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A B S T R A C T

The emergence and maintenance of tree species diversity in tropical forests is commonly attributed to the
Janzen–Connell (JC) hypothesis, which states that growth of seedlings is suppressed in the proximity of
conspecific adult trees. As a result, a JC distribution due to a density-dependent negative feedback emerges
in the form of a (transient) pattern where conspecific seedling density is highest at intermediate distances
away from parent trees. Several studies suggest that the required density-dependent feedbacks behind this
pattern could result from interactions between trees and soil-borne pathogens. However, negative plant–soil
feedback may involve additional mechanisms, including the accumulation of autotoxic compounds generated
through tree litter decomposition. An essential task therefore consists in constructing mathematical models
incorporating both effects showing the ability to support the emergence of JC distributions.

In this work, we develop and analyse a novel reaction–diffusion-ODE model, describing the interactions
within tropical tree species across different life stages (seeds, seedlings, and adults) as driven by negative
plant–soil feedback. In particular, we show that under strong negative plant–soil feedback travelling wave
solutions exist, creating transient distributions of adult trees and seedlings that are in agreement with the
Janzen–Connell hypothesis. Moreover, we show that these travelling wave solutions are pulled fronts and a
robust feature as they occur over a broad parameter range. Finally, we calculate their linear spreading speed
and show its (in)dependence on relevant nondimensional parameters.
1. Introduction

A widely observed phenomenon in forest tree communities is that
conspecific seedling density is highest at intermediate distances from
the parent tree, referred to as the Janzen–Connell (JC) distribution. The
emergence of JC distributions provide an explanation for the creation
and maintenance of high species diversity in forest tree communi-
ties [1,2]. This (transient) pattern is particularly important in terms
of biodiversity: the space between the parent tree and its seedlings is
a favourable area for other species to colonise and grow, enhancing
coexistence (see e.g. [3,4]).
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From an ecological viewpoint, an increasing number of ecological
studies is supporting the idea that the emergence of this pattern (partic-
ularly prominent in tropical ecosystems) is strongly linked to negative
plant–soil feedbacks [5–7]. Among the main mechanisms responsible
for such feedbacks, the accumulation of species-specific soil pathogens
is indicated as prominent [5,8]. Consequently, several models have
been introduced in the last few decades to theoretically investigate this
mechanism (see e.g. [9–12] and references therein). In recent years,
additional mechanisms generating negative plant–soil feedback have
been identified, including the accumulation of conspecific extracellular
DNA fragments leading to an autotoxic soil environment [13,14]. Such
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Fig. 1. Schematic representation of a one-dimensional section of a Janzen–Connell
distribution. Here, the typical seedlings’ density distribution 𝑁 (orange curve) is sym-
metrically travelling towards the boundary of the domain and exhibiting a depression
in the centre, where the peak of the adults’ density 𝐴 (grey curve) is reached.

negative feedback induced by autotoxicity could potentially explain
species coexistence in diverse communities [15–17] as well as plants
spatial organisation by means of as clonal rings [18,19], fairy rings [20,
21], and more generally vegetation patterns [22,23]. The spatial dis-
tribution of adult forest trees and their seedlings is the outcome of
different ecological processes. On the one hand, deposition of seeds
on the ground will be higher near the adult parent tree, and decrease
with increasing distance from the parent tree. On the other hand, seed
and seedling survival may also depend on the presence of adult trees,
with empirical observations suggesting that mortality is highest in close
proximity of the adults of the parent tree species [1,2]. As a result
of these two types of processes, the density of seedlings is expected
to be highest at intermediate distances from the parent tree (Fig. 1),
a distribution referred to in the ecological literature as the Janzen–
Connell hypothesis. In the specific case considered here, we would
expect negative feedback to strongly diminish seed and seedling density
close to parental trees, with the surviving seedlings reaching maturity.
In space, this process may be reflected by a travelling wave of high
seedling density.

In this work, we construct a new model based on reaction–diffusion-
ODEs in order to describe the emergence of JC distributions including
both growth inhibition (induced by extracellular self-DNA) and in-
creased mortality (mainly linked to the accumulation of soil-borne
pathogens). Reaction–diffusion-ODE systems are used to model a wide
variety of phenomena in biology; however, only few analytical results
concerning their behaviour – which often strongly differs from classical
reaction–diffusion models – are available, see e.g. [24–28].

As both growth inhibition and increased mortality mechanisms act
on different tree life-stages, we consider a stage-structured framework.
Our aim consists in introducing a theoretical tool which may help
assessing the relative contribution of both mechanisms to emergent
spatial distributions of adult trees and their seedlings. As JC distribu-
tions are experimentally observed as transient patterns, we analytically
investigate the existence of travelling wave solutions which exhibit the
typical JC feature of seedlings’ biomass being at a maximum at suitable
distances from the parent tree. Travelling wave solutions are widely
found in mathematical models inspired by several biological applica-
tions, including e.g. species competition [29], tumour growth [30], and
bacterial chemotaxis [31]. In particular, we show the existence of such
solutions and derive corresponding relevant properties. Moreover, we
hypothesise that the constructed travelling wave solutions correspond
to pulled fronts, whose speed then coincides with the linear speed
determined by a linear analysis near the trivial steady state. We then
analytically derive the linear speed and confirm our prediction by
comparing the analytical value with the one obtained by numerical
2

simulations of our model for a set of fixed parameter values and
investigating their dependence with respect to two relevant parameters.

The impact of the work presented here is twofold: from the ecolog-
ical viewpoint, our work provides a valuable theoretical tool to further
address relevant issues related to JC distributions (e.g. understanding
how the dispersal ability of tree species moderate the spatial patterns
of adult and seedlings and to what extent are plant strategies along
the growth-defence trade-off reflected in the spatial patterns of adult
and seedlings). From the mathematical viewpoint, on the other hand,
the analytical strategy used here to investigate travelling waves in a
system of 4 reaction–diffusion-ODEs improves our understanding of
such complex systems and offers a framework potentially useful to
investigate problems exhibiting a similar structure.

The paper is structured as follows: in Section 2 we introduce the
model both in its dimensional and nondimensional form, on which we
focus for our subsequent analysis. The spatially homogeneous steady
states associated to this model are derived in Section 3. In Section 4 the
linear stability of these steady states with respect to both homogeneous
and heterogeneous perturbations is carried out, revealing the absence
of Turing patterns for the parameter ranges defined based on experi-
mental findings (as expected). The existence and the main properties
of travelling wave solutions (in particular right-moving fronts) are
then investigated in Section 5: numerical simulations suggesting the
existence of pulled fronts are corroborated analytically by deriving
the linear wave speed and comparing it with the numerical measured
speed. We conclude our work with a discussion of the results obtained
and an outlook indicating further research perspectives in Section 6.

2. The model

In our framework, negative plant–soil feedback (NF) manifests itself
both during the seed-to-seedling transition (in terms of growth inhibi-
tion) and at the seedlings life-stage (in terms of increased mortality).
The first effect can be often attributed to the presence of extracellular
self-DNA (also known as autotoxicity), whereas the second effect is
mainly linked to soil-borne pathogens. As these factors act at different
stages of a tree lifespan, vegetation is considered in terms of biomass
and is divided into three compartments corresponding to three different
life-stages, namely seeds 𝑆̂ (kg∕m2), seedlings 𝑁̂ (kg∕m2) and adults 𝐴̂
(kg∕m2). Moreover, the general inhibitor variable 𝐼 (kg∕m2) represents
the density of inhibitor responsible both for growth inhibition and
increased mortality effects. The interaction of such variables at any
spatial point 𝐱̂ = (𝑥̂, 𝑦̂) and any time 𝑡 is based on the following
assumptions: the increase of seed density is influenced by adult tree
production via the per capita seed production rate 𝑔̂𝑆 and seed dispersal
𝑑𝑆 , whereas their natural decay rate (including predation) is repre-
sented by 𝑘̂𝑆 . Seeds then germinate and the seedlings might establish or
not, depending also on the inhibitor due to the effect of autotoxicity via
the function 𝑔̂𝑁 𝑆̂

1+𝛾 𝑒𝑟̂𝑇 𝐼
. This monotonically decreasing logistic function

(see [32]) models the fact that low autotoxicity values do not affect the
base establishment probability (𝑔̂𝑁 ), whereas this probability converges
to zero as autotoxicity increases with a speed determined by the species’
sensitivity to autotoxicity (𝑟̂𝑇 ). Seedlings have a natural turnover rate
𝑘̂𝑁 , enhanced by pathogens via the term 𝑟̂𝑃 𝐼 . The seedlings which
survive then grow into the next life stage according to the function
𝑔̂𝐴

(

1 − 𝐴̂
𝐴̂max

)

. Adults’ density grows logistically because of seedlings
transitioning to the adult stage at rate 𝑔̂𝐴, intrinsic growth rate 𝑐𝐴, and
constant per capita mortality rate 𝑘̂𝐴. The inhibitor density grows due
to adult decomposition byproducts at a rate 𝑐𝑇 , decays naturally at a
rate 𝑘̂𝐼 , and diffuses in the soil at a rate determined by the coefficient
𝑑 . These ecological processes are described by the following PDE-ODE
𝐼
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Table 1
Description, values, and units for model parameters in System (1), obtained through
parametrisation and calibration.

Parameter Description Value Units

𝑔̂𝑆 Growth rate of 𝑆̂ 6.67 ⋅ 10−8 − 0.033 y−1

𝑘̂𝑆 𝑆̂ turnover rate 0.33−0.5 y−1

𝑔̂𝑁 Transition rate from 𝑆̂ to 𝑁̂ 0.25−25 y−1

𝛾 Establishment sensitivity to
toxicity parameter

10−5 –

𝑟̂𝑇 Establishment sensitivity to
toxicity parameter

0−68 m2 kg−1

𝑘̂𝑁 Death rate of 𝑁̂ 0.02−0.74 y−1

𝑟̂𝑃 Extra mortality of 𝑁̂ caused
by 𝐼

0−2 m2 kg−1 y−1

𝑔̂𝐴 Transition rate from 𝑁̂ to 𝐴̂ 0.02−1 y−1

𝑐𝐴 Growth rate in 𝐴̂’s biomass
density

0.25 y−1

𝐴̂max Maximum capacity for 𝐴̂ 30 m−2 kg
𝑘̂𝐴 Mortality rate of 𝐴̂ 0.01 y−1

𝑐𝐼 Growth rate of 𝐼 due to 𝐴̂ 1 y−1

𝑘̂𝐼 Inhibitor decay rate 0.7 y−1

𝑑𝑆 Diffusion coefficient for 𝑆̂ 0.6−4 m2 y−1

𝑑𝐼 Diffusion coefficient for 𝐼 0−0.5 m2 y−1

system:

𝜕𝑆̂
𝜕𝑡

= 𝑑𝑆 𝛥𝑆̂ + 𝑔̂𝑆 𝐴̂ − 𝑘̂𝑆 𝑆̂,

𝜕𝑁̂
𝜕𝑡

=
𝑔̂𝑁 𝑆̂

1 + 𝛾 𝑒𝑟̂𝑇 𝐼
−

(

𝑘̂𝑁 + 𝑔̂𝐴

(

1 − 𝐴̂
𝐴̂max

)

+ 𝑟̂𝑃 𝐼

)

𝑁̂,

𝜕𝐴̂
𝜕𝑡

=
(

𝑔̂𝐴 𝑁̂ + 𝑐𝐴 𝐴̂
)

(

1 − 𝐴̂
𝐴̂max

)

− 𝑘̂𝐴 𝐴̂,

𝜕𝐼
𝜕𝑡

= 𝑑𝐼 𝛥𝐼 + 𝑐𝐼 𝐴̂ − 𝑘̂𝐼 𝐼.

(1)

The PDEs for the seed biomass 𝑆̂ and the inhibitor biomass 𝐼 are of
reaction–diffusion type. Values and meaning of the non-negative model
parameters in (1) are provided in Table 1. Based on an ecological in-
vestigation, they have been calibrated in some cases and parametrised
in all the others [33]. We note here that the model in Eq. (1) has
been developed for a wide range of possible types of domains and
initial/boundary conditions; hence we keep these general at this stage
of the paper.

In this framework, links to the Janzen–Connell hypothesis can be
found in transient patterns where a ring of seedlings emerges around
the adult tree (whose density is concentrated in the centre of the
ring). Mathematically, this consists in travelling wave solutions, whose
construction we analyse in this work. From here on, we refer to this
phenomenon as the Janzen–Connell distribution.

In order to reduce the total number of parameters and to facil-
itate the analytical investigation of our model, we introduce a non-
dimensional version of System (1). Existence and stability (both under
homogeneous and heterogeneous perturbations) of the corresponding
steady states are then investigated in Sections 3 and 4, respectively.

In order to facilitate the investigation of the existence and stability
properties of our model, we introduce the following nondimensional
variables:

𝑡 = 𝑐𝐴 𝑡, 𝑥 =

√

𝑐𝐴
𝑑𝑆

𝑥̂, 𝑦 =

√

𝑐𝐴
𝑑𝑆

𝑦̂,

=
𝑐𝐴

𝑔̂𝑆 𝐴̂max
𝑆̂, 𝑁 =

𝑐𝐴
𝑔̂𝑁 𝐴̂max

𝑁̂, 𝐴 = 𝐴̂
𝐴̂max

, 𝐼 =
𝑐𝐴

𝑐𝐼 𝐴̂max
𝐼.

(2)

We choose 𝑐𝐴, the growth rate of the adult biomass density, as the char-
acteristic time scale; this adult growth rate can often be experimentally
and/or observationally determined in a manner (relatively) indepen-
dent from other process factors (see e.g. [34]). In addition, we choose
3

the resulting characteristic seed dispersal distance as the characteristic
Table 2
Description and ranges of rescaled nondimensional parameters used in System (3),
based on Table 1.

Parameter Description Value

𝑘𝑆 𝑆 turnover rate 1.3−2.0
𝑔𝑆 Growth rate of 𝑆 2.7 ⋅ 10−7 − 1.3 ⋅ 10−1

𝛾 Establishment sensitivity to toxicity parameter 1.0 ⋅ 10−5

𝑟𝑇 Establishment sensitivity to toxicity parameter 0−0.8 ⋅ 104

𝑘𝑁 Death rate of 𝑁 0.8 ⋅ 10−1 − 3.0
𝑟𝑃 Increased mortality of 𝑁 caused by 𝐼 0−1.0 ⋅ 103

𝑔𝐴 Transition rate from 𝑁 to 𝐴 0.8 ⋅ 10−3 − 4.0
𝑘𝐴 Mortality rate of 𝐴 4.0 ⋅ 10−2

𝑔𝑁 Transition rate from 𝑆 to 𝑁 1.0−1.0 ⋅ 102

𝑘𝐼 Inhibitor decay rate 2.8
𝑑 Square root of diffusion ratio 0−0.9

length scale. For every model variable, the biomass density is scaled
relative to the adult carrying capacity 𝐴̂max. Furthermore, for algebraic
convenience, all nondimensionalised model variables are divided by
ratio of that variable’s growth rate relative to the characteristic growth
rate 𝑐𝐴.

