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We theoretically study how the peculiar properties of the vacuum state of an ultra-strongly coupled
system can affect basic light-matter interaction processes. In this unconventional electromagnetic
environment, an additional emitter no longer couples to the bare cavity photons, but rather to the
polariton modes emerging from the ultra-strong coupling. As such, the effective light-matter inter-
action strength is sensitive to the properties of the distorted vacuum state. Different interpretations
of our predictions in terms of modified quantum fluctuations in the vacuum state and of radiative
reaction in classical electromagnetism are critically discussed. Whereas our discussion is focused
on the experimentally most relevant case of intersubband polaritons in semiconductor devices, our
framework is fully general and applies to generic material systems.

I. INTRODUCTION

The non-empty nature of the quantum vacuum is
among the most fascinating effects emerging from quan-
tum mechanics and quantum field theories [1]. Fun-
damental effects of atomic physics such as the Lamb
shift [2], the spontaneous emission [3], and the vacuum-
field Rabi oscillations [4–7] can be traced back to the
quantum fluctuations of the electromagnetic field in the
vacuum state. However, the quantum vacuum reveals it-
self also at a more macroscopic scale, for instance through
the Casimir forces [8–10], bringing the idea that this in-
triguing feature of quantum physics can be exploited for
nano-manipulation and nano-mechanical devices [11–13].

In the last years, the physics of the quantum vacuum
has started attracting a growing interest also from the
point of view of condensed matter physics as an innova-
tive way to manipulate the microscopic interaction mech-
anisms between electrons and, thus, induce new states of
quantum matter [14, 15]. A crucial ingredient here is the
capability to reach the ultrastrong coupling (USC) regime
of light-matter interactions [16–18] where the extremely
large value of the coupling strength of polarizable emit-
ters to the electromagnetic field leads to a significant dis-
tortion of the properties of the electromagnetic vacuum
and, in particular, of its quantum fluctuations.

In this work, we give a new twist to this research by
investigating how the peculiar properties of the USC vac-
uum affect basic light-matter interaction processes in-
volving another emitter used as a probe. Experimentally
observable consequences of this physics are highlighted,
such as marked modifications of the vacuum-field Rabi
oscillations and of the spontaneous emission rate. While
these features are naturally understood as an experimen-
tally accessible evidence of the distorted quantum vac-
uum state, alternative interpretations based on classical
electromagnetism, fluctuation-dissipation theorems, and
electrostatic forces are also proposed and critically dis-

cussed.

Modulo straightforward modifications, our framework
applies to generic systems where the USC can be
achieved [17, 18], from cyclotron excitations in metallic
resonators [19–21], to Josephson-junction-based devices
coupled to superconducting microwave resonators [22,
23], and excitons in 2D materials or heterostructures [24–
27]. For the sake of concreteness, in this work, we focus
however our attention on a specific semiconductor-based
platform based on intersubband (ISB) transitions in
quantum wells (QW), where USC was first predicted [16]
and observed [28–34]. Such a platform still remains
among the most promising platforms for the study of
quantum vacuum effects [35–37] and appears as a most
promising choice for the experimental verification of our
predictions.

The article is organized as follows: in Sec. II we in-
troduce our general framework based on polaritonic cor-
relation function and master equation to describe the
modified electromagnetic environment in the ultra-strong
light matter coupling regime and its coupling to a weak
emitter. In Sec. III we apply our general scheme to de-
scribe the specific setup of intersubband polaritons and
we formulate the system dynamics in terms of an emit-
ter coupled to a polaritonic environment. In Sec. IV we
show how the dipole-dipole interactions and the sponta-
neous emission properties of the emitter are related to
the quantum fluctuations in the non-trivial USC quan-
tum vacuum. In Sec. V we reinterpret the results of the
previous sections in terms of classical dielectric theory,
explicitly showing the equivalence between the quantum
and the classical Maxwell equation frameworks. Finally
in Sec. VI we draw our conclusions.
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II. GENERAL THEORY

A. Quantum electrodynamics with polarizable
media

We consider a system composed by two polarizable
dielectrics, called dresser and emitter, embedded in the
quantized electromagnetic environment of a resonant cav-
ity. In the dipole gauge picture, dubbed d · E in the
literature [38, 39], the Hamiltonian can be generically
expressed in the form

H = Hd +He+∫
d3r

[
(D(r)−Pd(r)−Pe(r))

2

2ϵ0
− ϵ0c

2

2
A(r) · ∇2A(r)

]
(1)

where Hd,e are the dresser and emitter Hamiltonians.
Both the electric displacement field D(r) and the vec-
tor potential A(r) satisfy the transversality condition

∇⃗ · D(r) = ∇⃗ · A(r) = 0; and Pd,e(r) are the dresser
and emitter polarization densities. ϵ0 is the vacuum di-
electric permittivity and c is the speed of light.

In this work we always assume that the dresser and
emitter are spatially separated, so their polarization den-
sities have zero overlap,

∫
d3rPd(r) · Pe(r) = 0. The

general Hamiltonian can then be rewritten as

H =He −
∫
d3r

D(r) ·Pe(r)

ϵ0
+

∫
d3r

P2
e(r)

2ϵ0
+Hpol,

(2)

where we define the polariton Hamiltonian emerging from
the USC of the dresser to the cavity mode as

Hpol = Hd +

∫
d3r

[
D2(r)

2ϵ0
− ϵ0c

2

2
A(r) · ∇2A(r)

]
−
∫
d3r

D(r) ·Pd(r)

ϵ0
+

∫
d3r

P2
d(r)

2ϵ0
.

(3)

As it is clearly visible from the interaction part of the
Hamiltonian

He/d, I = −
∫
d3r

D(r) ·Pe/d(r)

ϵ0
+

∫
d3r

P2
e/d(r)

2ϵ0
(4)

in the dipole gauge representation, both the emitter and
the dresser only interact with the electric displacement
field, without any direct Coulomb coupling between them
[38]. Notice that the P 2-term must be also included as
a part of the interaction, and this is customary for the
consistency of the Hamiltonian description of the system
[40–44].

Interestingly, when the dressing field exhibits a sub-
stantial light-matter coupling, it can alter the properties
of the electromagnetic field without directly affecting the
emitter. As a result, the emitter now experiences a mod-
ified electromagnetic environment, which affects its vac-
uum properties such as its internal electromagnetic inter-
actions, its spontaneous emission rate and, possibly, its

non-linear properties, as we are going to see in detail in
the next sections.

B. Effective dresser Hamiltonian and dissipations
in the dipole gauge picture

A good way to understand the impact of the modi-
fied electromagnetic environment onto the emitter is to
trace out the dressed electromagnetic field and derive an
effective description of the emitter only. Since there is
no direct coupling between the emitter and the dresser,
we can interpret the emitter-cavity coupling D · Pe as
a linear interaction between the emitter and a generic
bath described by the electric displacement field oper-
ator. Under general assumptions of weak coupling and
Markovianity we can employ the standard quantum op-
tical master equation derivation to obtain a description
only in terms of the electric displacement field correlation
function [45],

Cij(r, r
′, ω) =

1

iϵ0ℏ

∫ +∞

0

dt eiωt⟨vac|Di(r, t)Dj(r
′, 0)|vac⟩

(5)
Here, the indices i, j = x, y, z label the spatial dimensions
and the average is taken over the vacuum state, so that
Cij(r, r

′, ω) = 0 for negative ω < 0. Notice that, for the
sake of simplicity, in the present discussion we assume
that the emitter’s polarization density oscillates around
a single frequency ω > 0. This assumption could be
relaxed by allowing for a generic frequency dependence
of the operators, but this is not needed for the present
work.
In this framework, the emitter’s density matrix evolves

according to the following master equation:

ℏ∂tρe = −i [Heff , ρe] + Lloss(ρe) (6)

where the correlator of the electric displacement field pro-
vides an effective description of the effect of the polariton
environment on the emitter dynamics. Similarly to the
dyadic formalism used with localized quantum emitters
[46–50], the effective Hamiltonian is given by :

Heff = He +
1

2ϵ0

∫
d3rP2

e(r)

+
1

ϵ0

∑
ij

∫
d3r d3r′ P

(+)
e, i (r)Re [Cij(r, r

′, ω)]P
(−)
e, j (r

′),

(7)

and the associated dissipation is described by:

Lloss(ρ) =
1

2ϵ0

∑
ij

∫
d3r d3r′ Im [Cij(r, r

′, ω)]×

×
(
2P

(−)
e, i (r)ρP

(+)
e, j (r

′)−
{
P

(−)
e, i (r)P

(+)
e, j (r

′), ρ
})

,

(8)
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Here the (±) superscripts stand for the positive/negative
frequencies components of the operators as commonly
employed in the open description of USC systems [17, 51–
55].

C. Light emission into a dressed electromagnetic
vacuum

Throughout most of this work, we focus on the case
where the polaritonic Hamiltonian Hpol is quadratic and
fully bosonic as is customary in the literature [56–58].
In our work, this assumption is due to the fact that we
will focus only on the intersubband polariton case, where
the dresser is provided by a intersubband transition in
a planar quantum well, which is described with great
accuracy as a bosonic excitation following a quadratic
Hamiltonian [40, 59]. As a consequence, in the diagonal
basis, also called the polariton basis [16, 60], the electric
displacement field can be formally written as

Di(r) =
∑
k,n

Dzp
(k,n) (wk,i(r) cn + h.c.) , (9)

where the cn polariton operators satisfy bosonic commu-
tation rules [cn, c

†
m] = δnm, and Dzp

(k,n) are the zero-point

amplitudes related to the n-th polariton state of the k-th
electromagnetic mode. Here, the indices k and n should
be understood as general array indices rather than inte-
gers. In fact, in what follows, we will use k 7→ k as the
in-plane wavevector and n 7→ (k, lp/up), a doublet con-
taining the in-plane wavevector and the indices referring
to the lower or upper polariton. This construction will be
clear in the following sections, where the specific example
with intersubband polaritons will be worked out.

The orthogonal mode functions wk(r) are solutions of
the vectorial Helmholtz equation [61]:

∇⃗ × ∇⃗ ×wk(r)−
ω2
k

c2
wk(r) = 0, (10)

and satisfy the transverse condition ∇⃗ ·wk(r) = 0. In a
confined geometry, they have boundary conditions con-
sistent with the standard electric displacement bound-
aries [50]. For instance, in a metallic cavity of volume V ,
n×wk(r)

∣∣
δV

= 0, where n is the normal vector from the

cavity mirrors and
∣∣
δV

denotes that r is to be taken at
the boundary of the considered volume space.

The general relation with the quantum electrodynamic
vacuum is provided by:∑

i,j

∫
d3r d3r′ w∗

k,i(r) wk,j(r
′) ⟨vac|Di(r)Dj(r

′)|vac⟩

=
∑
n

|Dzp
(k,n)|

2,

(11)

where |vac⟩ is the full polaritonic vacuum, satisfying
cn|vac⟩ = 0 for all n.

