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Abstract: In the present work, the acid-catalyzed interesterification of glyceryl trioctanoate (GTO)
with ethyl acetate was investigated as a model reaction for the one-step production of biofuel and
its additives. The activity of heterogeneous acid catalysts, such as silica-based propyl-sulfonic ones,
was evaluated. Propyl-sulfonic groups were grafted on both amorphous and mesoporous silica
oxide (SBA-15, KIT-6) using different functionalization processes and characterized by N2 adsorpion–
desorption isotherm (BET), thermogravimetric analysis (TGA), scanning electron microscopy (SEM),
attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy, and potentio-
metric titration. During the optimization of the reaction conditions with the most active catalyst
(Am-Pr-SO3H), it was shown that the addition of ethanol allowed a total conversion of GTO together
with 89% and 56% yield of ethyl octanoate and triacetin, respectively. The catalytic performance is
strictly correlated to the catalyst features, in terms of both the acid capacity and the porous structure.
Moreover, the catalytic performance is also affected by a synergistic mechanism between silanols and
Pr-SO3H groups towards the ‘silanolysis’ of ethyl acetate. The overall results show that the presence
of ethanol, the reaction time, and the amount of catalyst shifts the reaction towards the formation of
the biofuel mixture composed by ethyl octanoate and triacetin.

Keywords: interesterification; biofuel; triacetin; sulfonic silica; grafting; silanolysis

1. Introduction

The progressive depletion of fossil fuels and raising awareness of their effects on
climate change have boosted the research of sustainable sources of energy. Biodiesel is
the second most produced biofuel and the most used in Europe, where it is blended
with petroleum diesel with a percentage of 7% (v/v). To contain CO2 emissions, the EU
Commission released the directive 2015/1513. According to this, all commercial fuels must
be blended with at least 10% renewable components derived from feedstocks that do not
compete with food production, such as non-edible vegetable oils, waste cooking oils, and
animal fats [1]. Nowadays, biodiesel currently on the market is mainly produced by the
transesterification of triglycerides of vegetable oils with methanol using a homogeneous
alkaline catalyst such as NaOH and KOH [2]. Basic and acid heterogeneous catalysts
and enzymes have also been widely studied, but barely used at the industrial level [3,4].
Alcoholysis of vegetable oils with homogeneous basic catalysts presents several related
issues, such as the formation of glycerol and the use of homogeneous conditions. On the
one hand, glycerol accounts for 10 wt% and its separation from biodiesel, as a low-grade
chemical, adversely affects the costs of biodiesel production and gives off waste [5–7]. On
the other hand, homogeneous basic catalysts, being unrecovered, produce wastewater for
their neutralization and separation from the reaction mixture and hinder the use of waste
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oils. In fact, the presence of free fatty acid (FFA) in waste oils causes several by-products
derived from saponification reactions [8].

An alternative way to overcome the drawbacks of homogeneous basic catalysis is to
develop heterogeneous acid catalysis. Indeed, its use allows easy recovery and reuse of the
catalyst, as well as the possibility to exploit waste oils with high content in FFA [9]. In the
literature, several heterogeneous acid catalysts have been described and tested to carry out
triglyceride transesterification for biodiesel production [10]. Generally, heterogeneous acid
catalysts differ from each other by the type of acid sites (Lewis and Bronsted), their number,
and their structure. In this respect, the catalysts can be divided into: (i) inorganic, such
as metal salts, heteropolyacids, and zeolites; (ii) organic, such as sulphated polymers and
resins, sulphated carbon and nanographene; and (iii) hybrid, such as alkyl or aryl sulfonic-
functionalized porous oxides [11–13]. Regardless of the catalyst used, acid-catalyzed
transesterification still has the drawback of the formation of glycerol as a by-product.

The production of biodiesel, avoiding glycerol production, can be accomplished
through the interesterification reaction between triglycerides and methyl or ethyl ac-
etate, producing in only one step fatty acids alkyl esters (FAAE) and triacetylglycerol
(triacetin) [14,15]. Triacetin is a green fuel additive that can be blended with biodiesel up
to 10 wt% according to the ASTM D6451 and EN 14214 standard quality. Blending with
triacetin allows to increase the biodiesel yield and improves its low-temperature properties,
such as cloud and pour point and its oxidation stability [16,17]. The interesterification of
triglycerides has been studied using different triglyceride feedstocks [18], with and without
catalysts. The process was carried out without catalysts by using supercritical methyl
acetate [19–23], ethyl acetate [24], and higher alkyl esters [25]. Exploitation of biocatalysis
was also evaluated by using both free [26] and immobilized enzymes [27,28]. Working in
supercritical conditions or with enzymes as catalysts is not economically feasible from the
point of view of industrial application, due to the high operative costs and long reaction
time required in the case of enzymatic processes. Interesterification can be carried out
in the presence of both basic and acid catalysts, which were tested in homogeneous and
heterogeneous phase, either in thermal or ultrasound-assisted conditions [29–32]. Ho-
mogeneous base-catalyzed interesterification has been mainly studied due to the mild
temperature and lower reaction time needed to achieve almost quantitative conversion
of triglycerides and high yields of FAAE and triacetin [15,33,34]. Nevertheless, the re-
search was principally focused on heterogeneous catalysts that can be easily removed
and reused. Battistel et al. [35] carried out a wide screening of acids and bases, both in
the homogeneous and heterogeneous phase, for the interesterification of tributyrin with
methyl acetate. In the homogeneous phase, base catalysts (CH3Ona, (CH3)3COK, TBD,
DBU) had the best activity, with reaction times in the order of minutes and temperature
of 60–80 ◦C, whereas acid catalysts (methanesulfonic acid, sulphuric acid, trifluoro-acetic
acid, trifluoro-methanesulfonic acid) required high temperature (130–140 ◦C) and longer
reaction time (20 h) to obtain comparable conversions and yields. In the heterogeneous
phase, the acid catalysts (Nafion SAC-13, Amberlyst-15, zirconia, zeolite β) showed com-
parable activity to that of the corresponding homogeneous ones, contrarily to the base
catalysts (MgAl mixed oxide, ETS-10, Katalco, Pural Mg 70), whose activity was lower with
respect to the homogeneous ones. Consequently, the study of heterogeneous acid catalysts
has attracted the attention of researchers. Several acid heterogeneous catalysts, such as
NbOPO4, Nb2O5, γ-Al2O3, HY, and Y zeolites, were investigated by Ribeiro et al. [36] for
the interesterification of high-content FFA macaw oil with methyl acetate. The best results
were achieved with γ-Al2O3 after 1 h reaction running at 250 ◦C (using 1:30 triglyceride to
methyl acetate molar ratio and 5 wt% of catalyst loading), giving 85.2 wt% of triglyceride
conversion and 52.5 wt% of total yield (FAME and triacetin).

