local search

Ranieri Baraglia, Raffacle Perego and Jose Ignacio Hidalgo
Istituto CNUCE, Consiglio Nazionale delle Ricerche (CNR)
Via V. Alfieri, 1, Ghezzano, Pisa, Italy

e-mail: {ranieri.baraglia, raffacle.perego}@cnuce.cnr.it hidalgo@dacya.ucm.es

Technical Report: #7/2000

2nd May 2000

Abstract

The combination of genetic and local search heuristics has been shown to be an ef-
fective approach to solving the Traveling Salesman Problem. This paper describes a new
hybrid algorithm that exploits a compact genetic algorithm in order to generate high-
quality tours which are then refined by means of the Lin-Kernighan local search (LK).
Local optima found by LK are in turn exploited by the evolutionary part of the algorithm
in order to improve the quality of its simulated population. The results of several exper-
iments conducted on different TSP instances with up to 13509 cities show the efficacy of

the symbiosis between the two heuristics.

Keywords: compact genetic algorithms, Lin-Kernighan, Hybrid GA, TSP

Contents

1 Introduction 4
2 Genetic algorithms 8
2.1 The Compact Genetic Algorithm 9
22 A Cgaforthe TSP 12
2.3 Experimental Results 18

3 A hybrid approach combining genetics and the Lin-Kernighan local
search 21
3.1 Experimental Results 23
29

4 Conclusions

List of Figures

2.1

2.2

3.2

Pseudo-code of our Cga for the TSP. 13
Update step for a 6 x 6 probability matrix. 16
Pseudo-code of our Cga-KL for the TSP. 24

Distance from the optimum of the tours returned by (a) the Chained LK
routine, (b) the Cga part of our hybrid algorithm on the TSP instance

usal3509, as a function of the iterationindex. 26

List of Tables

I Tour length and execution times (in seconds) obtained running our Cga on
instances grd8 and 1in106. 19
I 'TSPLIB instances used as test cases. 23

Il Comparison of results obtained by running the algorithms Cga-LK, Random-

LK, and Greedy-LK on the same TSP instances. 26

Chapter 1

Introduction

The Traveling Salesman Problem (TSP) is probably the most famous combinatorial op-
timization problem. In the TSP, given a finite set of cities C' = {¢1,¢2,.....,cx} and a
distance d(c;, ¢;),7 # 7, between each pair, the shortest tour which visits all the cities
once and returns to the starting point has to be found. Because of its simplicity and
applicability to many fields, TSP has often served as a testing ground for many exact and
heuristic optimization algorithms (24, 1, 13]. Highly optimized exact algorithms based
on the Branch & Cut method [22, 1] have been proposed which enable even large TSP
instances to be solved. The computational demand of exact approaches however is huge.
Some heuristic approaches, on the other hand, have been proved to be very effective both
in terms of execution times and guality of the solutions achieved. A broad taxonomy of
TSP heuristics distinguishes between local search approaches exploiting problem domain
knowledge and classical problem-independent heuristics.

Domain-specific heuristics, such as 2-Opi [6], 8-Opt [15], and LK [16], are surprisingly
very effective for the TSP. In particular LK, which essentially uses 2-Opt and 3-Opt

moves from within a tebu search algorithmic framework, is considered to be the heuristic

that leads to the best solutions and thus the benchmark against which all other heuristics
should be tested. Moreover very efficient implementations have been devised for LK which
take just a few seconds to compute a high-quality solution for problems with hundreds of
cities {13, 2]. Computational efficiency is very important since LK, as with all local search
algorithms, must be executed several times with different random seeds and starting
solutions in order to explore different regions of the search space thus improving the
quality of the final solution.

On the other hand, general problem-independent heuristics like simulated annealing
(SA) [14] and genetic algorithms (GA) [9, 4] perform quite poorly with this particular
problem. They require high execution times for solutions whose quality is not comparable
with those achieved in much less time by their domain-specific local search counterparts.

Several published results demonstrate that combining a problem-independent heuris-
tic with a local search method is a viable and effective approach for finding high-quality
solutions of large TSP problems. The problem-independent part of the hybrid algorithm
drives the breadth-first exploration of the search space thus focusing on the global opti-
mization task, while the local search algorithm allows a depth-first search of the subregions
of the solution space, to be efliciently performed.

Martin and Otto proposed the Chained local optimization algorithm, where a special
type of 4-opt moves are used under the control of a SA schema to escape from the local
optima found with LK [18, 17].

Freisleben and Merz designed genetic operators to search the space of the local optima
determined with LK [19]. In particular they used a specific crossover operator which

preserves the edges found in both the parents. To our knowledge, Freisleben and Merz’s

TSP results reported in [19] are currently the best obtained using an algorithm which
combine genetics with a local search.

Martina Georges-Schleuter instead experimented with the exploitation of simple k-
Opt moves within her Asparagos96 parallel genetic algorithm [8]. She concludes that, for
large problem instances, the strategy of producing many fast solutions might be almost as
effective as using powerful local search methods with fewer solutions. Unfortunately, the
last two proposals fail to clearly demonstrate the contribution of genetics to the results
achieved.