Including the polariton dissipations γn we obtain

ij(r, r
′, ω) =

=
∑
k,n

|Dzp
(k,n)|

2

ϵ0ℏ
1

ω − ωn − iγn

2

wk,i(r)w
∗
k,j(r

′), (12)

where ωn are the eigenfrequencies of the polariton modes
resulting from the USC of the dresser with the cavity
field. More in specific, the resonant term in (12) and
the mode functions give information on the polaritonic
density of states, while the |Dzp

(k,n)|
2 coefficients quantify

the strength of the coupling between the emitter and the
polaritons.
Without the matter component provided by the

dresser, polaritons coincide with the cavity field itself,
and thus |Dzp

(k,n)|
2 = ϵ0ℏωkδkn/(2V ), where δkn is the

Kronecker delta (i.e. the indices n and k become exactly
the same index). Here, V is the volume of the cavity,
and ωk and wk(r) are determined solely by the classical
Maxwell equations with the appropriate boundary con-
ditions for the specific cavity considered. Indeed, if we
take the zero-frequency limit ω → 0, the cavity correla-
tor in Eq. (12) becomes by definition the transverse delta
Cij(r, r

′, ω) = −δ⊥(r, r′)/2 [38, 61, 62]. This term is then
summed to the P2

e-term in effective emitter Hamiltonian
of Eq. (7), acquiring only a contribution from the lon-
gitudinal component of the emitter’s polarization den-
sity Heff ∼

∫
d3rP2

e ∥(r)/(2ϵ0) [42]. Although the emit-

ter properties, such as spontaneous emission, can theo-
retically be modified by reshaping the cavity and, thus,
changing the wk(r) mode functions and the correspond-
ing density of states [63], these modifications are due to
the spatial geometry of the boundary conditions, result-
ing in a different δ⊥ with respect to the free space, and
are thus not peculiar to the ultrastrong coupling regime.
This situation remains unchanged if the dresser is in

a strong but not ultra-strong coupling regime with the
cavity field. In this case, the counter-rotating terms
in the light-matter interaction are in fact negligible and
the cavity-dresser vacuum is to good approximation the
empty vacuum [55]. However, the effect of the counter-
rotating terms scales quadratically in the light-matter
coupling and, when the cavity-dresser coupling enters the
ultrastrong regime they can no longer be neglected, re-
sulting in a new non-trivial cavity vacuum [16, 55]. In
this case, as a consequence, the electric displacement
zero-point amplitude |Dzp

(n,k)|
2 is significantly altered

from its bare cavity value, |Dzp
(n,k)|

2 ̸= ϵ0ℏωkδkn/(2V ),

giving rise to the exciting phenomena that we are going
to see in the next Sections.

III. CAVITY-DRESSER-EMITTER WITH
INTERSUBBAND POLARITONS

All the discussion of the previous Section was based on
very general arguments based on the dipolar gauge de-
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FIG. 1. (a) Illustration of the considered setup. The cavity
consists of two plane-parallel metallic mirrors of surface S at
a distance Lc enclosing a pair of two quantum wells (QWs)
called dresser and emitter. The electric field of the TM0 cav-
ity modes and the electronic polarization density associated to
the intersubband (ISB) transition in the QWs oscillate along
a direction perpendicular to the mirrors’ plane. (b) Examples
of typical polariton spectra emerging from the emitter-cavity-
dresser Hamiltonian in Eq. (13). The color represents the
dominant component of each polaritonic branch: blue, red,
green colors respectively refer to the cavity field, dresser, emit-
ter, and black indicates the regions of maximum hybridiza-
tion. The left and right panels correspond to the two cases
where the emitter is on resonance with either the lower or
the upper polariton emerging from the ultra-strong coupling
of the dresser and the cavity mode. Parameters: Ωd/ωd = 1,
Ωe/ωd = 0.1, ωe/ωd = 0.5 (left panel) or 2 (right panel).

scription and applies to large class of experimental con-
figurations. In order to obtain concrete predictions to
be compared to experiments, starting from this Section
we specialize our theory to the most promising case of
intersubband polaritons.

The specific geometry under investigation is sketched
in Fig. 1(a): it is based on a planar electromagnetic cavity
of surface S along the xy plane and height Lc along the
vertical z direction. We focus our attention on the so-
called TM0-modes [50]: these modes are polarized along
the z-axis, can have a subwavelength extension along z,
and are at the heart of semiconductor-based cavity QED
setups based on quantum well ISB transitions [40, 41].

The planar cavity hosts two polarizable QW slabs well
separated in space along the direction z perpendicular
to the cavity plane. One of them, called the dresser is
heavily doped so to be in a ultra-strong coupling regime
with the cavity mode. The dressed vacuum of the USC
regime is then used to non-perturbatively influence the
coupling to the electromagnetic field of the other QW,
called the emitter. This latter QW is taken to be much
less doped, so that the coupling to light of its own ISB

transition is far below the ultra-strong coupling regime.

A. Intersubband polariton Hamiltonian

Working with intersubband polaritons has the advan-
tage that the excitations of the system can be approxi-
mated as harmonic, thereby reducing the complexity of
the discussion. The total Hamiltonian describing the in-
teraction between the intersubband quantum wells and
the transverse cavity field is

H ≈Hc−d + ℏωe

∑
k

b†kbk+

− i
ℏΩe

2

∑
k

√
ωk

ωe

(
ak − a†−k

)(
b−k + b†k

)
+

+
ℏΩ2

e

4ωe

∑
k

(
b−k + b†k

)(
bk + b†−k

) (13)

where

Hc−d = ℏωd

∑
k

d†kdk +
∑
k

ℏωka
†
kak

− i
ℏΩd

2

∑
k

√
ωk

ωd

(
ak − a†−k

)(
d−k + d†k

)
+

ℏΩ2
d

4ωd

∑
k

(
dk + d†−k

)(
dk + d†−k

)
,

(14)

describes the (arbitrarily large) coupling of the dresser
QW to the cavity. Here, ak is the annihilation operator
of the TM0-cavity photon mode at in-plane wavevector
k, with dispersion relation ωk. The bk and dk operators
are, instead, the annihilation operators of collective ISB
excitations of wavevector k in the emitter or dresser QW,
with a k-independent frequency ωd,e. As already men-
tioned, restricting ourselves to a weak excitation regime,
the bk and dk operators can be safely approximated as
bosonic [64].
The strength of the light-matter coupling of each QW

is quantified by the dresser and emitter Rabi frequen-
cies Ωd,e parameters, which are determined by the cor-
responding 2D electron densities nd,e (and thus by the
doping density) via the relation [40]

Ω2
d,e =

fd,ee
2nd,e

ϵ0mLc
. (15)

where e is the electron charge and m is the effective elec-
tron mass. fd,e is the adimensional oscillator strength pa-
rameter determined by the overlap of the electronic wave-
functions in the QW [40] and exactly equal to 1 in the
case of parabolic wells [16]. Assuming all other parame-
ters to be constant, the scaling of Ωd,e with the doping
level nd,e allows to experimentally control the strength of
the light-matter coupling in the dresser and the emitter.
The ISB resonance frequencies ωd,e are then tuned by the
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geometry and the depth of the confinement potential in
the QWs. Importantly, as explained in App. A, we ab-
sorb the contribution deriving from the longitudinal part
of the individual P2

e,d-term directly into the definition of
ωe/d. This contribution is crucial for the so called depo-
larization shift [59] and takes also account for the effect
of the static image charges. However it is irrelevant for
our developments and, for the sake of simplicity, we do
not explicitly show it.

B. Emitter-polariton Rabi splitting

As already mentioned, in this work we focus on a
regime where the emitter is much less doped than the
dresser, ne ≪ nd, so the coupling of emitter to light Ωe

is much smaller than all other frequencies and can be
taken at lowest order while the highly doped dresser is
in the USC regime, Ωe ≪ {ωe, ωd, ωk} ≃ Ωd. Under
this assumption, the emitter no longer probes the bare
cavity photon modes but rather the cavity-dresser polari-
ton modes resulting from the hybridization of the cavity
photons and the dresser ISB excitations due to Hc−d in
(14).

The full polariton spectra arising from the mixing of
all three modes shown in Fig.1(b) display a selective anti-
crossing of the emitter (green) mode with the lower (left
panel) or the upper (right panel) cavity-dresser polariton
depending on the value of the emitter frequency: in the
Figure, for each polariton branch, the color indicates the
dominant cavity (blue), dresser (red), or emitter (green)
nature, and black represents a maximal mixing. As a
most remarkable feature, for the same value of Ωe, we
notice that the anti-crossing with the lower polariton is
much wider than the one with the upper polariton.

This is a key result of this work. In order to phys-
ically understand it, we can rewrite the total Hamilto-
nian of Eq.(13) in the polariton basis within the emitter-
polariton rotating-wave approximation

H ≈ ℏωe

∑
k

b†kbk+

+
∑
k

ℏωup,kp
†
up,kpup,k +

∑
k

ℏωlp,kp
†
lp,kplp,k+

+ i
∑
k

(
ℏΩup,k

2
pup,kb

†
k +

ℏΩlp,k

2
plp,kb

†
k

)
+ h.c.,

(16)
where p up,k, p lp,k are the annihilation operators of a
cavity-dresser polariton in the upper or lower polariton
branches of (14) with eigenfrequencies

ω2
up/lp,k =

ω2
k + ω̄2

d

2
±

√
(ω̄2

d − ω2
k)

2

4
+ Ω2

dω
2
k. (17)

where ω̄d =
√
ω2
d +Ω2

d includes the quadratic shift of
the dresser frequency associated to the polariton gap.
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FIG. 2. (a) Colorplot of the polariton-vacuum Rabi frequen-
cies as a function of the photon mode frequency ωk and of
the dresser Rabi frequency Ωd, for an emitter resonant with
the lower (ωe = ωlp,k, left panel) or upper (ωe = ωup,k, right
panel) polariton. (b) Colorplot of the vacuum fluctuations of
the displacement field in the TM0 mode.

The effective polariton-vacuum Rabi frequencies quanti-
fying the coupling strength between the emitter and the
lower/upper cavity-dresser polaritons read (see App. C-
D)

Ωup,k

Ωe
=

√
ω2
k

ωeωup,k
sin θk ,

Ωlp,k

Ωe
=

√
ω2
k

ωeωlp,k
cos θk ,

(18)
where the hybridization angle θk is defines as

cos2 θk =
ω2
up,k − ω2

k

ω2
up,k − ω2

lp,k

, sin2 θk =
ω2
k − ω2

lp,k

ω2
up,k − ω2

lp,k

. (19)

Interestingly, all the information regarding the hybridiza-
tion between the cavity photon and the dresser exci-
tations due to the USC is contained in the hybridiza-
tion angle θk, which summarizes into a single parame-
ter the Hopfield coefficients expressing the polariton op-
erators plp,k and pup,k in terms of the cavity photon
ak and dresser dk operators and their hermitian conju-
gates [16, 65].
The reformulation in terms of the polariton Hamilto-

nian (16) provides a physical understanding of the pecu-
liar features displayed by the emitter-polariton coupling
that have been observed in Fig.1(b). In Fig. 2(a) we
show a color plot of the polariton-vacuum Rabi frequen-
cies Ωlp,k and Ωup,k as a function of the wavenumber k
and of the dresser Rabi frequency Ωd, when the emit-
ter is resonant with some state on the lower ωe = ωlp,k

(left panel) or the upper ωe = ωup,k (right panel) polari-
ton branch. In the full polariton spectrum of Fig.1(b),
Ωlp/up,k quantifies the magnitude of the Rabi splitting.
For a weak dresser Rabi frequency Ωd ≪ ωd, the res-

onant lower and upper polariton-vacuum Rabi frequen-
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cies display similar behavior, with Ωlp(up),k ≃ Ωe when
the polariton has a fully photonic nature and, instead,
Ωup(lp),k ≃ 0 when the polariton has a fully excitonic
nature. In general, while the photonic weight is redis-
tributed between the upper and lower polaritons, the to-
tal weight is conserved, Ω2

lp,k + Ω2
up,k ≈ Ω2

e, as a conse-
quence of the weakly dressed regime where ωup/lp,k ≃ ωk.

The physics drastically changes when the dresser enters
the USC regime for Ωd ≃ ωd. Here ωup/lp,k ̸= ωk, and
the square-root prefactors in (18) start to matter: the
coupling with the lower polariton Ωlp,k is reinforced and
remains significant up to higher wavenumbers, while the
upper polariton’s coupling Ωup,k is significantly reduced.
As an immediate consequence the conservation of the
photonic weight is strongly violated, Ω2

lp,k +Ω2
up,k ̸= Ω2

e.