Unsupported and γ-Al2O3-supported SnO catalysts have been investigated as het-
erogeneous Lewis acid catalysts for the interesterification of rapeseed oil with methyl
acetate [37,38]. With an unsupported catalyst, 90% and 70% yield of FAME and triacetin,
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respectively, was obtained after 4 h at 210 ◦C by using 1:40 triglyceride to methyl acetate
molar ratio and a catalyst loading of 0.69 mol/mol SnO:oil.

Tian et al. [39] tested ferric sulphate as a heterogeneous Lewis acid catalyst for the
interesterification of the model oil triolein with methyl acetate, using 1:20 triglyceride to
methyl acetate molar ratio, 7.5 wt% of catalyst, and methyl myristate (7.7 g/L) as co-solvent.
A FAME yield of 83% after 12 h at 120 ◦C was achieved.

Carbonaceous-derived heterogeneous acid catalysts, as reported by Wong et al. [40,41],
were tested for the interesterification of oleic acid with methyl acetate, allowing them to
achieve a FAME yield of 52.3% after 8 h at 110 ◦C, using 1:50 triglyceride to methyl acetate
molar ratio and 10 wt% of catalyst.

Among the heterogeneous catalysts investigated for the interesterification reactions,
Nafion SAC-13, a commercial perfluoro-sulfonic acid polymer on porous silica, has shown
the best catalytic performance [35]. This catalyst after 20 h at 130 ◦C gave 98% conver-
sion of tributyrin, methyl butyrate yield of 83%, and triacetin selectivity of 60%, using
1:20 tributyrin to methyl acetate molar ratio and 5–15 wt% of catalyst [42]. Hybrid catalysts
obtained by linking alkyl or aryl sulfonic groups on mesoporous silica oxide are a class of
promising heterogeneous acid catalysts for the interesterification process. Usai et al. [41]
tested propyl-sulfonic- and phenyl-sulfonic-acid-functionalized SBA-15 as catalysts for the
interesterification of extra virgin olive oil with ethyl acetate. After 6 h at 130 ◦C, the propyl-
sulfonic catalyst gave 6% and 0% of triglyceride conversion and FAEE yield, respectively,
whereas the phenyl-sulfonic catalyst gave 20% and 19%, respectively, using in both cases
1:20 triglyceride to ethyl acetate molar ratio and 13 wt% of catalyst. This kind of catalyst has
been successfully investigated in many biodiesel-related acid-catalyzed processes [43,44]
including esterification [13], transesterification [45], and acetylation [46]. Hybrid catalysts
have the peculiarity of acting as “homogeneous supported” catalysts. Flexible organic
pendants, especially for alkyl sulfonate chains, could easily approach carbonyl esters, im-
proving process efficiency. Sulfonated mesoporous oxide can be easily synthesized by
a one-pot process during sol–gel condensation, or by grafting of the mesoporous oxide
already formed. These materials are characterized by high thermal stability and tunable
textural property. As a matter of fact, surface area, pore size, pore volume, and acidity, as
well as amount and strength of acid sites, can be modified to some extent in order to obtain
tailored catalysts.

On these premises, and aiming to optimize the FAEE production process, hybrid
Pr-SO3H silica catalysts were investigated for the interesterification of glyceryl trioctanoate
(GTO) with ethyl acetate (EA) to produce in only one step ethyl octanoate (EO) and its
additive triacetin (TA) (Figure 1).
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Figure 1. Interesterification reaction of glyceryl trioctanoate (GTO) with ethyl acetate (EA).

Both amorphous and mesoporous silica (SBA, KIT) supports were functionalized with
sulfonic groups by one-pot synthesis or by post-modification in thermal or hydrothermal
conditions. For the sake of clarity, some of these catalysts were recently tested in MW-
assisted solketal production, as an additive of biofuel, in the framework of biodiesel research
field [47]. All the catalysts were fully characterized by N2 adsorption–desorption isotherm
(BET), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), attenuated
total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy, and potentiometric
titration. Interesterification products were analyzed by gas chromatography coupled
to a mass analyser (GC–MS). The role of a synergistic effect of ethanol [48] and silanol
group in shifting the equilibrium towards the formation of triacetin with respect to mono-
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and diglyceride intermediates was investigated. The catalytic activity was correlated to
the acid and textural properties of the catalysts and these, in turn, to the route used for
their synthesis.

2. Materials and Methods
2.1. Materials

Tetraethyl orthosilicate (TEOS, 98%), 3-mercaptopropyltrimethoxy silane (MPTMS,
95%), hydrogen peroxide solution (35%), glyceryl trioctanoate (≥99%), ethyl octanoate
(≥99%), triacetin (≥99%) (also used as standard), and anhydrous ethyl acetate were pur-
chased from Sigma Aldrich (Milano, Italy); absolute ethanol was purchased from VWR
(Milano, Italy).

2.2. Catalysts Synthesis
2.2.1. Mesoporous Silica Supports

Two types of silica, henceforth referred to as SBA-15 and KIT-6, were synthesized by
templated sol–gel techniques according to previously described procedures.

For the synthesis of SBA-15 [49], 16.2 g of Pluronic 123® was dissolved in a mixture of
294 mL of deionized water and 19.8 mL HCl (12.17 M) and left stirring overnight at 35 ◦C
in a polypropylene bottle. To this solution, 32.1 g (0.154 mol) of TEOS was added and left
stirring at 35 ◦C for 24 h, then it was aged at 100 ◦C for 24 h without stirring in the sealed
bottle. The obtained wet gel was filtered under vacuum and washed repeatedly with hot
deionized water (40–60 ◦C), in order to remove most of the template agent, and then with
ethanol. The resulting solid product was calcined in air at 500 ◦C for 5 h (heating ramp of
1 ◦C/min).

For the synthesis of the KIT-6 [50], 6 g of P123® was dissolved in a mixture of 217 mL
deionized water, 11.8 mL HCl (12.17 M), and 7.4 mL of butanol and stirred at 35 ◦C for
1 h in a polypropylene bottle. Then, 13 g (0.062 mol) of TEOS was added and left to stir
overnight. The mixture was aged at 100 ◦C for 24 h without stirring in the sealed bottle.
The obtained wet gel was filtered under vacuum and washed with hot water and ethanol.
The resulting solid product was calcined in air at 550 ◦C for 6 h (heating ramp of 2 ◦C/min).

