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Abstract

Histatin 5 is a cationic salivary peptide with strong candidacidal and bactericidal activity at physiological concentration. In this paper
we demonstrate by optical spectroscopy and ESI-IT-MS experiments that a synthetic peptide related to the N-terminus of histatin 5 spe-
cifically binds copper ions in vitro and that the complex metal–peptide generates reactive oxygen species at physiological concentration of
ascorbate, leading to significant auto-oxidation of the peptide within short reaction time. The oxidative activity of this peptide is asso-
ciated to the presence of a specific metal binding site present at its N-terminus. The motif is constituted by the amino acid sequence NH2-
Asp-Ser-His, representing a copper and nickel amino terminal binding site, known as ‘‘ATCUN motif’’. The results of the study suggest
that the production of reactive oxygen species can be an intrinsic property of histatin 5 connected to its ability to bind metals.
� 2007 Elsevier Inc. All rights reserved.
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Histatins are a family of histidine-rich salivary peptides
probably present only in higher primates [1]. Until now,
only two human genes HTN1 (HISI) and HTN2 (HIS2)
localized on chromosome 4q13, have been recognized as
responsible for their synthesis [1,2]. The products of the
two genes are histatin 1 and histatin 3, respectively. The
former is a peptide of 38 amino acids, phosphorylated at
Ser-2, whereas the latter, 32 amino acids long with
sequence very similar to histatin 1, is not phosphorylated.
Many other peptides of this family have been identified
in human saliva, all sharing a sequence common to the
two parent peptides. Recently, it has been suggested that
histatin related-peptides rather than by a random process
are generated by a sequential fragmentation pathway,
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which is under the principal action of a furin-like pro-pro-
tein convertase of the kexin-subtilisin family [3].

One of the most interesting histatin 3 fragment is repre-
sented by histatin 5 (Hst 5), which corresponds to the first
24 amino acids of the parent peptide. Hst 5 is usually pres-
ent in human saliva at a concentration higher than that of
the other fragments and it was established to be the most
efficient salivary antimicrobial peptide in killing Candida

albicans at physiological concentration (15–30 lM) [4].
Studies performed to elucidate the molecular events

underlying Hst 5 antifungal activity evidenced that they
are significantly different from that proposed for azole-
based drugs, which exert their activity by inhibiting biosyn-
thesis of ergosterol, the main sterol of fungi membranes [5].
Two different mechanisms have been proposed to rational-
ise the antifungal activity of Hst 5. The first hypothesizes
that the peptide, after crossing the plasma membrane,
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reaches the mitochondrion by an unknown mechanism [6]
and interacts with the respiratory chain. Probably impair-
ing the electron transfer, by interacting with coenzyme Q,
it induces the generation of reactive oxygen species
(ROS) with the concomitant non-lytic release of ATP [7].

In the second proposed mechanism, the first molecular
event responsible for the candidacidal activity of Hst 5 is
its binding at the level of the cell wall with the heat shock
proteins Ssa1/2, which drive the internalization [8]. This
event should be followed by the interaction of Hst 5 with
the potassium transporter TRK1, accompanied by loss of
cell volume, loss of cytoplasmic small molecules and ions,
including ATP and K+, leading to the cell cycle block [9].

It has been previously demonstrated that Hst 5 is a
metal binding peptide due to the presence of specific motifs
for the binding of zinc, copper and nickel [10–12]. Consid-
ering that complexes between NH2-X-X-His peptides and
Cu(II) ions can generate reactive oxygen species [13], we
decided to study by mass spectrometry the ability of a pep-
tide analogous to the N-terminal sequence of Hst 5 to pro-
duce ROS in the presence of copper and ascorbate in vitro.

The results obtained evidence the role of the ‘‘ATCUN’’
motif [14] in the pro-oxidant activity of the Hst 5 related
peptide, suggesting that this property can be linked to
increased ROS production following histatin 5 cellular
internalization.
Material and methods

Reactants. All common reagents were of analytical grade.
Synthetic P1 (DSHAKRAHGY) and P2 (DSAAKRAHGY) peptides

were purchased from Peptide Specialty Laboratories GmBH (Germany).
Purity was >98%.

ESI-IT-MS and MS/MS experiments. The mass spectrometer was an
LCQ Deca-XP Plus (ThermoFinnigan, San Jose, CA, USA) equipped with
an electrospray ion source (ESI) and an ion-trap analyser.