This quite remarkable behavior is due to the mix-
ing of creation and annihilation operators in the Bogoli-
ubov transformation to polariton operators [16], so that
the normal and anomalous terms constructively (destruc-
tively) interfere in determining the effective strength of
the coupling of the emitter to the lower (upper) polari-
ton. As it is discussed in App. G, this marked asymme-
try of the Rabi splitting of the lower and upper polariton
branches is straightforwardly observed in a cavity trans-
mission/reflection spectroscopy experiment.

IV. QUANTUM FLUCTUATIONS IN THE USC
VACUUM

A. Vacuum-field Rabi splitting

In order to obtain a deeper understanding of the rela-
tion between the modified emitter light-matter coupling
strength and the properties of the USC dressed vacuum
discussed in the previous Section, we make use of the po-
lariton Hamiltonian to explicitly evaluate the quantum
fluctuations of the cavity electric displacement field

Dk = i

√
ϵ0ℏωk

2SLc
(ak − a†−k). (20)

Within our dipole representation, this field –rather than
the electric field– represents in fact the correct electro-
magnetic degree of freedom to describe light-matter in-
teractions [38, 39, 66]. By using the hybridization angle
θk defined above, we can express this quantity as (see
App. D)

D(r) = i

√
ϵ0ℏ
2SLc

∑
k

ωk e
ik·r∥

×
(

sin θk√
ωup,k

p up,k +
cos θk√
ωlp,k

p lp,k

)
+ h.c..

(21)

This straightforwardly leads to

⟨vac|D2
k|vac⟩

(ϵ0Ek)2
=

ωk

ωup,k
sin2 θk +

ωk

ωlp,k
cos2 θk

=
ωe

ωk

(
Ω2

lp,k

Ω2
e

+
Ω2

up,k

Ω2
e

)
, (22)

where E2
k = (ℏωk)/(2ϵ0SLc) are the quantum fluctua-

tions of the electric (or, in this case equivalently, of the
displacement) field in a bare cavity.

The peculiarity of the USC is then visible in Fig. 2(b),
where we display a color plot of the total electric displace-
ment fluctuations in the different k modes as a function
of the strength of the cavity dresser coupling Ωd. On
the one hand, for weak or moderate Ωd, the prefactors
ωk/ω{up,lp},k on the first line in Eq. (22) are close to one
and thus play a minor role; thanks to the trigonomet-
ric identity sin2 θk + cos2 θk = 1 associated to the con-
servation of the photonic weight, the two contributions
then sum up to the standard bare vacuum fluctuations.
On the other hand, the total fluctuations get substan-
tially increased in the USC regime, in connection with
the increased value of the lower polariton-vacuum Rabi
frequencies.

More in specific, the second line of (22) shows that
the contributions of the lower and upper polariton fre-
quencies to the vacuum fluctuations have an amplitude
proportional to the polariton-emitter Rabi frequencies
Ωlp/up,k. On the one hand, this provides a bridge to
the contributions to the zero-point fluctuations coming
from the upper and lower polaritons in Eqs.(9-12) as

|Dzp
(k,up)|

2 =
ϵ0ℏωe

2SLc

Ω2
up,k

Ω2
e

, |Dzp
(k,lp)|

2 =
ϵ0ℏωe

2SLc

Ω2
lp,k

Ω2
e

.

(23)

On the other hand, the same equation extends to the
USC vacuum case the traditional concept of vacuum-field
Rabi splitting, whose magnitude is indeed determined by
the strength of the quantum fluctuations [5, 6].

B. Polariton modified dipole-dipole interactions

While the Rabi splitting in the strong emitter-
polariton coupling regime provides a most direct experi-
mental signature of the modified Rabi couplings (18), it
is worth to explore the consequences that the modified
polariton vacuum has on the dynamics of the emitter it-
self. In order to do so, we focus on the case when the
emitter is weakly coupled to the polaritons and we can
apply the master equation formalism illustrated in Sec.
II, where the electric displacement correlator is projected
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on the TM0 modes only:

CTM0(r, r
′, ω) =

1

2

ωe

Ω2
e

∫
d2k

(2π)2
eik·(r−r′) ×[

Ω2
lp,k

ω − ωlp,k − iγlp,k/2
+

Ω2
up,k

ω − ωup,k − iγup,k/2

]
.

(24)

The restriction to the TM0 cavity modes is well mo-
tivated and experimentally tested for the setups under
our investigation [28, 30, 40, 41, 67, 68], thus giving the
largest contribution to the cavity mediated effective in-
teractions and losses. In this way the modifications of
the correlator due to the presence of the ISB dresser will
affect only its component given by the TM0 modes, jus-
tifying the definition given in Eq. (24). While an ac-
curate description of the other components may be in
general important to get quantitative predictions, they
are not substantially affected by the modified quantum
vacuum and their main modifications stem from the mod-
ified boundary conditions in the cavity mode functions w
described in Sec.II and in App.A: as remarked above we
label these changes as purely geometrical and not due to
the presence of the dressing material, so, for clarity, we
do not specifically consider them in this work.

The behavior of the polaritonic correlation function
(24) is now strongly inhomogeneous in ω and depends on
the polaritonic losses too. Its complete characterization
is not possible here, so we decided to focus on a few most
relevant cases only:

1. Electrostatic (or adiabatic) limit, when the emit-
ter’s frequency is much slower than the typical po-
laritonic time scales and it can be taken as vanish-
ing ωe → 0. This case is particularly relevant for
the current discussion related to possible modifica-
tions of material properties such that superconduc-
tivity [69].

2. Band-gap limit, when the emitter’s frequency lays
in the polaritonic band-gap, ωe ∈ [ωd : ωd+Ω2

d/ωd].

In both cases we assume negligible losses γup/lp ≈ 0, and
we assume that there are no poles, since ω ̸= ωup/lp,k.
We thus obtain the compact expression

CTM0
(r, r′, ω) =

1

2

∫
d2k

(2π)2
eik·(r−r′)×[

ω2
k

ω2
lp,k

cos2 θk
ωlp,k

ω − ωlp,k
+

ω2
k

ω2
up,k

sin2 θk
ωup,k

ω − ωup,k

]
.

(25)

Interestingly using the various relations between the
polariton eigenfrequencies and their USC mixing angle
developed in App. C we have the identiy

ω2
k

ω2
lp,k

cos2 θk +
ω2
k

ω2
up,k

sin2 θk = 1 +
Ω2

d

ω2
d

. (26)

Introducing the Fourier kernel

Kω(k) =
ω2
k

ω2
lp,k

cos2 θk
ω

ω − ωlp,k
− Ω2

d

ω2
d

ω

ω − ωd

+
ω2
k

ω2
up,k

sin2 θk
ω

ω − ωup,k

(27)

we can re-write the correlation function as

CTM0
(r, r′, ω) = −1

2
δ(r− r′)− 1

2

Ω2
d

ω2
d

ωd

ωd − ω
δ(r− r′)

+
1

2

∫
d2k

(2π)2
Kω(k) e

ik·(r−r′),

(28)

Plugging this expression into the emitter’s effective
Hamiltonian in Eq. (7) together with the representation
given in App. A for the ISB emitter, we obtain

Heff ≈ ℏωe

∑
k

b†kbk

− ℏΩ2
e

4ωeωd

Ω2
d

ωd − ωe

∑
k

(
b−k + b†k

)(
bk + b†−k

)
+

ℏΩ2
e

4ωe

∑
k

Kωe
(k)
(
b−k + b†k

)(
bk + b†−k

) (29)

We immediately see that the first term of the effective
interaction in Eq. (28) exactly cancels the P2 term. As
a consequence, the physical meaning of this term cannot
be separated from the D·P term, and they should always
be interpreted together [42–44]. The other two terms do
not experience any cancellations and thus represent the
physical interaction mediated by the polaritonic electro-
magnetic field in the electrostatic and band-gap limit.
Their immediate physical consequence in a ISB experi-
ment is well visible from the emitter’s effective Hamilto-
nian in Eq. (29): they represent a new contribution to
the emitter’s depolarization shift due to the presence of
the dresser.
In particular, the second term of Eq. (28) is the bare

electrostatic contribution, representing the interaction
with the dresser’s dipole electric field in a planar slab
geometry. It scales quadratically with the emitter and
dresser coupling strengths, ∼ O(Ω2

eΩ
2
d). Notice that in

the electrostatic limit, ωe = 0, it comes with a minus
sign, indicating that the energy of the emitter is low-
ered in the presence of the dresser (like in presence of an
attractive force), while it can become positive (an thus
increasing the emitter’s energy like in presence of a repul-
sive force) when the emitter frequency is in the band-gap,
ωe ∈ [ωd : ωd +Ω2

d/ωd].
The third term of Eq. (28) represents a finite frequency

correction due to retardation, falling into the category
of Casimir-Polder forces [70, 71]. We found an approxi-
mate linear scaling with the dresser coupling ∼ O(Ω2

eΩd).
It gives a negative contribution to the emitter’s energy
Kωe

(k) ≤ 0 and is non-zero only when the emitter is in
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FIG. 3. Finite frequency residual effective potential Uω(r) as
a function of the distance r. In all three plots the potential
is normalized to its the maximum value in the central panel,
the distance is expressed in units of r0 = c/ωd and we used

Ωd/ωd = 1. In the left panel ωe = (
√

ω2
d +Ω2

d−ωd)/5+ωd/2
is closer to the lower bandgap-edge, in the central panel ωe =
(
√

ω2
d +Ω2

d − ωd)/2 + ωd/2 is exactly at the center of the

bandgap, in the right panel ωe = (
√

ω2
d +Ω2

d − ωd)/1.1 +
ωd/2 is closer to the upper bandgap-edge. The dashed lines
indicates the scaling ∼ 1/r (orange) and 1/r4 (blue). The
Fourier transform (30) is performed numerically via fft.

the band-gap. Differently from the other term, which
is strictly a contact interaction term, this one has a fi-
nite range of interaction, which changes dependently on
the emitter’s frequency and from the dresser light-matter
coupling. In Fig. 3 we show three examples of the re-
sulting finite-range potential

Uω(r) ∼
∫

d2k

(2π)2
Kω(k) e

ik·(r−r′) (30)

in the three cases ωe ≃ ω+
d (left) ωe ≃ (

√
ω2
d +Ω2

d −
ωd)/2 + ωd/2 (center), ωe ≃ (

√
ω2
d +Ω2

d)
− (right), while

keeping Ωd/ωd = 1.
Due to their quadratic scaling in the emitter and

dresser vacuum Rabi frequency these terms are obviously
very small in any system subjected only to the strong cou-
pling regime. However in ultrastrongly coupled systems,
where the dresser vacuum Rabi frequency Ωd is larger
than any other energy scale [17, 72], these terms pro-
vides a new source of interactions that can be exploited,
for instance, to boost or modify polariton interactions
[64, 73, 74].

C. Spontaneous emission

As it was anticipated in Sec.II, the coupling to a mod-
ified polaritonic vacuum may have also strong conse-
quences on the spontaneous emission rate in the weak
emitter-polariton coupling regime γlp/up,k ≫ Ωlp/up,k

where the Rabi oscillations are replaced by an irreversible
emission process.

