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ARTICLE INFO ABSTRACT

MSC: The emergence and maintenance of tree species diversity in tropical forests is commonly attributed to the
35C07 Janzen—Connell (JC) hypothesis, which states that growth of seedlings is suppressed in the proximity of
34C60 conspecific adult trees. As a result, a JC distribution due to a density-dependent negative feedback emerges
34D05 in the form of a (transient) pattern where conspecific seedling density is highest at intermediate distances
2;22; away from parent trees. Several studies suggest that the required density-dependent feedbacks behind this
65M06 pattern could result from interactions between trees and soil-borne pathogens. However, negative plant-soil
92D40 feedback may involve additional mechanisms, including the accumulation of autotoxic compounds generated
Keywords: through tree litter decomposition. An essential task therefore consists in constructing mathematical models

incorporating both effects showing the ability to support the emergence of JC distributions.
In this work, we develop and analyse a novel reaction-diffusion-ODE model, describing the interactions

Reaction-diffusion-ODE
Janzen-Connell hypothesis

Autotoxicity within tropical tree species across different life stages (seeds, seedlings, and adults) as driven by negative
Travelling waves plant—soil feedback. In particular, we show that under strong negative plant—soil feedback travelling wave
Linear spreading speed solutions exist, creating transient distributions of adult trees and seedlings that are in agreement with the
Negative feedback Janzen—-Connell hypothesis. Moreover, we show that these travelling wave solutions are pulled fronts and a

robust feature as they occur over a broad parameter range. Finally, we calculate their linear spreading speed
and show its (in)dependence on relevant nondimensional parameters.

1. Introduction From an ecological viewpoint, an increasing number of ecological
studies is supporting the idea that the emergence of this pattern (partic-

A widely observed phenomenon in forest tree communities is that ularly prominent in tropical ecosystems) is strongly linked to negative

conspecific seedling density is highest at intermediate distances from
the parent tree, referred to as the Janzen-Connell (JC) distribution. The
emergence of JC distributions provide an explanation for the creation
and maintenance of high species diversity in forest tree communi-
ties [1,2]. This (transient) pattern is particularly important in terms
of biodiversity: the space between the parent tree and its seedlings is
a favourable area for other species to colonise and grow, enhancing
coexistence (see e.g. [3,4]).

* Corresponding author.

plant—soil feedbacks [5-7]. Among the main mechanisms responsible
for such feedbacks, the accumulation of species-specific soil pathogens
is indicated as prominent [5,8]. Consequently, several models have
been introduced in the last few decades to theoretically investigate this
mechanism (see e.g. [9-12] and references therein). In recent years,
additional mechanisms generating negative plant-soil feedback have
been identified, including the accumulation of conspecific extracellular
DNA fragments leading to an autotoxic soil environment [13,14]. Such
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Fig. 1. Schematic representation of a one-dimensional section of a Janzen-Connell
distribution. Here, the typical seedlings’ density distribution N (orange curve) is sym-
metrically travelling towards the boundary of the domain and exhibiting a depression
in the centre, where the peak of the adults’ density A (grey curve) is reached.

negative feedback induced by autotoxicity could potentially explain
species coexistence in diverse communities [15-17] as well as plants
spatial organisation by means of as clonal rings [18,19], fairy rings [20,
21], and more generally vegetation patterns [22,23]. The spatial dis-
tribution of adult forest trees and their seedlings is the outcome of
different ecological processes. On the one hand, deposition of seeds
on the ground will be higher near the adult parent tree, and decrease
with increasing distance from the parent tree. On the other hand, seed
and seedling survival may also depend on the presence of adult trees,
with empirical observations suggesting that mortality is highest in close
proximity of the adults of the parent tree species [1,2]. As a result
of these two types of processes, the density of seedlings is expected
to be highest at intermediate distances from the parent tree (Fig. 1),
a distribution referred to in the ecological literature as the Janzen—
Connell hypothesis. In the specific case considered here, we would
expect negative feedback to strongly diminish seed and seedling density
close to parental trees, with the surviving seedlings reaching maturity.
In space, this process may be reflected by a travelling wave of high
seedling density.

In this work, we construct a new model based on reaction—diffusion-
ODEs in order to describe the emergence of JC distributions including
both growth inhibition (induced by extracellular self-DNA) and in-
creased mortality (mainly linked to the accumulation of soil-borne
pathogens). Reaction—diffusion-ODE systems are used to model a wide
variety of phenomena in biology; however, only few analytical results
concerning their behaviour — which often strongly differs from classical
reaction—diffusion models — are available, see e.g. [24-28].

As both growth inhibition and increased mortality mechanisms act
on different tree life-stages, we consider a stage-structured framework.
Our aim consists in introducing a theoretical tool which may help
assessing the relative contribution of both mechanisms to emergent
spatial distributions of adult trees and their seedlings. As JC distribu-
tions are experimentally observed as transient patterns, we analytically
investigate the existence of travelling wave solutions which exhibit the
typical JC feature of seedlings’ biomass being at a maximum at suitable
distances from the parent tree. Travelling wave solutions are widely
found in mathematical models inspired by several biological applica-
tions, including e.g. species competition [29], tumour growth [30], and
bacterial chemotaxis [31]. In particular, we show the existence of such
solutions and derive corresponding relevant properties. Moreover, we
hypothesise that the constructed travelling wave solutions correspond
to pulled fronts, whose speed then coincides with the linear speed
determined by a linear analysis near the trivial steady state. We then
analytically derive the linear speed and confirm our prediction by
comparing the analytical value with the one obtained by numerical
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simulations of our model for a set of fixed parameter values and
investigating their dependence with respect to two relevant parameters.

The impact of the work presented here is twofold: from the ecolog-
ical viewpoint, our work provides a valuable theoretical tool to further
address relevant issues related to JC distributions (e.g. understanding
how the dispersal ability of tree species moderate the spatial patterns
of adult and seedlings and to what extent are plant strategies along
the growth-defence trade-off reflected in the spatial patterns of adult
and seedlings). From the mathematical viewpoint, on the other hand,
the analytical strategy used here to investigate travelling waves in a
system of 4 reaction—diffusion-ODEs improves our understanding of
such complex systems and offers a framework potentially useful to
investigate problems exhibiting a similar structure.

The paper is structured as follows: in Section 2 we introduce the
model both in its dimensional and nondimensional form, on which we
focus for our subsequent analysis. The spatially homogeneous steady
states associated to this model are derived in Section 3. In Section 4 the
linear stability of these steady states with respect to both homogeneous
and heterogeneous perturbations is carried out, revealing the absence
of Turing patterns for the parameter ranges defined based on experi-
mental findings (as expected). The existence and the main properties
of travelling wave solutions (in particular right-moving fronts) are
then investigated in Section 5: numerical simulations suggesting the
existence of pulled fronts are corroborated analytically by deriving
the linear wave speed and comparing it with the numerical measured
speed. We conclude our work with a discussion of the results obtained
and an outlook indicating further research perspectives in Section 6.

2. The model

In our framework, negative plant-soil feedback (NF) manifests itself
both during the seed-to-seedling transition (in terms of growth inhibi-
tion) and at the seedlings life-stage (in terms of increased mortality).
The first effect can be often attributed to the presence of extracellular
self-DNA (also known as autotoxicity), whereas the second effect is
mainly linked to soil-borne pathogens. As these factors act at different
stages of a tree lifespan, vegetation is considered in terms of biomass
and is divided into three compartments corresponding to three different
life-stages, namely seeds S (kg/m?), seedlings N (kg/m?) and adults A
(kg/m?). Moreover, the general inhibitor variable I (kg/m?) represents
the density of inhibitor responsible both for growth inhibition and
increased mortality effects. The interaction of such variables at any
spatial point 8 = (%,) and any time 7 is based on the following
assumptions: the increase of seed density is influenced by adult tree
production via the per capita seed production rate ¢ and seed dispersal
d s, whereas their natural decay rate (including predation) is repre-
sented by k. Seeds then germinate and the seedlings might establish or
not, depending also on the inhibitor due to the effect of autotoxicity via
the function —&x5 ;- This monotonically decreasing logistic function

1+ye'T
(see [32]) models the fact that low autotoxicity values do not affect the
base establishment probability (g, ), whereas this probability converges
to zero as autotoxicity increases with a speed determined by the species’
sensitivity to autotoxicity (7;). Seedlings have a natural turnover rate
ky, enhanced by pathogens via the term #p I. The seedlings which
survive then grow into the next life stage according to the function
84 (1 - AL). Adults’ density grows logistically because of seedlings
transitioning to the adult stage at rate g,, intrinsic growth rate ¢, and
constant per capita mortality rate k,. The inhibitor density grows due
to adult decomposition byproducts at a rate é,, decays naturally at a
rate k;, and diffuses in the soil at a rate determined by the coefficient
d;. These ecological processes are described by the following PDE-ODE
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Table 1
Description, values, and units for model parameters in System (1), obtained through
parametrisation and calibration.
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Table 2
Description and ranges of rescaled nondimensional parameters used in System (3),
based on Table 1.