In this paper we propose Cga-LK as a new hybrid algorithm for the resolution of the
TSP, Cga-LK combines an original Compact genetic algorithm (Cga) with an efficient
implementation of LK. The term compact derives from the fact that our algorithm does
not manage a population of solutions but mimics its existence and stores the information
describing the population in a triangular matrix. The idea behind this algorithm arose
from the study of the compact genetic algorithm proposed by R. Harik and others [11].
In Cga-LK the Cga is used to explore the more promising part of the TSP solution
space in order to generate “good” initial solutions which are refined with LK. The refined
solutions are also exploited to improve the quality of the simulated population as the
execution progresses. We concentrated the attention on the symmetric TSP, and tested
our algorithm on TSPLIB [23] instances with up to 13509 cities.

The paper is organized as follows. Chapter 2 briefly introduces the genetic approach
and describes the compact genetic algorithm exploited by our proposal. Some results
obtained on small TSP instances are also presented and discussed. Our hybrid approach

which combines the compact genetic algorithm and the Lin-Kernighan local search is

detailed in Chapter 3. Section 3.1 presents the resuits achieved with our implementation
on TSP instances ranging from 198 to 13509 cities. The results are also compared with
those of other algorithms applied to the same problem instances. Finally, Chapter 4

outlines some conclusions.

Chapter 2

Genetic algorithms

Genetic Algorithms (GAs) [12, 21, 20] are stochastic optimization heuristics in which
searches in solution space are carried out by imitating the population genetics stated
in Darwin’s theory of evolution. Selection, crossover and mutation operators, directly
derived from natural evolution mechanisms are applied to a population of solutions, thus
favoring the birth and survival of the best solutions. GAs have been successfully applied
to many NP-hard combinatoriai optimization problems, in several application fields such
as business, engineering, and science,

In order to apply GAs to a problem, a genetic representation must be found of each
individual (chromosome) that constitutes a solution to the problem. Then, we need
to create an initial population, to define a cost function to measure the fitness of each
solution, and to design the genetic operators that will allow us to produce a new population
of solutions from a previous one. By iteratively applying the genetic operators to the
current population, the fitness of the best individuals in the population converges to
local optima. The GA end condition may be to reach a maximum number of generated

populations, after which the algorithm is forced to stop, or the algorithm converges at

stable average fitness values.

The genetic approach has several advantages which make GAs usable and effective.
Firstly, GAs do not deal directly with problem solutions but with their genetic repre-
sentation thus making their implementation indemrﬂent from the problem in question.
Moreover, they do not treat individuals but rather populations, thus increasing the prob-
ability of finding good solutions. Finally, GAs use probabilistic methods to generate new
populations of solutions, thus decreasing the probability of being trapped in “bad” local
optima. On the other hand, GAs do not guarantee that global optima will be achieved
and their efficacy very much depends on many parameters whose fixing depends on the
probiem considered. The size of the population is particularly important. The larger
the population, the greater the possibility of profitably exploring the solution space, thus
reaching good solutions. Increasing the population clearly results in a large increase in
the GA computational cost which can be addressed by exploiting parallelism according

to a few well-known models |7, 5].

2.1 The Compact Genetic Algorithm

The Cga does not manage a population of solutions but only mimics its existence [11].
The idea on which the Cya is based was primarily inspired by the random walk model,
proposed to estimate GA convergence on a class of problems where there is no interaction
between the building blocks constituting the solution {10]. Other concepts that inspired
the Cgo proposal were Bit-based Simulated Crossover (BSC) [25] and Population-Based
Incremental Learning (PBIL) {3]. The Cga represents the population by means of a vector

of values p; € [0,1],¥: = 1,...,l, where [is the number of alleles needed to represent

the solutions. FEach value p; measures the proportion of individuals in the simulated

population which has a zero (one) in the i locus of their representation. By treating
these values as probabilities, new individuals can be generated and, based on their fitness,
the probability vector can be updated accordingly in order to favor the generation of better
individuals.

The values for probabilities p; are initially set to 0.5 to represent a randomly generated
population in which the value for each allele has equal probability. At each iteration the
Cga generates two individuals on the basis of the current probability vector and compares
their fitness. Let W be the representation of the individual with a better fitness and L
the individual whose fitness is worse. The two representations are used to update the

probability vector at step &+ 1 in the following way:

4

it = g —1/n ifw =0AL =1 (2.1)

where 7 is the dimension of the population simulated, and w; (I;) is the value of the ¢
allele of W (L). The Cga ends when the values of the probability vector are all equal to

0 or 1. At this point vector p itsell represents the final solution.

Let us see a simple example for 6 genes and a population of 10 individuals. The initial
values of the population would be: P = [0.5 0.5 0.5 0.5 0.5 0.5]. Suppose that we
generate the next two individuals: Individuall = 010100 and Individual2 =010010,

and also that their fitness values are FF, = 1.7 and FFy = 2.3. So W = Individual2 and

10

L =TIndividuall ie. L=010010and W=010100

Now we can calculate the new values of the probabilities P! p! = p? because w, = ;.
For the same reason p; = p3, pi = p3, and p} = pl. However, p; = p}+1/10 = 0.6, because
wy = 1 and Iy = 0. Moreover, pi = p? — 1/10 = 0.4,because wy = 0 and Iy = 1. So the
probability vector for generation 1 would be: P! =[0.5 0.5 0.5 0.6 0.4 0.5].

The algorithm will continue working in this way until all of the values of P will be
0 or 1. Supouse that after 20 generations the algorithm converges and the value of the
probabilities are: P?° = [01 11 00]. Then, the solution to our problem is that represented
by the chromosome G 111 0 0.

Note that the Cga evaluates an individual by considering its whole chromosome. At
each iteration, some alleles of solution W might not belong to the optimal solution of the
problem, and the corresponding probability values may be wrongly modified.