The spontaneous emission rate can be estimated by
combining the correlation function in Eq.(24) with the
prescriptions of Sec.II C. Given the symmetry of our set-

up, in-plane momentum is conserved during the sponta-
neous emission process. We also assume that the emitter
is resonant with a mode of one polariton branch only,
while the other polariton branch is completely out of res-
onance.
Due to the finite amount of photon dissipations, this

straightforwardly gives

Im
[
C̃TM0

(k, ωe = ωlp,k)
]
≈ 1

2

ω2
k

ωlp,kγlp,k
cos2 θk, (31)

Im
[
C̃TM0(k, ωe = ωup,k)

]
≈ 1

2

ω2
k

ωup,kγup,k
sin2 θk. (32)

where C̃TM0 represents the spatial Fourier transform of
the correlation function (24) in the in-plane wavevector
k-space.
As it was pointed out in Refs.[75–77], the polaritonic

linewidths γlp/up,k have also a dependence from the mix-
ing angle θk in USC. As a complete description of this
physics goes beyond the scope of this work, we restrict
here to the simplest examples where the polaritons dis-
sipate through an Ohmic bath within a rotating wave
approximation for the weak system-bath coupling (see
App. H). In order to obtain compact formulas we focus
on the two extreme cases of cavity-dominated losses and
of dresser-dominated losses.
In the first case, we have (see App. H)

γlp,k = γ cos2 θk, (33)

γup,k = γ sin2 θk. (34)

Here γ is the bare decay rate of the uncoupled cavity.
The cavity-dominated spontaneous emission rate medi-
ated by the resonant polariton mode is then immediately
extracted from Eq. (8) and it reads [78]

Γγ
lp,k ≈

Ω2
lp,k

2γlp,k
=

Ω2
e

2γ

(
ωk

ωk,lp

)2

, (35)

Γγ
up,k ≈

Ω2
up,k

2γup,k
=

Ω2
e

2γ

(
ωk

ωk,up

)2

. (36)

As the photonic weight enters in both the decay rates
and in the coupling to the emitter, the information about
the USC mixing angle has almost completely disappeared
and one is left with a relatively weak dependence on the
polariton frequency. In the strong but not ultra-strong
coupling regime, this gives equal decay rates (35-36) for
respectively the lower and upper polariton resonances; in
the ultra-strong coupling regime, the lower polariton has
a stronger decay rate.
In the second case, more relevant for ISB systems [79],

we have

γlp,k = κd sin
2 θk, (37)

γup,k = κd cos
2 θk. (38)
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Here κd is the bare decay rate of the uncoupled dresser.
As for the previous case, the dresser-dominated decay
rate is then given by

Γκd

lp,k ≈
Ω2

lp,k

2γlp,k
=

Ω2
e

2κd

(
ωk

ωk,lp

)2

cot2 θk, (39)

Γκd

up,k ≈
Ω2

up,k

2γup,k
=

Ω2
e

2κd

(
ωk

ωk,up

)2

tan2 θk. (40)

In the strong coupling regime, the difference between
the two rates is determined by the trigonometric func-
tions in the mixing angle. In the ultra-strong coupling
regime, there is the additional frequency-dependent fac-
tor favouring the decay in the lower polariton resonance
case.

All together, these formulas show how, in analogy with
the corresponding modification of the Rabi splitting in
the strong coupling regime, the effect of the USC vac-
uum state in the weak emitter-polariton coupling regime
will be to enhance (suppress) the spontaneous emission
into the lower (upper) polariton by an amount related
to the modified quantum fluctuations of the electric dis-
placement field as shown in Eq. (22).

In physical terms, Eqs. (35-36) and (39-40) can be
understood as novel forms of the Purcell effect [78, 80],
where the modification acts on the overall intensity of
the field fluctuations in the USC vacuum rather than
merely their frequency redistribution. Interestingly, our
result aligns with the theory of spontaneous emission in
dielectric media and has the key advantage of a clear dis-
entanglement of local field effects [81–86]. Beside the
mere academic interest, this predicted effect can have a
strong technological impact too, since spontaneous emis-
sion and Purcell factors give for instance the basis for the
theory of laser’s linewidths [87], or being also relevant for
quantum non-linear optics [88, 89].

D. Non-linear optics

Even though our discussion is carried out only in the
linear-optics regime of bosonic ISB polaritons, changing
the quantum vacuum amplitude of the electric displace-
ment field has strong consequences also in non-linear op-
tics effects at strong illumination levels where polariton-
polariton interactions become important [74, 90].

Indeed, the standard theory of non-linear optics [91]
starts by considering the interaction Hamiltonian

He, I = −
∫
d3r

D(r) ·Pe(r)

ϵ0
+

∫
d3r

P2
e(r)

2ϵ0
. (41)

of the electromagnetic field coupled to the non-linear
medium, which, by continuity, here is also labelled as the
emitter. Introducing the non-linear polarizability tensor

χ
(n)
i1 i2 ...in

of order n, we can rewrite the the emitter po-
larization density as

Pe(r) ∼
∫
d3r χ

(n)
i1 i2 ...in

Di1(r)Di2(r) · · ·Din(r) . (42)

Combining it with the general expression of Eq. (21) it is
then clear that also nonlinear optical processes involving
quantum vacuum fluctuations can be either boosted or
suppressed by the modified zero-point electric displace-
ment amplitude.
Taking as the simplest example the spontaneous para-

metric downconversion effects mediated by a χ(2) non-
linearity, in the ISB polariton case we obtain the three-
wave mixing Hamiltonian

H3wm ∼
∑

k1,k2,k3
ℓ1,ℓ2,ℓ3=lp,up

∫
dω χ̃

(2)
TM0

p†ℓ1,k1
p†ℓ2,k2

pℓ3,k3 + h.c.

(43)
where the effective nonlinearity scales as

χ̃
(2)
TM0

= χ
(2)
TM0

(
ϵ0ℏωe

2SLcΩ2
e

)3

Ωℓ1,k1Ωℓ2,k2Ωℓ3,k3 , (44)

where momentum and energy conservations impose that
k1 + k2 = k3 and ωℓ1,k1

+ ωℓ2,k2
= ωℓ3,k3

.
This formula shows that the strength of the nonlinear

processes is also modified according to Fig. 2(a). Sim-
ilarly to the emitter-emitter interaction and the sponta-
neous emission rate, also the parametric downconversion
process appears to be reinforced for the lower polariton
branch.

V. RELATION WITH CLASSICAL THEORY OF
DIELECTRICS

Our previous derivations were carried out within a
quantum language, so the modifications of the vacuum-
field Rabi splitting, the effective emitter interactions and
of the spontaneous emission rate were naturally related
to the ones of the zero-point fluctuations (22). In connec-
tion to the intense debate that took place on the physi-
cal origin of spontaneous emission in terms of quantum
fluctuation and/or radiative reaction effects [92–94], it
is interesting to assess whether our predictions can be
equivalently expressed in classical terms of radiative re-
action by the dressed electromagnetic field in the USC
device.
As a first step in this direction, it is straightforward

to notice that our theory can be directly reformulated
in terms of motion equations for the cavity ak and the
emitter bk and dresser dk polarization fields stemming
from the Hamiltonian (13) and re-interpreted as classical
variables. This set of equations can be summarized in a
dispersion relation (that can be equivalently derived di-
rectly from Maxwell equations, see App. I) of the form
ω2 ϵr(ω) = c2k2, with the total effective dielectric per-
mittivity for the system as a whole

ϵtotr (ω) =
1

1− Ω2
d

ω̄2
d−ω2−iκdω

− Ω2
e

ω̄2
e−ω2−iκeω

, (45)

that is an analog of the Clausius-Mossotti formula in a
multiple slab geometry [60, 95] (here κd, κe represent the
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dresser and emitter losses). Interestingly, the deviation
of this expression from a naive simple sum of the indi-
vidual slabs’ permittivities, ϵtotr (ω) ≈ 1 +Ω2

d/(ω
2
d − ω2 −

iκdω) + Ω2
e/(ω

2
e − ω2 − iκeω) provides a signature of the

key role played by the electrostatic interaction between
the emitter and the dresser noticed in [42, 62, 96, 97],
whose strength is indeed proportional to the product of
the electron densities ndne ∼ Ω2

dΩ
2
e.

Within this framework, formal integration of the mo-
tion equations for the cavity ak and dresser dk fields (or,
equivalently, the cavity-dresser polaritons) as a function
of the emitter field bk leads to effective terms in the equa-
tion of motion for bk that can are straightforwardly in-
terpreted as radiative reaction. In the strong emitter-
polariton coupling regime, this formulation in terms of
classical equations of motion generalizes the standard ra-
diative reaction equations [92, 94] to the case of a res-
onantly peaked density of states of the electromagnetic
modes (see App. I 2): the strong frequency-dependence
of the radiative reaction results in the splitting of the
emitter’s frequency into several polariton modes.

In the weak emitter-polariton coupling regime, for an
emitter close to resonance to the lower (upper) polariton
mode, this same procedure leads to a radiative damping
term in the usual form (see App.I)

ḃk = −iωebk −
Ω2

lp(up),k

2γlp(up),k
bk , (46)

in agreement with the formulas (35-36) and (39-40).
In general, this close correspondence between the ra-

diative reaction and the quantum fluctuations pictures is
a direct manifestation of the fluctuation-dissipation the-
orem relating the quantum fluctuations of the dressed
polariton field in its vacuum state, that is the correlation
function (5), to the susceptibility of vacuum in response
to the emitter’s polarization [84, 94].

Altogether, these arguments show how the entire vac-
uum phenomenology described so far can be equivalently
re-interpreted in terms of electrodynamics in dense di-
electric media. While the complete equivalence between
this approach and the polaritonic approach is now clear,
it is worth noting that the polaritonic approach allows for
a simpler and more systematic implementation of suit-
able approximations for the system. This constitutes an
important tool to unpack all the relevant contributions
to the otherwise challenging solution of the dyadic wave
equation in presence of materials [98].

VI. CONCLUSIONS AND OUTLOOK

In this work, we have theoretically investigated how ba-
sic light-matter interaction processes are modified in the
distorted vacuum state of a semiconductor-based cavity
QED system in the ultra-strong coupling (USC) regime.
In particular, we have focused our attention on quanti-
ties of direct experimental access such as the vacuum-

field Rabi splitting of an additional emitter strongly cou-
pled to USC polaritons, and its spontaneous emission in
the weak emitter-polariton coupling limit. In both cases,
a signature of the distorted vacuum state of the USC
regime is visible as a marked asymmetry between the
polariton branches.
Even though our discussion is focused on a specific

material system of major experimental interest, the pre-
dicted effects generally apply to any optical system in
the USC regime. As such, our conclusions are of interest
for a broad community of researchers, from circuit-QED
devices, to semiconductor optoelectronics and terahertz
optics and validate the picture that engineering the QED
vacuum is indeed a powerful tool to control optical pro-
cesses and, on the longer run, possibly also manipulate
the electronic properties of materials [14, 15, 69, 99].
From a conceptual standpoint, we have shown that

our predictions can be equivalently understood in terms
of classical radiative reaction in dielectric materials or
in terms of quantum fluctuations in the distorted USC
vacuum state, the two pictures being connected by the
fluctuation-dissipation theorem. On one hand, the con-
nection to classical radiative reaction provides a new
point of view on vacuum effects as a tool to control
materials, a concept that is attracting a growing inter-
est, but is typically investigated within a quantum lan-
guage [14, 15, 100–104]. On the other hand, the quantum
picture provides a transparent framework to go beyond
a Fermi golden rule analysis of spontaneous emission in
dielectric materials and describe the interplay of ultra-
strong coupling with more sophisticated light-matter in-
teraction phenomena such as parametric downconver-
sion, which directly involve the amplification of quantum
fluctuations.
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Appendix A: Intersubband polaritons in the dipole
representation

We review here the details of the derivation of the in-
tersubband (ISB) polariton Hamiltonian valid in the ul-
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trastrong coupling (USC) regime, based on Ref. [40].
Initially we focus only on a single quantum well (QW)
and in the next section we generalize it to a multi-well
configuration.