Parameter Description Value Units Parameter  Description Value
&s Growth rate of § 6.67-107%-0.033  y! kg S turnover rate 1.3-2.0
kg S turnover rate 0.33-0.5 y! gs Growth rate of .S 2.7-1077 = 1.3-107"
I3 Transition rate from $ to N 0.25-25 y~! y Establishment sensitivity to toxicity parameter  1.0- 1073
Y Establishment sensitivity to 1073 - rp Establishment sensitivity to toxicity parameter ~ 0-0.8 - 10*

toxicity parameter ky Death rate of N 0.8-107' =3.0
Fr Establishment sensitivity to 0-68 m? kg™ rp Increased mortality of N caused by I 0-1.0-10°

toxicity parameter g Transition rate from N to A 0.8-107% - 4.0
ky Death rate of N 0.02-0.74 y! k4 Mortality rate of A 40-1072
Pp Extra mortality of N caused 0-2 m? kg™ y~! gn Transition rate from S to N 1.0-1.0- 10

by I ky Inhibitor decay rate 2.8
84 Transition rate from N to A 0.02-1 y~! d Square root of diffusion ratio 0-0.9
éy Growth rate in A’s biomass 0.25 y!

density
A Maximum capacity for A 30 m~ kg
P i A -1 . . . .
ka Mortality rate of A N 0.01 y length scale. For every model variable, the biomass density is scaled
é; Growth rate of I due to A 1 y! lative to the adult . itv A Furth P leebrai
i‘l Inhibitor decay rate 0.7 y_l relative to the adult carrying capacity Ay .. Furthermore, for algebraic
dg Diffusion coefficient for $ 0.6—4 m? y-! convenience, all nondimensionalised model variables are divided by
d, Diffusion coefficient for 0-0.5 m® y! ratio of that variable’s growth rate relative to the characteristic growth

rate ¢,.
This leads to the following nondimensional reformulation of Eq. (1)
system:
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The PDE:s for the seed biomass § and the inhibitor biomass I are of
reaction—diffusion type. Values and meaning of the non-negative model
parameters in (1) are provided in Table 1. Based on an ecological in-
vestigation, they have been calibrated in some cases and parametrised
in all the others [33]. We note here that the model in Eq. (1) has
been developed for a wide range of possible types of domains and
initial/boundary conditions; hence we keep these general at this stage
of the paper.

In this framework, links to the Janzen—Connell hypothesis can be
found in transient patterns where a ring of seedlings emerges around
the adult tree (whose density is concentrated in the centre of the
ring). Mathematically, this consists in travelling wave solutions, whose
construction we analyse in this work. From here on, we refer to this
phenomenon as the Janzen—Connell distribution.

In order to reduce the total number of parameters and to facil-
itate the analytical investigation of our model, we introduce a non-
dimensional version of System (1). Existence and stability (both under
homogeneous and heterogeneous perturbations) of the corresponding
steady states are then investigated in Sections 3 and 4, respectively.

In order to facilitate the investigation of the existence and stability
properties of our model, we introduce the following nondimensional
variables:

o ey ., ey
t=Cut, X=4[/—X, V=4[
dg dg o)
é N é . A é N
S=—A 8§ N=—A_§ a=-A -4
8s Amax &N Amax Amax ¢ Apax

We choose ¢4, the growth rate of the adult biomass density, as the char-
acteristic time scale; this adult growth rate can often be experimentally
and/or observationally determined in a manner (relatively) indepen-
dent from other process factors (see e.g. [34]). In addition, we choose
the resulting characteristic seed dispersal distance as the characteristic

0SS

— =AS+A—kgS,
ot S
ON _ &S

— =—"——-N (k 1 1-A4)),
ot 1+yer! (kv +rp T+ ga € ) 3

0A
E=A(1—kA—A)+gAgNN(1—A),
ol

— =d“Al+A—-k; I,

ot !

2 2 . . .
where 4 = ;7 + ;? and the nondimensional parameters are given by

k k Fpér A k k
ks=5>, ky=-2, rp= BB g = A g =L,
"2
€A €A 4 €A €A
En & 8s
EN="7" A= 5 85s= 4
[N Cy Cy
_ CAIfTAmax d= dl
rr=—7T—> =1/ =
€A dg

We note that, due to the range of ecological feasibility for our
parameters reported in Table 1, we assume kg > 0, ky > 0, rp > 0,
ky>0,k;>0,gy >0,84 >0, ry >0, and d > 0. Moreover, we assume
that in the absence of seeds, seedlings and toxicity, the growth rate of
adults is positive for all A > 0, which implies

0<ky<l. ®)

Ecologically feasible ranges of the nondimensionalised parameters,
based on the associated dimensional values in Table 1, can be found
in Table 2.

Mathematical analysis: aims and goals. We determine the spatially ho-
mogeneous steady states (Section 3) and their linear stability with re-
spect to spatially homogeneous and heterogeneous perturbations (Sec-
tion 4). Furthermore, we investigate the presence of travelling waves
(Section 5), determine properties of the wave profile, and determine the
wave speed. To facilitate presentation, we organise the main results in
Propositions and Theorems.

3. Spatially homogeneous steady states
For future reference and notational convenience, we introduce the

establishment function

£ !

= 6
1+yerd ©)
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Proposition 1.  System (3) admits two spatially homogeneous steady

states,

& =1(0,0,0,0) @

and

5?:(&%@&) (8)

ks gagn(1-A,) ky

Here, A, € (1—ky, 1) is the unique solution to
A

S (—) = ¢(A), ©)]
kg

where

ks (kn+ga 1= X+ 2 X) (1=ky = X)
HX) = - . 10$)
g48n8s (1-X)

Proof. Spatially homogeneous steady states associated to system (3)
are given by the solutions to

0=A—kgsS, (11a)
0=gsSfU)=N (ky+rpl+g,(1-A4)), (11b)
0=A(l—ky—A) +gygny N1 - A), (11¢)
0=A—k;I. (11d)

First, we observe that system (11) admits a trivial solution where all
components vanish (representing bare soil):

& = (S5 Ny A3 Iy) = (0,0,0,0). (12)

In order to compute the nontrivial equilibria of System (3), we first
solve Eq. (11a) and (11d) which lead to

A A
s==2, 1=Z, 13
s K 13)
respectively. Substituting Eq. (13) into Eq. (11b) we obtain
g—SAf<i>=N(kN+rP1+gA(1—A)). 14
ks ky
Solving Eq. (14) for N we obtain
A
gsf (E)
N = A. (15)
kg (kN+ﬁA+gA a —A))
Substituting Eq. (15) into Eq. (11c¢) yields
A
S <k_) A= ¢(A) A. (16)
I

Clearly, A = 0 is a solution to (16), leading to the trivial solution é‘g
(12); division by A leads to (9).

It remains to show that Eq. (9) has a unique nontrivial solution on
the (ecologically feasible) interval (0, 1). We observe that for X € [0, 1),
the function ¢(X) satisfies the following properties:

* ¢(0) <0,

* limy_,; ¢(X) = +oo (g has a vertical asymptote at X = 1),

« ¢"(X)> 0 (¢ is convex),

* ¢(X) = 0 if and only if X =1 — k, (¢ has a unique root in the
interval X € (0, 1)).

Furthermore, the establishment function f(X) (6) satisfies the following
properties:

< fO)= = >0,

» f/(X) <0 forall X € R (f is strictly monotonically decreasing)

« f(X)>0forall X eR

Consequently, there exists a unique A, € (0,1) that satisfies Eq. (9).
Moreover, since f(X) is positive and ¢(X) is positive only if X > 1 -k,
we find that A, > 1 — k,; see also Fig. 2.

Mathematical Biosciences 368 (2024) 109128

e 9(4)

1—ka A, 1

Fig. 2. Schematic representation of the functions f (%) (blue solid line) and ¢(A)
(purple solid line) as defined in Eq. (6) and Eq. (10), respectively, for y = 107, r; = 48,
kg =13, ky =008, g, =1, rp =0, k, =28, k, =04, gy = 13, and g = 0.13. The
purple dot corresponds to the unique zero of ¢(A) in the interval A € [0, 1], whereas
the grey dot corresponds to the unique A, where f (%) = ¢(A), i.e. the A-component
of the unique nontrivial steady state of System (3).

Therefore, we have that the unique nontrivial spatially homoge-
neous steady state of System (3) is given by

&) = (S Nj.ALT))

A*
A, ss /() A,
= A,, A, —=|. a7)
kl

ks g (kN+Z—’;A*+gA (I—A*)>

Using f (:—) = $(A,) yields (8). O
I
For future reference, based on the results of Proposition 1, we write
A, =1-6k,,

0<0pin <6<1, 18)

see also Fig. 2. The lower bound 6, can be determined by observing
that the establishment function f(I) is bounded above by ﬁ and hence

B(A,) < 1177 Solving ¢(1 — 8.,k 4) = :17 leads to
-1

+ Ok 4). (19)

8A8N 8S
1 ks

+}’kN+k—
1

'min

Moreover, according to the parameter values reported in Table 2,
we have k, = 0.04 < 1. In the upcoming analysis, we will occasion-
ally utilise the fact that k, is small by employing k, as a (regular)
perturbation parameter, in order to gain insight into the solutions
of complicated algebraic equations, by expanding these solutions in
powers of k4.

4. Linear stability
4.1. Spatially homogeneous perturbations

In this section, we analyse the linear stability of spatially homo-
geneous steady states & (7) and £ (8) with respect to spatially
homogeneous perturbations.

Proposition 2. The trivial steady state £; (7) is unstable with respect to
spatially homogeneous perturbations. The nontrivial steady state £} (8) is
linearly stable with respect to spatially homogeneous perturbations, as long
as

8A8NEs 4 1 11 rp
_8asnEs (L) o L Lk, + ) (14 sk
ks / <k1> kA53<N ! k1>( 1)

rp
X <1+5<kN+k—> +0O(), (20)
1

assuming 0 < k4 < 1.
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Proof. The Jacobian matrix corresponding to System (3) reads

J=
—kg 0 1 0

gs fU)  —ky—gs(1—A)—rpl gaN gsSSf'()—rpN
0 848y (1 —A4) 1-2A-ky—g48v N 0
0 0 1 —k;

(2D

The characteristic polynomial associated to J evaluated at &; is given
by

Po(A) = (=2 —kp) (23 +ag, A2+ ag; A+ agy) (22)
where

ap =—1+g4+kg+ky+ky,

agy = ks (ga+hkn) —(1— k(g +ky +kg), (23)

8A8N 8,
_ZASNOS ko (ga+ k)1 = k).

o0 = 14y

The polynomial py(4) admits four roots 47, i = 1,...,4. We identify A7 =
—k; < 0, whereas the sign of the other three eigenvalues is investigated
using the Routh-Hurwitz criterion. In particular, £ is asymptotically
linearly stable if and only if the roots of the third order polynomial in
(22) have negative real part, i.e. if and only if

ay, ag >0 and  ay ay — ayy > 0. 24)

Due to the non-negativity constraints on our parameters and the bound
on k, (5), we have gy, < 0, thereby violating the Routh-Hurwitz
criterion. Consequently, at least one of the three eigenvalues /12’3, 4 has
positive real part, and the equilibrium £ is unstable with respect to
spatially homogeneous perturbations.