2.2.2. Propyl-Sulfonic (Pr-SO3H) Catalysts

Two different procedures, one-pot synthesis (route 1) and post-modification in thermal
and hydrothermal conditions (route 2), as represented in Figure 2, were carried out for the
synthesis of Pr-SO3H silica.
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Figure 2. Synthetic routes for the preparation of catalysts by (route 1) one-pot and (route 2)
grafting technique.

One-pot sol–gel synthesis was used to prepare a propyl-sulfonic amorphous sil-
ica (Am-Pr-SO3H), according to previously described procedures [51]. Grafting was
used to functionalize mesoporous support SBA-15 and KIT-6, exploiting both ther-
mal (SBA-Pr-SO3H, KIT-Pr-SO3H) and hydrothermal condition (SBA-Pr-SO3H_HT,
KIT-Pr-SO3H_HT) according to previously described procedures [47,51,52].
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For the synthesis of Am-Pr-SO3H [51], 7.05 g (0.034 mol) of TEOS was dissolved in
5 mL of ethanol and stirred at 45 ◦C for 15 min. Then, 5 mL aqueous acetic acid solution
at pH 5 was added to the mixture. This was followed by the addition of 10% mol/mol of
3-mercaptopropyltrimethoxy silane (MPTMS) and hydrogen peroxide (35% w/v solid:liquid
ratio of 1:18). The solution was heated to 80 ◦C and left at this temperature until the
formation of the gel occurred. The obtained wet gel was dried at 110 ◦C overnight.

For the synthesis of SBA-Pr-SO3H, KIT-Pr-SO3H [51], following a typical synthesis,
2 g of SBA or KIT silica was suspended in dry ethanol (35 mL) and 1 mL (5.38 mmol) of
MPTMS was added. The mixture was left refluxing overnight. The obtained product was
filtered, washed with ethanol, and dried at 120 ◦C overnight. Thereafter, the recovered
products were suspended in methanol. Then, 2 mL of 35% hydrogen peroxide solution
was added to oxidize the mercaptopropyl groups. The mixture was left stirring at room
temperature for 24 h. After filtration, the solid was dried at 80 ◦C overnight.

For the synthesis of SBA-Pr-SO3H_HT, KIT-Pr-SO3H_HT [47], following a typical
synthesis, 1 g of support, and 1mL (5.38 mmol) of MPTMS was mixed in a PTFE vessel
by adding methanol dropwise up to obtain a homogeneous paste. The PTFE vessel was
inserted in a steel autoclave which was heated at 180 ◦C for 18 h. The obtained product
was washed with distilled water and ethanol, and dried at 120 ◦C overnight. Thereafter,
the recovered products were suspended in methanol and 2 mL of 35% hydrogen peroxide
solution was added to oxidize the mercaptopropyl groups. The mixture was left stirring at
room temperature for 24 h. After filtration, the solid was dried at 80 ◦C overnight.

2.3. Catalyst Characterization

The textural properties were obtained by N2 adsorption/desorption isotherms using
a Micromeritics ASAP2020 Plus 1.03 (Micromeritics, Ottawa, ON, Canada). Before the
analyses, samples were outgassed at 100 ◦C for 4 h. The fully computerized analysis of the
N2 adsorption isotherm at −196 ◦C in the standard pressure range 0.05–0.3 p/p0 allowed
us to obtain, through Brunauer–Emmett–Teller (BET) model [53], the specific surface areas
(SSA) of the samples. The micropore area was evaluated using the t-plot method. The total
pore volume (Vp) and average pore diameter (dp) were evaluated on the basis of the amount
of nitrogen adsorbed at a relative pressure of 0.998, while mesopore size distribution values
and mesopore volumes were calculated by applying the Barrett–Joyner–Halenda (BJH)
model in the range of p/p0 of 0.1–0.98.

The thermogravimetric analyses of the samples were performed in air using the TGA
1 Star System of Mettler Toledo (Mettler Toledo, Schwerzenbach, Switzerland). About
10 mg of sample was heated from room temperature to 100 ◦C, left at this temperature for
30 min and then heated to 1000 ◦C at a rate of 10 ◦C/min in 40 mL/min of air.

The acid capacity of catalysts was determined by titration: 0.1 g of solid was added to
10 mL of 1 M NaCl aqueous solution and left to equilibrate to allow cations exchange. The
resulting suspension was titrated by dropwise addition of 0.01 M NaOH solution using a
pH-meter Mettler-Toledo 8603 to detect the equivalence point.

SEM measurements were performed to investigate the sample morphology using an
EVO10 Scanning Electron Microscope (SEM, Carl Zeiss Microscopy GmbH, Oberkochen,
Germany) with an acceleration voltage of 20 kV. The samples were sputter-coated with a
20 nm-thick gold layer in rarefied argon, using a Quorum SC7620 Sputter Coater (Lewes, UK).

ATR-FTIR spectra were recorded with a Thermo Nicolet iZ10 spectrometer (Milan,
Italy) equipped with a Smart Endurance TM (ZnSe crystal) in the range 4000–650 cm−1

with 32 scans and 4 cm−1 band resolution.

2.4. Interesterification Reaction and Products Analysis

Following a typical test, the reaction mixture composition was 1.172 mL of ethyl
acetate (EA, 1.057 g, 12 mmol), 197 µL of glyceryl trioctanoate (GTO, 188.3 mg, 0.4 mmol,
molar ratio EA:GTO = 30), a catalyst loading of 10 mol% of acid groups with respect to
starting GTO moles (10 mol%H+/mol GTO, for most of the tests), and 23.7 µL of ethanol
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(E, 18.7 mg, 0.4 mmol, molar ratio E:GTO = 1). The test was performed for different times
under stirring at 120 ◦C.

Catalytic tests were carried out in screw cup glass vials with a volume of 7 mL using
a heating magnetic stirrer plate VELP Scientifica AREX-6 Digital PRO equipped with
aluminium blocks with an insert to accommodate vials.

After the end of a test, the vial was removed from the heating systems and cooled
down at room temperature by inserting the vials in a cold aluminium block. During the
few minutes of cooling, most of the catalyst settled down and the supernatant solution
was recovered and filtered by using 0.45 µm PTFE filter in order to remove the last trace
of catalyst. The filtered reaction solution was transferred to a clean vial to store it at 4 ◦C.
A small amount of the solution (326 µL) was used to prepare a set of diluted solutions,
the last one of it, with an approximate concentration of 50 ppm v/v (with respect to the
starting GTO), was used to quantify the reaction product and GTO conversion by gas
chromatography.