The polarization density can be written explicitly in
terms of raising/lowering operators of the respective in-
tersubband transition [40]

P(r) =
e

S

∑
µ>ν,k

ζµν(z)e
ik·r∥

(
Bµνk +B†

µν−k

)
uz, (A1)

Here e is the electron charge, S is the surface area of
the slab (assumed to be equal to the cavity) and uz is
a unit vector along the z-axis. The in-plane position is
r∥ = (x, y, 0) and k = (kx, ky, 0) is the in-plane wavector.
The dipole density is given by

ζµν(z) = zψ∗
µ(z)ψν(z). (A2)

Here ψµ(z) is the wavefunction of the µ-th level of
the QW [40, 105, 106], defined in the interval [zqw −
Lqw/2, zqw + Lqw/2], where Lqw is the size of the quan-
tum well along the z-axis and zqw is its central position.
The ISB transition operators are given by

Bµνk =
∑
q

Ψ̃†
ν,q−kΨ̃µ,q, (A3)

where Ψ̃µ,k is the Fermionic operator that annihilates an
electron with in-plane momentum k in the µ-th subband.
It is convenient to rewrite this operator as

Bµνk =
√
Nµνbµνk. (A4)

where Nµν = ⟨N̂ν⟩ − ⟨N̂µ⟩ is the electron population im-
balance between two subbands. Considering only low
energy transitions which take place just from the ground
state (Fermi sea) to an upper band and assuming Nµν ≫
1 (heavy doping), we have that

[bµνk, b
†
µ′ν′k ′ ] ≃ δµµ′δνν′δkk ′ (A5)

and the transition operators behave as Bosonic cre-
ation/annihilation operators for the collective excitation.
Considering only transitions from the lowest subband, in
the low excitation limit, we have that Nµν=0 ≈ N , where
N is the total number of electrons. From now on we al-
ways consider only transitions from the lowest subband,
suppressing the index ν. The QW Hamiltonian is then
just given by a collection of harmonic oscillators

Hqw = ℏωqw

∑
k

b†kbk. (A6)

The light-matter Hamiltonian for the QW coupled to
the cavity field can be derived by considering the total
energy of the system, which is given by the matter’s en-
ergy plus the electromagnetic energy [50]

H = Hqw +Hem

= Hqw +

∫
d3r

[
ϵ0E

2(r)

2
+
ϵ0c

2

2
B2(r)

]
.

(A7)

The coupling between matter and the electromagnetic
field is provided by the fact that the charged matter gen-
erates and changes the electric and magnetic field. In
the so-called dipole gauge this is realized by the follow-
ing minimal coupling substitution in the cavity electric
field energy density [50]

ϵ0E(r) = D(r)−P(r). (A8)

Notice that here we take only the displacement field to be

transverse [38], such that ∇⃗ · D(r) = 0. In this way we
correctly recover Maxwell equations with a polarizable

medium, where ∇⃗ · E(r) = −∇⃗ · P(r)/ϵ0 = ρb(r)/ϵ0,
where ρb(r) is the so-called bound charge density [50].
The total light-matter Hamiltonian is then given by

[38]

H = Hqw +

∫
d3r

[
(D(r)−P(r))

2

2ϵ0
− ϵ0c

2

2
A(r) · ∇2A(r)

]
.

(A9)

The electric displacement in the cavity made of two
perfect parallel mirrors can be written as [50, 62]

D(r) =i
∑
n,k,λ

√
ϵ0ℏωn,k

2SLc

×

[
wn,k,λ(r∥, z)an,k −

(
wn,k,λ(r∥, z)

)∗
a†n,−k

]
,

(A10)

where S = LxLy is the surface area of the rectangular
cavity and Lc is the cavity height. The adimensional
cavity mode functions are solutions of the Poisson equa-
tion and can be written as [62]

wn,k,λ(r∥, z) = eik·r∥

√
2

(1 + δn,0)

iε
(x)
n,k,λ sin(knz)

iε
(y)
n,k,λ sin(knz)

ε
(z)
n,k,λ cos(knz)

 ,

(A11)
where kn = π/Lcn, with n = 0, 1, 2 . . . is the wavevector
along the cavity axis, ε⃗n,k,λ is the polarization vector
and λ = 1, 2 is the polarization index. Here metallic
boundary conditions are assumed.
Considering only ISB transitions from the lowest sub-

band, ν = 0, the interaction light-matter Hamiltonian
for a single QW placed at z = zqw is

HI =

∫
d3r

1

ϵ0

[
−D ·P+

P 2

2

]
= −iℏωP

2

∑
n,k,λ,µ

ε
(z)
n,k,λ

√
fnµ0

ωn,k

ωµ0
(an,k − a†n,−k)

(
bµ−k + b†µk

)
+

ℏω2
P

4

∑
k

∑
µ,µ′

Iµµ′
√
ωµ0ωµ′0

(
bµk + b†µ−k

)(
bµ′k + b†µ′−k

)
(A12)
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Here the main coupling parameter is the full-filled cavity
plasma frequency

ω2
P =

Ne2

ϵ0mSLc
, (A13)

and m is the electron effective mass. Notice that the
usual plasma frequency is defined only including the ef-
fective length of the QW Lqw,eff , as done in Ref. [40].
As a consequence in Eq. (A12) one has to include a cav-
ity filling ∼ Lqw,eff/Lc. In order to minimize the defini-
tions of new parameters, we simply define the plasma fre-
quency at full filling. The generalized oscillator strength
is defined as

fnµ0 =
2mωµ0

ℏ
2

1 + δn0

[∫ ∞

−∞
dzζµ0(z) cos (knz)

]2
.

(A14)

For n = 0 it coincides with the usual oscillator strength
of the µ-th dipole transition fµ0 = 2mωµ0z

2
µ0/ℏ, where

zµ0 = ⟨µ|z|0⟩ =
∫ ∞

−∞
dzζµ0(z) (A15)

is the ISB dipole matrix element. At higher n > 0, it also
contains all the multipoles matrix elements, as it has to
be by interacting with a non-homogeneous electric field.
The higher the n-th mode is the more multipolar will be
the ISB excitation.

In the last term of Eq. (A12) we introduced the P 2-
interaction tensor strength

Iµµ′ =
2mLc

ℏ2
ωµ0ωµ′0

∫ ∞

−∞
dzζµ0(z)ζµ′0(z)

=
2mLc

ℏ2
ωµ0ωµ′0

∫ ∞

−∞
dzdz′δ(z − z′)ζµ0(z)ζµ′0(z

′)

=
2m

ℏ2
ωµ0ωµ′0

Lc

2π

∫ ∞

−∞
dqz

∫ ∞

−∞
dzζµ0(z)χ

∗
qz (z)×∫ ∞

−∞
dz′ζµ′0(z

′)χqz (z
′),

(A16)

where in the last equality we introduced a complete basis
such that

∫∞
−∞ dqz/(2π)χ

∗
qz (z)χqz (z

′) = δ(z − z′).
Truncating the ISB transitions to µ = 1 only, we sup-

press also the index µ having bµ,k 7→ bk and defining
ωqw = ω10 and fnqw = fn10. The interaction Hamiltonian
becomes

HI ≈ −iℏωP

2

∑
n,k,λ

ε
(z)
n,k,λ

√
fnqw

ωn,k

ωqw
(an,k − a†n,−k)

(
b−k + b†k

)
+

ℏω2
P

4ωqw

∑
k

Lc

2π

∫ ∞

−∞
dqz f̃qw(qz)

(
bk + b†−k

)(
bk + b†−k

)
(A17)

where we have introduced the continuous version of the
generalized oscillator strength

f̃qw(qz) =
2mωqw

ℏ

∣∣∣∣∫ ∞

−∞
dzζµ0(z)χqz (z)

∣∣∣∣2 (A18)

Notice that in this Hamiltonian we have still included
both the longitudinal and transverse contributions to the
electric interactions due to the P2-term present in the
original Hamiltonian in Eq. (A9). In order to single out
the transverse part (which is the important one in the po-
laritonic physics) we rewrite the interaction Hamiltonian
such that we separate the longitudinal and transverse
contributions reading

HI = H⊥ +H∥. (A19)

Here

H⊥ = −iℏωP

2

∑
n,k,λ

ε
(z)
n,k,λ

√
fnqw

ωn,k

ωqw
(an,k − a†n,−k)

(
b−k + b†k

)
+

ℏω2
P

4ωqw

∑
k,n,λ

fnqw|ε
(z)
n,k,λ|

2
(
bk + b†−k

)(
bk + b†−k

)
,

(A20)

and

H∥ =
ℏω2

P

4ωqw

∑
k

I11 −∑
λ,n

|ε(z)n,k,λ|
2fnqw

(bk + b†−k

)(
bk + b†−k

)
.

(A21)

Using the polarization sum rule
∑

λ |ε
(z)
n,k,λ|2 = 1−k2n/k2

[62, 107], we obtain

H∥ =
ℏω2

P

4ωqw

∑
k

(
bk + b†−k

)(
bk + b†−k

)
×

×

[∑
n

fnqw
k2n
k2

+

(
Lc

2π

∫ ∞

−∞
dqz f̃qw(qz)−

∑
n

fnqw

)]
.

(A22)

Notice that this contribution is nothing else than the lon-
gitudinal projection of the polarization density, restricted
only to the z-direction, meaning the direct dipole-dipole
Coulomb interaction within the slab. The first term of
the second line, scaling with k2n is the standard depolar-
ization contribution due to the surface charges of the slab
[50], while the second contribution, proportional to the
difference between the integral and the sum, is the image
charge contributions. Moreover one can directly check us-
ing perturbation theory in the limit of ωqw → 0 or equiv-
alently the adiabatic elimination of the cavity that all
the contributions from the finite frequency Hamiltonian
in Eq. (A20) cancels out [42, 62]. Since the contribution
of Eq. (A22) to the depolarization shift is irrelevant for
our discussion, for the sake of simplicity, we will neglect
it, considering it absorbed into the definition of ωqw.
The ISB transition couple mostly with the so-called

TM0 mode [105], which corresponds to the n = 0 mode,
entirely polarized along the cavity axis (z-axis), with

ε
(z)
0,k,λ = δλ,1. The light-matter Hamiltonian can be fur-
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ther simplified to

H ≈ ℏωqw

∑
k

b†kbk +
∑
k

ℏωka
†
kak

− i
ℏωP

2

∑
k

√
fqw

ωk

ωqw
(ak − a†−k)

(
b−k + b†k

)
+

ℏω2
P

4ωqw

∑
k

fqw

(
bk + b†−k

)(
bk + b†−k

)
,

(A23)

where we have suppressed the n index everywhere. Af-
ter all these passages we are left with an effective light-
matter Hamiltonian describing the interaction with only
the TM0 cavity mode [40], which can be rewritten as

HTM0
= Hqw

+ Lc

∫
d2r

[(
D(r∥)− P (r∥)

)2
2ϵ0

− ϵ0c
2

2
A(r∥)∇2A(r∥)

]
.

(A24)

Here the displacement and the vector potential fields are
scalar variables, meant to describe the z-component of
the TM0 modes, which are independent of the position
along the z-axis (perpendicular to the cavity plane) and
thus depends only from the in-plane position r∥

D(r∥) = i
∑
k

√
ϵ0ℏωk

2SLc
eik·r∥(ak − a†−k) (A25)

A(r∥) =
∑
k

√
ϵ0ℏ

2SLcωk
eik·r∥(ak + a†−k), (A26)

with [ak, a
†
k ′ ] = δk,k ′ . The effective polarization density

coupled to the TM0 modes is also a scalar quantity, and
is given by

P (r∥) =
ez10

√
N

SLc

∑
k

eik·r∥
(
bk + b†−k

)
, (A27)

It is worth noticing that nor the electromagnetic field
densities nor the polarization densities of this TM0-
effective-description depends from the z-coordinate and
so the overall physics does not depend from the position
of the QW inside the cavity or its distance with respect
to one or the other metallic plate. This is in principle in
contradiction with basics electromagnetism, where any
charge configuration between metallic plates would gen-
erates image charges which will affect its behaviour as a
function of the distance from the plate [42]. This con-
tradiction emerges as a consequence of the truncation to
the TM0 mode only, for which we have discarded all the
information regarding the presence of image charges and
eventual Coulombic corrections. However we argue that
this corrections are most often negligible for our specific
aims.