Electronebulization was performed at a flow rate of 10 ll/min with a
sheath gas flow rate of 34.3 arbitrary units. The electrospray capillary
temperature was 280 �C, the source voltage was 5 kV and the capillary
voltage 30 V. The ion-trap analyzer operated in positive mode in the 300–
2000 m/z range and spectra were acquired every 3 ms. MS–MS experi-
ments were performed by isolating the ions at 2–4 m/z width and using
40% of the maximum activation amplitude.

Deconvolution of average ESI mass spectra was automatically per-
formed either by the software provided with the Deca-XP instrument
(Bioworks Browser) or by MagTran 1.0 [15]. Experimental mass values
were compared with the expected average and monoisotopic values cal-
culated using the Peptide Mass program. Theoretical MS–MS spectra
were generated utilizing the MS-Product program. Both programs are
available at the Protein Prospector site (http://prospector.ucsf.edu/).

Determination of molecular mass and sequence of P1 and P2 peptides.

Peptides were dissolved in 10 mM phosphate buffer, pH 7.4, to 0.175 mM
final concentration. 200 ll of the solution of the peptide were mixed with
800 ll of 0.2% acetic acid in water/methanol 50/50 (v/v ) to perform ESI-
MS and MS–MS analysis.

Spectrophotometric metal binding characterization. P1 and P2 peptides
were dissolved in H2O to a concentration of 0.5 mM, CuCl2 or NiCl2 were
added at 1:1 molar ratio with respect to the peptides. The pH of the
solution was raised up by adding 0.2 M NaOH. Solutions were equili-
brated for 30 min at each pH before spectrophotometric measurements.
The UV-vis spectra of the metal–peptide complexes were registered on a
Perkin-Elmer spectrophotometer Lambda-Bio.
Oxidation reaction. All reactions were performed in 1 ml teflon vials,
which allows for sufficient oxygen in headspace. Peptide P1 (100 lM in
20 mM phosphate buffer, pH 7.4) was incubated in the presence of 100 lM
CuCl2 for 5 min. Metal-catalyzed oxidation was initiated by exposure of
P1–Cu(II) complex to 70 lM ascorbate at 25 �C. Control experiments
were performed in the absence of ascorbate. The reactions were stopped
by the addition of concentrated acetic acid at a final concentration of 1%
(v/v). Reaction products were investigated by ESI-IT-MS and MS–MS
experiments.
Results

The synthetic peptides utilized in this study were: P1—
DSHAKRAHGY and P2—DSAAKRAHGY.

They correspond to the sequence of the first ten N-ter-
minal amino acid residues of Hst 5 with the exception of
a substitution His/Ala at the residue 7 (P1) and His/Ala
at the residue 3 and 7 (P2), respectively. Experimental mass
values of P1 and P2 peptides ([M + H]1+; monoisotopic)
determined by ESI-IT-MS corresponded to 1141.6 ±
0.2 Da and 1075.5 ± 0.2 Da, respectively. Sequences of
the two peptides were confirmed by MS–MS experiments.
Fig. 1 shows the fragmentation pattern of P1 peptide
obtained by SIM (Selected Ion Monitoring)-MS–MS
experiments performed by selecting the bi-charged ion at
571.3 m/z.

The interaction between peptide P1 and P2 and diva-
lent cations, such as Cu(II) and Ni(II) has been studied
by following the absorption in the visible region of the
spectrum between 300 and 800 nm. Fig. 2A shows that
the complex P1–Cu(II) reaches an absorption maximum
at 525 nm when the pH is raised from 3.0 to 11.0. It
is relevant to note that the major increase in the absor-
bance is evident in the pH range 3.3–5.4. In Cu(II)–P1
binding experiments, the absorption maximum at
525 nm reached at low pH values and maintained
through a wide range of pH, indicates a specific amino
terminal copper binding site. Fig. 2B shows the spectra
of Ni(II) binding to P1 peptide. In the spectra an
absorbance increase at 420 nm is observed when the
pH is raised from 6.0 to 11.0, characteristic of a planar
co-ordination [16]. Conversely, non-specific Ni(II)-bind-
ing is usually octahedral [17]. The pH of binding is
indicative of a high affinity metal–peptide P1 complex,
whom specific spectral properties evidence a co-
ordination of the metals with the ATCUN motif
constituted by the N-terminal sequence NH2-Asp-Ser-
His (Fig. 3).

The visible spectrum of P2 peptide, in the presence of
Cu(II) shows a maximum at 600 nm, that shifts at
525 nm only at pH higher than 10 (Fig. 2C). Similarly
the binding of Ni(II) to the same peptide shows a maxi-
mum shifted at 420 nm only at pH values higher than 9
(Fig. 2D). The spectra of P2 peptide are indicative of an
aspecific binding between the metal ions and the negative
form of the peptide prevalent at high pH.