This leads to the following nondimensional reformulation of Eq. (1)

𝜕𝑆
𝜕𝑡

= 𝛥𝑆 + 𝐴 − 𝑘𝑆 𝑆,

𝜕𝑁
𝜕𝑡

=
𝑔𝑆 𝑆

1 + 𝛾 𝑒𝑟𝑇 𝐼
−𝑁

(

𝑘𝑁 + 𝑟𝑃 𝐼 + 𝑔𝐴 (1 − 𝐴)
)

,

𝜕𝐴
𝜕𝑡

= 𝐴 (1 − 𝑘𝐴 − 𝐴) + 𝑔𝐴 𝑔𝑁 𝑁 (1 − 𝐴),

𝜕𝐼
𝜕𝑡

= 𝑑2 𝛥𝐼 + 𝐴 − 𝑘𝐼 𝐼,

(3)

where 𝛥 = 𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
and the nondimensional parameters are given by

𝑆 =
𝑘̂𝑆
𝑐𝐴
, 𝑘𝑁 =

𝑘̂𝑁
𝑐𝐴
, 𝑟𝑃 =

𝑟̂𝑃 𝑐𝐼 𝐴̂max

𝑐2𝐴
, 𝑘𝐴 =

𝑘̂𝐴
𝑐𝐴
, 𝑘𝐼 =

𝑘̂𝐼
𝑐𝐴
,

𝑔𝑁 =
𝑔̂𝑁
𝑐𝐴
, 𝑔𝐴 =

𝑔̂𝐴
𝑐𝐴
, 𝑔𝑆 =

𝑔̂𝑆
𝑐𝐴

𝑟𝑇 =
𝑐𝐼 𝑟̂𝑇 𝐴̂max

𝑐𝐴
, 𝑑 =

√

𝑑𝐼
𝑑𝑆
.

(4)

We note that, due to the range of ecological feasibility for our
parameters reported in Table 1, we assume 𝑘𝑆 > 0, 𝑘𝑁 > 0, 𝑟𝑃 ≥ 0,
𝑘𝐴 > 0, 𝑘𝐼 > 0, 𝑔𝑁 > 0, 𝑔𝐴 > 0, 𝑟𝑇 ≥ 0, and 𝑑 > 0. Moreover, we assume
hat in the absence of seeds, seedlings and toxicity, the growth rate of
dults is positive for all 𝐴̂ > 0, which implies

< 𝑘𝐴 < 1. (5)

cologically feasible ranges of the nondimensionalised parameters,
ased on the associated dimensional values in Table 1, can be found
n Table 2.

athematical analysis: aims and goals. We determine the spatially ho-
ogeneous steady states (Section 3) and their linear stability with re-

pect to spatially homogeneous and heterogeneous perturbations (Sec-
ion 4). Furthermore, we investigate the presence of travelling waves
Section 5), determine properties of the wave profile, and determine the
ave speed. To facilitate presentation, we organise the main results in
ropositions and Theorems.

. Spatially homogeneous steady states

For future reference and notational convenience, we introduce the
stablishment function

(𝐼) = 1 . (6)

1 + 𝛾 𝑒𝑟𝑇 𝐼
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Proposition 1. System (3) admits two spatially homogeneous steady
states,

∗
0 = (0, 0, 0, 0) (7)

and

∗
1 =

(

𝐴∗
𝑘𝑆
,
𝐴∗(𝐴∗ + 𝑘𝐴 − 1)
𝑔𝐴𝑔𝑁 (1 − 𝐴∗)

, 𝐴∗,
𝐴∗
𝑘𝐼

)

. (8)

Here, 𝐴∗ ∈
(

1 − 𝑘𝐴, 1
)

is the unique solution to

𝑓
(

𝐴
𝑘𝐼

)

= 𝜙(𝐴), (9)

here

(𝑋) ∶= −
𝑘𝑆

(

𝑘𝑁 + 𝑔𝐴 (1 −𝑋) + 𝑟𝑃
𝑘𝐼
𝑋
)

(

1 − 𝑘𝐴 −𝑋
)

𝑔𝐴 𝑔𝑁 𝑔𝑆 (1 −𝑋)
. (10)

Proof. Spatially homogeneous steady states associated to system (3)
are given by the solutions to

0 = 𝐴 − 𝑘𝑆 𝑆, (11a)

= 𝑔𝑆 𝑆 𝑓 (𝐼) −𝑁
(

𝑘𝑁 + 𝑟𝑃 𝐼 + 𝑔𝐴 (1 − 𝐴)
)

, (11b)

0 = 𝐴 (1 − 𝑘𝐴 − 𝐴) + 𝑔𝐴 𝑔𝑁 𝑁 (1 − 𝐴), (11c)

0 = 𝐴 − 𝑘𝐼 𝐼. (11d)

First, we observe that system (11) admits a trivial solution where all
components vanish (representing bare soil):

∗
0 =

(

𝑆∗
0 , 𝑁

∗
0 , 𝐴

∗
0 , 𝐼

∗
0
)

= (0, 0, 0, 0) . (12)

In order to compute the nontrivial equilibria of System (3), we first
solve Eq. (11a) and (11d) which lead to

𝑆 = 𝐴
𝑘𝑆
, 𝐼 = 𝐴

𝑘𝐼
, (13)

espectively. Substituting Eq. (13) into Eq. (11b) we obtain
𝑔𝑆
𝑘𝑆

𝐴𝑓
(

𝐴
𝑘𝐼

)

= 𝑁
(

𝑘𝑁 + 𝑟𝑃 𝐼 + 𝑔𝐴 (1 − 𝐴)
)

. (14)

Solving Eq. (14) for 𝑁 we obtain

𝑁 =
𝑔𝑆 𝑓

(

𝐴
𝑘𝐼

)

𝑘𝑆
(

𝑘𝑁 + 𝑟𝑃
𝑘𝐼
𝐴 + 𝑔𝐴 (1 − 𝐴)

) 𝐴. (15)

Substituting Eq. (15) into Eq. (11c) yields

𝑓
(

𝐴
𝑘𝐼

)

𝐴 = 𝜙(𝐴)𝐴. (16)

learly, 𝐴 = 0 is a solution to (16), leading to the trivial solution ∗
0

12); division by 𝐴 leads to (9).
It remains to show that Eq. (9) has a unique nontrivial solution on

he (ecologically feasible) interval (0, 1). We observe that for 𝑋 ∈ [0, 1),
the function 𝜙(𝑋) satisfies the following properties:

• 𝜙(0) < 0,
• lim𝑋→1 𝜙(𝑋) = +∞ (𝑔 has a vertical asymptote at 𝑋 = 1),
• 𝜙′′(𝑋) > 0 (𝜙 is convex),
• 𝜙(𝑋) = 0 if and only if 𝑋 = 1 − 𝑘𝐴 (𝜙 has a unique root in the

interval 𝑋 ∈ (0, 1)).

Furthermore, the establishment function 𝑓 (𝑋) (6) satisfies the following
properties:

• 𝑓 (0) = 1
1+𝛾 > 0,

• 𝑓 ′(𝑋) < 0 for all 𝑋 ∈ R (𝑓 is strictly monotonically decreasing)
• 𝑓 (𝑋) > 0 for all 𝑋 ∈ R

onsequently, there exists a unique 𝐴∗ ∈ (0, 1) that satisfies Eq. (9).
oreover, since 𝑓 (𝑋) is positive and 𝜙(𝑋) is positive only if 𝑋 > 1−𝑘𝐴,
4

e find that 𝐴∗ > 1 − 𝑘𝐴; see also Fig. 2.
Fig. 2. Schematic representation of the functions 𝑓
(

𝐴
𝑘𝐼

)

(blue solid line) and 𝜙(𝐴)

(purple solid line) as defined in Eq. (6) and Eq. (10), respectively, for 𝛾 = 10−5, 𝑟𝑇 = 48,
𝑘𝑆 = 1.3, 𝑘𝑁 = 0.08, 𝑔𝐴 = 1, 𝑟𝑃 = 0, 𝑘𝐼 = 2.8, 𝑘𝐴 = 0.4, 𝑔𝑁 = 13, and 𝑔𝑆 = 0.13. The
urple dot corresponds to the unique zero of 𝜙(𝐴) in the interval 𝐴 ∈ [0, 1], whereas
he grey dot corresponds to the unique 𝐴∗ where 𝑓

(

𝐴
𝑘𝐼

)

= 𝜙(𝐴), i.e. the 𝐴-component
f the unique nontrivial steady state of System (3).

Therefore, we have that the unique nontrivial spatially homoge-
eous steady state of System (3) is given by
∗
1 =

(

𝑆∗
1 , 𝑁

∗
1 , 𝐴

∗
1 , 𝐼

∗
1
)

=

⎛

⎜

⎜

⎜

⎝

𝐴∗
𝑘𝑆
,

𝑔𝑆 𝑓
(

𝐴∗
𝑘𝐼

)

𝑘𝑆
(

𝑘𝑁 + 𝑟𝑃
𝑘𝐼
𝐴∗ + 𝑔𝐴

(

1 − 𝐴∗
)

) 𝐴∗, 𝐴∗,
𝐴∗
𝑘𝐼

⎞

⎟

⎟

⎟

⎠

. (17)

Using 𝑓
(

𝐴∗
𝑘𝐼

)

= 𝜙(𝐴∗) yields (8). □

For future reference, based on the results of Proposition 1, we write

∗ = 1 − 𝛿 𝑘𝐴, 0 < 𝛿min < 𝛿 < 1, (18)

see also Fig. 2. The lower bound 𝛿min can be determined by observing
that the establishment function 𝑓 (𝐼) is bounded above by 1

1+𝛾 and hence
𝜙(𝐴∗) <

1
1+𝛾 . Solving 𝜙(1 − 𝛿min𝑘𝐴) =

1
1+𝛾 leads to

𝛿min =
⎛

⎜

⎜

⎝

1 + 1
1 + 𝛾

𝑔𝐴 𝑔𝑁 𝑔𝑆
𝑘𝑆

𝑘𝑁 + 𝑟𝑃
𝑘𝐼

⎞

⎟

⎟

⎠

−1

+ (𝑘𝐴). (19)

Moreover, according to the parameter values reported in Table 2,
e have 𝑘𝐴 = 0.04 ≪ 1. In the upcoming analysis, we will occasion-

ally utilise the fact that 𝑘𝐴 is small by employing 𝑘𝐴 as a (regular)
perturbation parameter, in order to gain insight into the solutions
of complicated algebraic equations, by expanding these solutions in
powers of 𝑘𝐴.

4. Linear stability

4.1. Spatially homogeneous perturbations

In this section, we analyse the linear stability of spatially homo-
geneous steady states ∗

0 (7) and ∗
1 (8) with respect to spatially

homogeneous perturbations.

Proposition 2. The trivial steady state ∗
0 (7) is unstable with respect to

spatially homogeneous perturbations. The nontrivial steady state ∗
1 (8) is

linearly stable with respect to spatially homogeneous perturbations, as long
as

−
𝑔𝐴 𝑔𝑁 𝑔𝑆
𝑘𝑆

𝑓 ′
(

1
𝑘𝐼

)

< 1
𝑘𝐴

1
𝛿3

(

𝑘𝑁 + 𝑘𝐼 +
𝑟𝑃
𝑘𝐼

)

(

1 + 𝛿𝑘𝐼
)

×
(

1 + 𝛿
(

𝑘𝑁 +
𝑟𝑃
𝑘𝐼

))

+  (1) , (20)

assuming 0 < 𝑘 ≪ 1.
𝐴
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Proof. The Jacobian matrix corresponding to System (3) reads

𝐽 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝑘𝑆 0 1 0
𝑔𝑆 𝑓 (𝐼) −𝑘𝑁 − 𝑔𝐴 (1 − 𝐴) − 𝑟𝑃 𝐼 𝑔𝐴𝑁 𝑔𝑆 𝑆 𝑓 ′(𝐼) − 𝑟𝑃 𝑁

0 𝑔𝐴 𝑔𝑁 (1 − 𝐴) 1 − 2𝐴 − 𝑘𝐴 − 𝑔𝐴 𝑔𝑁 𝑁 0
0 0 1 −𝑘𝐼

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(21)

he characteristic polynomial associated to 𝐽 evaluated at ∗
0 is given

y

0(𝜆) =
(

−𝜆 − 𝑘𝐼
) (

𝜆3 + 𝑎02 𝜆2 + 𝑎01 𝜆 + 𝑎00
)

, (22)

where
𝑎02 = −1 + 𝑔𝐴 + 𝑘𝑆 + 𝑘𝐴 + 𝑘𝑁 ,

𝑎01 = 𝑘𝑆 (𝑔𝐴 + 𝑘𝑁 ) − (1 − 𝑘𝐴)(𝑔𝐴 + 𝑘𝑁 + 𝑘𝑆 ),

𝑎00 = −
𝑔𝐴 𝑔𝑁 𝑔𝑆
1 + 𝛾

− 𝑘𝑆 (𝑔𝐴 + 𝑘𝑁 )(1 − 𝑘𝐴).
(23)

The polynomial 𝑝0(𝜆) admits four roots 𝜆0𝑖 , 𝑖 = 1,… , 4. We identify 𝜆01 =
−𝑘𝐼 < 0, whereas the sign of the other three eigenvalues is investigated
using the Routh–Hurwitz criterion. In particular, ∗

0 is asymptotically
inearly stable if and only if the roots of the third order polynomial in
22) have negative real part, i.e. if and only if

02, 𝑎00 > 0 and 𝑎02 𝑎01 − 𝑎00 > 0. (24)

ue to the non-negativity constraints on our parameters and the bound
n 𝑘𝐴 (5), we have 𝑎00 < 0, thereby violating the Routh–Hurwitz
riterion. Consequently, at least one of the three eigenvalues 𝜆02,3,4 has
ositive real part, and the equilibrium ∗

0 is unstable with respect to
patially homogeneous perturbations.

Concerning ∗
1 , we define two new parameters 𝜂, 𝜁 > 0 as

∶=
𝑟𝑃
𝑘𝐼
, 𝜁 ∶= −

𝑔𝐴 𝑔𝑁 𝑔𝑆
𝑘𝑆

𝑓 ′
(

1
𝑘𝐼

)

. (25)

s long as 𝜂, 𝜁 and all parameters in System (11) are (1) with respect
o 𝑘𝐴 ≪ 1, the characteristic polynomial associated to 𝐽 evaluated at
∗
1 is given by

1(𝜆) =
(

𝑘𝑆 + 𝜆
) (

𝑘𝐼 + 𝜆
)

(

𝑘𝑁 +
𝑟𝑃
𝑘𝐼

+ 𝜆
)

(1 + 𝛿 𝜆) + (𝑘𝐴). (26)

Due to the non-negativity assumption on the model parameters, 𝑝(𝜆) ad-
its four negative roots, which in turn implies that ∗

1 is a stable steady
tate w.r.t. homogeneous perturbations. The case where 𝜂 and/or 𝜁
re much larger than (1) is analysed in Appendix. The outcome of
his analysis is that all eigenvalues have negative real part as long as
< 1

𝑘𝐴
𝜁𝐻0 +(1), with the Hopf bifurcation threshold 𝜁𝐻0 given by (A.3).

Substituting 𝜂 and 𝜁 (25) yields (20). □

Corollary 1. The nontrivial steady state ∗
1 (8) is stable with respect to

spatially homogeneous perturbations for the parameter ranges in Table 2.