Appendix B: Polariton Hamiltonian for two stacked
wells

Since the polarization density of the matter inside the
cavity is given by the sum over all its individual compo-
nents, i.e. as a sum over all different quantum wells

P(r) =

Nqw∑
i=1

Pi(r), (B1)

and each polarization densities do not overlap with the
others

∫
d3rPi(r) ·Pj(r) = 0 if i ̸= j, we can easily gen-

eralize the Hamiltonian in Eq. (A24) to a multi-wells
setup. Notice that this condition of non-overlapping po-
larization densities is exactly the condition of localized
dipoles used in the standard applications of the dipole
picture [38]. As a consequence the direct Coulomb in-
teraction between different QWs disappears in favour of
a fully local mediated interaction through the dynamical
cavity field.
In the simplest case of two QWs, the dresser and emit-

ter, as in the main text, the resulting Hamiltonian is

H = Hd +He + Lc

∫
d2r

[
D2

2ϵ0
− ϵ0c

2

2
A∇2A

]
+ Lc

∫
d2r

1

ϵ0

[
−DPd +

P 2
d

2

]
+ Lc

∫
d2r

1

ϵ0

[
−DPe +

P 2
e

2

]
.

(B2)

Since the two QWs have different electron number
Nd, Ne, they also have different plasma frequencies.
These can be cast into the two Rabi frequencies

Ω2
d = fd

Nde
2

ϵ0mSLc
,

Ω2
e = fe

Nee
2

ϵ0mSLc
.

(B3)

Notice that here we are using all the definitions of Sec.
A replacing all the subscripts qw 7→ d, e.
Introducing the creation-annihilation operators like in

Sec. A, the total cavity QED Hamiltonian for the dresser
and emitter QWs is thus given by

H = ωd

∑
k

d†kdk + ωe

∑
k

b†kbk +
∑
k

ωka
†
kak

− iℏΩd

2

∑
k

√
ωk

ωd

(
ak − a†−k

)(
d−k + d†k

)
− iℏΩe

2

∑
k

√
ωk

ωe

(
ak − a†−k

)(
b−k + b†k

)
+

ℏΩ2
d

4ωd

∑
k

(
d−k + d†k

)(
d−k + d†k

)
+

ℏΩ2
e

4ωe

∑
k

(
b−k + b†k

)(
b−k + b†k

)
.

(B4)
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Assuming that the emitter polarization density is al-
ways small, such that it never goes in the ultrastrong
coupling regime we can neglect the ∼ P 2

e -term of the
emitter, which is the last term in Eq. (B4). In this way
we recover the cavity-dresser-emitter Hamiltonian in the
main text.

Appendix C: Polaritons from canonical
transformations

Here we consider the cavity-dresser Hamiltonian de-
fined in Eq. (A23). Since the dresser Hamiltonian is
quadratic, also the total cavity-dresser Hamiltonian is
quadratic and can be thus diagonalized by a canonical
transformation. In this section we will suppress the vec-
tor notation for the in-plane wavevector k 7→ k in order
to simplify the notation.

We then reintroduce the real canonical coordinates
defining the quadrature operators

Dk = −i
√
ωk

2

(
ak − a†−k

)
,

Ak =
1√
2ωk

(
ak + a†−k

)
,

Πk = −i
√
ωd

2

(
dk − d†−k

)
,

Xk =
1√
2ωd

(
dk + d†−k

)
.

(C1)

The cavity-dresser Hamiltonian becomes

Hc−d =
∑
k

[
Π2

k

2
+
ω2
d +Ω2

d

2
X2

k

]
+

+
∑
k

[
D2

k

2
+
ω2
k

2
A2

k

]
+
∑
k

ΩdDkXk.

(C2)

We make a canonical transformation (just a re-labelling)

D̃k = −ωkAk,

Ãk =
1

ωk
Dk,

(C3)

We then have

Hc−d =
∑
k

[
Π2

k

2
+
ω2
d +Ω2

d

2
X2

k

]
+

+
∑
k

[
D̃2

k

2
+
ω2
k

2
Ã2

k

]
+
∑
k

ΩdωkÃkXk.

(C4)

The Hamiltonian in this form can be cast to a ma-
trix, considering Hc−d = 1/2vTMv, where vT =

(Xk, Ãk,Πk, D̃k), and

M =

ω
2
d +Ω2

d Ωdωk 0 0
Ωdωk ω2

k 0 0
0 0 1 0
0 0 0 1

 (C5)

Diagonalising M is now equivalent to diagonalise the
Hamiltonian. We can achieve this by considering the
following unitary transformation

U =

(
R 02×2

02×2 R

)
(C6)

where R is a 2× 2 rotation

R =

(
cos θ sin θ
− sin θ cos θ

)
(C7)

In order to further simplify all the expressions we make
implicit the dependence from the wavenumber q. More-
over we define

ΩX = ω2
d +Ω2

d

G = Ωdωk

ΩA = ω2
k

(C8)

so

M =

ΩX G 0 0
G ΩA 0 0
0 0 1 0
0 0 0 1

 (C9)

We then find

cos θ =

√√√√√1

2

1 +
ΩX − ΩA√

(ΩX − ΩA)
2
+ 4G2

 =

√
ω2
up − ω2

k

ω2
up − ω2

lp

sin θ =

√√√√√1

2

1− ΩX − ΩA√
(ΩX − ΩA)

2
+ 4G2

 =

√
ω2
k − ω2

lp

ω2
up − ω2

lp

(C10)

with the diagonal matrix

M ′ =


ω2
up 0 0 0
0 ω2

lp 0 0
0 0 1 0
0 0 0 1

 (C11)

where

ω2
up/lp =

ΩX +ΩA

2
± 1

2

√
(ΩX − ΩA)

2
+ 4G2. (C12)

Notice that this polariton spectrum is always real
ω2
up/lp > 0, meaning that the TM0 polariton Hamilto-

nian in Eq. (A24) is always stable, in accordance with
the no-go theorems that forbids any cavity induced phase
transitions [69, 108, 109]. Working in the canonical rep-
resentation has the convenience that, together with the
eigenfrequencies, we have full access on the hybridization
of the degrees of freedom due to the USC regime. Differ-
ently from previous works [17, 18], we can condense the
full knowledge of the four Hopfield coefficients [16, 60],
in a single mixing angle θk.
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FIG. 4. Canonical Hopfield coefficient sin θk, cos θk as a func-
tion of the in-plane momentum and of the Rabi dressing Ωd.

In Fig. 4 we show the behaviour of the canonical Hop-
field coefficients as a function of the in-plane wavenum-
ber k and the dresser Rabi frequency Ωd. When the
dresser is only weakly doped, and Ωd ≪ ωd we observe
a very small hybridization (cos ∼ 1 and sin ∼ 0 or vice
versa), which become substantial only when the TM0 is
resonant with the dresser frequency at ck = ωd (and
cos ∼ sin ∼ 1/2). On contrary, when the dresser is in
the USC regime Ωd ≃ ωd, the light-matter hybridization
becomes important on a large range of wavenumbers.

The USC Hamiltonian in the new diagonal variables
looks like two uncoupled harmonic oscillators, represent-
ing the upper/lower polaritons

Hc−d =
Λ2
up

2
+
ω2
up

2
ξ2up +

Λ2
lp

2
+
ω2
lp

2
ξ2lp (C13)

where ξupξlpΛup

Λlp

 = U


X

Ã
Π

D̃

 (C14)

Evidently the eigenstates of Ham. (C13) are given by
the polaritonic operators

pup/lp =
1√

2ωup/lp

Λup/lp − i

√
ωup/lp

2
ξup/lp (C15)

Appendix D: The polaritonic photon

For a moment we focus only on the cavity-dresser
Hamiltonian. Using the canonical transformation di-
agonalization method explained in Appendix C we can
rewrite the cavity-dresser plasma Hamiltonian as

Hc−d =
∑
k

[
ℏωlp,k p

†
lp,kp lp,k + ℏωup,k p

†
up,kp up,k

]
.

(D1)

Here p lp,k and p up,k represent the annihilation operators
of the lower and upper polaritons, and their frequencies

are given by (see Sec. C of the SM )

ω2
up/lp,k =

ω2
k + ω2

d +Ω2
d

2
±1

2

√
(ω2

d +Ω2
d − ω2

k)
2
+ 4Ω2

dω
2
k.

(D2)
The new polaritonic variables represent the correct

degrees of freedom to describe the cavity-dresser sys-
tem, and consequently all the physical quantities must
be rewritten in this basis. Since that the coupling be-
tween the cavity and the emitter is given by

Hint,e−c = − 1

ϵ0

∫
d3rD(r) ·Pe(r), (D3)

for our aims we mainly need to transform the cavity elec-
tric displacement field, which can be rewritten following
Sec. C of the SM and using the transformation in Eq.
(C14)

D(r) = i

√
ϵ0ℏ
2SLc

∑
k

ωk e
ik·r∥

×
(

sin θk√
ωup,k

p up,k +
cos θk√
ωlp,k

p lp,k

)
+ h.c..

(D4)

Using the expression for the emitter polarization den-
sity given in the main text, and assuming that the emit-
ter is weakly doped, we can perform the rotating-wave
approximation (RWA) in the emitter-cavity interaction
in Eq. (1) of the main text. It is worth noticing that
the RWA cannot be implemented by only discarding the

terms ∼ (akbk) ,
(
a†−kb

†
−k

)
, but it requires to switch on

the polaritonic picture, and considering the electric dis-
placement field given by Eq. (D4). This is very similar to
what happens in the open driven/dissipative description
of USC, where one has to switch to the polaritonic pic-
ture in order to identify the positive/negative frequencies
operators that, coupling to the external bath, form the
correct jump operator of the system [17, 54, 77].
For the sake of completeness is also worth to calculate

the dresser polarization in the polariton basis, that will
be useful in the next sections. It reads

Pd(r) =

√
ϵ0ℏ
2SLc

Ω2
d

ωd

∑
k

eik·r∥

×
(√

ωup,k

ωd
cos θkp up,k +

√
ωlp,k

ωd
sin θkp lp,k

)
+ h.c.

(D5)

Appendix E: Hybridization angle and vacuum
observables

The interest in the hybridization angle θk is not only
limited in understanding the cavity-dresser components
of the polariton excitations, but it is also linked to the
understanding on how the vacuum of quantum electrody-
namics is modified by the presence of matter. Indeed, by
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using again the canonical formalism in Sec. C of the SM,
we can compute the expectation value of any observable
over the USC polaritonic vacuum |vac⟩, defined by

pup/lp,k|vac⟩ = 0. (E1)

Using Eqs. (D4)-(D5) we can calculate the vacuum
fluctuations of the cavity electric field considering that

ETM0(r) =
D(r)− Pd(r)

ϵ0
. (E2)

We thus have that

⟨vac|E2
TM0,k|vac⟩ =

1

ϵ0
⟨vac|D2

k|vac⟩+ ⟨vac|P 2
d,k|vac⟩

= E2
k

[
ωk

ωup,k
sin2 θk +

ωk

ωlp,k
cos2 θk

+
Ω2

d

ω2
d

(
ωlp,k

ωk
sin2 θk +

ωup,k

ωk
cos2 θk

)]
,

(E3)

where E2
k = (ℏωk)/(2ϵ0SLc). We immediately notice

from the last line of this formula that the electric field
fluctuations take a large contribution from the fluctua-
tions of the dresser polarization density, which are given
by the intrinsic fluctuations of matter. Moreover, after a
few algebraic steps, we have that

⟨vac|P 2
d,k|vac⟩ =

Ω2
d

ωdωk
⟨vac|D2

k|vac⟩, (E4)

from which we arrive to

⟨vac|E2
TM0,k|vac⟩ =

1

ϵ0

[
1 +

Ω2
d

ωdωk

]
⟨vac|D2

k|vac⟩. (E5)

It is worth noticing that - being a gauge non-invariant
quantity - the physical significance of the electric dis-
placement is sometimes considered obscure and confusing
[110]. However, we can see here that in the dipole pic-
ture, the electric displacement is directly related to the
TM0 electric field fluctuations and it thus realizes a good
proxy to explore the USC modifications of the electric
field fluctuations.