When applied to order-one problems a Cga is approximatively equivalent to a simple
GA with uniform crossover: iﬁ achieves solutions of comparable quality with approxi-
matively the same number of fitness evaluations. To solve problems with higher order
building blocks GAs with both higher selection rates and larger population sizes have to
be exploited [26]. The Cga selection pressure can be increased by modifying the algorithm
in the following way: (1) generate at each iteration s individuals from the probability
vector instead of two; (2) choose among the s individuals the one with the best fitness
and select as W its representation; (3) compare W with the other s — 1 representations
and update the probability vector accordingly. The other parts of the algorithm remain
unchanged. Such an increase to the selection pressure helps the Cga to converge to better

solutions since it increases the survival probability of higher order building blocks [11].

13

Although the Cga mimics the order-one behavior of a GA with uniform crossover, it
was not proposed as an alternative algorithm. According to the authors it can be used to
quickly assess the “difficulty” of a problem. A problem is easy if it can be solved with a
Cga exploiting a low selection rate. The more the selection rate has to be increased to solve
the problem, the more it should be considere as difficul. Moreover, given a population of
n individuals, the Cga updates the probability vector by a constant value equal to 1/n.
Only log, n bits are thus needed to store the finite set of values for each p;. The Cga
therefore requires log, n % [bits with respect to the n * [bits needed by a classic GA.
Larger population dimensions can be exploited without significantly increasing memory

requirements.
9 0 P PV SRR J : pla
Lk A Cgqga for the TSP

In order to design a Cyga for the TSP, we adopted the path representation model which
represents a feasible tour as one of the k! possible permutations of the k cities [20], and
we considered the frequencies of the edges occurring in the simulated population. A kx &
triangular matrix of probabilities P was used to this end. Each element p;;,7 > j, of
P represents the proportion of individuals whose tour contains edge {c;, ¢;). If n is the
population dimension, our Cga thus requires (k%/2)-log, n bits to represent the population
with respect to the log, k - k - n bits required by a classical GA. Figure 2.1 shows the

pseudo-code of our Cgao. Its main functions are discussed in the following.

12

Pregram TSP_Cga

begin
Tnitialize(P,method) ;
F_best ;= INT_MAX;
repeat
S[1] := Generate(P);
F{1] := Tour_Length(s[1]1);
idx_best := 1;
for k¥ := 2 to s do
S[x] :
F[k] := Tour_Length(5[k]);
if (F[k] < F[idx_best]) then idx_best := k;

end for

Generate(P);

for k := 1 to s do
if (F[idx_best] < F[k]) then Update(P,S[idx_best],Si{il);

end for
if (F[idx_best] < F_best) then
count := Q;

F_best := F[idx_best];
S_best := S[idx_best];

else
Update{P,S_best,S[idx_best]);
count := count + 1;

end if

until (Convergence(P) OR count > CONV_LIMIT)
Output (S_best,F_best);

end

Figure 2.1: Pseudo-code of our Cga for the TSP.

Initialization of the probability matrix

Two different methods are provided to initialize matrix P. The Uniform Distribution (UD)
method gives the same probability for each edge, while the Edge Length (EL) method uses
probabilities computed as a function of the lengths of the corresponding edges. According

to the UD method, each edge is equally represented in the Cga population. Thus we have:

13

0 ifi=j
;= (2.2)
1/2 otherwise

On the other hand, by using the EL method, a higher probability is assigned to the shorter

edges according to the following equation:

—
faw]

ifi=j
pf;’,j — (2.3)
-‘Iit—}‘—(}cf—) otherwise
where
Ty = max{d(ei,¢;) 1§ € {1,2,..., i~ 1}} (2.4)
l; = min{d{ci,c;) 1 5 € {1,2,...,i—1}}. (2.5)

(Generation of feasible tours

Traditional crossover operators cannot be applied to the TSP: randomly selecting parts
of the parents’ chromosomes and combining them into a new individual normally yields
a tour in which some cities are not visited while some others are crossed more than once.
Ad hoc crossover operators have thus been proposed which generate feasible tours [20].
As an example of such operators, Greedy Crossover [9] selects the first city of one parent,
compares the cities leaving that city in both parents, and chooses the closest one to extend
the tour. If this city has already appeared in the tour, the other city is chosen. If both
cities have already appeared, a non-selected city is randomly taken.

A greedy algorithm has also been designed to generate feasible tours from matrix P.

A city ¢, is randomly selected and inserted in the tour V as starting city. Another city

14

¢y &€ Vis then randomiy chosen. City ¢, is inserted in V as successor of ¢, with probability

pap (i.e. the probability associated to edge (co,). Otherwise ¢ is discarded and the
process is repeated by chaosing another city not belonging to V. Clearly, this process may
fail to find the successor of some city ¢gz. This happens when all the cities not already
inserted in the current tour have been analyzed, but the probabilistic selection criterion
failed to choose one of them. In this case the city c; successor of ¢z is selected according

to the following formula:

b= argmax{pz; : ¢; € {er,ca,...)\ V} (2.6)

When Equation 2.6 is satisfied by several cities, i.e. edges (¢cz, ¢;) have the same probability
for different cities ¢; € V, the city which minimizes the distance d(cz, ¢;) is selected. The
generation process ends when all the cities have been inserted in V, and a feasible tour
has been thus generated.