Proof. From (6), we see that −𝑓 ′
(

1
𝑘𝐼

)

→ 0 as 𝑟𝑇 ↓ 0. Moreover,

−𝑓 ′
(

1
𝑘𝐼

)

≈ 𝑟𝑇
𝛾 𝑒

− 𝑟𝑇
𝑘𝐼 → 0 as 𝑟𝑇 → ∞. The function 𝑟𝑇 ↦ −𝑓 ′

(

1
𝑘𝐼

)

as a unique maximum, attained at
(

𝑟𝑇
)

max = 𝑘𝐼
(

− log 𝛾 − 2
log 𝛾

+
(

(log 𝛾)−3
)

)

, with value − 𝑓 ′
(

1
𝑘𝐼

)

|

|

|

|𝑟𝑇 =(𝑟𝑇 )max

= 𝑘𝐼
4

(

log 𝛾 + 1
log 𝛾

)

+


(

(log 𝛾)−3
)

. Implementing the values of Table 2, we combine the
above with 𝑔𝐴𝑔𝑁 𝑔𝑆

𝑘𝑆
< 4 ⋅ 101 to obtain

𝑔𝐴 𝑔𝑁 𝑔𝑆
𝑘𝑆

𝑓 ′
(

1
𝑘𝐼

)

< 3.2 ⋅ 102.

rom the same Table, we infer

1 1
(

𝑘𝑁 + 𝑘𝐼 +
𝑟𝑃

)

(

1 + 𝛿𝑘𝐼
)

(

1 + 𝛿
(

𝑘𝑁 +
𝑟𝑃

))

> 3.0 ⋅ 102.
5

𝑘𝐴 𝛿3 𝑘𝐼 𝑘𝐼
We see that straightforward estimates do not suffice to conclude that
(20) is satisfied for the parameter ranges in Table 2; however, the
bounds are sufficiently close to conclude that the region in parameter
space for which ∗

1 is unstable with respect to spatially homogeneous
erturbations is relatively small. Furthermore, the value of 𝛿 is deter-
ined by the other system parameters through (9) and (18). Hence,
e numerically determine the maximal real part of the eigenvalues
f ∗

1 , by first determining the value of 𝐴∗ (cf. Proposition 1) and
hen calculating the eigenvalues of the associated Jacobian. For the
arameter ranges in Table 2, the maximum real part of the eigenvalues
s found to be −0.96 < 0. Hence, ∗

1 is stable with respect to spatially
omogeneous perturbations for the parameter ranges in Table 2. □

.2. Spatially heterogeneous perturbations

Since Turing patterns can emerge when steady states are stable with
espect to spatially homogeneous perturbations but lose their stability
hen considering spatially heterogeneous perturbations, in this section
e focus our attention only on the steady state ∗

1 (see Section 4.1).

roposition 3. The spatially homogeneous steady state ∗
1 (8) is linearly

table with respect to spatially heterogeneous perturbations, as long as

−
𝑔𝐴 𝑔𝑁 𝑔𝑆
𝑘𝑆 + ℎ2

𝑓 ′
(

1
𝑘𝐼 + ℎ2

)

< 1
𝑘𝐴

1
𝛿3

(

𝑘𝑁 + 𝑘𝐼 + ℎ2 +
𝑟𝑃

𝑘𝐼 + ℎ2

)

×
(

1 + 𝛿(𝑘𝐼 + ℎ2)
)

(

1 + 𝛿
(

𝑘𝑁 +
𝑟𝑃

𝑘𝐼 + ℎ2

))

+  (1) , (27)

or all ℎ ∈ R, assuming 0 < 𝑘𝐴 ≪ 1.

roof. We introduce the following non-uniform perturbations:

𝑆(𝑡, 𝑥, 𝑦) = 𝑆∗
1 + 𝑆̃(0) 𝑒𝑖𝑘𝑥+𝑖𝑙𝑦+𝜆𝑡,

(𝑡, 𝑥, 𝑦) = 𝑁∗
1 + 𝑁̃(0) 𝑒𝑖𝑘𝑥+𝑖𝑙𝑦+𝜆𝑡,

𝐴(𝑡, 𝑥, 𝑦) = 𝐴∗
1 + 𝐴̃(0) 𝑒

𝑖𝑘𝑥+𝑖𝑙𝑦+𝜆𝑡,

𝐼(𝑡, 𝑥, 𝑦) = 𝐼∗1 + 𝑇̃ (0) 𝑒𝑖𝑘𝑥+𝑖𝑙𝑦+𝜆𝑡,

(28)

here the (spatial) wave number of the perturbation is defined as
=
√

𝑘2 + 𝑙2 and 𝜆 represents the temporal growth. Linearising System
3) around ∗

1 , we obtain the following system for the perturbations 𝑆̃,
̃ , 𝐴̃, 𝑇̃ defined in (28):

𝜆𝑆̃ = 𝐴̃ −
(

𝑘𝑆 + ℎ2
)

𝑆̃,

𝑁̃ = 𝑔𝑁 𝑓 (𝐼∗1 ) 𝑆̃ − 𝑁̃
(

𝑔𝐴 (1 − 𝐴∗
1) + 𝑘𝑁 + 𝑟𝑃 𝐼∗1

)

+ 𝑔𝐴𝑁∗
1 𝐴̃

+ 𝑇̃
(

𝑔𝑆 𝑆
∗
1 𝑓

′(𝐼∗1 ) − 𝑟𝑃 𝑇̃
)

,

𝜆𝐴̃ = 𝐴̃
(

1 − 2𝐴∗
1 − 𝑘𝐴 − 𝑔𝐴 𝑔𝑁 𝑁∗

1
)

+ 𝑔𝐴 𝑔𝑁 𝑁̃
(

1 − 𝐴∗
1
)

,

𝜆𝑇̃ = 𝐴̃ −
(

𝑘𝐼 + 𝑑2 ℎ2
)

𝑇̃ .

(29)

ystem (29) can be written as an eigenvalue problem 𝐽ℎ 𝑈̃ = 𝜆 𝑈̃ , where
̃ =

(

𝑆̃, 𝑁̃, 𝐴̃, 𝑇̃
)

and (see Eq. (30) in Box I).
e observe that this eigenvalue problem can be made identical to

he eigenvalue problem for spatially homogeneous perturbations, as
tudied in the proof of Proposition 2, by replacing

𝑆 → 𝑘𝑆 + ℎ2, 𝑘𝐼 → 𝑘𝐼 + ℎ2. (31)

ence, the same stability criterion as in Proposition 2 applies, with the
ubstitution (31). □

orollary 2. The nontrivial steady state ∗
1 (8) cannot undergo a Turing

ifurcation for the parameter ranges in Table 2.

roof. From the proof of Proposition 2, we see that −𝑓 ′(𝑋) has a
nique maximum at a fixed value of 𝑟𝑇

𝑘𝐼
for 𝛾 fixed. The right hand

side of (27) is by construction independent of 𝑟𝑇 , since 𝑟𝑇 only occurs
in the derivative of 𝑓 (encoded by 𝜁), and the right hand side of (27)

is an expansion of a bound on 𝜁 .
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𝐽ℎ =

⎛

⎜

⎜

⎜

⎜

⎝

−𝑘𝑆 − ℎ2 0 1 0
𝑔𝑁 𝑓 (𝐼∗1 ) −𝑔𝐴 (1 − 𝐴∗

1) − 𝑘𝑁 − 𝑟𝑃 𝐼∗1 𝑔𝐴𝑁∗
1 𝑔𝑆 𝑆∗

1 𝑓
′(𝐼∗1 ) − 𝑟𝑃 𝑁

∗
1

0 𝑔𝐴 𝑔𝑁 (1 − 𝐴∗
1) 1 − 2𝐴∗

1 − 𝑘𝐴 − 𝑔𝐴 𝑔𝑁 𝑁∗
1 0

0 0 1 −𝑘𝐼 − 𝑑2 ℎ2

⎞

⎟

⎟

⎟

⎟

⎠

. (30)
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From Proposition 2, we know that ∗
1 is stable with respect to

patially homogeneous perturbations, which is equivalent to setting
= 0 in (27). We infer from Proposition 2 that (27) is satisfied for ℎ = 0

or all admissible parameter ranges in Table 2. Therefore, for given 𝑘𝐼
nd 𝛾, we may assume without loss of generality that 𝑟𝑇 is chosen such
hat −𝑓 ′

(

1
𝑘𝐼

)

is maximal, as
(

𝑟𝑇
)

max = 3.3 ⋅ 101 falls (well) within the
dmissible range of 𝑟𝑇 . When 𝑘𝐼 → 𝑘𝐼 + ℎ2 is increased, this argument
ontinues to hold until 𝑟𝑇 reaches its maximal admissible value; when
is increased beyond this point, −𝑓 ′

(

1
𝑘𝐼

)

is smaller than its unique
maximal value. Combining this argument with 𝑔𝐴𝑔𝑁 𝑔𝑆

𝑘𝑆+ℎ2
< 𝑔𝐴𝑔𝑁 𝑔𝑆

𝑘𝑆
, we

see that

−
𝑔𝐴 𝑔𝑁 𝑔𝑆
𝑘𝑆 + ℎ2

𝑓 ′
(

1
𝑘𝐼 + ℎ2

)

≤ −
𝑔𝐴 𝑔𝑁 𝑔𝑆
𝑘𝑆

𝑓 ′
(

1
𝑘𝐼

)

for all ℎ ∈ R.
The right hand side of (27) is non-monotonic in ℎ. However, a lower

ound is found analogously to the proof of Corollary 1 by setting 𝑟𝑃 = 0
and minimising the other parameters. Since all components of the right
hand side of (27) are increasing functions of ℎ2, the value of the right
hand side of (27) is bounded from below by its value for ℎ = 0. The
above arguments imply that (27) therefore remains satisfied for ℎ > 0.

We conclude that no Turing bifurcation can take place for the
parameter ranges in Table 2. □

5. Travelling waves

As shown in Section 4, for the parameter ranges in Table 2, the
nontrivial steady state ∗

1 is spectrally stable (Corollary 1), whereas the
trivial steady state ∗

0 is unstable (Proposition 2). In order to investigate
the existence of potential travelling waves solutions of System (1)
from the numerical viewpoint, we hence focus our attention on a
sufficiently large, one-dimensional domain with Neumann boundary
conditions (mimicking the dynamics on an unbounded domain). With
this setup, numerical simulations show the emergence of travelling
wave solutions invading the unstable steady state ∗

0 for a broad range
of parameter values (see an example in Fig. 3). These simulations
suggest the existence of a travelling wave with fixed wave speed
in System (1) on an unbounded one-dimensional spatial domain. In
this section, we investigate the existence of such a travelling wave,
and provide arguments for its existence in a large part of parameter
space. Moreover, we show that the numerically measured wave speed
coincides with the so-called linear spreading speed, to a high degree
of accuracy. This suggests that the numerically observed front can be
classified as a pulled front, that is, where the linear spreading of small
perturbations pulls the front into the linearly unstable bare soil steady
state [35].

To prepare the analysis, we introduce a co-moving frame via the
variable 𝜉 = 𝑥 − 𝑐 𝑡, where 𝑐 represents the wave speed. System (3)
hence becomes

𝑆′ = 𝑢, (32a)

𝑢′ = −𝑐 𝑢 − 𝐴 + 𝑘𝑆 𝑆, (32b)
′ = −1

𝑐
(

𝑔𝑆 𝑆 𝑓 (𝐼) −𝑁
(

𝑘𝑁 + 𝑟𝑃 𝐼 + 𝑔𝐴 (1 − 𝐴)
))

, (32c)

𝐴′ = −1 (

𝐴 (1 − 𝑘 − 𝐴) + 𝑔 𝑔 𝑁 (1 − 𝐴)
)

, (32d)
6

𝑐 𝐴 𝐴 𝑁
𝐼 ′ = 𝑣
𝑑
, (32e)

𝑣′ = 1
𝑑

(

− 𝑐
𝑑
𝑣 − 𝐴 + 𝑘𝐼 𝐼

)

, (32f)

hich can also be expressed in the compact form 𝑧′ = 𝐹 (𝑧), where
𝑧 = (𝑆, 𝑢, 𝑁, 𝐴, 𝐼, 𝑣). Here we follow the common practice to scale
both 𝐼 and its derivative 𝑣 with the square root of the scaled diffusivity
𝑑2. However, note that all statements in this section would continue to
hold if the choice 𝐼 ′ = 𝑣 would have been made.

System (32) admits the two equilibria

𝑧∗0 ∶= (0, 0, 0, 0, 0, 0) , (33a)
∗
1 ∶=

(

𝑆∗
1 , 0, 𝑁

∗
1 , 𝐴

∗
1 , 𝐼

∗
1 , 0

)

, (33b)

here the components of 𝑧∗1 coincide with those defined in Eq. (8). The
quilibria 𝑧∗0 and 𝑧∗1 are the representation of the spatially homogeneous
teady states ∗

0 (7) and ∗
1 (8) in the travelling wave framework.

In this context, a right-moving front (with 𝑐 > 0) invading the
rivial steady state ∗

0 coincides with an heteroclinic connection from
∗
1 to 𝑧∗0. Such an orbit must therefore lie in the intersection of the
nstable manifold of 𝑧∗1 (denoted by 𝑢(𝑧∗1)) and the stable manifold of
∗
0 (denoted by 𝑠(𝑧∗0)). To investigate the potential existence of right-
oving fronts we hence need to derive the parametric conditions such

hat
𝑢(𝑧∗1) ∩𝑠(𝑧∗0) ≠ ∅, (34)

hich follow directly from the investigation of the dimensions of the
table and unstable manifolds of 𝑧∗0 and 𝑧∗1.

The main point of our analysis consists in studying the characteristic
olynomial associated to System (32), which can be expressed as

(𝜆) = det
(

𝜆 I −𝐷𝐹 (𝑧∗)
)

. (35)

he roots of 𝑃 (𝜆) evaluated at 𝑧∗𝑖 , 𝑖 = 0, 1 will provide information about
he dimension of the stable and unstable manifolds of these equilibria,
ndicating whether Eq. (34) can hold.

.1. Local analysis of 𝑧∗0

heorem 1. The dimensions of the stable and unstable subspaces of 𝑧∗0
denoted as 𝐸𝑠(𝑧∗0) and 𝐸

𝑢(𝑧∗0), respectively) satisfy

dim
(

𝐸𝑠(𝑧∗0)
)

= dim
(

𝐸𝑢(𝑧∗0)
)

= 3. (36)

roof. The characteristic polynomial of System (32) at 𝑧∗0 is given by

0(𝜆) =
1

𝑐2𝑑2
𝑃1(𝜆)𝑃2(𝜆), (37)

with

𝑃1(𝜆) ∶= 𝜆 (𝑐 + 𝑑2𝜆) − 𝑘𝐼 (38)

and

𝑃2(𝜆) ∶=
𝑔𝐴 𝑔𝑁 𝑔𝑆
1 + 𝛾

+ (1 − 𝑘𝐴 + 𝑐 𝜆) (𝑔𝐴 + 𝑘𝑁 − 𝑐 𝜆) (𝑘𝑆 − 𝜆(𝑐 + 𝜆)). (39)

The quadratic function 𝑃1(𝜆) is convex and negative at 𝜆 = 0; therefore
it admits two real roots of opposite sign, namely 𝜆− < 0 < 𝜆+
1 1 . To study
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Fig. 3. Numerical profiles for (a) 𝑆, (b) 𝑁 , (c) 𝐴, and (d) 𝐼 obtained by simulating Eq. (3) for 𝑡 ∈ [0, 87.5]. Profiles are shown a 𝑡 distance 𝛥𝑡 = 17.5 for 𝑔𝑆 = 0.132, 𝑘𝑆 = 1.32,
𝑔𝑁 = 20, 𝑟𝑇 = 4080, 𝑘𝑁 = 2, 𝑟𝑃 = 480, 𝑔𝐴 = 0.8, 𝑑 = 0.913, and other parameters values as in Table 2. The intensity of the shading (from light grey to black) increases with 𝑡. Note
that for these parameter values, the value of 𝑁∗

1 (17) is numerically indistinguishable from zero.
the roots of 𝑃2(𝜆), we write

𝑃2(𝜆) = 𝑐2𝜆4 + 𝑐
(

𝑐2 − 𝛼
)

𝜆3 −
(

𝛽 + 𝑐2 𝑘𝑆 + 𝑐2 𝛼
)

𝜆2 + 𝑐 (𝛼 𝑘𝑆 − 𝛽) 𝜆

+
𝑔𝐴 𝑔𝑁 𝑔𝑆
1 + 𝛽

+ 𝛽 𝑘𝑆 , (40)

where 𝛼 = 𝑔𝐴+𝑘𝐴+𝑘𝑁 −1 and 𝛽 =
(

𝑔𝐴 + 𝑘𝑁
) (

1 − 𝑘𝐴
)

; note that 𝛽 > 0.
The sign of the roots of 𝑃2(𝜆) can be investigated applying the

Routh–Hurwitz criterion, by rewriting Eq. (40) as

𝑃2(𝜆) = 𝑐2
(

𝜆4 + 𝑎3 𝜆3 + 𝑎2 𝜆2 + 𝑎1 𝜆 + 𝑎0
)

, (41)

where

𝑎3 =
1
𝑐
(𝑐2 − 𝛼),

𝑎2 = − 1
𝑐2

(𝛽 + 𝑐2𝛼 + 𝑐2𝑘𝑆 ),

𝑎1 =
1
𝑐
(𝛼 𝑘𝑆 − 𝛽),

𝑎0 =
1
𝑐2

(

𝑔𝐴 𝑔𝑁 𝑔𝑆
1 + 𝛽

+ 𝛽 𝑘𝑆

)

.