Another interesting example that we report for com-
pleteness is the cavity virtual photon population

Nph,k = ⟨vac| a†kak |vac⟩

=
sin2 θk
4ωk

ω2
up,k + ω2

k

ωup,k
+

cos2 θk
4ωk

ω2
lp,k + ω2

k

ωlp,k
− 1

2
,

(E6)

and the bare-dresser virtual excitation population

Nd,k = ⟨vac| d†kdk |vac⟩

=
sin2 θk
4ωd

ω2
lp,k + ω2

d

ωlp,k
+

cos2 θk
4ωd

ω2
up,k + ω2

d

ωup,k
− 1

2
.

(E7)

For many years, these quantities were at the cen-
ter of the discussions around polaritonic vacuum ob-
servables [16, 35, 65]. However, their individual rele-
vance is now considered marginal, since their physical
meaning explicitly depends from the chosen represen-
tation [111]. They are important only when correlated
with physical gauge invariant quantities. An example
of gauge-invariant quantities is the differential zero point
frequency of the system ∆ωZP [16]. This is obtained sub-
tracting the bare total zero point frequency for vanish-
ing light-matter coupling from the interacting one. Tak-
ing the vacuum expectation value of the cavity-dresser
Hamiltonian in Eq. (2) of the main text we have that

∆ωZP =
ωup,k + ωlp,k

2
− ωk + ωd

2
= ωkNph,k + ωdNd,k +ΩdNint,k.

(E8)

Here the last term represents the interaction energy, de-
fined by

Nint,k =
i

2

√
ωk

ωd
⟨vac|

(
a†k − a−k

)(
d−k + d†k

)
|vac⟩

+ ⟨vac| Ωd

4ωd

(
dk + d†−k

)(
dk + d†−k

)
|vac⟩.

(E9)

It is worth noticing that this term contains both the
cavity-dresser interaction and the dresser self interaction,
which is notoriously known as the P 2-term [40, 42, 44,
112, 113], responsible of the so-called polariton gap.
Interestingly, for the resonant wavevector kres, such

that ωkres
= ωd, the interaction energy exactly vanishes

Nint,kres = 0, (E10)

because the positive dresser self interaction (P 2-term) ex-
actly compensates the negative cavity-dresser contribu-
tion in Eq. (E9). As a consequence the differential zero
point frequency is completely determined by the cavity
and dresser virtual excitation, taking the simple expres-
sion

Nph,kres = Nd,kres =
1

2

(√
1 +

Ω2
d

4ω2
d

− 1

)
. (E11)

In this case the virtual photon numberNph,kres represents
the electromagnetic energy that can be released by an
instantaneous suppression of the cavity-dresser coupling
[16].

Appendix F: Classical theory of transmission spectra

Here we derive the linear response theory following
from our cavity-dresser-emitter system. We start by con-
sidering the total Hamiltonian given in Eq. (B4) and
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rewriting it using the quadrature canonical representa-
tion for the cavity, the dresser and the emitter degrees of
freedom as given in Sec. C of the SM

H =
1

2
vTMtotv, (F1)

where vT = (Xd(k), Xe(k), Ãk,Πd(k),Πe(k), D̃k) is the
array containing the canonical variables obtained gener-
alising the definition in Eq. (C1) to the emitter, while
the Hamiltonian matrix is given by

Mtot =


ω2
d +Ω2

d 0 Ωdωk 0 0 0
0 ω2

e +Ω2
e Ωeωk 0 0 0

Ωdωk Ωeωk ω2
k 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (F2)

From here we can write down the equation of motion of
the system (using the Hamilton equations), which match
the standard dielectric description from classical electro-
magnetism. In the frequency domain, the equation of
motion read

Mk(ω) ·

 Ak

Xd(k)
Xe(k)

 = 0 (F3)

where the dynamical matrix is given by

Mk(ω) =ω2
k − (ω + iγ/2)2 iωΩd iωΩe

−iωΩd ω2
d − (ω + iκd/2)

2 −ΩdΩe

−iωΩe −ΩdΩe ω2
e − (ω + iκe/2)

2


(F4)

Notice that here we introduce the cavity, dresser and
emitter losses γ, κd, κe in a phenomenological way, just
inserting a viscous damping in the equations. The cavity
transmission reads [35, 114]

Tc(k, ω) = γωk

[
M−1

k

]
00
. (F5)

Appendix G: Details on the hybridization angle
measurement protocol

Here we give a detailed description of the protocol to
measure the cavity-dresser hybridization angle from the
emitter-cavity-dresser spectrum.

We call ω̄e+, ω̄e− the frequencies measured from the
cavity transmission at the minimal anticrossing between
the emitter and the cavity-dresser polaritons, while k̄x
is the wavevector realizing the minimal anticrossing (we
will keep using the bar ·̄ only for quantities which are
directly measured from an eventual experiment, and dis-
tinguish them from quantities derived from the theory).
We can measure k̄x, ω̄e+, ω̄e− directly from a transmis-
sion (reflection) experiment by only detecting the two
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(b)
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0 1 20.5 1.5 0 1 20.5 1.5
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1
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FIG. 5. (a) Transmission spectrum (color scale) as a func-
tion of the incident wavevector k and frequency ω calculated
following Sec. F. The white dashed line marks the minimal
anticrossing wavevector k̄x, the green dashed line marks the
emitter resonance frequency ωe. The two yellow circle marks
the two peaks where the polariton hybridizes with the emitter
from which one can measure ω̄e±. (b) Reconstruction of the
mixing angle tangent tan θk using Eq. (G3) (dots) and ana-
lytical prediction using Eq. (C10) from Sec. C (solid lines).
The emitter frequency is swept through the two polaritons
branches and every time we recorded the splitted frequencies
at the minimal anticrossing in each polariton branch. Param-
eters: (all) Ωe/ωd = 0.2, γ = 0.01ωd, κd = κe = 0.05ωd. In
(a)Ωd/ωd = 1, ωe/ωd = 0.7(left− panel)− 1.6(right− panel)

peaks around the emitter frequency, as it is simulated in
Fig. 5(a). Since ω̄e± ≃ ωup/lp ± Ωup/lp, the upper/lower
polariton frequency resonant with the emitter is given by

ω̄up/lp =
ω̄e+ + ω̄e−

2
. (G1)

(Notice that the distinction between upper and lower po-
lariton is also experimentally well defined since the two
polaritons are separated by a gap, making them clearly
distinguishable). The measured emitter-polariton Rabi
splitting is then given by

Ω̄up/lp =
ω̄e+ − ω̄e−

2
. (G2)

Following Eq. (5) of the main text, we have that the
cavity-emitter anticrossing becomes a probe of the hy-
bridization angle θk, through the relation[

ω̄upΩ̄up

]
k[

ω̄lpΩ̄lp

]
k

= tan θk, (G3)

where [·]k indicates that the data inside the square brack-
ets are measured from the minimal anticrossing happen-
ing at the wavevector k̄x = k. Repeating this protocol
many times while sweeping ωe and collecting all the data
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for each emitter resonance, we can reproduce the tangent
of the mixing angle using Eq. (G3), effectively realizing
a full tomography of the USC cavity-dresser polaritons.

This USC tomographic approach is naturally limited
by the quality factors of the dresser, emitter and cav-
ity Qd/e = ωd/e/κd/e, Qk = ωk/γ, for which if the cou-
pling between the emitter and the upper polariton at low
wavevector is too small to be resolved, Ω̄up/lp ≪ γ, κd/e,
it is impossible to correctly identify the peaks in the
transmission.

In Fig. 5 we show an example of this reconstruction
mechanism. Even if here we show a specific example re-
garding ISB transition in a TM0 cavity with linear disper-
sion, it is important to highlight that our formalism and
the resulting tomography protocol are independent of the
specific cavity QED implementation. Not only does our
description apply to any different cavity dispersions, by
only inserting the specific ωk in all the equations, but it
applies also to any device that couples to the cavity elec-
tric field through a dipole transition. A more detailed
discussion about the generality of our analysis will be
contained in Ref. [115].

In the small wavevector region of Fig. 5 the detection is
limited by the vanishing coupling to the upper polariton,
as described in Fig. 2(a)-right panel of the main text. In
such circumstances our algorithm to reconstruct the Rabi
splitting gives artificially larger data, predicting a wrong
hybridization angle. Also in the other regions our data
in Fig. 5 are affected by numerical noise from the error
committed in the peak detection due to the broadening of
the transmission peaks given by the linewidths γ, κd, κe.
Despite that we could have completely avoided this noise
by increasing our simulation’s numerical accuracy, we de-
cided to keep it in order to simulate how realistic data
could be treated in an experiment and to show that our
protocol works even in the presence of noisy data.

Appendix H: Dissipations in the ultrastrong
coupling polariton system

Here we brefly review the theory of dissipations for
the whole polaritonic system, based on the description
already given in Refs. [76, 77].

Each part of the system is linearly coupled to its own
independent external bath, that causes dissipations. This
interaction is also of electromagnetic origin, involving the
cavity electric displacement field D, and the matter po-
larizations Pd, Pe. Following the standard assumptions
for input-output theory [116], the cavity, the dresser and
the emitter couplings to their environment are described

by the coupling Hamiltonians

Hc−B = i
∑
k⃗

∫
dω

√
γ

2π
Jγ(ω)

(
c−k⃗, ω + c†

k⃗, ω

)(
ak⃗ − a†

−k⃗

)
,

Hd−B =
∑
k⃗

∫
dω

√
κd
2π
Jd(ω)

(
c−k⃗, ω + c†

k⃗, ω

)(
dk⃗ + d†

−k⃗

)
,

He−B =
∑
k⃗

∫
dω

√
κe
2π
Je(ω)

(
c−k⃗, ω + c†

k⃗, ω

)(
bk⃗ + b†

−k⃗

)
.

(H1)

In order to simplify the description we assumed an in-

dependent bath for each different wavevector k⃗, but with
the same loss rates γ, κd, κe and adimensional spectral
densities Jγ , Jd, Je. Furthermore, we need to express the
cavity and dresser quadratures in terms of the polaritonic
degrees of freedom, using the canonical representation in
Appendix C. This step is necessary in order to isolate
the positive and negative frequencies component of each
coupling operator to then employ the rotating-wave ap-
proximation (RWA) in Eq. (H1) and proceed with the
standard derivation. This type of treatment is very com-
mon in the open-dissipative descriptions of all types of
USC systems [17, 18, 54]. In this way we have

i
(
ak⃗ − a†

−k⃗

)
=i

(
sin θk⃗

√
ωk⃗

ωup(k⃗)
pup, k̃+

+ cos θk⃗

√
ωk⃗

ωlp(k⃗)
plp, k̃

)
+ h.c.

(H2)

dk⃗ + d†
−k⃗

=i

(
cos θk⃗

√
ωd

ωup(k⃗)
pup, k̃+

− sin θk⃗

√
ωd

ωlp(k⃗)
plp, k̃

)
+ h.c.

(H3)

We can then define the polaritonic dressed loss rates
as

γup(k⃗) = γ sin2 θk⃗Jγ(ωup(k⃗))
ωk⃗

ωup(k⃗)
,

γlp(k⃗) = γ cos2 θk⃗Jγ(ωlp(k⃗))
ωk⃗

ωlp(k⃗)
,

(H4)

κup(k⃗) = κd cos
2 θk⃗Jd(ωup(k⃗))

ωd

ωup(k⃗)
,

κlp(k⃗) = κd sin
2 θk⃗Jd(ωlp(k⃗))

ωd

ωlp(k⃗)
.