Concerning £*, we define two new parameters 7, { > 0 as

r 8AEN & 1
ni=L, fi=oTAEES f’<—>- (25)
ks ky

As long as 7, ¢ and all parameters in System (11) are O(1) with respect
to k, < 1, the characteristic polynomial associated to J evaluated at
& is given by

pL(D) = (ks +A) (ky+2) <kN + ;—” +/1> (1 +64)+0(ky). (26)
I

Due to the non-negativity assumption on the model parameters, p(4) ad-
mits four negative roots, which in turn implies that £/ is a stable steady
state w.r.t. homogeneous perturbations. The case where # and/or ¢
are much larger than O(1) is analysed in Appendix. The outcome of
this analysis is that all eigenvalues have negative real part as long as
(< %Cé’ +0(1), with the Hopf bifurcation threshold ¢’ given by (A.3).

Substftuting n and ¢ (25) yields (20). [

Corollary 1. The nontrivial steady state £ (8) is stable with respect to
spatially homogeneous perturbations for the parameter ranges in Table 2.
Proof. From (6), we see that —f’ (kL) — 0 as rp | 0. Moreover,
1
T

—f/(kL) ~ rTTe kI — 0 as rp — oo. The function r; —f’(%)

1 1
2
logy

—k 1
=3 (logy+ logy) +

has a unique maximum, attained at (ry) . = k; (—logy—

+0 ((log)~3) ), with value — f’ (%)

rT=(rT)maX
O ((logy)~?). Implementing the values of Table 2, we combine the
above with #4285 < 4. 10! to obtain

S

_8ABN &S 4 <i> 32102,
ks ki

From the same Table, we infer

11 rp p 2
—— [k k — 1+ 6k 1+6(k — >3.0-10°.
kA53<N+ I+k1>(+ 1)<+ <N+k1>)
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We see that straightforward estimates do not suffice to conclude that
(20) is satisfied for the parameter ranges in Table 2; however, the
bounds are sufficiently close to conclude that the region in parameter
space for which £/ is unstable with respect to spatially homogeneous
perturbations is relatively small. Furthermore, the value of § is deter-
mined by the other system parameters through (9) and (18). Hence,
we numerically determine the maximal real part of the eigenvalues
of &, by first determining the value of A, (cf. Proposition 1) and
then calculating the eigenvalues of the associated Jacobian. For the
parameter ranges in Table 2, the maximum real part of the eigenvalues
is found to be —0.96 < 0. Hence, £} is stable with respect to spatially
homogeneous perturbations for the parameter ranges in Table 2. []

4.2. Spatially heterogeneous perturbations

Since Turing patterns can emerge when steady states are stable with
respect to spatially homogeneous perturbations but lose their stability
when considering spatially heterogeneous perturbations, in this section
we focus our attention only on the steady state £] (see Section 4.1).

Proposition 3. The spatially homogeneous steady state £} (8) is linearly
stable with respect to spatially heterogeneous perturbations, as long as

_ BaSNSS ’( ! ><ii<k,\,+k,+h2+ fp >
kg + h? ky +h? ky 53 ky + h?

rp
X (1+68(k; +h%) <1+5<kN+kl+h2>>+(9(1), 27)

for all h € R, assuming 0 < k4 < 1.

Proof. We introduce the following non-uniform perturbations:
S(t,x,y) = S + 5(0) eikxilyrit,
N(t,x,) = NI + N(0) oikctilyrit
At x,y) = AT + A(0) eikx+ily+/1t7
I(t,x,y)=T" + T(0) efkx+ily+ar,

28)

where the (spatial) wave number of the perturbation is defined as
h = Vk? + 12 and 1 represents the temporal growth. Linearising System
(3) around &}, we obtain the following system for the perturbations S,
N, A, T defined in (28):
1S =A—(kg+h?) S,
AN =gy FUDS—N (840 —AD) +ky+rplf)+g,NJ A

+T (g5 87 f'AN-rpT), (29)
M=A(1-24% —ky—gaen N}) +gaen N (1-47),
M=A-(kj+d*m*) T.
System (29) can be written as an eigenvalue problem J, U = 1U, where
U= (S,N,AT) and (see Eq. (30) in Box I).
We observe that this eigenvalue problem can be made identical to

the eigenvalue problem for spatially homogeneous perturbations, as
studied in the proof of Proposition 2, by replacing

ks = kg+h?,  kp— ky+h% (€20)

Hence, the same stability criterion as in Proposition 2 applies, with the
substitution (31). [

Corollary 2. The nontrivial steady state £} (8) cannot undergo a Turing
bifurcation for the parameter ranges in Table 2.

Proof. From the proof of Proposition 2, we see that —f’(X) has a
unique maximum at a fixed value of % for y fixed. The right hand
side of (27) is by construction independent of r;, since r; only occurs
in the derivative of f (encoded by ¢), and the right hand side of (27)

is an expansion of a bound on ¢.
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—kg — h? 0 1 0
J,=|EV AN —ea = AD—ky —rp 1} & Ny gs ST /1A —rp NT| (30)
0 gagn (1—A)) 1 -2A7 —ky—g48n Ny 0
0 0 1 —k; —d? h?
Box L
From Proposition 2, we know that 81* is stable with respect to I = 5, (32e)
spatially homogeneous perturbations, which is equivalent to setting L, ¢
h =0in (27). We infer from Proposition 2 that (27) is satisfied for h = 0 v = 7 (_E v—A+k; I) > (320

for all admissible parameter ranges in Table 2. Therefore, for given k;
and y, we may assume without loss of generality that r; is chosen such
that —f’ (%) is maximal, as (’T)max =3.3-10! falls (well) within the
admissible range of r-. When k; — k; + h? is increased, this argument
continues to hold until r; reaches its maximal admissible value; when
h is increased beyond this point, — f’ (i is smaller than its unique

maximal value. Combining this argument with gk,\g#gzs < EAINES e
S S
see that

_gl:gNgff,< 1 2>S_gAgNgSf,<L>
s+ h k 1t h kS k I
for all h e R.

The right hand side of (27) is non-monotonic in 4. However, a lower
bound is found analogously to the proof of Corollary 1 by setting rp = 0
and minimising the other parameters. Since all components of the right
hand side of (27) are increasing functions of 42, the value of the right
hand side of (27) is bounded from below by its value for 4 = 0. The
above arguments imply that (27) therefore remains satisfied for 4 > 0.

We conclude that no Turing bifurcation can take place for the
parameter ranges in Table 2. []

5. Travelling waves

As shown in Section 4, for the parameter ranges in Table 2, the
nontrivial steady state £} is spectrally stable (Corollary 1), whereas the
trivial steady state &; is unstable (Proposition 2). In order to investigate
the existence of potential travelling waves solutions of System (1)
from the numerical viewpoint, we hence focus our attention on a
sufficiently large, one-dimensional domain with Neumann boundary
conditions (mimicking the dynamics on an unbounded domain). With
this setup, numerical simulations show the emergence of travelling
wave solutions invading the unstable steady state £ for a broad range
of parameter values (see an example in Fig. 3). These simulations
suggest the existence of a travelling wave with fixed wave speed
in System (1) on an unbounded one-dimensional spatial domain. In
this section, we investigate the existence of such a travelling wave,
and provide arguments for its existence in a large part of parameter
space. Moreover, we show that the numerically measured wave speed
coincides with the so-called linear spreading speed, to a high degree
of accuracy. This suggests that the numerically observed front can be
classified as a pulled front, that is, where the linear spreading of small
perturbations pulls the front into the linearly unstable bare soil steady
state [35].

To prepare the analysis, we introduce a co-moving frame via the
variable ¢ = x — ct, where ¢ represents the wave speed. System (3)
hence becomes

S’ =y, (32a)
W =—cu-A+kgsS, (32b)
N’ =—% (gsSfU)=N (ky +rpl+g,(1-4)), (320)
A’=—% (A(l—ky—A) +g48y N(1-4), (32d)

which can also be expressed in the compact form z’ = F(z), where
z = (S,u, N, A, I, v). Here we follow the common practice to scale
both I and its derivative v with the square root of the scaled diffusivity
d?. However, note that all statements in this section would continue to
hold if the choice I’ = v would have been made.

System (32) admits the two equilibria

z(’; :=(0,0,0,0,0,0),
zZ} 1= (S}, 0, N}, A}, I}, 0),

(33a)
(33b)

where the components of zT coincide with those defined in Eq. (8). The
equilibria z§ and z} are the representation of the spatially homogeneous
steady states £; (7) and £} (8) in the travelling wave framework.

In this context, a right-moving front (with ¢ > 0) invading the
trivial steady state & coincides with an heteroclinic connection from
z} to z;. Such an orbit must therefore lie in the intersection of the
unstable manifold of z} (denoted by W(z})) and the stable manifold of
z; (denoted by W*(zp)). To investigate the potential existence of right-
moving fronts we hence need to derive the parametric conditions such
that

Wiz N Wi(z) # 0, (34

which follow directly from the investigation of the dimensions of the
stable and unstable manifolds of z; and z}.