(42)

Applying Descartes’ rule of signs, which states that the number of
roots with negative (resp. positive) real part corresponds to the number
of sign changes (resp. permanences) on the coefficients of 𝑃2(𝜆), and
taking into account the fact that 𝑎0 > 0, we observe that the conditions
𝑎3 > 0, 𝑎2 > 0, and 𝑎1 > 0 cannot be verified simultaneously, i.e. there
is at least one sign variation and one permanence. Hence, the fourth
order polynomial 𝑃2(𝜆) admits at least one root with positive and one
with negative real part, denoted by 𝜆+2 and 𝜆−2 .

Moreover, there are no purely imaginary roots of 𝑃2(𝜆) since 𝑃2(𝑖 𝜔)
is a real polynomial if and only if 𝜔 = ±

√

𝑎1
𝑎3

and 𝑎1, 𝑎3 have the same
sign only for 𝑎2 < 0, which implies

𝑃 (𝑖 𝜔) = 𝑐2
(

𝜔4 − 𝑎 𝜔2 + 𝑎
)

> 0.
7

2 2 0
Consequently, we have (considering 𝑃2(0) = 𝑐2𝑎0 ≠ 0) that the centre
eigenspace 𝐸𝑐 (𝑧∗0) = ∅, from which it follows that the phase space
can be decomposed into the direct sum of the stable and unstable
eigenspaces 𝐸𝑠(𝑧∗0) and 𝐸𝑢(𝑧∗0) respectively, i.e. 𝐸𝑠(𝑧∗0)⊕𝐸𝑢(𝑧∗0) = R6.

Besides the two roots with opposite real signs 𝜆+2 and 𝜆−2 derived
above, we need to check the sign of the other two roots of 𝑃2(𝜆), which
we define as 𝜆̂2 and 𝜆̃2. We analyse all possible scenarios:

• If 𝜆+2 , 𝜆
−
2 ∈ C, then 𝜆̂2 and 𝜆̃2 must be equal to the complex

conjugates of 𝜆±2 , i.e. 𝜆̂2 = 𝜆+2 and 𝜆̃2 = 𝜆−2 .
• If 𝜆+2 ∈ R, then 𝜆̂2 must be positive and real. This is due to the

fact that 𝑃2(0) = 𝑐2𝑎0 > 0 and 𝑃2(𝜆) ∼ 𝑐2𝜆4 as 𝜆 → ∞; therefore,
the graph of 𝑃2(𝜆) must have an even number of crossings with
the positive horizontal axis.

• Analogously, if 𝜆−2 ∈ R, then 𝜆̃2 must be negative and real. This
is due to the fact that 𝑃2(0) = 𝑐2𝑎0 > 0 and 𝑃2(𝜆) ∼ 𝑐2𝜆4 as
𝜆→ −∞; therefore, the graph of 𝑃2(𝜆) must have an even amount
of crossings with the negative real axis.

To summarise, we conclude that 𝑃0(𝜆) admits a total of three eigen-
values with positive real part (namely 𝜆+1 , 𝜆+2 and 𝜆̂2), and three with
negative real part (namely 𝜆−1 , 𝜆−2 and 𝜆̃2), which leads to the claim of
the theorem. □

5.2. Local analysis of 𝑧∗1

Theorem 2. Assume 0 < 𝑘𝐴 ≪ 1 is sufficiently small. For 𝑐2 <
𝑑2

(

𝑘𝑁 + 𝜂 + 1
𝛿

)

, the dimensions of the stable and unstable eigenspace of 𝑧∗1
(corresponding to 𝐸𝑠(𝑧∗1) and 𝐸

𝑢(𝑧∗1), respectively) satisfy dim
(

𝐸𝑠(𝑧∗1)
)

= 2
and dim

(

𝐸𝑢(𝑧∗)
)

= 4. Only when 𝑐2 > 𝑑2
(

𝑘 + 𝜂 + 1
)

there exists a
1 𝑁 𝛿
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(𝑘−1𝐴 )-value of 𝜁 = 𝜁𝐻 such that, if 𝜁 > 𝜁𝐻 , dim
(

𝐸𝑠(𝑧∗1)
)

= 4 and
im

(

𝐸𝑢(𝑧∗1)
)

= 2.

roof. The characteristic polynomial of System (32) at 𝑧∗1, in agree-
ent with Eq. (35), is defined as

1(𝜆) ∶= det
(

𝜆 I −𝐷𝐹 (𝑧∗1)
)

.

ur analysis is based on the observation made at the end of Section 3
hat, since 𝑘𝐴 ≪ 1, we can treat 𝑘𝐴 as an asymptotically small per-
urbation parameter to investigate the roots of complicated algebraic
xpressions such as (35).

We write 𝐴∗ = 1 − 𝛿 𝑘𝐴 with 0 < 𝛿 < 1, cf. (18). Recalling the
definition of 𝜂 and 𝜁 in (25), we expand 𝑃1(𝜆) for small 𝑘𝐴 and consider
the four regimes

I. 𝜂, 𝜁 ∈ (1),
II. 𝜂 ≫ 1, 𝜁 ∈ (1),

III. 𝜂 ∈ (1), 𝜁 ≫ 1,
IV. 𝜂, 𝜁 ≫ 1.

Regime I: 𝜂, 𝜁 ∈ (1). In this regime, the characteristic polynomial can
be expressed as

𝑃 𝐼1 (𝜆) ∶=
1

𝑐2𝑑2
(

𝑃1(𝜆) 𝑄̃1(𝜆)
(

𝑐 𝜆 − 1
𝛿

)

(

𝑐 𝜆 − 𝑘𝑁 − 𝜂
)

)

+ (𝑘𝐴), (43)

here

̃ 1(𝜆) ∶= 𝜆 (𝑐 + 𝜆) − 𝑘𝑆 (44)

nd 𝑃1(𝜆) as defined in (38). In the proof of Theorem 2, it is shown that
he roots of 𝑃1(𝜆) are real and have opposite sign, i.e. 𝜆−1 < 0 < 𝜆+1 . The
ame statement holds for the roots of 𝑄̃1(𝜆), since 𝑄̃1(𝜆) is convex and
̃ 1(0) = −𝑘𝑆 < 0; we denote the roots of 𝑄̃1(𝜆) as 𝜇−1 < 0 < 𝜇+1 . The
wo remaining roots of the leading order expression of 𝑃 𝐼1 (𝜆) (43) are
iven by 1

𝑐 𝛿 and 𝑘𝑁+𝜂
𝑐 , which are both real and positive. All roots of

he leading order expression of 𝑃 𝐼1 (𝜆) are nondegenerate and bounded
way from zero, and therefore perturb regularly for 𝑘𝐴 ≪ 1. Therefore,
im

(

𝐸𝑠(𝑧∗1)
)

= 2 and dim
(

𝐸𝑢(𝑧∗1)
)

= 4.

Regime II: 𝜂 ≫ 1, 𝜁 ∈ (1). The (𝑘𝐴) terms in the expansion of 𝑃 𝐼1
43) do not depend on 𝜂. Hence, the roots of 𝑃1 in regime II are equal
o those in regime I. The only difference is that now the eigenvalue
𝑘𝑁+𝜂
𝑐 = 𝜂

𝑐 + (1), but this does not affect its sign, which remains
ositive. Therefore, as in Regime I, we obtain dim

(

𝐸𝑠(𝑧∗1)
)

= 2 and
dim

(

𝐸𝑢(𝑧∗1)
)

= 4.

Regime III: 𝜂 ∈ (1), 𝜁 ≫ 1. In this regime, the characteristic polynomial
is to leading order given by

𝑃 𝐼𝐼𝐼1 (𝜆) ∶=
𝑄̃1(𝜆)
𝑐2𝑑2

(

𝑄̃2(𝜆) − 𝛿 𝜁 𝑘𝐴
)

+ (𝑘𝐴)(𝜁0), (45)

where

𝑄̃2(𝜆) ∶= 𝑃1(𝜆)
(

𝑐 𝜆 − 1
𝛿

)

(

𝑐 𝜆 − 𝑘𝑁 − 𝜂
)

(46)

and 𝑄̃1(𝜆) as defined in (44). We therefore need to split our investiga-
tion into further subcases depending on the magnitude of 𝜁 𝑘𝐴.

(i) 𝜁 𝑘𝐴 ≪ 1: here 𝑃 𝐼𝐼𝐼1 (𝜆) is a regular perturbation of 𝑃 𝐼1 (𝜆);
we obtain same result on the sign of the eigenvalues, that is,
dim

(

𝐸𝑠(𝑧∗1)
)

= 2 and dim
(

𝐸𝑢(𝑧∗1)
)

= 4.
(ii) 𝜁 𝑘𝐴 = (1): we write 𝜁 = 𝜁1

𝑘𝐴
with 𝜁1 ≥ 0. Substituting this

assumption into Eq. (45) leads to

𝑃 𝐼𝐼𝐼1 (𝜆) =
𝑄̃1(𝜆)
𝑐2𝑑2

(

𝑄̃2(𝜆) − 𝛿 𝜁1
)

+ (𝑘𝐴). (47)

When 𝜁1 = 0, we have that 𝑃 𝐼𝐼𝐼1 (𝜆) = 𝑃 𝐼1 (𝜆), hence the sign of the
eigenvalues is identical. When 𝜁1 > 0, since 𝑄̃2(0) = − 𝑘𝐼 (𝑘𝑁+𝜂)

𝛿 <
0 and 𝑄̃2(𝜆) ∼ 𝑐2𝑑2𝜆4 as 𝜆 → ±∞, we have that 𝑄̃2(𝜆)− 𝛿 𝜁1 must
admit at least one positive and one negative real root. For 𝜁
8

1 o
sufficiently small, the roots of 𝑃 𝐼𝐼𝐼1 (𝜆) are a regular perturbation
of the roots of 𝑃 𝐼1 (𝜆), which implies that the two remaining roots
of 𝑄̃2(𝜆) are real and positive. As 𝜁1 is increased, this root pair
undergoes a (stabilising) Hopf bifurcation for sufficiently large
values of 𝜁1, namely for 𝜁1 = 𝜁𝐻1 where

𝜁𝐻1 =
(𝛿 𝜂 + 𝛿 𝑘𝑁 + 1)

(

𝑑2 − 𝑐2𝛿 (𝛿 𝑘𝐼 + 1)
) (

𝑑2 (𝜂 + 𝑘𝑁 )2 − 𝑐2 (𝜂 + 𝑘𝑁 + 𝑘𝐼 )
)

𝛿2
(

𝑐2𝛿 − 𝑑2 (𝛿 𝜂 + 𝛿 𝑘𝑁 + 1)
)2

.

(48)

In other words, the real part of the complex conjugate roots of
𝑄̃2(𝜆) − 𝛿 𝜁1 is positive for 𝜁1 < 𝜁𝐻1 , vanishes for 𝜁1 = 𝜁𝐻1 , and is
negative for 𝜁1 > 𝜁𝐻1 . The expression for 𝜁𝐻1 in (48) is derived by
solving 𝑄̃2(𝑖 𝜔)−𝛿 𝜁1 = 0 and imposing that the imaginary part of
the resulting polynomial is zero. This gives an expression for 𝜔
which can be substituted back into 𝑄̃2(𝑖 𝜔)−𝛿 𝜁1 = 0; then we can
subsequently solve this equation for 𝜁1 to obtain 𝜁𝐻1 . Imposing
the feasibility conditions 𝜔2 > 0 and 𝜁1 > 0 we obtain that a
Hopf bifurcation occurs if and only if

𝑐 > 𝑑, 0 < 𝜂 < 𝑐2

𝑑2
−1, 0 < 𝑘𝑁 < 𝑐2

𝑑2
−1−𝜂, 1

𝑐2
𝑑2

− 𝑘𝑁 − 𝜂
< 𝛿 < 1.

(49)

In particular, the above conditions hold if and only if 𝑐2 −

𝑑2
(

𝑘𝑁 + 𝜂 + 1
𝛿

)

> 0.

(iii) 𝜁 𝑘𝐴 ≫ 1: In this case, the equation 𝑄̃2(𝜆) − 𝛿 𝜁 𝑘𝐴 = 0 implies
that |𝜆|≫ 1. To leading order, we thus have

𝑐2𝑑2𝜆4 = 𝛿 𝜁 𝑘𝐴, (50)

which is solved by two real and two purely complex roots,
namely

𝜆 = ±
(

𝛿 𝜁 𝑘𝐴
𝑐2𝑑2

)1∕4
, 𝜆 = ± 𝑖

(

𝛿 𝜁 𝑘𝐴
𝑐2𝑑2

)1∕4
.

Since the complex roots are purely imaginary to leading order,
these need further unfolding to determine the sign of their real
part. Including higher order terms ((𝜆3) and (𝑘2𝐴), respec-
tively) in Eq. (50) leads to the following refinement of the
complex roots

𝜆 =
−𝑐2𝛿 + 𝑑2

(

1 + 𝛿(𝑘𝑁 + 𝜂)
)

4 𝑐 𝑑2𝛿
± 𝑖

(

𝛿 𝜁 𝑘𝐴
𝑐2𝑑2

)1∕4
(

1 − 𝑘𝐴
)1∕4 . (51)

We have two possibilities:

• If 𝑐2 − 𝑑2
(

𝑘𝑁 + 𝜂 + 1
𝛿

)

< 0, the real part of the roots in

(51) is positive. Therefore, taking into account the sign of
the other roots of 𝑃𝐼𝐼𝐼 (𝜆), we find dim

(

𝐸𝑠(𝑧∗1)
)

= 2 and
dim

(

𝐸𝑢(𝑧∗1)
)

= 4.
• If 𝑐2 − 𝑑2

(

𝑘𝑁 + 𝜂 + 1
𝛿

)

> 0, the real part of the roots
in (51) is negative, and we find dim

(

𝐸𝑠(𝑧∗1)
)

= 4 and
dim

(

𝐸𝑢(𝑧∗1)
)

= 2. Note that, comparing to the case 𝜁𝑘𝐴 ≪
1, this implies that somewhere between 𝜁𝑘𝐴 ≪ 1 and
𝜁𝑘𝐴 ≫ 1, a sign change must have occurred. This is
precisely the Hopf bifurcation found at 𝜁𝑘𝐴 = (1), to wit,
at 𝜁 =

𝜁𝐻0
𝑘𝐴

(48).