(H5)

All the baths are assumed to be Ohmic, resulting
in a adimensional spectral function J ∼ ω/ωref , where
ωref = {ωk⃗, ωd}, is a reference frequency that depends
from the origin of the losses of every component, and, for
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simplicity, we take it equal to the resonance frequency of
each component. In this way we arrive to

γup(k⃗) ≈ γ sin2 θk⃗,

γlp(k⃗) ≈ γ cos2 θk⃗,
(H6)

κup(k⃗) ≈ κd cos
2 θk⃗,

κlp(k⃗) ≈ κd sin
2 θk⃗.

(H7)

One can easily verify that these expressions match the
descriptions given in [75, 76].

Appendix I: Dipolar cQED with slabs

In this appendix we re-derive the whole theory in the
main text starting only from Maxwell equations.

∇⃗ ·E =
ρ

ϵ0
(I1)

∇⃗ ×B =
1

c2

(
J

ϵ0
+
∂

∂t
E

)
(I2)

∇⃗ ·B = 0 (I3)

∇⃗ ×E = − ∂

∂t
B (I4)

Since we have only dipolar matter we have that

ρ = −∇⃗ ·Ptot, (I5)

where Ptot =
∑

a Pa is the total polarization density
vector of all the matter in the system, and the current is
given by

J = ∂tPtot (I6)

Taking the rotor of Eq. (I4) and combining with Eq.
(I2) we have that

−∇2E+ ∇⃗(∇⃗ ·E) = − 1

c2
∂2tE− 1

c2ϵ0
∂2tPtot. (I7)

To this point, we cannot solve this equation, since it is
still coupled with the Gauss law

∇⃗ ·E = −∇⃗ ·Ptot

ϵ0
. (I8)

We then make an arbitrary split in the electric field,
defining a longitudinal and transverse part

E = E∥ +E⊥, (I9)

where

E∥ = ∇⃗(G ⋆ ∇⃗ ·Ptot)/ϵ0 (I10)

and

E⊥ = ∂tA. (I11)

Here G is the Green’s function of the Poisson equation
−∇2G(r, r′) = δ(r − r′) with metallic boundary condi-
tions on the plates and zero electric potential difference
between them, and ⋆ denotes the convolution operator.

Evidently ∇⃗ × E∥ = 0 and the vector is longitudinal by
definition, even in the standard sense [38]. We then take

A as a transverse vector, having the property ∇⃗ ·A = 0.
We highlight that these definitions are general and true
in a cavity setup or in any other confined geometry.
Using these definitions for the electric field we arrive

at rewriting the Maxwell equations in only one equation

−∇2E⊥+
1

c2
∂2tE

⊥ = − 1

c2ϵ0
∂2t

[
Ptot + ∇⃗(G ⋆ ∇⃗ ·Ptot)

]
.

(I12)
The part in square brackets on the left-hand side is the
transverse projected polarization density

P⊥
tot = Ptot + ∇⃗(G ⋆ ∇⃗ ·Ptot), (I13)

with the property

∇⃗ ·P⊥
tot = 0. (I14)

While the longitudinal projection is

P
∥
tot = −∇⃗(G ⋆ ∇⃗ ·Ptot) (I15)

In order to understand the properties of the result-
ing electric field, we need to specify the dynamics of our
matter system. Following the standard literature [50, 60]
we consider an equation of motion for the polarization
density of each constituent of the system

∂2tPa + La(Pa) = Ω2
aϵ0E(ra). (I16)

Here La(·) is a linear differential operator defining the
dynamics of the polarization density of each constituent,
Ωa is its Rabi frequency (proportional to the the plasma
frequency definined in Eq. (A13)).
Using all the definitions of the electric field introduced

before we arrive to

∂2tPa + L̃a(Pa) = −Ω2
a

∑
b̸=a

P
∥
b(ra) + Ω2

aϵ0E
⊥(ra) (I17)

−∇2E⊥ +
1

c2
∂2tE

⊥ = − 1

c2ε0
∂2t
∑
a

P⊥
a (r). (I18)

Here we introduced absorbed the longitudinal self polar-
ization term into the definition of L̃a, accordingly to

L̃a(Pa) = La(Pa) + Ω2
aP

∥
a(ra). (I19)
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This term is the classical equivalent of the depolarization
shift [59].

We now specialize in a cavity system, truncating the
description to the only TM0 modes [40, 105, 106]. One
can directly check that the transverse projector (or delta
transverse) is given by[

δ⊥ij(r, r
′)
]
TM0

=
1

Lc
δziδzjδ(r∥ − r∥

′), (I20)

here δzi, δzj are the Kronecker deltas that select the po-
larization direction only along the z-direction, which, in
our convention, is the direction perpendicular to the par-
allel cavity plates. As a consequence, the longitudinal
delta in the TM0 mode is given by[
δ
∥
ij(r, r

′)
]
TM0

= δziδzjδ(r∥−r∥
′)δ(z−z′)− 1

Lc
δziδzjδ(r∥−r∥

′).

(I21)
Notice that, when z ̸= z′[

δ
∥
ij(r, r

′)
]
TM0

= −
[
δ⊥ij(r, r

′)
]
TM0

. (I22)

Here we further specialize in the case of multiple in-
finite slabs, localized at different z-positions. Assuming
harmonic dynamics, L̃a(Pa) = ω2

aPa, the equations in
the TM0 subspace in k-space (in-plane) and frequency
domain reduce to

(ω2
a − ω2)Pa,k = Ω2

a

∑
b ̸=a

Pb,k +Ω2
aϵ0ETM0,k (I23)

(c2k2 − ω2)ETM0,k =
ω2

ϵ0

∑
a

Pa,k. (I24)

For simplicity from here on we suppress the vectorial no-
tation on k. Notice that similarly to the Hamiltonian
description in App. A, also here the depolarization shift
was absorbed into the definition of ωa.

1. Effective dielectric permittivity

To solve the equations (I23)-(I24) we take

Pa,k = ϵ0ETM0,k

∑
b

ΠabΩ
2
b . (I25)

The dipole susceptibility is given by Πab = M−1
ab , where

the dynamical matrix is

M =

ω
2
1 − ω2 −Ω2

1 −Ω2
1 ...

−Ω2
2 ω2

2 − ω2 −Ω2
2 ...

−Ω2
3 −Ω2

3 ω2
3 − ω2 ...

... ... ... ...

 (I26)

From these definitions, we find the relative electric sus-
ceptibility of the ISB multi-slabs setup as

ϵr(ω) = 1 +
∑
a,b

ΠabΩ
2
b . (I27)

The cavity transmission in Eq. (F5) is equivalently given
by

Tc(k, ω) =
γωk

c2k2 − ω2ϵr(ω)− iγω + γ2/4
. (I28)

For example, in the specific case of two slabs (emitter
e and dresser d) we have

M =

(
ω2
d − ω2 −Ω2

d

−Ω2
e ω2

e − ω2

)
(I29)

and the dipole susceptibility is given by

Π =
1

(ω2
d − ω2)(ω2

e − ω2)− Ω2
dΩ

2
e

×

×
(
ω2
e − ω2 Ω2

d

Ω2
e ω2

d − ω2

) (I30)

As a consequence, the relative permittivity is given by

ϵr(ω) = 1+
Ω2

d(ω
2
e − ω2) + Ω2

e(ω
2
d − ω2) + 2Ω2

dΩ
2
e

(ω2
d − ω2)(ω2

e − ω2)− Ω2
dΩ

2
e

(I31)

It is worth noticing that when we take the limit of small
Rabi (plasma) frequencies for the slabs, Ωd,e ≪ ωd,e we
recover the usual relative permittivity for a couple of in-
dependent emitters

ϵr(ω) ≈ 1 +
Ω2

d

ω2
d − ω2

+
Ω2

e

ω2
e − ω2

. (I32)

2. Spontaneous emission as classical
electromagnetic damping

Here we draw a connection between the modified Pur-
cell spontaneous emission described in the maintext and
the electromagnetic damping arsing in the classical equa-
tions (I23)-(I24).
We start by considering the equations for the dresser

and the TM0 electric field mode(
ω2
d − ω2

)
Pd − Ω2

dϵ0ETM0 = Ω2
dPe,(

c2k2 − ω2
)
ETM0

− ω2

ϵ0
Pd =

ω2

ϵ0
Pe,

(I33)

coupled together to the emitter by(
ω2
e − ω2

)
Pe = Ω2

e (ϵ0ETM0 + Pd) . (I34)

In this last equation we immediately recognise D =
ϵ0ETM0

+Pd, which is the only relevant degree of freedom
that couples to the emitter. In this section, to simplify
the notation, we completely suppress the index k unless
necessary.
By solving Eq. (I33) we find that

ϵ0ETM0
= χe|E(ω)Pe Pd = χe|d(ω)Pe

(I35)
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where the two susceptibilities are defined by

χe|E(ω) =
ω2
(
ω̄2
d − ω2

)
(c2k2 − ω2) (ω2

d − ω2)− ω2Ω2
d

= ω2
ω2
up + ω2

lp − c2k2 − ω2(
ω2
up − ω2

) (
ω2
lp − ω2

) ,
χe|d(ω) =

Ω2
dc

2k2

(c2k2 − ω2) (ω2
d − ω2)− ω2Ω2

d

=
Ω2

dc
2k2(

ω2
up − ω2

) (
ω2
lp − ω2

) ,
(I36)

where ω̄2
d = ω2

d+Ω2
d. The emitter dynamics can be rewrit-

ten exactly as(
ω2
e − ω2

)
Pe = Ω2

e

[
χe|E(ω) + χe|d(ω)

]
Pe (I37)

Now we consider that the poles of χe|E(ω), χe|d(ω) are
lifted by the respective polariton linewidths γup,lp. This
is implemented by replacing ω2 7−→ ω2 + iγup,lpω in the
denominator of the two susceptibilities. In this way we
can specialize on the Purcell regime where γup,lp ≫ Ωe.
Joining this condition with the assumption that the emit-
ter is almost resonant with one of the polaritons, for in-
stance ωe ≃ ωup, we can expand the emitter dynamics

and the susceptibilities around this pole, obtaining

χe|E(ω) ≈
i

γup
ωup

c2k2 − ω2
lp

ω2
up − ω2

lp

χe|d(ω) ≈
i

γup

Ω2
dc

2k2

ωup

1

ω2
up − ω2

lp

,

(I38)

from which(
ω2
e − ω2

)
P+
e ≈ 2ωe(ωe − ω)P+

e

= Ω2
e

[
χe|E(ω) + χe|d(ω)

]
P+
e ≈ i

Ω2
e

γup

ω2
k

ωup

ω2
lp − ω2

k

ω2
lp − ω2

up

P+
e ,

(I39)

where we adopt the notation P+
e to indicate that this

equation describes only the dynamics of Pe around the
pole ω ≃ +ωe ≃ +ωup. Rearranging the terms and tak-
ing the inverse Fourier transform, we finally finds

i∂tP
+
e = ωeP

+
e − i

Ω2
up

2γup
P+
e (I40)

One can repeat the reasoning for all the poles ω ≃ −ωup,
ω ≃ ±ωlp, obtaining the same type of result.
Reinterpreting P+

e as bk we obtain the equation shown
in the maintext.
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Hung, and H. J. Kimble, Colloquium: Quantum mat-
ter built from nanoscopic lattices of atoms and photons,
Rev. Mod. Phys. 90, 031002 (2018).

[99] G. M. Andolina, A. D. Pasquale, F. M. D. Pellegrino,
I. Torre, F. H. L. Koppens, and M. Polini, Can deep sub-
wavelength cavities induce Amperean superconductivity
in a 2D material? arXiv:2210.10371 [cond-mat.supr-
con] (2022).
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