The main point of our analysis consists in studying the characteristic
polynomial associated to System (32), which can be expressed as

P(4) =det (AL - DF(z"). (35)

The roots of P(4) evaluated at z7, i = 0, 1 will provide information about
the dimension of the stable and unstable manifolds of these equilibria,
indicating whether Eq. (34) can hold.

5.1. Local analysis of z;

Theorem 1. The dimensions of the stable and unstable subspaces of z;
(denoted as ES(zg) and E"(zg), respectively) satisfy

dim (E*(z5)) = dim (E*(z;)) = 3. (36)

Proof. The characteristic polynomial of System (32) at z; is given by

1 =« -
Py(A) = 3 P(4) By(A), 37)
with
Pi(A) = Alc+d*) -k (38)
and
= . 8A8NE&s
P = 222020 L Ak 4+ e (ga+ky —cA) (kg —Ac+A).  (39)

1+y

The quadratic function P,(4) is convex and negative at A = 0; therefore
it admits two real roots of opposite sign, namely A7 <0 < AT. To study
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Fig. 3. Numerical profiles for (a) .S, (b) N, (c) A, and (d) I obtained by simulating Eq. (3) for ¢ € [0, 87.5). Profiles are shown a r distance 4r = 17.5 for gg = 0.132, kg = 1.32,
gy =20, rp =4080, ky =2, rp =480, g, = 0.8, d =0.913, and other parameters values as in Table 2. The intensity of the shading (from light grey to black) increases with 7. Note
that for these parameter values, the value of N (17) is numerically indistinguishable from zero.

the roots of P,(4), we write

B =c*2+c(2—a) = (B+cPkg+cra) 2 +claks— )4

EAEN 8s
2ASN 5 kg, 40
T +hks (40)

where a = g4 +k,+ky—1and = (g4 +ky) (1 - k,); note that g > 0.
The sign of the roots of P,(1) can be investigated applying the
Routh-Hurwitz criterion, by rewriting Eq. (40) as

P = (P +a3 P +a, 2 +ajd+ap), 41)
where

1
a3 = - (- a),

azz—%(ﬂ+c2a+c2k5),
€ (42)
a=-(aks—p),
c
1 (848N &8s
== | — kg ).
o c2< t+5 1 S>

Applying Descartes’ rule of signs, which states that the number of
roots with negative (resp. positive) real part corresponds to the number
of sign changes (resp. permanences) on the coefficients of P,(1), and
taking into account the fact that a; > 0, we observe that the conditions
az >0, a, > 0, and a; > 0 cannot be verified simultaneously, i.e. there
is at least one sign variation and one permanence. Hence, the fourth
order polynomial P,(1) admits at least one root with positive and one
with negative real part, denoted by 4} and 4;.

Moreover, there are no purely imaginary roots of P,(1) since P,(i »)
is a real polynomial if and only if v = + Z—; and a;, a3 have the same

sign only for a, < 0, which implies

Piw) = ? (w4 —a, o’ + ao) > 0.

Consequently, we have (considering P,(0) = c?a, # 0) that the centre
eigenspace E¢(zy) = @, from which it follows that the phase space
can be decomposed into the direct sum of the stable and unstable
eigenspaces Es(zg) and E“(zg) respectively, i.e. E“(z(’;) ® E“(z(’;) = RS,

Besides the two roots with opposite real signs /1;r and 4; derived
above, we need to check the sign of the other two roots of P,(4), which
we define as 1, and 1,. We analyse all possible scenarios:

o If A;, 4; € C, then 22 and 1, must be equal to the complex
conjugates of A%, i.e. 1, = 4} and 1, = 4;.

If 7 € R, then 4, must be positive and real. This is due to the
fact that P,(0) = c?ay > 0 and P,(4) ~ ¢24* as 1 — co; therefore,
the graph of P,(4) must have an even number of crossings with
the positive horizontal axis.

Analogously, if A7 € R, then 1, must be negative and real. This
is due to the fact that P,(0) = c%ay > 0 and Py(1) ~ c¢*A* as
A — —oo; therefore, the graph of P,(4) must have an even amount
of crossings with the negative real axis.

To summarise, we conclude that Py(4) admits a total of three eigen-
values with positive real part (namely AT, /1;’ and 1,), and three with
negative real part (namely A5 A and 4,), which leads to the claim of
the theorem. []

5.2. Local analysis of z}

Theorem 2. Assume 0 < k, < 1 is sufficiently small For ¢* <
d? (k N+ %), the dimensions of the stable and unstable eigenspace of z
(corresponding to Es(z’l‘) and E“(zT), respectively) satisfy dim (Ef(z’l*)) =2
and dim (E”(z’lk)) = 4. Only when ¢ > d* (kN +n+ %) there exists a
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O(k,")-value of ¢{ = ¢y such that, if ¢ > ¢y, dim (ES(z)) = 4 and
dim (E“(z)) = 2.
Proof. The characteristic polynomial of System (32) at zj, in agree-

ment with Eq. (35), is defined as
Pi(4) :=det (Al - DF(z})).

Our analysis is based on the observation made at the end of Section 3
that, since k4, <« 1, we can treat k, as an asymptotically small per-
turbation parameter to investigate the roots of complicated algebraic
expressions such as (35).

We write A, = 1 -6k, with 0 < 6§ < 1, cf. (18). Recalling the
definition of # and ¢ in (25), we expand P, (4) for small k4, and consider
the four regimes

I n, ¢ €0O0Q),

IL > 1, { € O(1),
III. € 0O(1), ¢>1,
V. n, {> 1.

Regime I: n, { € O(1). In this regime, the characteristic polynomial can
be expressed as

PlO) = = (B0 (cd=3) (ch—ky —n) ) Oy, (43)
where
0,() 1= A(c+A) — kg 44

and P;(4) as defined in (38). In the proof of Theorem 2, it is shown that
the roots of P;(4) are real and have oplzosite sign, i.e. A <0< /1;’. The
same statement holds for the roots of Q,(4), since Q,(4) is convex and
0,(0) = —kg < 0; we denote the roots of Q;(4) as u] < 0 < u/. The
two remaining roots of the leading order expression of Pl’ (4) (43) are
given by i and k"’:", which are both real and positive. All roots of
the leading order expression of P1’ (1) are nondegenerate and bounded
away from zero, and therefore perturb regularly for k, <« 1. Therefore,
dim (E*(z%)) =2 and dim (E*(z})) = 4.

Regime II: n > 1, { € O(1). The O(k,) terms in the expansion of Pl’
(43) do not depend on 7. Hence, the roots of P; in regime II are equal
to those in regime I. The only difference is that now the eigenvalue
Entn 1+ O(1), but this does not affect its sign, which remains
posmve Therefore as in Regime I, we obtain dlm(ES(z*)) 2 and

dim (E“(z*))

Regime III: n € O(1), ¢ > 1. In this regime, the characteristic polynomial
is to leading order given by

A
Pl = Ql( ) (02D =8¢ ky) + Ok y) OO, (45)
where
0,(%) :=f>1(/1)( 1—5)(c/1 kn — 1) (46)

and Q,(4) as defined in (44). We therefore need to split our investiga-
tion into further subcases depending on the magnitude of ¢ k.

() ¢k, < 1: here Pl“’ () is a regular perturbation of Pl’ (A);
we obtain same result on the sign of the eigenvalues, that is,
dim (E*(z¥)) = 2 and dim (E*(z})) = 4.

(i) Cky = O(1): we write ¢ = & with ¢
assumption into Eq. (45) leads to

Ql(ﬁ)

> 0. Substituting this

Plnu)

(0,() = 8¢)) + Ok ). (47)

When ¢; = 0, we have that Pl’ gy = Pl’ (4), hence the sign of the
eigenvalues is identical. When ¢; > 0, since 0,(0) = —M <
0 and Q,(4) ~ ¢2d?>A* as A — +o0, we have that 0, (1) — 6 {; must
admit at least one positive and one negative real root. For ¢,
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sufficiently small, the roots of P//!(4) are a regular perturbation
of the roots of PII (4), which implies that the two remaining roots
of O,(4) are real and positive. As ¢, is increased, this root pair
undergoes a (stabilising) Hopf bifurcation for sufficiently large
values of ¢;, namely for ¢; = ¢/ where

Gn+dky+1)(d>=c26@k, + 1) (> +ky)* = (n+ky +k)))

H _
=

8 (26 —d>Gn+oky +1)°
(48)

In other words, the real part of the complex conjugate roots of
0,(4) - 5¢; is positive for ¢; < ¢, vanishes for ¢; = ¢, and is
negative for ¢; > ¢[!. The expression for ¢! in (48) is derived by
solving O, (i )—6 ¢, = 0 and imposing that the imaginary part of
the resulting polynomial is zero. This gives an expression for w
which can be substituted back into 0, (i ®)—4 ¢, = 0; then we can
subsequently solve this equation for ¢; to obtain ng . Imposing
the feasibility conditions > > 0 and ¢{; > 0 we obtain that a
Hopf bifurcation occurs if and only if

1

C2 C2
c>d, O<n<ﬁ—l, 0<kN<ﬁ_1_'7’ <6< 1.

2
c
dZ_kN_rl

(49
In particular, the above conditions hold if and only if ¢? —
dz(kN+n+§)>0.