Such a generation operator has two main drawbacks:

1. it is expensive from a computational point of view. Its cost clearly depends on the
values stored in matrix P. The lower the probability values, the higher the compu-
tational cost since several edges are discarded before finding an edge which satisfies
the probabilistic selection criterion. Moreover, as Cga executlon progresses, very
low probability values are assigned to most edges while only a few edge probabil-
ities become significant. When the Cga converges, only two values of P are equal
to one for each city, while ali the other k — 2 probability values are zero. Thus the

computational cost of our generation operator is lower at the beginning when high

15

probabilities are associated with many edges, whereas there is a reasonable increase

when the algorithm approaches convergence. We calculated that, depending on the
TSP instance and Cga parameters, the percentage of time spent in the Generate ()

subroutine ranges between 60 and 70 per cent of the total execution time.

. it can generate individuals containing chromosomes that are not represented in the
simulated population. In fact, when no city is selected as successor of ¢z with the
probabilistic selection criterion, the successor is chosen using Equation 2.6. Particu-
larly when a few cities have to be inserted to complete the tour, all the probabilities
checked by Equation 2.6 might be equal to zero. Nevertheless a city ¢ is chosen
although edge (cg, ¢;) is not present in any individual of the simulated population
(i.e. pz5 = 0). Note that this behavior is also common to other TSP crossover oper-
ators [9], and it is useful since it favors solution diversity by introducing mutations

in the population.

PO Individuals pl
0 0]
0.5 0 05 0
05 05 0 W = 05 06 O
05 05 035 O 05 05 05 0
05 65 05 05 0 (€1, €25 €3, Ca, Cs, Co) ¢4 05 04 06 0
05 05 05 05 05 O L = 0.6 04 05 04 06 0D

(Ch Cg, Cq, C4, C3, 05)

Figure 2.2: Update step for a 6 x 6 probability matrix.

Update of the probability matrix

The update protocol for the probability matrix P can be easily derived from that described

by Equation 2.1. Formally, given two individuals W and L so that W fitness is better

16

than L, the probability values at step k 4 1 can be derived from that of step k as follow:

pf,j + % if (¢, ¢5) V {¢,¢;) € edges(W) and (¢i,¢5) V (65, ¢i) & edges(L)

Pf,}rl =9 phi— 2 i (g, ¢) Vg) € edges(L) and (¢, ¢5) V (¢;, ;) & edges(W)

pf j otherwise
(2.7)

where n is the dimension of the population. Figure 2.2 shows a 6 x 6 probability matrix
which was initialized according to the UD method, and updated after the generation of
individuals W = (e, ¢a, s, Ca, ¢5,¢6) and L = (c1, o, G5, €4, C3,¢5). In this example we
considered a population of 10 individuals and thus probabilities associated with edges
(ca, ¢2), (s, a)s (css 1), and (cg, c5) which belong to edges(W) and not to edges(L) were
incremented by 0.1. On the other hand, probabilities for edges (cs,¢1), (cs,¢3), (cq, €2),
and (cg, ¢4) which belong to edges(L) but are not present in tour W, were decremented

by 0.1.

End Condition

The Cga proposed in [11] ends when all probability values converge to 0 or 1, and the
probabilities themselves represent the final solution. Such a condition is rarely achieved
in our case because the generation operator also allows edges to be.inserted in a tour
when their probabilities are very low (see chapter 2.2). Since s individuals are generated
at each Cga iteration, and matrix P is updated by comparing their chromosomes (see

Figure 2.1), some edges may appear in the best of the generated s individuals although

17

they do not belong to a TSP sub-optimal solution. As a consequence, the probabilities

values associated with these “bad” edges are increased, thus jeopardizing the satisfac-
tion of the termination condition that requives probabilities to be zero or one all at the
same time. To minimize the effect of “wrong” increases of edge probabilities, the best
individual generated in the current Cga iteration (S[idx_best]) is compared with the
best individual found until now (S best) and P updated accordingly. This modification
favors the algorithm convergence and allows our Cga to reach the above end condition
for small values of s. For large s it is not sufficient since the probabilities associated with
such “bad” edges might be increased for s — 1 times and decreased only once at each
Cga iteration. A supplementary end condition has been thus introduced which limits the
maximum number of generations occurring without an improvement of the best solution
achieved (see Figure 2.1). When such a limit is reached, execution is terminated and the

best individual found is returned as the final solution.

2.3 Experimental Results

Table I reports the results of some tests conducted with our Cga on TSP instances gr48,
a 48-city problem that has an optimal solution equal to 5046, and lin105, a 105-city
problem that has an optimal solution equal to 14379. These instances are available from
TSPLIB [23], a library of traveling salesman problems L. The tests were carried out
on a 200MHz PentiumPro PC running Linux 2.20.12, by varying the method used for
the initialization of the probability matrix (UD or EL), the dimension of the simulated

population {(n = 500, 1000, 2000 for gr48, and n = 1000, 2000, 4000 for 1in105), and the

ITSPLIB coliect.chttp: //www.iwr .uni-heidelberg.de/iwr/comopt/ soft/TSPLIBS5/TSPLIB.html,

18

Table I: Tour length and execution times (in seconds) obtained running our Cga on in-

stances gr48 and 1in105.