In particular, 0.7 µL of the diluted solution was analyzed with a Gas Chromatograph
Shimadzu GC-17A equipped with a Phenomenex Zebron ZB-5 capillary column (length
30 m, external diameter 0.25 mm, internal diameter 0.25 µm) using a single quadrupole
detector Shimadzu QP5050A GC-MS. The GC oven heating was set at 60 ◦C for the first
3 min, then the temperature was increased with a heating ramp of 10 ◦C/min up to 300 ◦C
and this temperature was maintained for 5 min. The injector and interface temperature
were set at 280 ◦C. Helium was used as carrier gas with a flow rate of 1.7 mL/min, a total
flow of 35 mL/min, and a split ratio of 1:18.

The amount of unconverted glyceryl trioctanoate (GTO), ethyl octanoate (EO), and
triacetin (TA) were evaluated by using calibration curves obtained by analysing solution of
known concentration of each pure compound.

Conversion of GTO (1), yield of EO (2), and yield of TA (3) were obtained by the
following equations:

χ%GTO =

(
niGTO − nfGTO

niGTO

)
× 100 (1)

Y%EO =

(
nEO

3·niGTO

)
× 100 (2)

Y%TA =

(
nTA

niGTO

)
× 100 (3)

where niGTO, nfGTO, nEO, and nTA, are initial and final moles of GTO, obtained moles of EO
and moles of TA, respectively.

For the sake of clarity, it is worth noting that interesterification is a multi-step process
in which the substitution of the acyl moieties with acetyl groups is not a simultaneous
process, but rather a process consisting of three consecutive and reversible single steps
(Figure 3).

This means that to obtain TA, the formation of two intermediates is necessary, mono
acetyl-di-octyl-diglycerides (MADG) and di-acetyl-mono-octyl-glycerides (DAMG), in
which acyl moiety is replaced by one and two acetyl groups, respectively. Then, it is also
important to ascertain the amount of MADG and DAMG present in the reaction mixture.
Furthermore, intermediates of partial transesterification as di-octyl-glyceride (DG) and
mono-acetyl-mono-octyl-glyceride (MAMG) are also detected (Figure 4).

For the evaluation of DGs and MAMGs, an empirical calibration coefficient was
determined, considering the instrumental response factor as a function of TA and GTO
concentration [35]. Then, the yield of each intermediate was calculated by Equation (3).
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Figure 3. Consecutive interesterification steps between: (1) glyceryl trioctanoate (GTO) and ethyl
acetate (EA) to give mono-acetyl-di-octyl-glyceride (MADG) and ethyl octanoate (EO); (2) MADG
and EA to give di-acetyl-mono-octyl-glyceride (DAMG) and EO; (3) DAMG and EA to give triacetin
(TA) and EO.
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The obtained quantities were verified by calculating GTO conversion and EO yield
with the following equations:

X%GTO = Y%MADG + Y%DAMG + Y%MAMG + Y%DG + Y%TA (4)

Y%EO =

(
3·nTA + 2·nDAMG + 2·nMAMG + nMADG + nDG

3·niGTO

)
× 100 (5)

GTO conversion (4) was calculated as sum of the yields of products with glycerin
skeleton, while EO yield (5) was calculated taking into account the corresponding moles of
EO derived from each intermediate and TA. Comparison with GTO conversion and EO
yield calculated with calibration curve shows a mean percentage difference in the order of
±5%, corroborating the validity of this determination.

3. Results and Discussion
3.1. Catalyst Characterization

Table 1 reports the obtained results along with the data related to pristine supports,
SBA-15 and KIT-6, used in the grafting procedure. Further insight into the crystal structure
of pristine SBA-15 and KIT-6 was achieved by means of XRD analyses and is reported in a
previous work [47].
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Table 1. Textural and physical properties of catalysts.

Entry Catalyst Acid Capacities
(mmol H+ g−1) a

TGA
(Loading %)

BET

SSA (m2 g−1) Vp (cm3 g−1)

1 SBA-15 - - 988 1.09
2 KIT-6 - - 785 0.92
3 Am-Pr-SO3H 2.0 15.5 306 0.34
4 SBA-Pr-SO3H 0.28 9.3 761 0.88
5 SBA-Pr-SO3H_HT 0.60 13.7 526 0.67
6 KIT-Pr-SO3H 0.43 10.2 589 0.76
7 KIT-Pr-SO3H_HT 0.72 14.8 458 0.63

a It was determined by titration with NaOH 0.01 M.

The discussion on the N2 adsorption–desorption isotherms of pristine supports and
related sulfonic derivatives obtained both by thermal or hydrothermal grafting is herein
deepened with respect to previous work to better define the relationships between catalyst
characteristics and performances. The isotherms showed a type IV shape with a H1-type
hysteresis loop (Figure 5a,b) [54]. These isotherms are typical of mesoporous materials
with a high surface area and the presence of cylindrical channels arranged in a hexagonal
honeycomb-like structure. After thermal grafting with propyl-sulfonic groups, an evident
reduction in the amount of nitrogen adsorbed is observed as a consequence of the reduction
in both surface area and pore volume.
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Surface area reduction of 23% and 47% is observed for SBA-15-based catalysts after
thermal and hydrothermal grafting, respectively. Almost the same trend is observed for
pore volume, with a reduction of 19% and 39%, respectively. KIT-6-based catalysts show
the same behaviour with 25% and 42% of surface area reduction, 17% and 32% of pore
volume reduction after thermal and hydrothermal grafting, respectively.

This trend is mirrored by the reduction in the pore size distribution (Figure 5c,d),
which, in the pristine support, is centered between 6.0–6.7 nm and, after thermal grafting,
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slightly shifts to 5.7–6.4 nm and 5.5–6.1 nm for catalysts (4) and (6), respectively. Also in this
case, the hydrothermal grafting has a more marked effect on pore size reduction, whose
distribution shifts and narrows to 5.4–6.0 nm and 5.5–5.9 nm for catalysts (5) and (7), re-
spectively. Progressive reduction in pore volume on passing from pristine to functionalized
materials is also revealed. It is also worth noting the effect of functionalization on the con-
tribution of micropore-related area to the total surface area. Indeed, in the case of thermal
grafting, the micropore area is partially reduced from 126 m2g−1 to 80 m2g−1 and from
104 m2g−1 to 86 m2g−1 for SBA-15 materials and for KIT-6 materials, respectively. Similarly,
a noticeable reduction in the micropore area after hydrothermal grafting is observed up to
38 m2g−1 and 54 m2g−1 for catalysts (5) and (7), respectively.