(iii) ¢k, > 1: In this case, the equation 0,(4) —
that |4| > 1. To leading order, we thus have

5¢&k, = 0 implies

Ad? At =5¢ky,, (50)

which is solved by two real and two purely complex roots,

namely

§Cka\* 8k
)“=i<czd2> s A= 242 :
Since the complex roots are purely imaginary to leading order,
these need further unfolding to determine the sign of their real
part. Including higher order terms (©(4%) and O(ki), respec-
tively) in Eq. (50) leads to the following refinement of the
complex roots

25 +d> (1+8(ky +m)  [6Ck, 1/“(1_k )4 (s1)
dcd% "\ ea Al

We have two possibilities:

< If 2 - d? <kN +1n+ %) < 0, the real part of the roots in

(51) is positive. Therefore, taking into account the sign of
the other roots of P;;;(4), we find dim (ES(zT)) = 2 and
dim (E“(z})) =

If 2 — d? (kN+n+%)
in (51) is negative, and we find dim (E*(z)) = 4 and
dim (E“(z’l“)) = 2. Note that, comparing to the case ¢k, <
1, this implies that somewhere between {k, < 1 and
¢k, > 1, a sign change must have occurred. This is
prec1sely the Hopf bifurcation found at ¢k, = O(1), to wit,

at ¢ = (48)

> 0, the real part of the roots

Regime IV: 5, ¢ > 1. To leading order, the characteristic polynomial in
this regime coincides with the one in Regime III, i.e.

0,
c2d?

PV = (02(1) = 8C ke p) + Ok 0) OK°) + Ol 4) O1). (52)

As in Regime III, we need to consider different relations between the
orders of # and { k4 to determine the roots of PV ().
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(i) #> ¢ k,: In this case, Pl’ V(4) is a regular perturbation of Pl(ay;
its roots are then given by 47, u, Cl—ﬁ, and f +0O(1).
(ii) n ~ ¢ k,: Here we can express { = {; ki, with ¢, = O(1). To
A
leading order, we obtain

0,(%)

c2d?

PV = (02() = 81 1) + Ok 4) O. (53)

The roots of (53) are studied by distinguishing two regimes.
Focusing on || > 1; in this case, Pl’ V)~ 20— g 2>, we obtain
that one root is, to leading order, given by g The other five
roots are studied by investigating P/”(4) to leading order in »
for 2 =0O(1), i.e.

0

P = ===5 (Os() +6,) 1+ Ok,) O, (54)
where

- . 1

034 = B(h) (- 3). (55)
Two roots are to leading order given by the roots of Q,(4).
For the other three, we see that, since Q3(0) = %’ > 0 and

0;(4) ~ cd?A* as 4 — +oo, the polynomial O5(4) + &¢; always
admits at least one negative real root. As for the other two, we
observe that no Hopf bifurcation occurs in this case (since the
only solution to O;(i @)+ ¢; = 0 is given by w = 0). The sign of
their real part hence remains the same as ¢, is varied, and since
we know that for ¢; = 0 the other two roots of (i w) + 8 ¢; are
real and positive, they remain positive for all ¢;.
(iii) # <« ¢ k4: In this case, the characteristic polynomial is given by
_ 0,(%)
c2d?
Two roots are to leading order given by the roots of Q,(4).
Solving Q5(4)n + 8¢ k, = 0 hence requires |A| > 1. Expanding
for large A yields

PV () =

(O3 n+68¢ ky) + Ok 4) O). (56)

Os(Wn+6Cky=2d?A* —ned* P =6k, +0O2). (57)

Note that, as =8 k4 < 0and ¢ d?A*—ncd? 3-8k, ~ c*d?>A* as
A = +o0, the leading order polynomial (57) has at least two real
roots of opposite sign. To further determine the roots of (57), we
consider four possible balances:

« If 2d?2* ~ ned?*2® > 5 ky, Eq. (57) reduces to leading
order to ¢2 d?1*—n ¢ d? 43 = 0; this equation admits one real
positive root A = g and one zero root with multiplicity
three, that needs further unfolding. For A ~ 0, Eq. (57)

admits the three roots

SCk N\ s {85k 1/3
vi=—(—— ;o »=EDT | —= ,
cd?n cd?n

sCk,\"2
= (=1)*/3 —A> )
»=Ch (cdzn

The roots v; and v; have negative real part, whereas v, has
positive real part.

If ned?A’> ~ 6¢k, > c2d*2*, to leading order Eq. (57)
admits the roots in (58), whose sign has been analysed in
the previous balance point. The fourth root of (57) is real
and negative.

If 2d?A* ~ 6¢k, > ncd?A3, we have two real and two
purely complex roots, namely

5Ck, 1/4 (5Ck, 1/4
)“_J—r(Czdz) s A=z 242 :

The sign of the real part of the complex roots is obtained
by considering the higher order term # ¢ d*>43, from which
we get

5Ck 1/4
A:ii i ¢ A .
4c c2d?

(58)
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In this case we hence have one root with negative real part
and three roots with positive real part.

If 2d*2* ~ned?A* ~ §¢ ky, we can define 1 := Ayn and
{ky =& n*. Eq. (57) thus becomes

0,()—6¢ =0, (59)

where 0,(1) := c? dzﬂg - cd2/1(3). This function satisfies
0,(0) = 0 and Q4(4) — 0 as 4 — oo, therefore Eq. (59)
admits two real roots of opposite sign for any ¢, > 0. The
two other complex roots have positive real part equal to

(=173 f% ' to leading order; since no Hopf bifurca-
tions are possible, the sign of the real part of the complex
roots remains positive for any {, > 0. Hence also in this
case we have one root with negative real part and three
roots with positive real part.

Consequently, considering all possible balances we find for Regime IV
that dim (E<(z})) =2 and dim (E“(z})) = 4.

Conclusion. We observe that ¢ < d? (kN +n+ %) is automatically

satisfied when n <« 1, that is, in Regime II and Regime IV. Com-
bining the results from Regimes I-IV, we see that dim (E*(z})) = 2

and dim (E“(z})) =4 when ¢* < d2 (kN +n+ %) Only when ¢? —
d? (kN +n+ é) > 0 there exists a O(k,')-value of { = ¢y such that,
if { > ¢y, dim (ES(z})) = 4 and dim (E“(z})) =2. O

5.3. Existence of a travelling wave

In phase space, a travelling wave solution corresponds to a hete-
roclinic orbit connecting z; and zj, thus lying in the intersection of
the unstable manifold of one equilibrium and the stable manifold of
the other. We use the Local Stable Manifold Theorem to infer from
Theorem 1 that the dimensions of the stable and unstable manifolds
of zj are

dim (W¥(z})) = dim (W*(z})) = 3.

Likewise, we infer from Theorem 2 that the dimensions of the stable
and unstable manifolds of z] are either

dim (W(z)) =2, dim (W'(z})) =4,

provided ¢? < d? (kN +1+ é), or

dim (W(z})) =4, dim (W"(z})) = 2.

provided ¢* > d? (kN +n+ é) and ¢ (25) is sufficiently large, in
H

particular £ > " +0O(1) (48).
A

Recall that the aim of this section is to obtain analytical insight into
numerically observed travelling fronts that invade the trivial steady
state, which for a right-moving front with positive speed ¢ corresponds

to a heteroclinic connection from z} to z;. Therefore, we take 2 <

d* (ky +n+ % , for reasons to be explained momentarily. Observing
that codim (W*(z;) N W*(z})) = 7, whereas codim (W*(z}) N W*(z}))
=5, and taking into account the fact that the phase space is six-
dimensional, we conclude that generically W”(ZS) n Ws(z’l*) = ¢ and
dim(W”(zT)nws(z;)) = 1 (if non-empty). In the latter case, this
intersection is generically transversal and hence persists when ¢ is
perturbed. This leads us to the following Corollary:

Corollary 3. We generically expect a one-parameter family of heteroclinic
connections from z to z;, parametrised by the wave speed c, with 2 <
d? (k Nt+Hn+ é) Moreover, we expect this family to exist in an open
region of parameter space. Every member of this family corresponds to a
right-moving front invading the trivial steady state £ (7).
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Fig. 4. Heteroclinic orbits connecting z; (circle) to z; (diamond) corresponding to the numerical travelling wave solution described in Fig. 3 in (4, N, I)-space for different values
of rp. Together with the ones fixed in Table 2, the parameter values are gg = 0.132, kg =1.32, gy =20, ky =2, rp =480, g, =0.8, d =0.913, and r, as in the legend.

Note that the above arguments do not constitute a proof of the
existence of a heteroclinic connection from zT to z(’;, as the intersection
W“(z]‘) n Wf(zg) might be empty. However, in the upcoming section,
we identify a parameter range for which such a heteroclinic connection
exists (Theorem 3).

Remark 1. The same reasoning can be applied to generically expect
the existence of a heteroclinic connection from zj to z}, for sufficiently

large wave speeds ¢ > dy/ky +n+ é and sufficiently large values of ¢.
However, for all ¢ > dy/ky + 1+ (15, we have that ¢[7 > ¢ (A.3), and ¢

does not exceed q{’ for the parameter ranges in Table 2, cf. Corollary 1.
For this reason, we do not investigate this anomalous wave any further
in the current paper.

The analytical investigation carried out above is confirmed by plot-
ting the numerical solution shown in Fig. 3 in the (4, N, I)-space; this
in fact reveals the presence of the predicted heteroclinic connection
from z*l‘ to zg (see Fig. 4).

5.4. Properties of the wave profile

In this section, we derive generic properties satisfied by a right-
moving travelling front solution to System (3), which is equivalent to a
heteroclinic connection from z} to z; in System (32). These properties
can be used to explore the connection between such a travelling wave
and the Janzen-Connell distribution.

Lemma 1 (Monotonicity of S and I). Let (S(&), u(¢), N(&), A(€), 1(&),
v(&)) be a solution to System (32) representing a right-moving front travel-
ling with speed ¢ > 0. If A’(€) < 0 for all &, then S'(¢) < 0 and I'(¢) < 0
for all &.