TSP un BEL
Instance n s Tour length | % Opt. | Time | Tour length | % Opt. | Time
gr48 500 2 bst 4055 0.18 5046 0
avg 5090 0.87 37 5088 0.85 33
4 bst 5046 0 5046 0
avg 5081 0.70 231 5083 0.75 222
8 bst 5046 0 5046 0
avg 5092 0.91 251 5068 0.43 248
16 | bst 5046 0 5046 0
avg 5084 0.76 275 5086 0.79 279
1000 2 bst 5054 0.16 5046 0
avg 5108 1.22 85 5092 0.91 82
4 bst 5055 0.18 5046]
avg 5093 0.93 324 5085 0.77 318
8 bst 5046 0 5046 0
avg 5082 0.71 399 5090 0.88 387
16 | bst 5046 0 5055 4.18
avg 5089 0.85 407 5080 0.67 398
2000 | 2 bst 5046 0 5046 0
avg 5087 0.81 50 5695 0.97 49
4 bst 5046 0 5046 0
avg 5087 0.81 272 5115 1.36 264
8 bst 5046 0 5046 0
avg 5087 0.81 292 5087 0.81 275
16 | bst 5072 0.65 5046 0
avg 5086 0.79 352 5073 0.54 347
1inl108 1000 2 bst 14497 0.82 14380 0.08
avg 14813 3.02 244 14634 1.77 231
4 bist 14442 0.44 14379 0
avg 14711 2.31 1204 14530 1.40 1198
8 bst 14379 0 14379 0
avg 14564 1.29 1667 14518 0.87 1394
16 | bst 14379 0] 14379 0
avg 14474 0.66 1818 14486 G.15 2003
2000 t 2§ bst 14379 0 14390 0.08
avg 14695 2.2 446 14670 2.02 422
4 bst 14401 0.15 14379 0
avy 14702 2.25 1544 14533 1.07 1497
8 bst 14379 0 14379 0
avg 14481 0.78 1844 14493 0.80 1821
16 | bst 14379 0 14401 0.15
avg 14488 0.76 2203 14491 0.78 2089
4000 | 2 | bst 14459 0.56 14449 0.48
avg 14790 2.86 1571 14793 2,51 1528
4 bst 14448 0.48 14401 0.15
avg 14658 1.94 3213 14579 1.39 3274
8 bst 14379 0 14378 0
avg 14490 0.78 4931 14441 0.43 4692
16 | bst 14379 0 14379 0
avg 14458 0.55 6098 14422 G.30 5784

19

selection pressure {s = 2,4, 8 16). Bach run was repeated 10 times to obtain an average

behavior. The Table reports the best {(bst) and average (avg) tour length achieved with
the 10 executions. The distance of the solutions achieved from the global optimum (%
Opt.) as well as the average execution time { Téme) are reported in the Table.

As the Table shows, in 19 tests out of 24 our Cga found the optimal solution of the gr48
instance, while the global optimum of 1in105 was found in 14 tests out of 24. Moreover,
average solutions were also very close to the optimum. In all the gr48 tests but one we
obtained solutions which, on average, differed for less than 1% from the optimum. The
same holds for the 1in105 tests if we consider the tests exploiting selection pressures to be
higher than 4. Average fitness values which differ for more than 3% from the optimum were
obtained only in one case (p = 1000, s = 2,U D). The EL method for matrix initialization
allowed the Cga to reach, in general, slightly better solutions than the UD technique.
Clearly the EL initialization method allows the Cga to generate better individuals for the
first generations. However, since simulated populations are large, as execution progresses
the probability matrix converges at about the same solutions. Moreover the Table shows
that large populations and high selection pressures have to be simulated in order to find
high quality average solutions. Increasing population dimensions and selection pressures

clearly results in a corresponding increase in the execution times.

20

Chapter 3

A hybrid approach combining
genetics and the Lin-Kernighan local

search

In the previous chapter we discussed the exploitation of a Cga to solve the TSP. Due to
the huge population required and the corresponding increase in the number of generations
needed to reach algorithm convergence, the Cga was found to be suitable only for small
problem instances. On the other hand, it is known that local search heuristics which
exploit problem domain specific knowledge are very efficient for solving the TSP [13]. In
particular LK, the elegant algorithm of Lin and Kernighan [16], is the basis of most suc-
cessful approaches proposed over the years for solving the TSP. Although 27 years “old”,
LI is still considered to be the best improvement heuristic for the TSP, since it produces
high quality solutions on a wide variety of TSP instances. A lot of variations of the LK
algorithm have been proposed (see [13, 2] for a survey and a complete bibliography).
Among the most important, we cite the Iterated LK by Johnson and McGeoch [13], and
the Chained local optimization by Martin, Otto and Felten [18, 17]. In fierated LK, an

efficient implementation of LK is iteratively applied to different initial tours and the best

21

of the tours selected, whereas Chained local eptimization applies a special type of {-opt

moves (called double bridge) to kick the current tour found by LK before reapplying LK.
Note that the acceptance of the kicked tours is decided on the basis of a Simulated An-
nealing schema which considers a probability associated with the difference in the length
between the original and the kicked tour. Chained local optimization can be thus consid-
ered a hybrid algorithm which exploits Simulated Annealing to improve the exploration
of the solution space. Analogously, we used our Cga to explove the more promising part
of the TSP solution space. The Cga generates “good” initial solutions which are then
refined with LK. On the other hand, refined solutions are exploited to update the Cga
probability matrix thus improving the simulated population in order to generate, as ex-
ecution progresses, better and better individuals which may lead LK to find tours with
lower costs. Hereafter we will call such hybrid algorithm Cyga-LK.