The different spectroscopic behaviour of P1 and P2 pep-
tides in the pH-dependent binding experiments with metal
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Fig. 1. ESI-MS–MS spectrum of P1 peptide. The spectrum was obtained by direct injection as described in Materials and methods, following a SIM-MS–
MS experiment selecting the bi-charged ion of P1 at 571.5 m/z. Fragments of b and y series are in agreement with P1 sequence (i.f.: internal fragment).
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Fig. 2. Optical spectra of Cu(II) and Ni(II) binding to P1 and P2 peptides. (A) Optical spectra of 0.5 mM P1 peptide in the presence of an equivalent of
Cu(II) at different pHs. The spectra indicated were measured at pH 3.3 (a), pH 4.3 (b), pH 5.4 (c), pH 6.4 (d), pH 7.8 (e), pH 9.1 (f), pH 10.0 (g), and pH
11.0 (h). (B) Optical spectra of 0.5 mM P1 peptide in the presence of an equivalent of Ni(II) at different pHs. The spectra indicated were measured at pH
5.2 (a), pH 6.0 (b), pH 7.4 (c), pH 8.1 (d) pH 9.2 (e), pH 10.0 (f), and pH 11.0 (g). (C) Optical spectra of 0.5 mM P2 peptide in the presence of an equivalent
of Cu(II) at different pHs. The spectra indicated were measured at pH 4.8 (a), pH 5.1 (b), pH 6.3 (c), pH 7.2 (d), pH 8.1 (e), pH 9.0 (f), pH 10.0 (g), and
pH 11.0 (h). (D) Optical spectra of 0.5 mM P2 peptide in the presence of an equivalent of Ni(II) at different pHs. The spectra indicated were measured at
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ions demonstrates that a histidine in third position is essen-
tial for the correct topology of the ATCUN motif in the
formation of a complex with high-stability.
Electrospray ionization mass spectrometry (ESI-MS)
experiments were carried out to further investigate the
binding of Cu(II). Fig. 4 shows the ESI mass spectrum
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Fig. 3. Stereo-model of the ACTUN-Cu2+ complex.
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obtained by direct infusion of peptide P1 (100 lM in
20 mM phosphate buffer, pH 7.4) incubated in the presence
of 100 lM Cu(II) for 5 min. By deconvolution of the ESI
spectrum two masses were obtained: the value of
1140.3 ± 0.2 Da was attributed to the free peptide, the
value of 1202.3 ± 0.2 Da, increased by 62.0 Da, was in
agreement with the formation of a complex with Cu (II)
showing 1:1 stoichiometry. Remarkably, no masses attrib-
utable to oxidation products of peptide P1 were detected.

The pro-oxidant properties of the peptide–Cu(II) com-
plex were investigated by adding 70 lM ascorbate to the
mixture and analysing aliquots of the solution by mass
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Fig. 4. ESI-MS spectrum of the P1 peptide in the presence of Cu(II). Upper
20 mM phosphate buffer, pH 7.4 incubated with 100 lM CuCl2). Bottom diag
spectrometry. Fig. 5 shows the results obtained after
5 min incubation at 25 �C. Several masses attributable to
oxidised derivatives were detected together with those of
the free peptide (1140.5 Da) and the complex Cu(II)–pep-
tide (1202.5 Da). The masses were 1156.6 Da, showing an
increment of +16 Da with respect to the mass of the free
peptide, and 1218.4 Da, consistent with the mass of the
mono-oxidized form of the complex peptide–Cu(II)
(1202.5 + 16 Da). Thus, both derivatives corresponded to
mono-oxidized P1 peptide products. Negligible quantity
of bi-oxidized P1 peptide with a mass value of 1172.4 Da
was also observed.

To identify the amino acid target of the oxidation we
submitted the mono-oxidized peptide P1 to Tandem-MS
experiments. The bi-oxidized form of the peptide could
not be investigated due to the low intensity of its ions.
SIM MS–MS experiments were performed by selecting
the bi-charged ion at 579.5 m/z and obtained results are
shown in Fig. 6. The experimental fragmentation pattern
was compared with the theoretical ones simulated consider-
ing all the tyrosines and histidines present. The solely sim-
ulation which provided results comparable with the
experimental data located the oxidation at His 8 (Figs. 6
and 7). In fact, the fragments 1DSHAKRAHG9 and
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1DSHAKRAH8 were detected at 488.9 m/z ðb2þ
9 Þ and 460.3

ðb2þ
8 Þ. They differ by 8 m/z from the fragments of the non

oxidized peptide (b2þ
9 m/z 481.0 and b2þ

8 m/z 452.3, respec-
tively), not detected at all in the MS–MS fragmentation
pattern of the oxidized peptide. These results indicated
the presence of an additional oxygen atom in the first 9 res-
idues excluding the oxidation on Tyr-10. The ions of the b

series from b7 to b3, corresponding to fragments of P1 pep-
tide up to Ala-7 residue, did not show any mass/charge
increase with respect to the non oxidized P1 peptide and
thus excluded His 3 as possible site of oxidation. The
mass/charge increase of 16 m/z of the ions from y8 to y3

(y series) confirmed that His 3 was not involved in the oxi-
dation (Figs. 6 and 7).