Proof. We first consider S’(¢). The proof strategy is based on deriving
an explicit solution for S(£) by means of a Green’s function, which in
turn allows us to obtain an explicit solution for S’(¢) as a function of
A'(¢) using integration by parts.

We write Egs. (32a)—(32b) as a single second order equation for .S,
yielding

S"+cS +A—kgS=0.
The boundary conditions

lim S(&) = S}, lim S() =0,
£——0 E—+4o0

uniquely determine the solution

P ¢ ¢ e [T e
& =en A(Q) ——— df + e A(Q) ——— d¢, (60)
oo W= ¢ W=

with

1
W= <—ci\/cz+4ks> 61)

the roots of Q,(1) (44). Consequently, we have that

_. ré —u ¢ s —ufe
@) = py ¢ / AQ) - dg -yt T / AO < a
— - E -

) My — My 3 My — My

B e ¢ e —uTe
R [A(C)iL] +e”15/ Pl PR

,Ml —Ill o /41 /41
— [+5) +
- ¢ 4 o0 - ¢
—M A —— | +ef / A ————d¢
Hy = Hy ] ¢ Hy —Hy

_ ¢ —u;¢ o —ut¢
— et / AQ) S dg + ¢ / AQ) S——dt.
- Hy — Hy 13 My — My

(62)

which is negative if A’(¢) < 0 for all & € R. The proof of I'(¢) < 0 is
analogous, with /111, the roots of P;(4) (38), replacing ﬂli. O

Lemma 2 (Monotonicity of A). Let (S(&), u(§), N(&), AE), 1(€), v(&)) be
a solution to System (32) representing a right-moving front travelling with
speed ¢ > 0. Then A(§) < 1 for all ¢&. Moreover, there exists a &, € R such
that

« A®) > 11—k, forall &£ <&, and
* A <1-ky and A'(§) <0 for all & > &,

Proof. From Eq. (32d) together with the positivity assumptions on N
and the parameters g4, gy, it follows that when A > 1, then A’ > 0.
Therefore, if solution crosses the threshold A = 1 for a certain & = &, it
will remain above A =1 for all &£ > &,. This contradicts the assumption
on the travelling wave solution, that A(¢) — 0 as & — co.

Again from Eq. (32d) together with the positivity assumptions on
N and the parameters g4, gy, it follows that when A < 1 — k,, then
A’ < 0. Therefore, if solution crosses the threshold A = 1 — k, for a
certain & = &, it will remain below A =1 — k, for all ¢ > &;. Since the
travelling wave solution has A(§) > 0 as £ > oo and A(6) > A, > 1—ky,
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Fig. 5. Schematic representation of the establishment function f(/) as defined
in Eq. (6), for large values of r .

as £ > —oo, it follows that the solution crosses the threshold 1 -k, for
some &,. Once the solution has crossed this threshold, it will continue
to decrease (strictly monotonically) to zero. []

Remark 2. When 1 —k, < A < 1, no monotonicity of A is generically
guaranteed. By redefining A = 1 — k, a and linearising System (32)
around the nontrivial equilibrium A, (corresponding to a = §), we have
seen in Section 5.2 that in our travelling wave framework there are
four unstable eigenvalues, hence leading to four associated eigenvectors
with a nonzero a-component as follows:

kn+n

1 + +
a@@) =6+ h e +hye ¢ °+hye't 4 hy et

Therefore, depending on the signs of the constants 4;,i = 1,...,4, A can
admit several local minima and maxima in a neighbourhood of 4,.

Lemma’s 1 and 2 provide information on the monotonicity of S,
I and A. However, for the seedling component N, one cannot derive
monotonicity properties in full generality, due to the nature of the
nonlinearity of Eq. (32¢).

To mitigate this problem, we consider the establishment function
f (I) (6) for large values of r;-. We observe that, for sufficiently large
rr, f (I) behaves like a switch function (see also Fig. 5):

1 .
— ifrp>0,I<I orrr=0,any I/
fm g T T o= Ay 63)
0 ifrp>0,1>1,,
where I corresponds to the inflection point of f given by
1S=L10g<l>. (64)
rr 4

Theorem 3 (JC for Strong Toxicity and Slow Seed Growth). Let r be
sufficiently large and gg sufficiently small. Then, there exists a heteroclinic
orbit in (32) from z} to z;, for which the N-profile has a unique maximum,
and the S-, A- and I-profiles are strictly monotonic.

Proof. For asymptotically large rp, the establishment function f(I) (6)
is exponentially close to O for I > I, + I, and exponentially close to 1
for I < I, — I, with I, = (r;)*!, for any 0 < a < 1. Moreover, both I
(64) and I, are asymptotically close to zero.

For f(I) = 0, the hyperplane {N = 0} is invariant under the flow
of (32). Moreover, for this choice of f, the nontrivial equilibrium
z’l‘ lies on {N =0}, and is given by (1;“,0,0, 1 —ky, 1;’;" (8). By
Lemma’s 1 and 2, we see that .S, I and A are strictly monotonically
decreasing on the invariant hyperplane {N =0}. Since {N =0} is
normally hyperbolic and f(I) is asymptotically small for all I > I, +1,
the half-hyperplane Py := {N =0, I > I +1I,} perturbs to a locally
invariant codimension-1 manifold P for the full system (32) [36]. The
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unstable manifold of z’l‘ of the flow on P, that we denote by W;‘,(zf),
is 3-dimensional. Since P is normally repelling in the N-direction,
we can conclude that in a neighbourhood of P, the 4-dimensional
unstable manifold of zT in the full system (32) is foliated as W“(z”f) =
W (Wh(zh).

The A-dynamics on P are to exponential order in i given by A’ +

%A (1 -k, — A) =0, which yield A(&) = A(0)(1—k,) [AO +(1—ky— Ag)

1=k 4
e c

-1
’5] . From the (linear) S- and /-dynamics on P, which depend

linearly on A, we see thatif I — I, + I} = O ((rT)a_l), then both
S8 =0 ((rT)a_1> and A - A, = O((rT)a_l); the same holds for

the derivatives u and v. Moreover, in a sufficiently small neighbourhood
of PI: tge normal N-dynamics are to leading order linear, and N (&) =
N 18%5 for N, sufficiently small.

We investigate the intersection of W*(z}) and Wi(z) in a neigh-
bourhood of P, and in a neighbourhood of I = I,. Close to both
P and I,, the S-, u-, A-, I-, and v-components of orbits in W”(z“f)
are O ((rT)U’_l , while N is sufficiently small by assumption. Hence,
in order for Ws(z(’;) to intersect W“(z’l‘) in this neighbourhood, all
components of Ws(z(’;) must be close to zero. It follows that the if
intersection of Ws(zz) and W"(z*l‘) lies close to P and I, it has to be
close to the origin zj. Close to the origin, the dynamics on W*(z)
are linear, and Wi(zg) is close to E*(z;). Hence, for rp sufficiently
large, transversal intersections of ES(z(’;) and W“(z’l*) perturb regularly
to transversal intersections of W“(z’(;) and W“(ZT)'

Now, let g¢ < 1. For gg = 0, the flow of (32) is equal to the flow
of (32) under the assumption f(I) = 0. Hence, the hyperplane { N = 0}
is invariant when gg = 0. Moreover, the trivial equilibrium zj lies on
{N = 0}. Solving the equations for A, S and I on {N =0} yields the
following unique heteroclinic orbit from zj to z; on {N = 0}:

-1
g:l

_ ¢ -uy¢ . +o00 —ut¢
S4(&) = ¢ / AQ < gp / A0,

1-ky

Ay (&) = AOX1 - ky) [Ao + A —ky—Agle

o Hy Hy & Hy Hy
_ ¢ —AT¢ . +o0 e—/l']"{
I, =e¢ / AQ) = ¢ +eh¢ / A©) dc,
h R f A=y

cf. Lemma 1. Thus, for gg =0, Ws(z;) and W"(ZT) intersect transversally
in the hyperplane { N = 0}, and this intersection is one-dimensional.
We investigate how this intersection perturbs for 0 < gg < 1. As
the term gg S f(I) is a regular perturbation of system (32), we know
that both the hyperplane { N = 0} and the stable/unstable manifolds of
the equilibria 5, perturb regularly in gg. To determine the N-profile,
we consider the unstable eigenvalues Al Ay and 4, of z* (cf. the proof

0
of Theorem 1), which for 0 < g, < 1 can be determined explicitly:

we find 4y = —3tr (- = VT H4d%; ) (38), 4 = uy + Olgs) (61)
and 12 = # + O(gy), cf. (37)—(39). The associated eigenvectors can

be determined by an expansion in powers of gg. To leading order,
the N-component of the eigenvectors is zero, due to the fact that the
intersection of W“(z(’;) and W"(z’f) lies in the {N = 0} hyperplane for
gs = 0. The first order correction of the eigenvectors associated to 4;

& __L___ forthe A3-
1+y gatky—cu; 2

- 2
. 17kA+k,7d2%

(1-ky)?

and /1, yields a nonzero N-component, to wit

eigenvector and £ for the 1,-eigenvector.

I4+y gatkn+1—ky I—k g +hg—
Hence, to first order in gg, the N-profile is cexponentially decreasing as
¢ - oo, along these eigenvectors.