Cga-LK exploits the efficient implementation of the LK heuristic available in the
CONCORDE library by Applegate, Bixby, Chvatal, and Cook 1 In particular we used their
Chained LK routine, which is a particular example of the Martin, Otto, and Feldman
Chained local optimization, where kicks are random double-bridge moves and no Stmu-
lated Annealing is used [2].

As we can see from the pseudo-code reported in Figure 3.1, only slight modifications
were needed to integrate the exploitation of CONCORDE Chained LK routine in the code
reported in Figure 2.1. We modified the method used to initialize the prc;bability matrix.

Since LK gives us an efficient way of generating near-optimal tours, we initially applied

1The CONCORDE package is available for academic research —use at uri

http://www.keck.caam.rice.edu/concorde.

22

Table I. TSPLIB instances used as test cases.

Name Cities | Optinal Solution
d198 198 15780
1in318 318 42029
pcb442 447 50778
atth32 532 27686
gri6s 666 294358
rat783 783 8806
pri002 1002 2558045
u21562 2152 64253
£13795 3795 28772
fnl4461 | 4461 182566
fr15915 | 5915 565530

the LK routine to n randomly generated solutions (with n number of individuals of the
simulated population), and increased by 1/n the probability associated with all the edges
belonging to each one of the n optimized tours. In this way, we sensibly improve Cga
behavior since the algorithm starts from a probability matrix which simulates a population
of local optima. A further consequence of this, is that Cga-LK also works effectively with
a smaller population with respect to the pure Cga algorithm. Moreover, the selection
pressure, which was very important for the pure Cgo algorithm (see chapter 2.3), looses
most of its importance since LK produces locally optimal tours. At each iteration i of
Cga-LK, we thus generated a single individual s; (from the probability matrix), and used
it as a starting solution for the Chained LK routine which produces tour §. We then

updated the probability matrix by comparing s; with &; as discussed in chapter 2.2.

3.1 Experimental Results

Cga-LK was tested on several medium/large TSP instances defined in TSPLIB {23]. Ta-

ble 3 shows for each of the instances used as test cases, the TSPLIB name, the size, and

23

of the three algorithms on the same TSP instances, we were 1more able to understand if

the quality of the solutions was only due to the established efficacy of LK. This is where
other proposals fail since the contribution of genetics to the results is not shown.

Table T1 reports the results of such a comparison. In particular, for each TSP instance
and algorithm, it reports: the best (bst) and average (avg) tour length as well as its
distance from the glabal optimum (%), and the best and the average of both the execution
time and the number of iterations performed. The tests were carried out on a 350MHz
PentiumIll PC running Linux 2.2.12. We used for the Chained LK routine the CONCORDE
default settings, and we set to i-5, with i the iteration index, the number of random double-
bridge kicks allowed within Chained LK [2]. The dimension of the simulated population
was 64 for instances up to 442 cities, 128 for those up to 1002, and 256 for the others. For
the TSP instances d198, 1in318, pcb442, att532, gré66, rat783, and pri002 we ran
each one of the three algorithms 10 times. Execution was stopped as soon as the optimal
tours were found, and best and average execution times were reported in the Table. With
instances 12152, £13795, fnl4461, and fr15915, each execution was instead repeated 5
times, and a limit on the execution time was fixed so that the execution was stopped
when the optimal tour for the specific TSP problem was found or the time limit reached.

As we can see from the Table, the tests with instances d198, 1in318, pcb442, and
att532 gave contrasting results. All the three algorithms always found the optimal solu-
tions of these TSP instances in a few seconds. In some cases one of the three algorithms
was slightly faster than another, but the three algorithms appeared substantially equiv-
alent. The Chained LK algorithm exploited within the three implementations was very

effective almost independently from the method used to generate the starting solutions.

Table II: Comparison of results obtained by running the algorithms Cgo-LK, Random-LK,

and Greedy-LK on the same TSP instances.

TSP Cga-LK Random-LK Greedy-LK
Inst. lier. | Tour length (%) | Time Tter. | Tour length (%) | Time || Iter. | Tour length (%) | Time
4198 bst 2 15780 (-) 0.2 2 15730 (-) 0.2 4 15780 (-) 0.5
avg || 10.7 | 15780 (-) 2.0 8.1 | 15780 (-) 1.5 7.4 | 15780 (-) 1.1
1in318 || bst || 16 | 42029 {-) 2.5 16 | 42029 (-) 2.5 || 15 | 42029 {-) 2.3
avg || 35.8 | 42029 () 12.1 || 32.4 | 42029 () 9.8 | 375 | 42029 () 12.8
pcbdd2 bst 34 50778 (-) 8.5 32 50778 (-) 7.2 42 50778 (-) i1
avg || 58.7 | 50778 (-) 21.7 || 84.1 | 50778 (-) 488 || 777 | 50778 () 36.8
attba2 || bst || 57 | 27886 (-) 62 54 | 27686 (-) 51 41 | 27686 (-) 31
avg || 77 | 27686 () 112 78.9 | 27686 (- 113 || 9.5 | 27686 (-) 92
gr666 bst 64 | 294358 {-) 140 63 | 294358 {-) 99 70 | 294358 (-) 125
avg || 124 | 204358 () 473 158 | 294358 (-} 659 165 | 294358 {-) 705
rat783 bst 97 | 8806 (-) 56 88 B806 (-) 38 143 | 8806 (-) 97
avg 145 | 8806 (-} 111 263.8 | 8806 {-) 316 315 | 8806 (-) 463
pr1002 bst 103 259045 (-) 104 132 259045 (-) 141 204 259045 (-) 314
avg 125 259045 (-) 145 398.3 | 259045 (-) 1294 377 259045 (-) 1118
w2162 || bst || 332 | 64253 () 218 1064 | 64308 {0.086) 5000 || 1058 | 64322 (0.107) 5000
avg || 495 | 64253 (1) 1772 || 1065 | 64356.0 (6.160) | 5000 || 1059 | 64352.9 (0.155) | 5000
£13796 || bst | 413 | 28772 () 3897 | 999 | 28772 () 13444 || 751 | 28772 () 7706
avg || 485 | 28772 () 5033 || 1037 | 28774.4 (0.008) | 14844 || 977 | 28772.7 (0.002) | 13491
fnl4a461 bst 1358 | 182566 (-} 23867 1906 | 182684 (0.065) 35000 1904 | 182705 {0.076) 35000
avg 1679 § 182578.4 (0.007) | 33887 101G | 182722.4 (0.086) | 35600 1906 | 182719.5 {0.084) | 35000
r15915 bst 1444 | 565530 (-) 30935 1958 | 566052 (0.092) 35000 1947 | 566079 {0.697) 35000
avg 1546 | 565554.0 {0.004) | 34187 1965 | 566131.4 (0.106) | 35000 1950 | 566159.7 {0.111) | 35000