Regime IV: 𝜂, 𝜁 ≫ 1. To leading order, the characteristic polynomial in
this regime coincides with the one in Regime III, i.e.

𝑃 𝐼𝑉1 (𝜆) ∶=
𝑄̃1(𝜆)
𝑐2𝑑2

(

𝑄̃2(𝜆) − 𝛿 𝜁 𝑘𝐴
)

+ (𝑘𝐴)(𝜁0) + (𝑘𝐴)(𝜂). (52)

s in Regime III, we need to consider different relations between the
𝐼𝑉
rders of 𝜂 and 𝜁 𝑘𝐴 to determine the roots of 𝑃1 (𝜆).
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(i) 𝜂 ≫ 𝜁 𝑘𝐴: In this case, 𝑃 𝐼𝑉1 (𝜆) is a regular perturbation of 𝑃 𝐼1 (𝜆);
its roots are then given by 𝜆±1 , 𝜇±1 , 1

𝑐 𝛿 , and 𝜂
𝑐 + (1).

(ii) 𝜂 ∼ 𝜁 𝑘𝐴: Here we can express 𝜁 = 𝜁1
𝜂
𝑘𝐴

, with 𝜁0 = (1). To
leading order, we obtain

𝑃 𝐼𝑉1 (𝜆) ∶=
𝑄̃1(𝜆)
𝑐2𝑑2

(

𝑄̃2(𝜆) − 𝛿 𝜁1 𝜂
)

+ (𝑘𝐴)(𝜂). (53)

The roots of (53) are studied by distinguishing two regimes.
Focusing on |𝜆| ≫ 1; in this case, 𝑃 𝐼𝑉1 (𝜆) ∼ 𝜆6 − 𝜂

𝑐 𝜆
5, we obtain

that one root is, to leading order, given by 𝜂
𝑐 . The other five

roots are studied by investigating 𝑃 𝐼𝑉1 (𝜆) to leading order in 𝜂
for 𝜆 = (1), i.e.

𝑃 𝐼𝑉1 (𝜆) = −
𝑄̃1(𝜆)
𝑐2𝑑2

(

𝑄̃3(𝜆) + 𝛿 𝜁1
)

𝜂 + (𝑘𝐴)(𝜂), (54)

where

𝑄̃3(𝜆) ∶= 𝑃1(𝜆)
(

𝑐 𝜆 − 1
𝛿

)

. (55)

Two roots are to leading order given by the roots of 𝑄̃1(𝜆).
For the other three, we see that, since 𝑄̃3(0) = 𝑘𝐼

𝛿 > 0 and
𝑄̃3(𝜆) ∼ 𝑐 𝑑2𝜆3 as 𝜆 → ±∞, the polynomial 𝑄̃3(𝜆) + 𝛿 𝜁1 always
admits at least one negative real root. As for the other two, we
observe that no Hopf bifurcation occurs in this case (since the
only solution to 𝑄̃3(𝑖 𝜔) + 𝛿 𝜁1 = 0 is given by 𝜔 = 0). The sign of
their real part hence remains the same as 𝜁1 is varied, and since
we know that for 𝜁1 = 0 the other two roots of 𝑄̃3(𝑖 𝜔) + 𝛿 𝜁1 are
real and positive, they remain positive for all 𝜁1.

(iii) 𝜂 ≪ 𝜁 𝑘𝐴: In this case, the characteristic polynomial is given by

𝑃 𝐼𝑉1 (𝜆) ∶= −
𝑄̃1(𝜆)
𝑐2𝑑2

(

𝑄̃3(𝜆) 𝜂 + 𝛿 𝜁 𝑘𝐴
)

+ (𝑘𝐴)(𝜂). (56)

Two roots are to leading order given by the roots of 𝑄̃1(𝜆).
Solving 𝑄̃3(𝜆) 𝜂 + 𝛿 𝜁 𝑘𝐴 = 0 hence requires |𝜆| ≫ 1. Expanding
for large 𝜆 yields

𝑄̃3(𝜆) 𝜂 + 𝛿 𝜁 𝑘𝐴 = 𝑐2 𝑑2𝜆4 − 𝜂 𝑐 𝑑2𝜆3 − 𝛿 𝜁 𝑘𝐴 + (𝜆2). (57)

Note that, as −𝛿 𝜁 𝑘𝐴 < 0 and 𝑐2 𝑑2𝜆4−𝜂 𝑐 𝑑2𝜆3−𝛿 𝜁 𝑘𝐴 ∼ 𝑐2𝑑2𝜆4 as
𝜆 → ±∞, the leading order polynomial (57) has at least two real
roots of opposite sign. To further determine the roots of (57), we
consider four possible balances:

• If 𝑐2 𝑑2𝜆4 ∼ 𝜂 𝑐 𝑑2𝜆3 ≫ 𝛿 𝜁 𝑘𝐴, Eq. (57) reduces to leading
order to 𝑐2 𝑑2𝜆4−𝜂 𝑐 𝑑2𝜆3 = 0; this equation admits one real
positive root 𝜆 = 𝜂

𝑐 and one zero root with multiplicity
three, that needs further unfolding. For 𝜆 ∼ 0, Eq. (57)
admits the three roots

𝜈1 = −
(

𝛿 𝜁 𝑘𝐴
𝑐 𝑑2𝜂

)1∕3
, 𝜈2 = (−1)1∕3

(

𝛿 𝜁 𝑘𝐴
𝑐 𝑑2𝜂

)1∕3
,

𝜈3 = (−1)2∕3
(

𝛿 𝜁 𝑘𝐴
𝑐 𝑑2𝜂

)1∕3
.

(58)

The roots 𝜈1 and 𝜈3 have negative real part, whereas 𝜈2 has
positive real part.

• If 𝜂 𝑐 𝑑2𝜆3 ∼ 𝛿 𝜁 𝑘𝐴 ≫ 𝑐2 𝑑2𝜆4, to leading order Eq. (57)
admits the roots in (58), whose sign has been analysed in
the previous balance point. The fourth root of (57) is real
and negative.

• If 𝑐2 𝑑2𝜆4 ∼ 𝛿 𝜁 𝑘𝐴 ≫ 𝜂 𝑐 𝑑2𝜆3, we have two real and two
purely complex roots, namely

𝜆 = ±
(

𝛿 𝜁 𝑘𝐴
𝑐2𝑑2

)1∕4
, 𝜆 = ± 𝑖

(

𝛿 𝜁 𝑘𝐴
𝑐2𝑑2

)1∕4
.

The sign of the real part of the complex roots is obtained
by considering the higher order term 𝜂 𝑐 𝑑2𝜆3, from which
we get

𝜆 =
𝜂

± 𝑖
(

𝛿 𝜁 𝑘𝐴
)1∕4

.
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4 𝑐 𝑐2𝑑2
In this case we hence have one root with negative real part
and three roots with positive real part.

• If 𝑐2 𝑑2𝜆4 ∼ 𝜂 𝑐 𝑑2𝜆3 ∼ 𝛿 𝜁 𝑘𝐴, we can define 𝜆 ∶= 𝜆0 𝜂 and
𝜁 𝑘𝐴 ∶= 𝜁2 𝜂4. Eq. (57) thus becomes

𝑄̃4(𝜆) − 𝛿 𝜁0 = 0, (59)

where 𝑄̃4(𝜆) ∶= 𝑐2 𝑑2𝜆40 − 𝑐 𝑑2𝜆30. This function satisfies
𝑄̃4(0) = 0 and 𝑄̃4(𝜆) → ∞ as 𝜆 → ±∞, therefore Eq. (59)
admits two real roots of opposite sign for any 𝜁2 > 0. The
two other complex roots have positive real part equal to
(−1)1∕3

(

𝛿 𝜁2
𝑐 𝑑2

)1∕3
to leading order; since no Hopf bifurca-

tions are possible, the sign of the real part of the complex
roots remains positive for any 𝜁2 > 0. Hence also in this
case we have one root with negative real part and three
roots with positive real part.

Consequently, considering all possible balances we find for Regime IV
that dim

(

𝐸𝑠(𝑧∗1)
)

= 2 and dim
(

𝐸𝑢(𝑧∗1)
)

= 4.

onclusion. We observe that 𝑐2 < 𝑑2
(

𝑘𝑁 + 𝜂 + 1
𝛿

)

is automatically

satisfied when 𝜂 ≪ 1, that is, in Regime II and Regime IV. Com-
bining the results from Regimes I–IV, we see that dim

(

𝐸𝑠(𝑧∗1)
)

= 2
nd dim

(

𝐸𝑢(𝑧∗1)
)

= 4 when 𝑐2 < 𝑑2
(

𝑘𝑁 + 𝜂 + 1
𝛿

)

. Only when 𝑐2 −

𝑑2
(

𝑘𝑁 + 𝜂 + 1
𝛿

)

> 0 there exists a (𝑘−1𝐴 )-value of 𝜁 = 𝜁𝐻 such that,
f 𝜁 > 𝜁𝐻 , dim

(

𝐸𝑠(𝑧∗1)
)

= 4 and dim
(

𝐸𝑢(𝑧∗1)
)

= 2. □

.3. Existence of a travelling wave

In phase space, a travelling wave solution corresponds to a hete-
oclinic orbit connecting 𝑧∗0 and 𝑧∗1, thus lying in the intersection of
he unstable manifold of one equilibrium and the stable manifold of
he other. We use the Local Stable Manifold Theorem to infer from
heorem 1 that the dimensions of the stable and unstable manifolds
f 𝑧∗0 are

im
(

𝑠(𝑧∗0)
)

= dim
(

𝑢(𝑧∗0)
)

= 3.

ikewise, we infer from Theorem 2 that the dimensions of the stable
nd unstable manifolds of 𝑧∗1 are either

im
(

𝑠(𝑧∗1)
)

= 2, dim
(

𝑢(𝑧∗1)
)

= 4,

rovided 𝑐2 < 𝑑2
(

𝑘𝑁 + 𝜂 + 1
𝛿

)

, or

dim
(

𝑠(𝑧∗1)
)

= 4, dim
(

𝑢(𝑧∗1)
)

= 2,

rovided 𝑐2 > 𝑑2
(

𝑘𝑁 + 𝜂 + 1
𝛿

)

and 𝜁 (25) is sufficiently large, in

articular 𝜁 >
𝜁𝐻1
𝑘𝐴

+ (1) (48).

Recall that the aim of this section is to obtain analytical insight into
umerically observed travelling fronts that invade the trivial steady
tate, which for a right-moving front with positive speed 𝑐 corresponds
o a heteroclinic connection from 𝑧∗1 to 𝑧

∗
0. Therefore, we take 𝑐2 <

2
(

𝑘𝑁 + 𝜂 + 1
𝛿

)

, for reasons to be explained momentarily. Observing
that codim

(

𝑢(𝑧∗0) ∩𝑠(𝑧∗1)
)

= 7, whereas codim
(

𝑢(𝑧∗1) ∩𝑠(𝑧∗0)
)

= 5, and taking into account the fact that the phase space is six-
dimensional, we conclude that generically 𝑢(𝑧∗0) ∩ 𝑠(𝑧∗1) = ∅ and
dim

(

𝑢(𝑧∗1) ∩𝑠(𝑧∗0)
)

= 1 (if non-empty). In the latter case, this
ntersection is generically transversal and hence persists when 𝑐 is
erturbed. This leads us to the following Corollary:

orollary 3. We generically expect a one-parameter family of heteroclinic
onnections from 𝑧∗1 to 𝑧

∗
0, parametrised by the wave speed 𝑐, with 𝑐

2 <
2
(

𝑘𝑁 + 𝜂 + 1
𝛿

)

. Moreover, we expect this family to exist in an open
region of parameter space. Every member of this family corresponds to a
right-moving front invading the trivial steady state ∗ (7).
0
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Fig. 4. Heteroclinic orbits connecting 𝑧∗1 (circle) to 𝑧∗0 (diamond) corresponding to the numerical travelling wave solution described in Fig. 3 in (𝐴, 𝑁, 𝐼)-space for different values
of 𝑟𝑇 . Together with the ones fixed in Table 2, the parameter values are 𝑔𝑆 = 0.132, 𝑘𝑆 = 1.32, 𝑔𝑁 = 20, 𝑘𝑁 = 2, 𝑟𝑃 = 480, 𝑔𝐴 = 0.8, 𝑑 = 0.913, and 𝑟𝑇 as in the legend.
Note that the above arguments do not constitute a proof of the
existence of a heteroclinic connection from 𝑧∗1 to 𝑧∗0, as the intersection
𝑢(𝑧∗1) ∩ 𝑠(𝑧∗0) might be empty. However, in the upcoming section,
we identify a parameter range for which such a heteroclinic connection
exists (Theorem 3).

Remark 1. The same reasoning can be applied to generically expect
the existence of a heteroclinic connection from 𝑧∗0 to 𝑧∗1, for sufficiently
large wave speeds 𝑐 > 𝑑

√

𝑘𝑁 + 𝜂 + 1
𝛿 and sufficiently large values of 𝜁 .

However, for all 𝑐 > 𝑑
√

𝑘𝑁 + 𝜂 + 1
𝛿 , we have that 𝜁𝐻1 > 𝜁𝐻0 (A.3), and 𝜁

does not exceed 𝜁𝐻0 for the parameter ranges in Table 2, cf. Corollary 1.
For this reason, we do not investigate this anomalous wave any further
in the current paper.

The analytical investigation carried out above is confirmed by plot-
ting the numerical solution shown in Fig. 3 in the (𝐴, 𝑁, 𝐼)-space; this
in fact reveals the presence of the predicted heteroclinic connection
from 𝑧∗1 to 𝑧∗0 (see Fig. 4).

5.4. Properties of the wave profile

In this section, we derive generic properties satisfied by a right-
moving travelling front solution to System (3), which is equivalent to a
heteroclinic connection from 𝑧∗1 to 𝑧∗0 in System (32). These properties
can be used to explore the connection between such a travelling wave
and the Janzen–Connell distribution.

Lemma 1 (Monotonicity of 𝑆 and 𝐼). Let (𝑆(𝜉), 𝑢(𝜉), 𝑁(𝜉), 𝐴(𝜉), 𝐼(𝜉),
𝑣(𝜉)) be a solution to System (32) representing a right-moving front travel-
ling with speed 𝑐 > 0. If 𝐴′(𝜉) < 0 for all 𝜉, then 𝑆′(𝜉) < 0 and 𝐼 ′(𝜉) < 0
for all 𝜉.

Proof. We first consider 𝑆′(𝜉). The proof strategy is based on deriving
an explicit solution for 𝑆(𝜉) by means of a Green’s function, which in
turn allows us to obtain an explicit solution for 𝑆′(𝜉) as a function of
𝐴′(𝜉) using integration by parts.

We write Eqs. (32a)–(32b) as a single second order equation for 𝑆,
yielding

𝑆′′ + 𝑐 𝑆′ + 𝐴 − 𝑘𝑆 𝑆 = 0.