Now, define &, through I,(¢,) = I, (64). Note that &, is well-defined
since I, is strictly monotonically decreasing when I, is sufficiently
small (Lemma 1). [ is to exponential accuracy in # approximated by
I, on P, (at least) up to I = I + I,. In addition, I is to leading order

in g approximated by the linear dynamics on E*(zy), (at least) up to
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I, — I,. The change of I over the interval (I, —I;,I +1I;) is small,
and since system (32) is regularly perturbed for small g¢ and large
rr, this implies that the change in all other components over the ¢-
interval associated to the change from I = I, + 1, to I = I, — I,
is small as well. Hence, to leading order, we can match the linear
dynamics on ES(ZZ;) to the dynamics of W (W;‘,(zf)) at & = £, The
transversality of the intersection of Wi(zg) and WH(z]) ensures that
this matching procedure can be carried out for every component. The
result for the N-profile is a single peak, to leading order in gg up
to ¢ = &, determined by the exponential increase with rate k"’%
along the unstable fibres of W* (W;‘,(z*f)), and from ¢ = &, onwards
determined by the exponential decrease along E* (z5)s with exponential
rates given by the stable eigenvalues 4; and L. O

Remark 3. While the condition r; > 1 in Theorem 3 is natural
(sufficiently strong toxicity feedback induces a JC distribution), the
second condition gg < 1 seems less so. Indeed, the necessity for
this condition is purely technical, as it allows us to obtain analytical
expressions for the stable eigenvalues and eigenvectors of z; (39).
However, considering the feasible parameter ranges for gy, and in
particular for the product g, gygs, we infer from Table 2 that g,gygs
is small for a significant subset of parameter space — that is, for most
values of g, and gy, the condition that gy is sufficiently small is not
restrictive.

5.5. Wave speed

The analysis of front propagation in excitable media has been a
topic of interest for several decades. In his seminal review paper, Van
Saarloos [35] used the characterisation pulled front for those travelling
fronts whose speed is determined by the instability of the spatially
homogeneous steady state that is being invaded.

In this section, we analytically determine this ‘linear’ speed a pulled
front would have, by a linear analysis near & To determine whether
the numerically observed fronts can indeed be classified as ‘pulled’, we
then compare ¢, with the wave speed computed numerically for the
emerging travelling wave solutions.

Theorem 4. The linear wave speed c, of a pulled front solution to Eq. (3)
is given by

dw
.= —2(x,) (65)
dx
where w;(x) € C is a purely imaginary solution to
%+(l—kA+ia))(iw—gA—kN)(iw—kS—Kz):O (66)
and k, =i g} with g} > 0 solution to
dos . Im(ews(i B,.))
W(l B.) = 5 . 67)
Proof. In order to compute the linear wave speed, we analyse the

dispersion relation of Fourier modes of the linearisation of Eq. (3) at
& Introducing the diffusion matrix

1 0 0 O
0O 0 0 O
D=
0 0 0 O0of (68)
0 0 0 d°
the dispersion relation @ = w(x) is given by the solution to
. 2 _
det(tw—KD+J|gg)—O, (69)

where @ € C represents the (generalised) frequency, k € C the
(generalised) wave number, and J| & is the Jacobian (21) evaluated at
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é‘(’)‘. In our case, Eq. (69) takes the form of the fourth order polynomial
in w

(iw—d2K2—k1) (gAgN 8s

T4y +(—-ky+io)io—gy—ky)

X (iw—kS—K2)> =0. (70)
For sake of simplicity, Eq. (70) can be equivalently expressed as ¢(w, «)-
w(w, k) =0, where

o(w, k) = (ico—dzkz—k,),

. 8AEN 8s
v(w,k) 1= —————

T4y +(1—kA+iw)(iw—gA—kN)(ia)—kS—Kz)>.

(71)

Given a solution w(x) to Eq. (70), the linear wave speed ¢, € R and the
linear spreading point k, associated to w(k) are given by the solutions
to the equations

Im(w(k,))

Im(x,) 72)

Cyx = Z_GK)(K*) =
see [35,37].

Among the four roots w;(x), i = 1,...,4 satisfying Eq. (70) we
define w,(x) as the unique root of ¢(w,x) and w;(x), i = 2,3,4 as
the three roots of the cubic polynomial y(w, ). Since we have that
®; = —i(d*> k% + k;), we exclude this root from further analysis as o,
does not admit solutions to (72).

In our analysis of the other three roots w;(x), i = 2, 3,4 we introduce
the additional assumption (based on our numerical findings, see below)
that both w and « are purely imaginary, as the fronts we observe are
monotonic, i.e. non-oscillatory, both in space and time, near the trivial
steady state &;. In particular, spatial oscillations around &; would
violate the fundamental model assumption that all model components
are non-negative. Hence, we write x = if with § € R. We note
that in this case Eq. (70) is explicitly solvable, however the analytical
expression for ¢, (function of g, gy g5, g4 + ky, and kg) is a root of
a fifth order polynomial, making it hardly accessible (and hence is
not provided here). As observed numerically, two out of three roots
w,(x) and w,(x) are not purely imaginary for every value of g, and
are therefore further discarded from our investigation. The unique root
ws(x) is finally used to derive the value of «, =i g, such that Eq. (67)
holds, i.e.

dws

203 15, = I0E2)
K

B.

This equation admits two solutions f* with opposite signs; however,
as we are interested in right-moving fronts, we only retain the positive
solution g} > 0. We thus finally obtain the linear wave speed as

Im(w3(i 1))
b
As we do not provide an explicit analytical expression for w;(x), in
Fig. 6 we illustrate a typical plot of the functions dd%(i p) and Im@s @ £)

with respect to g for the following fixed parameter values (within the
ranges reported in Table 2):

day
T

(iD=

Cy

g4=08, gy=20, y=107 k,=004 ky=2 kg=132.

(73)

5.5.1. Numerical investigation

In order to further validate the existence of pulled front solutions
travelling with speed ¢, as described in Theorem 4, we perform nu-
merical simulations of System (1) on a one-dimensional domain of size
L = 350 m discretised with a spatial grid of 6x = 0.1 m and m = 3500
grid cells including Neumann boundary conditions and the following
initial conditions

s(L-2x)°

S, 0 =S8y(x)=e ~ 2L ,

N(x,0) = A(x,0) = [(x,0) =0, (74)
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Fig. 6. Plot of the functions - (i ) (blue curve) an (yellow curve) for
parameter values as in Eq. (73) and g4 = 0.132. The intersection points between these
two curves occurring at f = f* are indicated by the two black points P*. For these
parameter values we observe that f* ~ +1.42 and therefore P* = (+1.42,+1.08).

FRLIGAU))
3

where the dimensional parameters correspond to the ones described
in Table 1 The total simulation time is 7 = 500 years with timesteps
of 8t = 0.001 years. Following [38], the numerical scheme used in
our simulations is based on a forward Euler integration of the finite-
difference equations obtained by discretising the diffusion operator
with no-flux (i.e. Neumann) boundary conditions.

The dimensional parameter values fixed in this simulation (other
than the ones already fixed in Table 1) are (for unit measures we refer
to Table 1)

ks =033, gy=5 Fr=34 ky=05 rfp=1, g,=02

d; =0.5.
(75)

We then investigate two aspects, namely the dependency of the wave
speed on the parameter g (fixing dg = 0.6) and the dependency of the
wave speed on d ¢ (fixing g¢ = 0.033).

A comparison between the values of the linear wave speed obtained
from the analytical investigation described in Theorem 4 and the
numerical speed computed by means of simulations w.r.t. gg and d is
given in Fig. 7. To obtain it, we first calculate the dimensional wave
speed ¢, as follows, and then derive the nondimensional wave speed

¢, = ;—A ¢,. The dimensional numerical wave speed é, in both
S

scenarios described above - identified by éfs and éf:s , respectively — is

obtained by tracking at each time 7; = j -8t the location of the inflection

point in the A profile — defined as % ; — and subsequently calculating

the mean of the difference quotient over a specific range of iterations,

namely

s ._ L AT
* 479 & ¢ —F
j=20 “j+1 J
0(ds) ¢ o (76)
s ._ Y Xl T
n(ds) =0 Tj+1 71
where
0(dg) 1= —38.76 d3 +266.946 d% — 619.173 dg + 662.244. 77

The function 6(dg) has been derived by interpolating end times in
the simulations such that a wave travels with constant shape for j =
50,...,0(dg). This is due to the fact that the range of d over which the
simulation runs has a strong impact on the speed of the travelling wave,
which reaches the boundary of the spatial domain sooner for higher
values of dg. The number of iterations n(dg) over which the speed éfs
is calculated hence varies with d. Since, on the other hand, variations
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of g5 do not exhibit the same properties, the interval over which the
numerical wave speed is calculated is here considered as constant.

By converting the numerical wave speed in Eq. (76) in its nondi-
mensional form ¢S and c¢, we finally compare it with the analytical
values obtained in Theorem 4 (see Fig. 7). We note that the strong
dependency of the dimensional wave speed éfs on dg does not imply
that the same effect should be valid for the nondimensional speed,
which in fact remains approximately constant as d varies as shown in
Fig. 7(b).

We finally observe that the numerical results confirm (up to ©@(10~2)
due to numerical precision) the analytical predictions; such accuracy
increases by increasing the size of the domain (by considering larger
values of m) and thus increasing simulation times as well (see Fig. 8).
In order to achieve even higher accuracy, the size of the domain
should increase with d ¢ since (as discussed above) for higher values
of the seed dispersal coefficient the boundary of the spatial domain is
reached sooner by the travelling wave (we note that larger values of
dg correspond to lower values of its nondimensional counterpart d).

6. Conclusion

In this work, we have introduced a novel reaction-diffusion-ODE
model for (ecologically relevant) transient patterns observed in na-
ture, known as Janzen-Connell distributions. The functional responses
adopted in the model, as well as the parameter ranges chosen for the
analysis, are based on theoretical assumptions supported by experimen-
tal findings [14,39-41]. We have included two prominent mechanisms
in negative plant-soil feedback, namely growth inhibition and in-
creased mortality, in order to show their key role in the emergence
of such transient patterns.