usal3sos: LK output usa13509: Cga output
- T 35 T T T

1 T
Average Soiution -

Best Solution
Average Solution -

0.8 Hi

Distance from the optimurn {%)
Distance from the optimum {%)

0 - L . L L
500 1900 1500 2000 2500
lteration index lteraiion indax

500 1000 1600 - 2000 2500

(a) (b)

Figure 3.2: Distance from the optimum of the tours returned by (a) the Chained LK
routine, (b) the Cga part of our hybrid algorithm on the TSP instance usal3509, as a

function of the iteration index.

26

Things changed when larger TSP instances were considered. The three algorithms
always found the optimal solutions also on instances gré€6, rat783, and pr1002, but the
differences in the average execution times became sensible. With instance grééé, Cga-
LK resulted 1.39 and 1.49 times faster in finding the optimal tour than Random-LK and
Greedy-LK, respectively. For rat783, Cga-LK outperformed 2.84 times Random-LK and
4.17 times Greedy-LK. With the pr1002 instance, the Cga-LK performance improvement
was impressive: 8.92 and 7.71 over Random-LK and Greedy-LK, respectively.

With instance u2152, Cga-LK found the optimal tour with each execution, while
neither Random-LK nor Greedy-LK ever found it. With instance £13795 all the three
algorithms found the optimal tour, but Cga-LK succeeded in all the 5 executions, while
Random-LK found the optimum once, and Greedy-LK twice. Differently from the other
two algorithms, Cga-LK found the optimal tours also with instances fn14461, and fr15916.
Moreover, when the optimal tour was not found and execution stopped because of the

limit in the execution time, the quality of the solutions returned by Cga-LK was always

i
o
iy
»
e
jan
o
=
D

higher than one of the other two methods. This holds although Cge-LK in
limit performs fewer LK searches than Random-LK and Greedy-LK due to the higher
computational cost in building starting solutions. As an example, with instance fr15915
Cga-LK on average performed 1546 iterations and returned a final tour difference of only
0.004% from the optimal one, while the other two algorithms, within the same time limit,
executed about 400 more Chained LK searches but returned solutions with errors which

were more than 25 times higher.
Cga-LK was experimented also on usai3509, a large TSP instance which represents

the Euclidean distance among the 13509 cities with a population of at least 500 in the

27

continental US. With this instance Cga-LK was performed just one due to the high exe-
cution time required. We stopped the test after 2800 iterations (about 137 hours), and
achieved a solution with length equal to 19991585, which was a percentage difference of
only 0.043% from the optimal tour length of 19982859 found in 1998 by Applegate, Bixby,
Chvatal, and Cook. They used a parallel implementation of an exact method based on
linear programming [1]. The authors estimated that to carry out the optimal solution of
the instance usat3509 on a sequential machine would take approximately 10 years.
Figure 3.2.(a) plots the distance (in percentage) from the optimal tour of the solutions
returned by the Chained LK routine as a function of the iteration index. In the plot the
dots represent the solution returned by the current execution of Chained LK, the solid
line plots the distance of the best solution, while the dotted line plots the average distance
from the optimum of the last 25 solutions. As we can see, the distance from the optimum
of both average and best solutions decreases as execution progresses. Figure 3.2.(b) in-
stead plots for the same test, the distance (in percentage) from the optimal tour of the
solutions generated by our Cga, and used to start the Chained LK routine. As before,
the dots represent the distance from the optimum of the current Cga solution, while the
solid line plots the average distance of the last 25 solutions generated with genetics. In
this case we can also see that the average quality of the solutions tends to improve as

execution progresses, thus demonstrating that the symbiosis between the two heuristics

works effectively.

28

Chapter 4

Conclusions

In this paper we proposed Cga-LK, a new hybrid heuristic algorithm for the TSP. it
combines an original Cga with an efficient implementation of the well-known LK local
search heuristics designed by Lin and Kernighan. In Cga-LK, the Cga is used to generate
what we hope will be “good” tours for starting LK. Local optima returned by LK are in
turn exploited to improve, as execution progresses, the population simulated within the
C'ga. Genetics is thus used to incorporate into the algorithm, part of the “knowledge”
obtained in the previous LK runs.