Experiments carried out on P2 peptide did show neither
any evidence of Cu(II) binding, under the experimental
conditions used to perform the ESI-MS analysis, nor pep-
tide auto-oxidation by ascorbate (data not reported), even
after 24 h of incubation. Thus, it can be concluded that the
formation of a metal–peptide complex is the necessary pre-
requisite for the oxidative activity of P1 peptide.

Discussion

Histatins are small histidine-rich salivary peptides which
exhibit activity against C. albicans. This activity has been
partly attributed to the high content of basic amino acids.
Differently from most other antimicrobial proteins, hista-
tins are known to participate in metal ions co-ordination.

In a previous paper [11], some of us found for the first
time that Hst 5, a major salivary component of the family,
is able to bind zinc ions to a specific ‘‘HEXXH zinc binding
motif’’ present in the C-terminal region of the peptide and
that the metal binding induced the aggregation and fusion
of negatively charged vesicles.

Later, the metallopeptide nature of the histatins has
been confirmed by studies performed by electrospray
ionization mass spectrometry, which demonstrated the
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formation of complexes with copper and nickel [18].
Although, the co-ordination of these metals is particularly
interesting, especially for copper and zinc, which are metals
present in salivary secretions and whole saliva, the precise
biological significance of this binding has not yet been
clearly established.

Recently, the exogenous addition of histatin 5 to
C. albicans isolates was found to specifically triple the
total intracellular levels of ROS and a similar increase
in total cellular ROS was found in DB9 cells, after
induction of the expression of the Hst 5 [19], in agree-
ment with the results of a previous study [7]. No signif-
icant increase in ROS levels was detected following the
induction of nontoxic protein in DB10 cells, suggesting
that elevated ROS levels are specific to the intracellular
expression of Hst 5. To explain the cellular and mito-
chondria increase of ROS following Hst 5 addition, it
has been postulated that the peptide inhibits the respira-
tory chain, possibly at the co-enzyme Q level, thus
inducing ROS formation [7].

Recently, it has been demonstrated that the yeast
mitochondrion contains a pool of copper distinct from
that associated with the cuproproteins. This copper is
localized within the matrix as a soluble, low molecular
weight complex and is accessible to the cuproproteins
[20]. It should be outlined, that the copper binding to
Hst 5 occurs to a single high affinity site (K = 2.6 ·
10�7 M) corresponding to an ATCUN motif. Thus, it
cannot be excluded the formation of Cu(II)–peptide
complex inside the mitochondrial matrix.

The link between the copper–peptide complex formation
and the ROS generation is demonstrated by the oxidation
observed in P1 peptide, but not in P2 peptide, missing the
pivotal histidine 3 residue. The net addition of one oxygen
could be consistent with the hydroxylation of histidine 8 to
2-oxo-histidine by hydroxyl radicals as previously reported
for the Cu(II)-catalyzed oxidation of some histidines
present in b-amyloid peptide [21]. Metal-catalyzed oxida-
tion has been recently utilized to identify the amino acids
participating to the metal binding sites in copper metallo-
proteins [22,23].

The ability of the Cu(II)/Ni(II)–peptide complex to pro-
duce oxidative damage has been also recently utilised to
cleave nucleic acids in presence of co-reactants [24–26] or
in presence of O2 and by light activation in the case of pep-
tide–Co2+ complexes [27], thus demonstrating that these
molecules can be used as artificial nuclease.

Moreover, the potential of Cu(II) complex with N-ter-
minal ATCUN motif of human protamine HP2, to mediate
oxidative DNA damage by oxygen activation has been also
demonstrated [28].

The metals binding co-ordination by these peptides is
particularly interesting, because Hst 5 and its fragments
have been found in whole saliva [3], where probably
they exert a protective action against oral increase of
metal concentration. In fact, it has been reported that
copper at concentrations ranging from 0.1 to 50 lM is
implicated in the pathogenesis of several fibrotic disor-
ders and in vitro, at a concentration of 50 lM it upreg-
ulates the collagen production in oral fibroblasts
[29].
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