The boundary conditions

lim 𝑆(𝜉) = 𝑆∗, lim 𝑆(𝜉) = 0,
10

𝜉→−∞ 1 𝜉→+∞
uniquely determine the solution

𝑆(𝜉) = 𝑒𝜇
−
1 𝜉

∫

𝜉

−∞
𝐴(𝜁 ) 𝑒−𝜇

−
1 𝜁

𝜇+1 − 𝜇−1
d𝜁 + 𝑒𝜇

+
1 𝜉

∫

+∞

𝜉
𝐴(𝜁 ) 𝑒−𝜇

+
1 𝜁

𝜇+1 − 𝜇−1
d𝜁, (60)

with

𝜇±1 = 1
2

(

−𝑐 ±
√

𝑐2 + 4 𝑘𝑆

)

(61)

the roots of 𝑄̃1(𝜆) (44). Consequently, we have that

𝑆′(𝜉) =𝜇−1 𝑒
𝜇−1 𝜉

∫

𝜉

−∞
𝐴(𝜁 ) 𝑒−𝜇

−
1 𝜁

𝜇+1 − 𝜇−1
d𝜁 + 𝜇+1 𝑒

𝜇+1 𝜉
∫

∞

𝜉
𝐴(𝜁 ) 𝑒−𝜇

+
1 𝜁

𝜇+1 − 𝜇−1
d𝜁

= − 𝑒𝜇
−
1 𝜉

[

𝐴(𝜁 ) 𝑒−𝜇
−
1 𝜁

𝜇+1 − 𝜇−1

]𝜉

−∞

+ 𝑒𝜇
−
1 𝜉

∫

𝜉

−∞
𝐴′(𝜁 ) 𝑒−𝜇

−
1 𝜁

𝜇+1 − 𝜇−1
d𝜁

− 𝑒𝜇
+
1 𝜉

[

𝐴(𝜁 ) 𝑒−𝜇
−
1 𝜁

𝜇+1 − 𝜇−1

]∞

𝜉

+ 𝑒𝜇
+
1 𝜉

∫

∞

𝜉
𝐴′(𝜁 ) 𝑒−𝜇

+
1 𝜁

𝜇+1 − 𝜇−1
d𝜁

= 𝑒𝜇
−
1 𝜉

∫

𝜉

−∞
𝐴′(𝜁 ) 𝑒−𝜇

−
1 𝜁

𝜇+1 − 𝜇−1
d𝜁 + 𝑒𝜇

+
1 𝜉

∫

∞

𝜉
𝐴′(𝜁 ) 𝑒−𝜇

+
1 𝜁

𝜇+1 − 𝜇−1
d𝜁,

(62)

which is negative if 𝐴′(𝜉) < 0 for all 𝜉 ∈ R. The proof of 𝐼 ′(𝜉) < 0 is
analogous, with 𝜆±1 , the roots of 𝑃1(𝜆) (38), replacing 𝜇±1 . □

Lemma 2 (Monotonicity of 𝐴). Let (𝑆(𝜉), 𝑢(𝜉), 𝑁(𝜉), 𝐴(𝜉), 𝐼(𝜉), 𝑣(𝜉)) be
a solution to System (32) representing a right-moving front travelling with
speed 𝑐 > 0. Then 𝐴(𝜉) < 1 for all 𝜉. Moreover, there exists a 𝜉0 ∈ R such
that

• 𝐴(𝜉) > 1 − 𝑘𝐴 for all 𝜉 < 𝜉0, and
• 𝐴(𝜉) < 1 − 𝑘𝐴 and 𝐴′(𝜉) < 0 for all 𝜉 ≥ 𝜉0.

Proof. From Eq. (32d) together with the positivity assumptions on 𝑁
and the parameters 𝑔𝐴, 𝑔𝑁 , it follows that when 𝐴 ≥ 1, then 𝐴′ > 0.
Therefore, if solution crosses the threshold 𝐴 = 1 for a certain 𝜉 = 𝜉1, it
will remain above 𝐴 = 1 for all 𝜉 > 𝜉1. This contradicts the assumption
on the travelling wave solution, that 𝐴(𝜉) → 0 as 𝜉 → ∞.

Again from Eq. (32d) together with the positivity assumptions on
𝑁 and the parameters 𝑔𝐴, 𝑔𝑁 , it follows that when 𝐴 ≤ 1 − 𝑘𝐴, then
𝐴′ < 0. Therefore, if solution crosses the threshold 𝐴 = 1 − 𝑘𝐴 for a
certain 𝜉 = 𝜉0, it will remain below 𝐴 = 1 − 𝑘𝐴 for all 𝜉 > 𝜉0. Since the
travelling wave solution has 𝐴(𝜉) → 0 as 𝜉 → ∞ and 𝐴(𝜉) → 𝐴 > 1−𝑘
∗ 𝐴
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Fig. 5. Schematic representation of the establishment function 𝑓 (𝐼) as defined
in Eq. (6), for large values of 𝑟𝑇 .

as 𝜉 → −∞, it follows that the solution crosses the threshold 1 − 𝑘𝐴 for
some 𝜉0. Once the solution has crossed this threshold, it will continue
to decrease (strictly monotonically) to zero. □

Remark 2. When 1 − 𝑘𝐴 < 𝐴 < 1, no monotonicity of 𝐴 is generically
guaranteed. By redefining 𝐴 = 1 − 𝑘𝐴 𝑎 and linearising System (32)
around the nontrivial equilibrium 𝐴∗ (corresponding to 𝑎 = 𝛿), we have
seen in Section 5.2 that in our travelling wave framework there are
four unstable eigenvalues, hence leading to four associated eigenvectors
with a nonzero 𝑎-component as follows:

𝑎(𝜉) = 𝛿 + ℎ1 𝑒
1
𝑐 𝛿 𝜉 + ℎ2 𝑒

𝑘𝑁+𝜂
𝑐 𝜉 + ℎ3 𝑒

𝜆+1 𝜉 + ℎ4 𝑒
𝜇+1 𝜉 .

Therefore, depending on the signs of the constants ℎ𝑖, 𝑖 = 1,… , 4, 𝐴 can
admit several local minima and maxima in a neighbourhood of 𝐴∗.

Lemma’s 1 and 2 provide information on the monotonicity of 𝑆,
𝐼 and 𝐴. However, for the seedling component 𝑁 , one cannot derive
monotonicity properties in full generality, due to the nature of the
nonlinearity of Eq. (32c).

To mitigate this problem, we consider the establishment function
𝑓 (𝐼) (6) for large values of 𝑟𝑇 . We observe that, for sufficiently large
𝑇 , 𝑓 (𝐼) behaves like a switch function (see also Fig. 5):

(𝐼) ≈

{ 1
1+𝛾 if 𝑟𝑇 > 0, 𝐼 ≤ 𝐼𝑠 or 𝑟𝑇 = 0, any 𝐼
0 if 𝑟𝑇 > 0, 𝐼 > 𝐼𝑠,

(63)

here 𝐼𝑠 corresponds to the inflection point of 𝑓 given by

𝑠 =
1
𝑟𝑇

log
(

1
𝛾

)

. (64)

Theorem 3 (JC for Strong Toxicity and Slow Seed Growth). Let 𝑟𝑇 be
sufficiently large and 𝑔𝑆 sufficiently small. Then, there exists a heteroclinic
orbit in (32) from 𝑧∗1 to 𝑧

∗
0 for which the 𝑁-profile has a unique maximum,

and the 𝑆-, 𝐴- and 𝐼-profiles are strictly monotonic.

roof. For asymptotically large 𝑟𝑇 , the establishment function 𝑓 (𝐼) (6)
is exponentially close to 0 for 𝐼 > 𝐼𝑠 + 𝐼1 and exponentially close to 1
for 𝐼 < 𝐼𝑠 − 𝐼1, with 𝐼1 = (𝑟𝑇 )𝛼−1, for any 0 < 𝛼 < 1. Moreover, both 𝐼𝑠
(64) and 𝐼1 are asymptotically close to zero.

For 𝑓 (𝐼) ≡ 0, the hyperplane {𝑁 = 0} is invariant under the flow
of (32). Moreover, for this choice of 𝑓 , the nontrivial equilibrium
𝑧∗1 lies on {𝑁 = 0}, and is given by

(

1−𝑘𝐴
𝑘𝑆

, 0, 0, 1 − 𝑘𝐴,
1−𝑘𝐴
𝑘𝐼

)

(8). By
Lemma’s 1 and 2, we see that 𝑆, 𝐼 and 𝐴 are strictly monotonically
decreasing on the invariant hyperplane {𝑁 = 0}. Since {𝑁 = 0} is
normally hyperbolic and 𝑓 (𝐼) is asymptotically small for all 𝐼 > 𝐼𝑠+𝐼1,
the half-hyperplane 𝑃0 ∶=

{

𝑁 = 0, 𝐼 > 𝐼𝑠 + 𝐼1
}

perturbs to a locally
invariant codimension-1 manifold 𝑃 for the full system (32) [36]. The
11

i

unstable manifold of 𝑧∗1 of the flow on 𝑃 , that we denote by 𝑢
𝑃 (𝑧

∗
1),

is 3-dimensional. Since 𝑃 is normally repelling in the 𝑁-direction,
we can conclude that in a neighbourhood of 𝑃 , the 4-dimensional
unstable manifold of 𝑧∗1 in the full system (32) is foliated as 𝑢(𝑧∗1) =

𝑢 (𝑢
𝑃 (𝑧

∗
1)
)

.
The 𝐴-dynamics on 𝑃 are to exponential order in 1

𝑟𝑇
given by 𝐴′ +

1
𝑐𝐴

(

1 − 𝑘𝐴 − 𝐴
)

= 0, which yield 𝐴(𝜉) = 𝐴(0)(1−𝑘𝐴)
[

𝐴0 + (1 − 𝑘𝐴 − 𝐴0)

𝑒
1−𝑘𝐴
𝑐 𝜉

]−1
. From the (linear) 𝑆- and 𝐼-dynamics on 𝑃 , which depend

linearly on 𝐴, we see that if 𝐼 → 𝐼𝑠 + 𝐼1 = 
(

(

𝑟𝑇
)𝛼−1

)

, then both

𝑆 → 𝑆1 = 
(

(

𝑟𝑇
)𝛼−1

)

and 𝐴 → 𝐴1 = 
(

(

𝑟𝑇
)𝛼−1

)

; the same holds for

the derivatives 𝑢 and 𝑣. Moreover, in a sufficiently small neighbourhood
of 𝑃 , the normal 𝑁-dynamics are to leading order linear, and 𝑁(𝜉) =
𝑁1𝑒

𝑘𝑁+𝑔𝐴
𝑐 𝜉 for 𝑁1 sufficiently small.

We investigate the intersection of 𝑢(𝑧∗1) and 𝑠(𝑧∗0) in a neigh-
ourhood of 𝑃 , and in a neighbourhood of 𝐼 = 𝐼𝑠. Close to both

and 𝐼𝑠, the 𝑆-, 𝑢-, 𝐴-, 𝐼-, and 𝑣-components of orbits in 𝑢(𝑧∗1)
re 

(

(

𝑟𝑇
)𝛼−1

)

, while 𝑁 is sufficiently small by assumption. Hence,
n order for 𝑠(𝑧∗0) to intersect 𝑢(𝑧∗1) in this neighbourhood, all
omponents of 𝑠(𝑧∗0) must be close to zero. It follows that the if
ntersection of 𝑠(𝑧∗0) and 𝑢(𝑧∗1) lies close to 𝑃 and 𝐼𝑠, it has to be
lose to the origin 𝑧∗0. Close to the origin, the dynamics on 𝑠(𝑧∗0)
re linear, and 𝑠(𝑧∗0) is close to 𝐸𝑠(𝑧∗0). Hence, for 𝑟𝑇 sufficiently
arge, transversal intersections of 𝐸𝑠(𝑧∗0) and 𝑢(𝑧∗1) perturb regularly
o transversal intersections of 𝑠(𝑧∗0) and 𝑢(𝑧∗1).

Now, let 𝑔𝑆 ≪ 1. For 𝑔𝑆 = 0, the flow of (32) is equal to the flow
f (32) under the assumption 𝑓 (𝐼) ≡ 0. Hence, the hyperplane {𝑁 = 0}
s invariant when 𝑔𝑆 = 0. Moreover, the trivial equilibrium 𝑧∗0 lies on
𝑁 = 0}. Solving the equations for 𝐴, 𝑆 and 𝐼 on {𝑁 = 0} yields the
ollowing unique heteroclinic orbit from 𝑧∗1 to 𝑧∗0 on {𝑁 = 0}:

ℎ(𝜉) = 𝐴(0)(1 − 𝑘𝐴)
[

𝐴0 + (1 − 𝑘𝐴 − 𝐴0)𝑒
1−𝑘𝐴
𝑐 𝜉

]−1
,

𝑆ℎ(𝜉) = 𝑒𝜇
−
1 𝜉

∫

𝜉

−∞
𝐴(𝜁 ) 𝑒−𝜇

−
1 𝜁

𝜇+1 − 𝜇−1
d𝜁 + 𝑒𝜇

+
1 𝜉

∫

+∞

𝜉
𝐴(𝜁 ) 𝑒−𝜇

+
1 𝜁

𝜇+1 − 𝜇−1
d𝜁,

𝐼ℎ(𝜉) = 𝑒𝜆
−
1 𝜉

∫

𝜉

−∞
𝐴(𝜁 ) 𝑒−𝜆

−
1 𝜁

𝜆+1 − 𝜆−1
d𝜁 + 𝑒𝜆

+
1 𝜉

∫

+∞

𝜉
𝐴(𝜁 ) 𝑒−𝜆

+
1 𝜁

𝜆+1 − 𝜆−1
d𝜁,

cf. Lemma 1. Thus, for 𝑔𝑆 = 0, 𝑠(𝑧∗0) and 𝑢(𝑧∗1) intersect transversally
n the hyperplane {𝑁 = 0}, and this intersection is one-dimensional.

We investigate how this intersection perturbs for 0 < 𝑔𝑆 ≪ 1. As
he term 𝑔𝑆 𝑆 𝑓 (𝐼) is a regular perturbation of system (32), we know
hat both the hyperplane {𝑁 = 0} and the stable/unstable manifolds of
he equilibria 𝑧∗0,1 perturb regularly in 𝑔𝑆 . To determine the 𝑁-profile,
e consider the unstable eigenvalues 𝜆−1 , 𝜆−2 and 𝜆̃2 of 𝑧∗0 (cf. the proof
f Theorem 1), which for 0 < 𝑔𝑠 ≪ 1 can be determined explicitly:
e find 𝜆−1 = − 1

2𝑑2

(

−𝑐 −
√

𝑐2 + 4𝑑2𝑘𝐼
)

(38), 𝜆−2 = 𝜇−1 + (𝑔𝑆 ) (61)
and 𝜆̃2 = 1−𝑘𝐴

𝑐 + (𝑔𝑆 ), cf. (37)–(39). The associated eigenvectors can
e determined by an expansion in powers of 𝑔𝑆 . To leading order,

the 𝑁-component of the eigenvectors is zero, due to the fact that the
intersection of 𝑠(𝑧∗0) and 𝑢(𝑧∗1) lies in the {𝑁 = 0} hyperplane for
𝑆 = 0. The first order correction of the eigenvectors associated to 𝜆−2
nd 𝜆̃2 yields a nonzero 𝑁-component, to wit 𝑔𝑆

1+𝛾
1

𝑔𝐴+𝑘𝑁−𝑐𝜇−1
for the 𝜆−2 -

igenvector and 𝑔𝑆
1+𝛾

1
𝑔𝐴+𝑘𝑁+1−𝑘𝐴

1−𝑘𝐴+𝑘𝐼−𝑑2
(1−𝑘𝐴 )2

𝑐2

1−𝑘𝐴+𝑘𝑆−
(1−𝑘𝐴 )2

𝑐2

for the 𝜆̃2-eigenvector.