Everything considered, thermal grafting results in a quite uniform functionalization
within the channels of the mesoporous structure, causing only partial obstruction of the
micropores. However, when grafting is carried out in hydrothermal conditions, a higher
micropores blockage occurs. The latter effect could be due to a higher degree of functional-
ization or to a modification of the support structure under harsh hydrothermal conditions.

The N2 adsorption–desorption isotherms of Am-Pr-SO3H catalyst show a type IV
shape with an H2-type hysteresis loop, which is typical of mesoporous materials with a
low surface area and the presence of pores with a narrow neck and wide body or ink-bottle
shape (Figure 6a) [54,55]. Pore size distribution (Figure 6b) is quite sharp and centered
between 3.6 and 3.9 nm, whereas pore volume shows the lowest value with respect to the
functionalized catalysts. This means that pores and micropores do not have a marked effect
on surface area.
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According to the TGA results shown in Figure 7, the two pristine supports behave
similarly, with a continuous loss of weight with temperature, likely due to a gradual
removal of water from the condensation of silanol groups [56]. As given in Table 1, similar
weight losses due to the removal of the sulfonic groups are observed for the hybrid catalysts,
with larger losses in the case of the hydrothermal grafting. As clearly shown by the first
derivative curves of both types of catalysts, the weight losses occur in correspondence
with two distinct temperatures (ca. 350 and ca. 470 ◦C), accounting for two favored
sites of quite regular placement of propyl-sulfonic groups on the support surface. On
the contrary, in the case of Am-Pr-SO3H, three weight losses occur at ca. 150, 310, and
480 ◦C, and in a wider range at ca. 600 ◦C. The presence of these losses is in accord with
the irregular structure of the material and the subsequent irregular distribution of propyl-
sulfonic groups. In addition, the presence of a weight loss at ca. 150 ◦C is related to the
presence of crystallization water, confirming once more the main presence on superficial
propyl-sulfonic groups, which can easily interact with moisture [49].
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As observed in Table 1, a correlation between the TGA-derived loading of the func-
tional groups and the catalyst acidity can be envisaged. Indeed, an increase in the acidity
corresponds to an increase of the functionalization.

However, larger acidity is observed in the KIT-6-based catalysts with respect to SBA-
15-based ones. These behaviors could be explained by keeping into account the aforemen-
tioned variations in the micropore area of these materials upon functionalization.

In this regard, SBA-15 shows a higher variation in micropore surface area with
37% and 70% reduction for thermal and hydrothermal grafting, respectively, whereas
KIT-6 experiences 17% and 48% reduction in micropore surface area for the two types
of grafting, respectively.

For SBA-15, the micropore functionalization seems more important with respect to
KIT-6. The lower acidity can then be explained by two possible effects: (i) sulfonic acid
groups inside the pores are hardly approached by the titrating agent, (ii) the proximity of
thiol groups within pores may lead to the formation of disulfide bridges [49], resulting in
the reduction in sulfonic acid groups.

Regarding the effect of the grafting method used, hydrothermal grafting allows for
achieving catalysts with higher loading [47]. This finding is also corroborated by the greater
values of acidity with respect to catalysts synthesized by thermal grafting. Nevertheless,
catalysts (5) and (7) still keep the already mentioned differences observed for catalysts (4)
and (6) related to the different surface characteristics of the supports used.

It is worth noting that Am-Pr-SO3H catalyst (3) has the highest loading (15.5%) and
acidity (2.0 mmol H+ g−1). These results could comply with synthesis procedure of this
catalyst. Indeed, one-pot sol–gel synthesis may allow for the higher incorporation of propyl-
sulfonic groups into the material structure due to the simultaneous condensation of TEOS
and MPTMS. Furthermore, the direct oxidation of thiol groups with hydrogen peroxide
may lead to the deconstruction of material and subsequent exposure of propyl-sulfonic
groups on the material surface.

From SEM pictures in Figure 8, KIT-based samples present different shapes: from rods
to more elongated-shaped particles with squared edges, characterized by an average width
of about 1.5 µm and a length up to 6 µm. SBA-based samples are shown as bunches of
more regular roundish rod-like particles with an average size of about 1 µm. This is in
accordance with the literature, for KIT [57] and SBA [58]. Moreover, the functionalization
does not seem to influence the morphological features at this dimensional scale, nor after
the hydrothermal procedure. Am-Pr-SO3H powder appears to consist of compacted three-
dimensional large blocks measuring up to hundreds of nanometers with a flat surface,
eventually covered by irregular flakes, as shown in the image at higher magnification.
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In Figure 9, it is possible to see the infrared spectra of amorphous, KIT-6-, and SBA-
15-derived specimens, where typical modes of silica can be highlighted. In particular,
stretching vibrations of Si-O-Si are centered at 1055 cm−1 (including the shoulder at ca.
1180 cm−1) [59,60], and bending modes of Si-O-Si are visible at around 800 cm−1. The
band at 955 cm−1 corresponds to the stretching of Si-OH, whereas the small signal at
1630 cm−1 relates to the O-H bending vibration of adsorbed water. The broad band around
3400 and 3500 cm−1, also appearing in the FT-IR spectra of the samples, refers to the
stretching vibration of SiO-H groups interacting via H-bonding [60–63].

It is not so straightforward to detect the differences among the pristine and functional-
ized KIT-6- and SBA-15-based samples, due to the sensitivity of the technique (although
specifically appropriate for surface analysis), but also due to the superimpositions of the
sulfonic-related peaks with silica signals that make them not so evident up to certain
concentrations, as has already occurred in other studies [43,49,64]. In any case, for the KIT
samples after functionalization, a certain shift of the main SiO2 peak (1055 cm−1, grey line
in Figure 9b) and the change in the relative intensity of the silanol peak (955 cm−1, blue
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line in Figure 9b) could be highlighted and it can be related to propyl–SO3H. Indeed, it has
already been noticed that the interactions with functionalizing moieties can weaken the
Si-OH spectral signals and modify the surface Si-O-Si original arrangement [49,65,66].
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It is possible to observe some differences related to Am-Pr-SO3H. With respect
to the other materials, the OH group signals at about 3400–3500 cm−1 and 1630 cm−1

are more intense and the shoulder at ca. 1180 cm−1 changes its shape, being more
“fused” together with the main peak centered at 1055 cm−1. A similar phenomenon
was revealed by Martina et al. [67], who inferred that the sulfonation of silica brought
an increased intensity at 1640 and 3400 cm−1 due to the presence of H2O molecules
that bound with the sulfonic acid groups. In the same paper, the modification of the
1000–1200 cm−1 region also occurred, as in our case. This peculiarity is coherent with
the functionalization efficiency reached with Am-Pr-SO3H, its high acid capacity, and
TGA results.