The analytical challenges provided by the complex structure of
some functional responses, in particular the germination function, were
here overcome by exploiting the small scale of certain parameters in
the system. This feature has also played a key role in our thorough
investigation of travelling wave solutions, i.e. the theoretical represen-
tation of the JC distributions we aimed to describe. Our linear stability
analysis allowed us to rule out the existence of Turing bifurcations and
infer the existence of travelling wave solutions for parameter values
spanning within ranges of ecological feasibility exhibiting the typical
features of JC distributions. Moreover, numerical simulations suggested
that the travelling wave solutions admitted by our model in a large
area of parameter space correspond to pulled fronts, “pulled” by the
linear spreading of small perturbations into the linearly unstable bare
soil steady state. The analytical expression for the linear spreading
speed was then compared with the numerical speed of one-dimensional
waves travelling on a sufficiently large spatial domain, mimicking the
unbounded domain of the analytical investigation; the high accuracy
revealed by this comparison strongly supports our hypothesis on the
pulled nature of the constructed fronts.

Previous ecological studies have highlighted the possibility of neg-
ative plant-soil feedback driving spatially regular pattern formation,
associated with Turing instabilities of mean field states [42,43]. These
previous studies, however, did not consider tree life-stage structure,
despite its importance for the mechanisms at play [1,2]. Interestingly,
we found that in our stage-structured model, there was no possibility
of a Turing bifurcation providing the onset of spatially regular pattern
formation. Our results highlight that future ecological studies may need
to consider the effect of plant—soil feedbacks in different tree life stages
explicitly, in order to infer their consequences for emergent spatio-
temporal dynamics. Furthermore, our results are in line with previous
ecological model studies showing that a plant invasion travelling wave
only constitutes a ‘pushed’ front under strong positive plant-soil feed-
back [44]. In the cases of negative plant-soil feedback considered
in this study, only ‘pulled’ fronts emerge. Whether this strong link
between Janzen—Connell distributions and ‘pulled’ invasion fronts is
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Fig. 7. Comparison between the nondimensional wave speed obtained analytically (solid line) and from numerical simulations (dashed line) as a function of (a) gg with d = 0.913
and (b) d with gy = 0.132. The other parameter values are set as in Eq. (73) together with r; = 4080, r, = 480. We note that these values are obtained by plugging the dimensional
values in Eq. (75) into Eq. (4). The range of g¢ (a) and d (b) correspond with the ranges of these parameters given in Table 2.
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Fig. 8. Comparison between the wave speed obtained analytically (solid black line)
and from numerical simulations (dashed lined) with the same parameter values as in
Fig. 7 for different domain sizes I = m-8x with m = 3500 (blue), m = 4000 (orange), and
m = 5000 (green). We note that the accuracy of the numerical wave speed increases
with m.

robust to variations in model framework is an interesting avenue for
further ecological studies.

As the presented model exhibits a rich and complex structure,
several interesting research directions can be further considered. Few
examples which we plan to undertake in the future include a deeper
investigation of different scenarios corresponding to different combi-
nations of growth inhibition/increased mortality intensity (represented
by high/low values of r; and rp, respectively). Moreover, in order to
increase the impact of our model beyond the theoretical sphere, we
aim to focus on more realistic ecological scenarios where different trees
interact in a limited space (i.e. a bounded domain) and, as a further
step, extend our model to a multi-species framework.
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Appendix. Linear stability of 8;‘ with respect to spatially homoge-
neous perturbations for n,¢ # O(1)

Based on the values reported in Table 2, and observing that the
r(L
Y (kl )
%’ log (l , we have that the parameters n and ¢ in (25) can vary within

the following ranges:

maximum of ' f! (kl)‘ is realised at I = I, and
I

max

ne(0,36-10%), ¢e€(0,3.2-10%).

The linear stability of the steady state £ w.r.t. homogeneous pertur-
bations in the case of 5, ¢ € O(1) has been discussed in the proof of
Proposition 2. Here, we look at the other possible regimes, i.e.

L n>1,{e€00),
IL. neO),>1,
I 5, > 1.

A.1. RegimeI: n>> 1, ¢ € O(1)
In this case, the dominant term in the characteristic polynomial (26)
becomes
1
pD) =1 (ks+21) (ky+4) (g + /1) +0O) +O(nky,)

when A € O(1), which implies that the eigenvalues —k,, —k;, and —(ls
perturb regularly. On the other hand, when |4| > 1 dominant balance
gives

N+ 0Ok, =0

i.e. A = —n at leading order. In conclusion, all eigenvalues perturb
regularly and remain negative.
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A.2. Regime II: n € O(1), £ > 1

Here, the characteristic polynomial is linear in ¢ and is given by
p(D) =g+ (kg +4) (6k4 - 6%K3) ¢, (A1)

where ¢(4) is a polynomial of degree four in A. By writing ¢ = ¢, k;y s
we have that:

+ if 0 < y < 1, the eigenvalues —k,, —k;, —é, and — (ky +#) perturb

regularly;
« if y = 1, a regular expansion in k, leads at leading order to the
equation
1
(ks +2) (8 + (ky +4) (ky +1+2) (5 +2)) =0, (A2)

which implies that the eigenvalue —kg perturbs regularly, while
the others shift above by O(1). These three eigenvalues are neg-
ative as long as ¢, remains below the Hopf bifurcation value
cjo” , which is found by imposing that the third order polynomial
in Eq. (A.2) admits a purely imaginary root:

1

H .

& .=6—3(kN+k,+;1)(1+5k,)(1+5(kN+n)). (A.3)
o _ &%

This implies that, for any ¢ = k—“ < kL, we have three negative
A A

eigenvalues.

if y > 1, we have that —kg is the only eigenvalue which perturbs
regularly (i.e. 4 € O(1)). On the other hand, dominant balance
for |4 > 1 leads to 4> = -6 ¢ k, > 1, which implies that here we
have one real, negative eigenvalue and two complex conjugates
eigenvalues with positive real part for any ¢ > 1.

In conclusion, in this case we have that all four roots of the polynomial
in Eq. (A.1) are negative as long as ¢ < kL q{’.
A

A.3. Regime III: n, { > 1

The characteristic polynomial in this last regime is given by

P = (ks +2) (kp +4) (5 +2) (ky 41+ 2)
+hy (8¢ (ks +A)+00°) (A4)
+n(ky A=8)(ks+4)— (k;+4) (kg 2+62)
+ A1+5+61))+00").

As before, the eigenvalues 1 = —kg < 0 perturbs regularly, providing
one stable, O(1) eigenvalue. In order to establish the nature of the other
three eigenvalues we need to consider the following scenarios:

1. If n > { ky, the eigenvalues A = —k; A = —é also perturb reg-

ularly, providing two negative O(1) eigenvalues; an additional
negative O(y) eigenvalue is given by 1 = — (ky +17), so in total
we have here three stable eigenvalues.

2. If n ~ { ky, we can write { k, = {,n. Replacing this expression
in Eq. (A.4) leads to two O(1) eigenvalues with negative real part
obtained by solving 6 42 + (1 +6k;) A + (k; +6%¢,) = O (since
(14 6k;) > 0) and one O(y) eigenvalue 1 = - < 0. Therefore,
in this case we also have three stable eigenvalues.

3. If n < Cky, we have that 6k, (1-6ky) (ks +4) balances
4B ((1-6ky) n+0@") + O°) in Eq. (A.4). This leads to
further possible scenarios:

(a) If A* > 435, the characteristic polynomial at leading order
becomes 4* + 6k, A = 0, whose nontrivial solutions
consist in two complex roots with positive real part and
one negative real root. This implies 4> ~ ¢ k ;. At the same
time, in this case we have 1 > 5; these two considerations
lead to ¢k, > 1.
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(b) If A* ~ A%y, we can write A = 4, #; plugging this into the
dominant terms of the characteristic polynomial leads to
¢k, ~ n°, hence we can write { k, = {,#°. Including
this further assumption, the roots of the characteristic
polynomial are given by the solutions to A3 + 42 + 8¢, +
O(k 4) = 0. In the case § ¢, = 0, this polynomial admits the
negative root A = —1 and a double zero solution. Including
the positive term 6¢, hence implies that the negative
root perturbs to a root which remains real and negative,
whereas the double zero perturbs to a pair of complex
conjugate roots with positive real part given by % at
leading order. In this case no Hopf bifurcation occurs,
since the polynomial does not admit purely imaginary
roots for any value of §¢. Therefore, here we have two
stable and one unstable eigenvalues.

() If 2* <« A%y, the characteristic polynomial up to its
dominant terms reduces to 4> n+6 ¢ k, 4 = 0 and is solved

8Cky

1/2
by 4 = =+i (T) , hence requires further unfolding.

First, however, we observe that here A? ~ %, which

3/2
implies ¢k, > (% and, in turn, that this scenario

corresponds to ¢ k4 < n°. Considering higher order terms
leads to the following subcases:

iIfy < ¢k, < n?, the characteristic polynomial

admits two roots with negative real part given by
dow (P8R} N6tk 1
e n 2 1-6ky no/2

ii If * < (k4 < #n°, the characteristic polynomial

admits two roots with positive real part given by

NEISTANS 2y L
A:iz<T> ey (1+46k; —6%ky) s

iii If 2 ~ ¢ k,, writing { k, = ¢, #* leads to the fol-
lowing two roots of the characteristic polynomial
with positive real part, given by

(1=6ky) (1=6k; +8%ky4) + 6%,

y 172
A=xi(6ng) "+ 2652452 (1 -6k y)

A Hopf bifurcation occurs at

s 1+6k
H _ 1

Gl = L+ Oy,

To summarise, in this case we have that the four eigenvalues of

the characteristic polynomial are negative — i.e. £ is stable to
2 A

homogeneous perturbations — as long as ¢ < Z— §0H +0O(1). We
A

observe that this value corresponds to the leading order term of

é C({” for large #, i.e. regime II converges to regime III as 7 — oo
as expected.
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