Hence, to first order in 𝑔𝑆 , the 𝑁-profile is exponentially decreasing as
𝜉 → ∞, along these eigenvectors.

Now, define 𝜉∗ through 𝐼ℎ(𝜉∗) = 𝐼𝑠 (64). Note that 𝜉∗ is well-defined
ince 𝐼ℎ is strictly monotonically decreasing when 𝐼ℎ is sufficiently
mall (Lemma 1). 𝐼 is to exponential accuracy in 1

𝑟𝑇
approximated by

𝐼ℎ on 𝑃 , (at least) up to 𝐼 = 𝐼𝑠 + 𝐼1. In addition, 𝐼 is to leading order
n 𝑔 approximated by the linear dynamics on 𝐸𝑠(𝑧∗), (at least) up to
𝑆 0
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𝐼𝑠 − 𝐼1. The change of 𝐼 over the interval
(

𝐼𝑠 − 𝐼1, 𝐼𝑠 + 𝐼1
)

is small,
nd since system (32) is regularly perturbed for small 𝑔𝑆 and large
𝑟𝑇 , this implies that the change in all other components over the 𝜉-
interval associated to the change from 𝐼 = 𝐼𝑠 + 𝐼1 to 𝐼 = 𝐼𝑠 − 𝐼1
is small as well. Hence, to leading order, we can match the linear
dynamics on 𝐸𝑠(𝑧∗0) to the dynamics of 𝑢 (𝑢

𝑃 (𝑧
∗
1)
)

at 𝜉 = 𝜉∗. The
transversality of the intersection of 𝑠(𝑧∗0) and 𝑢(𝑧∗1) ensures that
this matching procedure can be carried out for every component. The
result for the 𝑁-profile is a single peak, to leading order in 𝑔𝑆 up
to 𝜉 = 𝜉∗ determined by the exponential increase with rate 𝑘𝑁+𝑔𝐴

𝑐
along the unstable fibres of 𝑢 (𝑢

𝑃 (𝑧
∗
1)
)

, and from 𝜉 = 𝜉∗ onwards
determined by the exponential decrease along 𝐸𝑠(𝑧∗0), with exponential
rates given by the stable eigenvalues 𝜆−2 and 𝜆̃2. □

Remark 3. While the condition 𝑟𝑇 ≫ 1 in Theorem 3 is natural
(sufficiently strong toxicity feedback induces a JC distribution), the
second condition 𝑔𝑆 ≪ 1 seems less so. Indeed, the necessity for
this condition is purely technical, as it allows us to obtain analytical
expressions for the stable eigenvalues and eigenvectors of 𝑧∗0 (39).
However, considering the feasible parameter ranges for 𝑔𝑆 , and in
particular for the product 𝑔𝐴𝑔𝑁𝑔𝑆 , we infer from Table 2 that 𝑔𝐴𝑔𝑁𝑔𝑆
s small for a significant subset of parameter space — that is, for most
alues of 𝑔𝐴 and 𝑔𝑁 , the condition that 𝑔𝑆 is sufficiently small is not
estrictive.

.5. Wave speed

The analysis of front propagation in excitable media has been a
opic of interest for several decades. In his seminal review paper, Van
aarloos [35] used the characterisation pulled front for those travelling
ronts whose speed is determined by the instability of the spatially
omogeneous steady state that is being invaded.

In this section, we analytically determine this ‘linear’ speed a pulled
ront would have, by a linear analysis near ∗

0 . To determine whether
he numerically observed fronts can indeed be classified as ‘pulled’, we
hen compare 𝑐∗ with the wave speed computed numerically for the
merging travelling wave solutions.

heorem 4. The linear wave speed 𝑐∗ of a pulled front solution to Eq. (3)
s given by

∗ =
𝑑𝜔3
𝑑𝜅

(𝜅∗) (65)

here 𝜔3(𝜅) ∈ C is a purely imaginary solution to
𝑔𝐴 𝑔𝑁 𝑔𝑆
1 + 𝛾

+ (1 − 𝑘𝐴 + 𝑖 𝜔) (𝑖 𝜔 − 𝑔𝐴 − 𝑘𝑁 ) (𝑖 𝜔 − 𝑘𝑆 − 𝜅2) = 0 (66)

and 𝜅∗ = 𝑖 𝛽+∗ with 𝛽+∗ > 0 solution to

𝑑𝜔3
𝑑𝜅

(𝑖 𝛽∗) =
Im(𝜔3(𝑖 𝛽∗))

𝛽∗
. (67)

Proof. In order to compute the linear wave speed, we analyse the
dispersion relation of Fourier modes of the linearisation of Eq. (3) at
∗
0 . Introducing the diffusion matrix

 ∶=

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 𝑑2

⎞

⎟

⎟

⎟

⎟

⎠

, (68)

the dispersion relation 𝜔 = 𝜔(𝜅) is given by the solution to

det
(

𝑖 𝜔 − 𝜅2 + 𝐽 |∗0

)

= 0, (69)

where 𝜔 ∈ C represents the (generalised) frequency, 𝜅 ∈ C the
(generalised) wave number, and 𝐽 | ∗ is the Jacobian (21) evaluated at
12

0
𝑆

∗
0 . In our case, Eq. (69) takes the form of the fourth order polynomial

in 𝜔
(

𝑖 𝜔 − 𝑑2 𝜅2 − 𝑘𝐼
)

(

𝑔𝐴 𝑔𝑁 𝑔𝑆
1 + 𝛾

+ (1 − 𝑘𝐴 + 𝑖 𝜔) (𝑖 𝜔 − 𝑔𝐴 − 𝑘𝑁 )

× (𝑖 𝜔 − 𝑘𝑆 − 𝜅2)
)

= 0. (70)

or sake of simplicity, Eq. (70) can be equivalently expressed as 𝜑(𝜔, 𝜅)⋅
(𝜔, 𝜅) = 0, where

𝜑(𝜔, 𝜅) ∶=
(

𝑖 𝜔 − 𝑑2 𝜅2 − 𝑘𝐼
)

,

(𝜔, 𝜅) ∶=
(

𝑔𝐴 𝑔𝑁 𝑔𝑆
1 + 𝛾

+ (1 − 𝑘𝐴 + 𝑖 𝜔) (𝑖 𝜔 − 𝑔𝐴 − 𝑘𝑁 ) (𝑖 𝜔 − 𝑘𝑆 − 𝜅2)
)

.

(71)

iven a solution 𝜔(𝜅) to Eq. (70), the linear wave speed 𝑐∗ ∈ R and the
inear spreading point 𝜅∗ associated to 𝜔(𝜅) are given by the solutions

to the equations

𝑐∗ = 𝑑𝜔
𝑑𝜅

(𝜅∗) =
Im(𝜔(𝜅∗))
Im(𝜅∗)

, (72)

see [35,37].
Among the four roots 𝜔𝑖(𝜅), 𝑖 = 1,… , 4 satisfying Eq. (70) we

define 𝜔1(𝜅) as the unique root of 𝜑(𝜔, 𝜅) and 𝜔𝑖(𝜅), 𝑖 = 2, 3, 4 as
the three roots of the cubic polynomial 𝜓(𝜔, 𝜅). Since we have that
1 = −𝑖 (𝑑2 𝜅2 + 𝑘𝐼 ), we exclude this root from further analysis as 𝜔1

does not admit solutions to (72).
In our analysis of the other three roots 𝜔𝑖(𝜅), 𝑖 = 2, 3, 4 we introduce

the additional assumption (based on our numerical findings, see below)
that both 𝜔 and 𝜅 are purely imaginary, as the fronts we observe are
monotonic, i.e. non-oscillatory, both in space and time, near the trivial
steady state ∗

0 . In particular, spatial oscillations around ∗
0 would

violate the fundamental model assumption that all model components
are non-negative. Hence, we write 𝜅 = 𝑖 𝛽 with 𝛽 ∈ R. We note
hat in this case Eq. (70) is explicitly solvable, however the analytical
xpression for 𝑐∗ (function of 𝑔𝐴 𝑔𝑁 𝑔𝑆 , 𝑔𝐴 + 𝑘𝑁 , and 𝑘𝑆 ) is a root of
fifth order polynomial, making it hardly accessible (and hence is

ot provided here). As observed numerically, two out of three roots
2(𝜅) and 𝜔4(𝜅) are not purely imaginary for every value of 𝛽, and

are therefore further discarded from our investigation. The unique root
𝜔3(𝜅) is finally used to derive the value of 𝜅∗ = 𝑖 𝛽∗ such that Eq. (67)
holds, i.e.
𝑑𝜔3
𝑑𝜅

(𝑖 𝛽∗) =
Im(𝜔3(𝑖 𝛽∗))

𝛽∗
.

his equation admits two solutions 𝛽±∗ with opposite signs; however,
s we are interested in right-moving fronts, we only retain the positive
olution 𝛽+∗ > 0. We thus finally obtain the linear wave speed as

∗ =
𝑑𝜔3
𝑑𝜅

(𝑖 𝛽+∗ ) =
Im(𝜔3(𝑖 𝛽+∗ ))

𝛽+∗
. □

As we do not provide an explicit analytical expression for 𝜔3(𝜅), in
Fig. 6 we illustrate a typical plot of the functions 𝑑𝜔3

𝑑𝜅 (𝑖 𝛽) and Im(𝜔3(𝑖 𝛽))
𝛽

with respect to 𝛽 for the following fixed parameter values (within the
ranges reported in Table 2):

𝑔𝐴 = 0.8, 𝑔𝑁 = 20, 𝛾 = 10−5, 𝑘𝐴 = 0.04, 𝑘𝑁 = 2, 𝑘𝑆 = 1.32.

(73)

.5.1. Numerical investigation
In order to further validate the existence of pulled front solutions

ravelling with speed 𝑐∗ as described in Theorem 4, we perform nu-
erical simulations of System (1) on a one-dimensional domain of size
̂ = 350 m discretised with a spatial grid of 𝛿𝑥 = 0.1 m and 𝑚 = 3500
rid cells including Neumann boundary conditions and the following
nitial conditions

̂(𝑥, 0) = 𝑆̂ (𝑥) = 𝑒−
5(𝐿̂−2𝑥)2

2𝐿̂ , 𝑁̂(𝑥, 0) = 𝐴̂(𝑥, 0) = 𝐼(𝑥, 0) = 0, (74)
0



Mathematical Biosciences 368 (2024) 109128A. Iuorio et al.

p
t
p

w
i
o
o
d
w

t
t

W
s
w

f
n
g
s

a

o
p
t
n

𝑐

w

𝜃

T
t
5
s
w
v
i

o
n

m

o
r
𝑑

6

m
t
a
a
t
i
c
o

s
h
t
i
t
a
i
s
f
t
a
l
s
s
w
u
r
p

a
a
p
d
w
o
f
t
e
t
e
o
b
i
b

Fig. 6. Plot of the functions 𝑑𝜔3

𝑑𝜅
(𝑖 𝛽) (blue curve) and Im(𝜔3 (𝑖 𝛽))

𝛽
(yellow curve) for

arameter values as in Eq. (73) and 𝑔𝑆 = 0.132. The intersection points between these
wo curves occurring at 𝛽 = 𝛽±∗ are indicated by the two black points 𝑃 ±. For these
arameter values we observe that 𝛽±∗ ≈ ±1.42 and therefore 𝑃 ± = (±1.42,±1.08).

here the dimensional parameters correspond to the ones described
n Table 1 The total simulation time is ̂ = 500 years with timesteps
f 𝛿𝑡 = 0.001 years. Following [38], the numerical scheme used in
ur simulations is based on a forward Euler integration of the finite-
ifference equations obtained by discretising the diffusion operator
ith no-flux (i.e. Neumann) boundary conditions.

The dimensional parameter values fixed in this simulation (other
han the ones already fixed in Table 1) are (for unit measures we refer
o Table 1)

𝑘̂𝑆 = 0.33, 𝑔̂𝑁 = 5, 𝑟̂𝑇 = 34, 𝑘̂𝑁 = 0.5, 𝑟̂𝑃 = 1, 𝑔̂𝐴 = 0.2,

𝑑𝐼 = 0.5.
(75)

e then investigate two aspects, namely the dependency of the wave
peed on the parameter 𝑔̂𝑆 (fixing 𝑑𝑆 = 0.6) and the dependency of the
ave speed on 𝑑𝑆 (fixing 𝑔̂𝑆 = 0.033).

A comparison between the values of the linear wave speed obtained
rom the analytical investigation described in Theorem 4 and the
umerical speed computed by means of simulations w.r.t. 𝑔𝑆 and 𝑑 is
iven in Fig. 7. To obtain it, we first calculate the dimensional wave
peed 𝑐∗ as follows, and then derive the nondimensional wave speed

s 𝑐∗ =
√

𝑐𝐴
𝑑𝑆
𝑐∗. The dimensional numerical wave speed 𝑐∗ in both

scenarios described above – identified by 𝑐𝑔̂𝑆∗ and 𝑐𝑑𝑆∗ , respectively – is
btained by tracking at each time 𝑡𝑗 = 𝑗 ⋅𝛿𝑡 the location of the inflection
oint in the 𝐴̂ profile – defined as 𝑥̂𝑗 – and subsequently calculating
he mean of the difference quotient over a specific range of iterations,
amely

𝑐𝑔̂𝑆∗ ∶= 1
479

498
∑

𝑗=20

𝑥̂𝑗+1 − 𝑥̂𝑗
𝑡𝑗+1 − 𝑡𝑗

,

̂𝑑𝑆∗ ∶= 1
𝑛(𝑑𝑆 )

𝜃(𝑑𝑆 )
∑

𝑗=50

𝑥̂𝑗+1 − 𝑥̂𝑗
𝑡𝑗+1 − 𝑡𝑗

,

(76)

here

(𝑑𝑆 ) ∶= −38.76 𝑑3𝑆 + 266.946 𝑑2𝑆 − 619.173 𝑑𝑆 + 662.244. (77)

he function 𝜃(𝑑𝑆 ) has been derived by interpolating end times in
he simulations such that a wave travels with constant shape for 𝑗 =
0,… , 𝜃(𝑑𝑆 ). This is due to the fact that the range of 𝑑𝑆 over which the
imulation runs has a strong impact on the speed of the travelling wave,
hich reaches the boundary of the spatial domain sooner for higher
alues of 𝑑𝑆 . The number of iterations 𝑛(𝑑𝑆 ) over which the speed 𝑐𝑑𝑆∗
s calculated hence varies with 𝑑 . Since, on the other hand, variations
13

𝑆

f 𝑔̂𝑆 do not exhibit the same properties, the interval over which the
umerical wave speed is calculated is here considered as constant.

By converting the numerical wave speed in Eq. (76) in its nondi-
ensional form 𝑐𝑔𝑆∗ and 𝑐𝑑∗ , we finally compare it with the analytical

values obtained in Theorem 4 (see Fig. 7). We note that the strong
dependency of the dimensional wave speed 𝑐𝑑𝑆∗ on 𝑑𝑆 does not imply
that the same effect should be valid for the nondimensional speed,
which in fact remains approximately constant as 𝑑 varies as shown in
Fig. 7(b).

We finally observe that the numerical results confirm (up to (10−2)
due to numerical precision) the analytical predictions; such accuracy
increases by increasing the size of the domain (by considering larger
values of 𝑚) and thus increasing simulation times as well (see Fig. 8).
In order to achieve even higher accuracy, the size of the domain
should increase with 𝑑𝑆 since (as discussed above) for higher values
f the seed dispersal coefficient the boundary of the spatial domain is
eached sooner by the travelling wave (we note that larger values of
𝑆̂ correspond to lower values of its nondimensional counterpart 𝑑).