3.2. Preliminary Catalytic Tests

The catalytic efficacy of the catalysts for the interesterification of glyceryl triocatanoate
(GTO) with ethyl acetate (EA) was assayed by preliminary screening tests. These were
performed for 18 h at 120 ◦C by using a 1:30 EA: GTO molar ratio. In these preliminary
tests, in order to trigger the reaction, ethanol was added in 1:1 molar ratio with respect
to GTO. The catalyst amount was set, taking into account the different loading of acidic
groups in the catalysts (see Table 1), maintaining, for the experiments, a 10 mol% of acid
groups with respect to starting GTO moles. In such a way, the same amount of acid groups
for each catalyst was used by varying the weight of the catalyst.

After each test, the catalyst was filtered and the reaction mixtures were analyzed
by GC–MS. The results obtained in terms of GTO conversion and product yields are
summarized in Figure 10. For the sake of comparison, the catalytic activity of pristine
SBA-15 and KIT-6 was also assayed, showing no catalytic effect.
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Figure 10. Results of catalytic tests with 10 mol%H+/mol GTO of catalyst, molar ratio E:GTO = 1,
EA:GTO = 30, T = 120 ◦C, t = 18 h. Catalyst label: 1 (Am-Pr-SO3H), 2 (SBA-Pr-SO3H), 3 (SBA-Pr-
SO3H-HT), 4 (KIT-Pr-SO3H), 5 (KIT-Pr-SO3H_HT).

It is worth noting that only with Am-Pr-SO3H (1), triacetin (TA) product is observed.
Products of partial interesterification such as di-acetyl-mono-octyl-glycerides (DAMG),
mono acetyl-di-octyl-diglycerides (MADG), and intermediates of partial transesterifica-
tion such as di-octyl-glyceride (DG) and mono-acetyl-mono-octyl-glyceride (MAMG), are
detected for each catalyst.

Going into details, the catalyst Am-Pr-SO3H shows the best activity with 94.2% of
GTO conversion, and a 56.2% and 15.7% yield of EO and TA, respectively. Moreover, the
Am-Pr-SO3H catalyst achieves the highest ratio among intermediates of interesterification
(MADG and DAMG) and intermediates of transesterification (DG and MAMG). This
highlights that the process is shifted more towards the interesterification products with
respect to other catalysts, as confirmed by the highest amount of DAMG and the presence
of TA. SBA-15- and KIT-6-based catalysts show lower GTO conversion and EO yield. These
catalysts have almost the same activity both for GTO conversion and EO yield, with just
a little difference between materials obtained by thermal synthesis and those obtained
by hydrothermal (HT) conditions. In fact, SBA-Pr-SO3H (2) and KIT-Pr-SO3H (4) show
a GTO conversion of 65.4 and 66.9% and an EO yield of 20 and 17.7%, respectively. On
the other hand, SBA-Pr-SO3H_HT (3) and KIT-Pr-SO3H_HT (5) show slightly lower GTO
conversions of 57.8 and 60.3% and EO yields of 12 and 12.8%, respectively. As concerns the
formed intermediates, it is necessary to point out the mechanism of the interesterification
process. Interesterification of GTO with EA is a three consecutive steps process [15,26,33,48]
(see Figure 3 for chemical structure details) that can be represented as follow:

GTO + EA↔MADG + EO (R1)

MADG + EA↔ DAMG + EO (R2)

DAMG + EA↔ TA + EO (R3)

As reported by Casas et al. [33], each step can be considered as a couple of transesteri-
fication reactions. Considering the first step (R1) of the sequence, a molecule of ethanol (E)
provides the transesterification of GTO to give a molecule of EO and one of DG (R4). The
latter reacts with ethyl acetate (EA) to give MADG and the release of a new molecule of
ethanol (R5), which can be re-involved in the sequence of reactions starting from MADG
and DAMG. Figure 11 reports a generic representation of this consecutive process.

GTO + E↔ DG + EO (R4)

DG + EA↔MADG + E (R5)
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MADG + E↔MAMG + EO (R6)

MAMG + EA↔ DAMG + E (R7)

DAMG + E↔ DAG + EO (R8)

DAG + EA↔ TA + E (R9)

Materials 2023, 16, x FOR PEER REVIEW 15 of 23 
 

 

As reported by Casas et al. [33], each step can be considered as a couple of 
transesterification reactions. Considering the first step (R1) of the sequence, a molecule of 
ethanol (E) provides the transesterification of GTO to give a molecule of EO and one of 
DG (R4). The latter reacts with ethyl acetate (EA) to give MADG and the release of a new 
molecule of ethanol (R5), which can be re-involved in the sequence of reactions starting 
from MADG and DAMG. Figure 11 reports a generic representation of this consecutive 
process. 

GTO + E ↔ DG + EO (R4)

DG + EA ↔ MADG + E (R5)

MADG + E ↔ MAMG + EO (R6)

MAMG + EA ↔ DAMG + E (R7)

DAMG + E ↔ DAG + EO (R8)

DAG + EA ↔ TA + E (R9)

 
Figure 11. Representation of each interesterification step as a pair or transesterification reactions. 

The described mechanism justifies the addition of ethanol in a catalytic amount and 
takes account of the intermediates, except for di-acetyl-glycerol (DAG), which has never 
been detected. 

Moreover, considering the structure of sulfonic silica catalysts, it is possible to 
hypothesize that sulfonic and silanol groups can synergistically achieve the silanolysis of 
ethyl acetate, providing further ethanol, as also confirmed by Dyker [68] (see Figure 12). 

 
Figure 12. Representation of ethyl acetate hydrolysis by silica catalysts. 

Figure 11. Representation of each interesterification step as a pair or transesterification reactions.

The described mechanism justifies the addition of ethanol in a catalytic amount and
takes account of the intermediates, except for di-acetyl-glycerol (DAG), which has never
been detected.

Moreover, considering the structure of sulfonic silica catalysts, it is possible to hypoth-
esize that sulfonic and silanol groups can synergistically achieve the silanolysis of ethyl
acetate, providing further ethanol, as also confirmed by Dyker [68] (see Figure 12).
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It is possible to explain the lower catalytic activity of sulfonic SBA-15- and KIT-6-
based catalysts, with respect to sulfonic amorphous silica, in light of their structural
and surface properties.