The evaluation of the proposed approach was done in two steps. Firstly, our pure
Cyga was evaluated using two TSPLIB instances with 48 and 105 cities, respectively. The
results achieved with both the instances were satisfactory. In most of the tests our Cya
found the optimal tour. Average solutions were also very close to the optimum. However,
the experiments showed that large populations and high selection pressures have to be
also exploited on small TSP instances in order to find average solutions of an acceptable
quality. Increasing population dimensions and selection pressures clearly resulted in an

increase in the Cgu execution times which makes the pure Cga suitable only for dealing

29

Bibliography

[1]

[3]

[5]

D. Applegate, R. Bixby, V. Chvital, and W. Cook. On the solution of traveling
salesman problems. In Documenta Mathematica, volume Extra Volume ICM 1998

111, pages 645-656, 1998.

D. Applegate, R. Bixby, V. Chvétal, and W. Cook. Finding tours in the tsp.
Preliminary chapter of a planned monograph on the TSP, available at URL:

http://www.caam.rice.edu/ keck/reports/lk_report.ps, 1999.

S. Baluja. Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning. Technical Report No.

CMU-CS-94-163, Carnegie Mellon University, Pittsburg, Pennsylvania, 1994.

H. C. Braun. On solving traveling salesman problems by genetic algorithm. Inn H. P.
Schwefel and R. Minner, editors, Parallel Problem Solving from Nature, volume 496

of Lecture Notes in Computer Science, pages 129-133, Berlin, 1991. Springer-Verlag.

E. Cantu-Paz. A summary of research on parallel genetic algoritms. Technical Re-
port 95007, University of Illinois at Urbana-Champaign, Genetic Algoritms Lab.

(IiGAL), http://gald.ge.uiuc.edu/illigal.home.html, July 1995.

31

6]

19]

[10]

[12]

[13]

G. A. Croes. A method for solving traveling salesman problems. Operations Research,

6:791-812, 1958.

M. Dorigo and V. Maniezzo. Parallel genetic algorithms: Introduction and overview

of current research. In Parallel Genetic Algorithms, pages 5-42. 108 Press, 1993.

M. Gorges-Schleuter. Asparagos96 and the travelling salesman problem. In T. Béck,
editor, Proceedings of the Fourth International Conference on Evolutionary Compu-

tation, pages 171-174, New York, IEEE Press, 1997.

J. Grefenstette, R. Gopal, B. Rosimaita, and D. van Gucht. Genetic algorithms for
the traveling salesman problem. In n Proceedings of an International Conference on

Genetics Algorithms and their Applications, pages 160-168, 1985.

Q. Harik, , D. Goldberg, and B. Miller. The gamblers ruin problem, genetic algo-
rithms, and the sizing of populations. In T. Bick, editor, Proceedings of the Fourth
International Conference on Evolutionary Computation, pages 7-12, New York, IEEE

Press, 1997.

G. Harik, F. Lobo, and D. Goldberg. The compact genetic algorithm. Technical

Report No. 97006, University of Illinois at Urbana-Champaign, Urbana, 11, 1997.

J. H. Holland. Adaptation in natural and artificial systems. University of Michigan

Press, Ann Arbor, MI, 1975.

D. S. Johnson and L. A. McGeoch. Local Search in Combinatorial Optimization,
chapter The Traveling Salesman Problem: A Case Study in Local Optimization.
John Wiley and Sons, New York, 1996.

32

14]

[15]

16}

[17]

[18]

[20]

[21]

[22]

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated anunealing.

Science, 220:671-680, 1983.

S. Lin. Computer solution of the traveling salesman problem. Bell Syst. Tech. J.,

44:2245-2269, 1965.

S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling sales-

man problem. Operations Research, 21:498-516, 1973.

O. Martin and S.W.Otto. Combining simulated annealing with local search heuristic.

To appear on Annals of Operation Research.

O. Martin, $.W.Otto, and E.W. Felten. Large step markov chain for the traveling

salesman. J.Complex Syst. 5:3:299, 1991.

P. Merz and B. Freisleben. (Genetic local search for the TSP: New results. In Pro-
ceedings of the 1997 IEEE International Conference on Evolutionary Computation,

pages 159-163, Indianapolis, USA, 1997. I[EEE press.

7. Michalewicz. Genetic Algorithms + data structures = FEvolution Programs.

Springer-Verlag, 1994.

M. Mitchell. An introduction to Genetic Algorithms. The MIT Press, Cambridge,

Massachusetts, 1996.

M. Padberg and G. Rinaldi. Optimization of a 532-city symmetric genetic traveling

salesman problem by branch & cut. In Operations Research Lelt. 6, pages 1-7, 1987.

33

[23] G. Reinelt. TSPLIB—A traveling salesman problem library. ORSA Journal on

Computing, 3:376-384, 1991.

[24] G. Reinelt. The Traveling Salesman: Computational Solutions for TSP Applications.

Springer-Verlag, Berlin, 1994.

[25] G. Syswerda. Simulated crossover in genetic algorithms. In L. D. Whitley, editor,

Foundation of Genetic Algorithms 2, pages 239-255, San Mateo, CA, 1993. Morgan

Kaufmann.

[26] D. Thierens and D. Goldberg. Mixing in genetic algorithms. In S. Forrest, editor,
Proceedings of the Fifth International Conference on Genetic Algorithms, pages 38—

45, San Mateo, CA, 1993. Morgan Kaufmann.

34