. Conclusion

In this work, we have introduced a novel reaction–diffusion-ODE
odel for (ecologically relevant) transient patterns observed in na-

ure, known as Janzen–Connell distributions. The functional responses
dopted in the model, as well as the parameter ranges chosen for the
nalysis, are based on theoretical assumptions supported by experimen-
al findings [14,39–41]. We have included two prominent mechanisms
n negative plant–soil feedback, namely growth inhibition and in-
reased mortality, in order to show their key role in the emergence
f such transient patterns.

The analytical challenges provided by the complex structure of
ome functional responses, in particular the germination function, were
ere overcome by exploiting the small scale of certain parameters in
he system. This feature has also played a key role in our thorough
nvestigation of travelling wave solutions, i.e. the theoretical represen-
ation of the JC distributions we aimed to describe. Our linear stability
nalysis allowed us to rule out the existence of Turing bifurcations and
nfer the existence of travelling wave solutions for parameter values
panning within ranges of ecological feasibility exhibiting the typical
eatures of JC distributions. Moreover, numerical simulations suggested
hat the travelling wave solutions admitted by our model in a large
rea of parameter space correspond to pulled fronts, ‘‘pulled’’ by the
inear spreading of small perturbations into the linearly unstable bare
oil steady state. The analytical expression for the linear spreading
peed was then compared with the numerical speed of one-dimensional
aves travelling on a sufficiently large spatial domain, mimicking the
nbounded domain of the analytical investigation; the high accuracy
evealed by this comparison strongly supports our hypothesis on the
ulled nature of the constructed fronts.

Previous ecological studies have highlighted the possibility of neg-
tive plant–soil feedback driving spatially regular pattern formation,
ssociated with Turing instabilities of mean field states [42,43]. These
revious studies, however, did not consider tree life-stage structure,
espite its importance for the mechanisms at play [1,2]. Interestingly,
e found that in our stage-structured model, there was no possibility
f a Turing bifurcation providing the onset of spatially regular pattern
ormation. Our results highlight that future ecological studies may need
o consider the effect of plant–soil feedbacks in different tree life stages
xplicitly, in order to infer their consequences for emergent spatio-
emporal dynamics. Furthermore, our results are in line with previous
cological model studies showing that a plant invasion travelling wave
nly constitutes a ‘pushed’ front under strong positive plant–soil feed-
ack [44]. In the cases of negative plant–soil feedback considered
n this study, only ‘pulled’ fronts emerge. Whether this strong link
etween Janzen–Connell distributions and ‘pulled’ invasion fronts is
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Fig. 7. Comparison between the nondimensional wave speed obtained analytically (solid line) and from numerical simulations (dashed line) as a function of (a) 𝑔𝑆 with 𝑑 = 0.913
and (b) 𝑑 with 𝑔𝑆 = 0.132. The other parameter values are set as in Eq. (73) together with 𝑟𝑇 = 4080, 𝑟𝑃 = 480. We note that these values are obtained by plugging the dimensional
values in Eq. (75) into Eq. (4). The range of 𝑔𝑆 (a) and 𝑑 (b) correspond with the ranges of these parameters given in Table 2.
Fig. 8. Comparison between the wave speed obtained analytically (solid black line)
and from numerical simulations (dashed lined) with the same parameter values as in
Fig. 7 for different domain sizes 𝐿̂ = 𝑚⋅𝛿𝑥 with 𝑚 = 3500 (blue), 𝑚 = 4000 (orange), and
𝑚 = 5000 (green). We note that the accuracy of the numerical wave speed increases
with 𝑚.

robust to variations in model framework is an interesting avenue for
further ecological studies.

As the presented model exhibits a rich and complex structure,
several interesting research directions can be further considered. Few
examples which we plan to undertake in the future include a deeper
investigation of different scenarios corresponding to different combi-
nations of growth inhibition/increased mortality intensity (represented
by high/low values of 𝑟𝑇 and 𝑟𝑃 , respectively). Moreover, in order to
increase the impact of our model beyond the theoretical sphere, we
aim to focus on more realistic ecological scenarios where different trees
interact in a limited space (i.e. a bounded domain) and, as a further
step, extend our model to a multi-species framework.
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Appendix. Linear stability of ∗
𝟏 with respect to spatially homoge-

neous perturbations for 𝜼, 𝜻 ≠ (𝟏)

Based on the values reported in Table 2, and observing that the
maximum of

|

|

|

|

𝑓 ′
(

1
𝑘𝐼

)

|

|

|

|

is realised at 𝐼 = 𝐼𝑠 and
|

|

|

|

𝑓 ′
(

1
𝑘𝐼

)

|

|

|

|max
=

𝑘𝐼
4 log

(

1
𝛾

)

, we have that the parameters 𝜂 and 𝜁 in (25) can vary within
the following ranges:

𝜂 ∈
(

0, 3.6 ⋅ 102
)

, 𝜁 ∈
(

0, 3.2 ⋅ 102
)

.

The linear stability of the steady state ∗
1 w.r.t. homogeneous pertur-

bations in the case of 𝜂, 𝜁 ∈ (1) has been discussed in the proof of
Proposition 2. Here, we look at the other possible regimes, i.e.

I. 𝜂 ≫ 1, 𝜁 ∈ (1),
II. 𝜂 ∈ (1), 𝜁 ≫ 1,

III. 𝜂, 𝜁 ≫ 1.

A.1. Regime I: 𝜂 ≫ 1, 𝜁 ∈ (1)

In this case, the dominant term in the characteristic polynomial (26)
becomes

𝑝1(𝜆) = 𝜂
(

𝑘𝑆 + 𝜆
) (

𝑘𝐼 + 𝜆
)

( 1
𝛿
+ 𝜆

)

+ (1) + (𝜂 𝑘𝐴)

when 𝜆 ∈ (1), which implies that the eigenvalues −𝑘𝑠, −𝑘𝐼 , and − 1
𝛿

perturb regularly. On the other hand, when |𝜆| ≫ 1 dominant balance
gives

𝜂 𝜆3 + 𝜆4 + (𝜂 𝑘𝐴 𝜆3) = 0

i.e. 𝜆 = −𝜂 at leading order. In conclusion, all eigenvalues perturb
regularly and remain negative.
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A.2. Regime II: 𝜂 ∈ (1), 𝜁 ≫ 1

Here, the characteristic polynomial is linear in 𝜁 and is given by

1(𝜆) = 𝑞(𝜆) +
(

𝑘𝑆 + 𝜆
) (

𝛿 𝑘𝐴 − 𝛿2𝑘2𝐴
)

𝜁, (A.1)

here 𝑞(𝜆) is a polynomial of degree four in 𝜆. By writing 𝜁 = 𝜁0 𝑘
−𝑦
𝐴 ,

we have that:

• if 0 ≤ 𝑦 < 1, the eigenvalues −𝑘𝑠, −𝑘𝐼 , −
1
𝛿 , and −

(

𝑘𝑁 + 𝜂
)

perturb
regularly;

• if 𝑦 = 1, a regular expansion in 𝑘𝐴 leads at leading order to the
equation
(

𝑘𝑆 + 𝜆
)

(

𝛿 𝜁0 +
(

𝑘𝐼 + 𝜆
) (

𝑘𝑁 + 𝜂 + 𝜆
)

( 1
𝛿
+ 𝜆

))

= 0, (A.2)

which implies that the eigenvalue −𝑘𝑆 perturbs regularly, while
the others shift above by (1). These three eigenvalues are neg-
ative as long as 𝜁0 remains below the Hopf bifurcation value
𝜁𝐻0 , which is found by imposing that the third order polynomial
in Eq. (A.2) admits a purely imaginary root:

𝜁𝐻0 ∶= 1
𝛿3

(

𝑘𝑁 + 𝑘𝐼 + 𝜂
) (

1 + 𝛿𝑘𝐼
) (

1 + 𝛿
(

𝑘𝑁 + 𝜂
))

. (A.3)

This implies that, for any 𝜁 = 𝜁0
𝑘𝐴

<
𝜁𝐻0
𝑘𝐴

, we have three negative
eigenvalues.

• if 𝑦 > 1, we have that −𝑘𝑆 is the only eigenvalue which perturbs
regularly (i.e. 𝜆 ∈ (1)). On the other hand, dominant balance
for |𝜆|≫ 1 leads to 𝜆3 = −𝛿 𝜁 𝑘𝐴 ≫ 1, which implies that here we
have one real, negative eigenvalue and two complex conjugates
eigenvalues with positive real part for any 𝜁 ≫ 1.

In conclusion, in this case we have that all four roots of the polynomial
in Eq. (A.1) are negative as long as 𝜁 < 1

𝑘𝐴
𝜁𝐻0 .

.3. Regime III: 𝜂, 𝜁 ≫ 1

The characteristic polynomial in this last regime is given by

1(𝜆) =
(

𝑘𝑆 + 𝜆
) (

𝑘𝐼 + 𝜆
)

( 1
𝛿
+ 𝜆

)

(

𝑘𝑁 + 𝜂 + 𝜆
)

+ 𝑘𝐴
(

𝛿 𝜁
(

𝑘𝑆 + 𝜆
)

+ (𝜂0)

+ 𝜂
(

𝑘𝐼 (1 − 𝛿)
(

𝑘𝑆 + 𝜆
)

−
(

𝑘𝐼 + 𝜆
) (

𝑘𝑆 (2 + 𝛿 𝜆)

+ 𝜆 (1 + 𝛿 + 𝛿 𝜆)
))

+ (𝜂0)
)

.

(A.4)

As before, the eigenvalues 𝜆 = −𝑘𝑆 < 0 perturbs regularly, providing
one stable, (1) eigenvalue. In order to establish the nature of the other
three eigenvalues we need to consider the following scenarios:

1. If 𝜂 ≫ 𝜁 𝑘𝐴, the eigenvalues 𝜆 = −𝑘𝐼 𝜆 = − 1
𝛿 also perturb reg-

ularly, providing two negative (1) eigenvalues; an additional
negative (𝜂) eigenvalue is given by 𝜆 = −

(

𝑘𝑁 + 𝜂
)

, so in total
we have here three stable eigenvalues.

2. If 𝜂 ∼ 𝜁 𝑘𝐴, we can write 𝜁 𝑘𝐴 = 𝜁0 𝜂. Replacing this expression
in Eq. (A.4) leads to two (1) eigenvalues with negative real part
obtained by solving 𝛿 𝜆2 +

(

1 + 𝛿 𝑘𝐼
)

𝜆 +
(

𝑘𝑖 + 𝛿2𝜁0
)

= 0 (since
(

1 + 𝛿 𝑘𝐼
)

> 0) and one (𝜂) eigenvalue 𝜆 = −𝜂 < 0. Therefore,
in this case we also have three stable eigenvalues.

3. If 𝜂 ≪ 𝜁 𝑘𝐴, we have that 𝛿 𝜁 𝑘𝐴
(

1 − 𝛿 𝑘𝐴
) (

𝑘𝑆 + 𝜆
)

balances
𝜆4 + 𝜆3

((

1 − 𝛿 𝑘𝐴
)

𝜂 + (𝜂0)
)

+ (𝜆0) in Eq. (A.4). This leads to
further possible scenarios:

(a) If 𝜆4 ≫ 𝜆3𝜂, the characteristic polynomial at leading order
becomes 𝜆4 + 𝛿 𝜁 𝑘𝐴 𝜆 = 0, whose nontrivial solutions
consist in two complex roots with positive real part and
one negative real root. This implies 𝜆3 ∼ 𝜁 𝑘𝐴. At the same
time, in this case we have 𝜆 ≫ 𝜂; these two considerations
lead to 𝜁 𝑘 ≫ 𝜂3.
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𝐴

(b) If 𝜆4 ∼ 𝜆3𝜂, we can write 𝜆 = 𝜆0 𝜂; plugging this into the
dominant terms of the characteristic polynomial leads to
𝜁 𝑘𝐴 ∼ 𝜂3, hence we can write 𝜁 𝑘𝐴 = 𝜁0 𝜂3. Including
this further assumption, the roots of the characteristic
polynomial are given by the solutions to 𝜆30 + 𝜆

2
0 + 𝛿 𝜁0 +

(𝑘𝐴) = 0. In the case 𝛿 𝜁0 = 0, this polynomial admits the
negative root 𝜆 = −1 and a double zero solution. Including
the positive term 𝛿 𝜁0 hence implies that the negative
root perturbs to a root which remains real and negative,
whereas the double zero perturbs to a pair of complex
conjugate roots with positive real part given by 𝛿 𝜁0

2 at
leading order. In this case no Hopf bifurcation occurs,
since the polynomial does not admit purely imaginary
roots for any value of 𝛿 𝜁0. Therefore, here we have two
stable and one unstable eigenvalues.

(c) If 𝜆4 ≪ 𝜆3𝜂, the characteristic polynomial up to its
dominant terms reduces to 𝜆3 𝜂+𝛿 𝜁 𝑘𝐴 𝜆 = 0 and is solved
by 𝜆 = ±𝑖

(

𝛿 𝜁 𝑘𝐴
𝜂

)1∕2
, hence requires further unfolding.

First, however, we observe that here 𝜆2 ∼ 𝜁 𝑘𝐴
𝜂 , which

implies 𝜁 𝑘𝐴 ≫
(

𝜁 𝑘𝐴
𝜂

)3∕2
and, in turn, that this scenario

corresponds to 𝜁 𝑘𝐴 ≪ 𝜂3. Considering higher order terms
leads to the following subcases:

i If 𝜂 ≪ 𝜁 𝑘𝐴 ≪ 𝜂2, the characteristic polynomial
admits two roots with negative real part given by

𝜆 = ±𝑖
(

𝛿 𝜁 𝑘𝐴
𝜂

)1∕2
−

√

𝛿
2

𝜁 𝑘𝐴
1 − 𝛿 𝑘𝐴

1
𝜂9∕2

.

ii If 𝜂2 ≪ 𝜁 𝑘𝐴 ≪ 𝜂3, the characteristic polynomial
admits two roots with positive real part given by

𝜆 = ±𝑖
(

𝛿 𝜁 𝑘𝐴
𝜂

)1∕2
+ 1
2 𝛿3∕2

(

1 + 𝛿 𝑘𝐼 − 𝛿2𝑘𝐴
) 1
𝜂5∕2

.

iii If 𝜂2 ∼ 𝜁 𝑘𝐴, writing 𝜁 𝑘𝐴 = 𝜁0 𝜂2 leads to the fol-
lowing two roots of the characteristic polynomial
with positive real part, given by

𝜆 = ±𝑖
(

𝛿 𝜂 𝜁0
)1∕2 +

(

1 − 𝛿 𝑘𝐴
) (

1 − 𝛿 𝑘𝐼 + 𝛿2𝑘𝐴
)

+ 𝛿2𝜁0
2 𝛿3∕2 𝜂5∕2

(

1 − 𝛿 𝑘𝐴
) .

A Hopf bifurcation occurs at

𝜁𝐻0 =
1 + 𝛿 𝑘𝐼
𝛿2

+ (𝑘𝐴).

To summarise, in this case we have that the four eigenvalues of
the characteristic polynomial are negative – i.e. ∗

1 is stable to
homogeneous perturbations – as long as 𝜁 < 𝜂2

𝑘𝐴
𝜁𝐻0 + (1). We

observe that this value corresponds to the leading order term of
1
𝑘𝐴
𝜁𝐻0 for large 𝜂, i.e. regime II converges to regime III as 𝜂 → ∞

as expected.
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