These catalysts are, in fact, characterized by the presence of meso- and micro-pores,
which heavily contribute to the surface area and to the degree of functionalization. This
may, in turn, reduce the accessibility of GTO in the pores and, thus, the possibility of
approaching with sulfonic acid groups, also due to pore volume reduction after grafting
(see Table 1). This effect is more pronounced for catalysts obtained by hydrothermal
grafting, which, therefore, show lower catalytic activity with respect to the thermal ones.
This can also be justified by taking into account the presence of disulfide bridges, which
can further hinder GTO diffusion through the channels. Another aspect to be considered
is that the high surface area of mesoporous catalysts, which account for a higher quantity
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of silanol groups, which can increase the hydrolysis of ethyl acetate. This increases the
ethanol amount but leaves acetyl groups on the silica surface. Thus, more transesterification
products are formed, but they cannot readily interact with the acid and acetyl groups to
be converted to acetyl glycerides and then to TA. Am-Pr-SO3H shows the best catalytic
activity due to its amorphous structure and, thus, the better access for GTO to catalytic acid
sites present on “external” catalyst surface.

Another consideration that deserves attention is the weight percentage of the catalysts
used. Fixing the molar content of acid groups to 10% means using a different weight
percentage of each catalyst according to its acidity. For each mole of GTO, the correspond-
ing wt% of heterogeneous catalyst are 11%, 53%, 38%, 48%, and 32% for Am-Pr-SO3H,
SBA-Pr-SO3H, SBA-Pr-SO3H_HT, KIT-Pr-SO3H, and KIT-Pr-SO3H_HT, respectively. It is
evident how for SBA-15- and KIT-6-based materials, which present lower acidity, a higher
amount of catalyst is used with respect to the Am-Pr-SO3H catalyst. In consideration of the
lower activity/catalyst amount ratio, these catalysts were not considered for any further
investigation. On the contrary, the promising catalytic activity of Am-Pr-SO3H was then
studied for the optimization of the reaction parameters as for the effect of reaction time,
ethanol addition, and catalyst amount.

3.3. Effect of Time and Ethanol on the Interesterification Process

The effect of reaction time was investigated by keeping fixed other reaction parameters
(T = 120 ◦C; molar ratio EA:GTO = 30; catalyst 10 mol%H+/mol GTO). In addition, the
kinetics was replicated with and without ethanol to assess its effect on reaction rate, yield,
and conversion.

As seen in Figure 13, it is possible to observe that even in the absence of ethanol, there
is the formation of transesterification intermediates, providing further evidence of the
hydrolysis of ethyl acetate by the silica catalyst.
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In the reaction without ethanol, 80.7%, 38.4%, and 4.3% yields are obtained, whereas,
with ethanol, the reaction is faster and achieves higher levels of GTO conversion and yields
of EC and TA, which after 24 h of reaction are 94.6%, 69.5% and 31.3%, respectively.

When the reaction is carried out without ethanol, DGs reach a maximum yield of 13.4%
after 6 h and MAMG is not detected. During the reaction in ethanol, a higher presence of
DG and MAMG is observed, reaching a maximum yield of 20.2% after 3 h and 4.3% after
18 h, respectively. Regarding MADG, it is the main product of the reaction without ethanol,
with a yield of 52.8% after 24 h, while it reaches a maximum yield of 39.7% after 6 h in the
reaction with ethanol. This difference can be ascribed to the fact that, in the presence of
ethanol, GTO and MADG react with ethanol present at the beginning of the reaction to
give DG (R4) and MAMG (R6), respectively. On the other hand, DAMG increases steadily
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in both cases, reaching 26.7% and 34.5% yield after 24 h for the reaction without and with
ethanol, respectively.

According to Casas et al. [33], the conversion of DAMG to TA is the rate-determining
step of the reaction. This is confirmed also here, where there is a constant accumulation
of DAMG that, in the presence of ethanol, is reduced, accompanied by an increase in the
amount of TA [48]. It is worth noting that di-acetylglycerol (DAG) formed and consumed in
reactions (R8) and (R9) is never detected. This observation could be explained by admitting
that, under the reaction conditions used, reaction (R8) has a lower reaction rate than reaction
(R9). This could also explain the accumulation of DAMG and, consequently, the amount of
DAG is kept low (down to the detection limit) by its conversion to TA.

Casas et al. [33] carried out the study in the presence of homogeneous basic catalysis
(sodium methoxide in methanol) and methyl acetate as the acyl donor, resulting in a faster
reaction with respect to that represented in this study. The base-catalyzed interesterifica-
tion mechanism involves the initial removal of an α-hydrogen to carbonyl ester, by the
methoxide anion, with the formation of enolic species that, following Claisen condensation,
give β-ketoester and glycerolate anion intermediates, which, in turn, give rise to the methyl
ester and acetyl glycerol, respectively [69]. In basic catalysis, however, in the presence
of methanol, the competitive transesterification reaction can also take place via an acyl
nucleophilic substitution mechanism. In fact, as reported by Liu [69], methanol can coordi-
nate with carbonyl oxygen, favoring nucleophilic substitution by methoxide anion. Then
methoxide anion can act both as a catalyst and reactive species. This explains the decrease
in DAMG and TA as the amount of methanol increases observed by Casas et al. [48].

In the case of acid-catalyzed interesterification, a plausible reaction mechanism in-
volves a double transesterification reaction for each of the interesterification steps. In
particular, the acid catalyst activates carbonyl, which undergoes nucleophilic attack by
ethanol to form a FAEE molecule and a diglyceride. The latter has a free hydroxyl that acts
as a nucleophile and attacks the carbonyl, also activated by the acid catalyst, of an ethyl
acetate molecule, giving MADG. The same pair of transesterification reactions is repeated
in sequence for subsequent steps until TA is formed (reactions (R4)–(R9)). Thus, in the
case of acid-catalyzed interesterification, ethanol triggers the interesterification process and
shifts the equilibrium towards the formation of acetyl glycerides. In this case, the com-
petition between interesterification and transesterification is not so pronounced because
reactions share a common step and the same type of reaction mechanism. Further proof is
provided by the formation of the interesterification and transesterification intermediates in
the absence of ethanol.

3.4. Effect of Catalyst Loading on Conversion and Yields

Finally, the effect of the amount of catalyst on the interesterification of GTO was tested.
The reactions were carried out at 120 ◦C for 18 h with a catalyst amount of 15 mol% and
20 mol% of acid groups with respect to the initial amount of GTO and in the presence of
1mol% ethanol. The data obtained were compared with those recorded in the presence of
10 mol% catalyst. Conversion of GTO, yields of EO and TA, and reaction intermediates are
shown in Figure 14.

Conversion of GTO increases with the amount of catalyst, although this trend is not
so evident, since 94.2% conversion is observed with 10 mol% catalyst, rising to 99.3%
and 100% with 15 mol% and 20 mol% catalyst, respectively. As far as the main products
EO and TA are concerned, a gradual increase in their yield with the catalyst amount is
observed. The yield of EO from 56.2% increases to 67.0 and 88.9% with 15 mol% and
20 mol% catalyst, respectively. The yield of TA increases as well, from 15.7% to 32.5% and
55.7% 15 mol% and 20 mol% catalyst, respectively. Regarding the intermediates, different
trends are observed. In particular, the increase in MAMG can be explained by considering
a shift of the equilibrium of (R5) and (R6) as the catalyst increases, with the consequent
decrease in MADG and DG, with the latter one disappearing completely with 15 mol%
catalyst. The DAMG trend deserves a different consideration; although consumed by
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the (R8) reaction, its amount remains almost stable with 15 mol% catalyst and begins to
decrease with 20 mol% catalyst amount. This confirms, once again, that the conversion of
DAMG to TA is the rate-determining step.
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These last results indicate that as the amount of catalyst increases, the rate of the
interesterification reaction increases. It is possible that the lower amounts of catalysts do
not guarantee enough sulfonic and silanol groups on the silica support that would achieve
the silanolysis of ethyl acetate, providing further ethanol, as schematized in Figure 12.

In conclusion, Table 2 shows the comparison of catalytic activity between Am-Pr-SO3H
and structurally related heterogeneous acid catalysts reported in the literature. In particular,
SBA-15-supported sulfonic acid (SBA-15-Propyl-SO3H and SBA-15-Phenyl-SO3H) [42], a
sulfonic polystyrene resin (Amberlyst-15®), and a silica-supported perfluorinated copoly-
mer with sulfonic groups (Nafion SAC-13®) [35] were compared with our catalyst in terms
of triglyceride conversion (XTG), triacetin yield (YTA), and FAEE/FAME yield (YFAEE/FAME)
obtained under similar reaction conditions.

Table 2. Catalytic activity comparison between Am-Pr-SO3H and structurally related catalysts
reported in the literature.

Catalyst T (◦C) t (h) Catalyst
Loading (wt%)

Acetyl
Donor:TG d

XTG
(mol%)

YTA
(mol%)

YFAEE/FAME
(mol%) Ref.

Am-Pr-SO3H 120 6 11 30 52 0 14 This work
Am-Pr-SO3H a 120 6 11 30 66 0 25 This work
Am-Pr-SO3H a 120 18 22 b 30 100 56 89 This work

SBA-15-Propyl-SO3H 130 6 13 20 e 6 - 0 g [42]
SBA-15-Phenyl-SO3H 130 6 13 20 e 20 - 19 g [42]

Amberlyst-15® 120 20 5–15 c 20 f 9 0 4 h [35]
Nafion SAC-13® 130 20 5–15 c 20 f 98 60 83 h [35]

a Reaction with ethanol, molar ratio E:GTO = 1; b corresponding to 20 mol%H+/mol GTO; c %(w/v), exact
catalyst loading not specified; d triglyceride (TG); e molar ratio ethyl acetate:olive oil = 20; f molar ratio methyl
acetate:tributyrin = 20; g FAEE from olive oil; h FAME from tributyrin.

Am-Pr-SO3H shows higher activity with respect to both SBA-15-Propyl-SO3H and
SBA-15-Phenyl-SO3H when the reaction is carried out with ethanol, whereas, when the reac-
tion is carried out without ethanol addition, only a slightly lower yield of the corresponding
FAEE is obtained with respect to SBA-15-Phenyl-SO3H. This comparison confirms once
again that the use of mesoporous support can hinder the diffusion of triglycerides into the
catalyst and this effect seems as high as the dimension of triglyceride increases on passing
from gliceryl trioctanoate to olive oil.
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With respect to Amberlyst-15, our catalyst shows a widely superior activity already
after 6 h of reaction, albeit there is stronger Bronsted acidity of Amberlyst-15. Taking into
account Nafion SAC-13, its activity is consistent with Am-Pr-SO3H, although we used a
higher catalyst loading. Nevertheless, it is necessary to point out the use of a triglyceride
(tributyrin) with shorter alkyl chains with respect to the GTO and methyl acetate as the
acyl donor, since they are more reactive species. Another aspect to be considered is the
environmental concerns related to the use of perfluorinated substances (PFAS) considered
as “eternal pollutants”.

4. Conclusions

One-pot propyl-sulfonic amorphous silica show the best catalytic performance in
the interesterification reaction of glyceryl trioctanoate (GTO) with ethyl acetate (EA),
achieving 94.2% of GTO conversion, and 56.2% and 15.7% yield of ethyl octanoate (EO)
and triacetin (TA), respectively. The corresponding grafted KIT-6- and SBA-15-based
catalysts show lower activity in terms of both GTO conversion and EO yield, with just
a little difference, ca. 5–7% for EO yield and ca. 7–8% for GTO conversion between
thermal- and hydrothermal-grafted catalysts. Despite a lower specific surface area, the
larger activity of the amorphous silica catalyst is attributed to its larger acid capacity as
well as to the surface availability of acid groups. These features are related to a high
loading of Pr-SO3H achieved by their efficient incorporation into the material structure
due to the simultaneous condensation of TEOS and MPTMS. Performing the reaction in
the presence of ethanol confirms a synergy between ethanol and the silanol group in
shifting the equilibrium towards the formation of triacetin with respect to mono- and
di-glyceride intermediates. The catalytic results as a function of the catalyst loading
indicate that an appropriate amount of catalyst is crucial to achieve the silanolysis of
the ethyl acetate, which is important for the interesterification process.

After the optimization of the reaction conditions, the best result is achieved with a
catalyst loading of 20 mol%H+/mol GTO, giving a complete conversion of GTO, and an
89% and 56% EO and TA yield, respectively, after 18 h. The studied material could be
considered promising if compared to the existing literature. This result is satisfying, also
considering that among the undesired intermediates, DAMG, which accounts for 24%, can
be viewed as a fuel additive as well. In order to improve the attractiveness towards an
industrial application, further steps of this study foresee the optimisation of the catalyst
in terms of loading of acid groups and the design of easily manageable shapes (pellet), as
well as the use of waste vegetable oils.
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