

Deliverable No. D4.1 Due Date 31-Dec-2017

Type Report Dissemination Level Public

Version 1.0 Status Release 1

Description Provides a set of methods and tools for (non-) technical developers to
create applications and services within AIOTES.

Work Package WP4 – ACTIVAGE Application support tools and services layer.

Developers toolkit and deployment support

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 1

Authors
Name Partner e-mail

Byron Ortiz Sanchez 03 TVES byrort@televes.com

Pilar Sala 04 MYSPHERA psala@mysphera.com

Alejandro M. Medrano Gil 05 UPM amedrano@lst.tfo.upm.es

Saied Tazari 06 Fh-IGD saied.tazari@igd.fraunhofer.de

Helmi Ben Hmida 06 Fh-IGD helmi.ben.hmida@igd.fraunhofer.de

Stéphane Bergeon 07 CEA stephane.bergeon@cea.fr

Mathieu Gallissot 07 CEA mathieu.gallissot@cea.fr

Nikolaos Kaklanis 08 CERTH nkak@iti.gr

Konstantinos Votis 08 CERTH kvotis@iti.gr

Dimitrios Tzovaras 08 CERTH Dimitrios.Tzovaras@iti.gr

Thanos Stavropoulos 08 CERTH athstavr@iti.gr

Spiros Nikolopoulos 08 CERTH nikolopo@iti.gr

Ioannis Kompatsiaris 08 CERTH ikom@iti.gr

Clara Valero 11 UPV clavalpe@dcom.upv.es

Huy Le Van 13 NUIG huy.levan@insight-centre.org

Pierre Barralon 15 TEC pierre.barralon@tecnalia.com

Javier Arcas 15 TEC javier.arcas@tecnalia.com

Rohit Ail 20 IE rohit.ail@samsung.com

Andrea Carboni 23 CNR andrea.carboni@isti.cnr.it

Michele Girolami 23 CNR michele.girolami@isti.cnr.it

Dario Russo 23 CNR dario.russo@isti.cnr.it

Rami Mäkelä 45 SEN rami.makela@seniorsome.com

mailto:byrort@televes.com
mailto:psala@mysphera.com
mailto:amedrano@lst.tfo.upm.es
mailto:saied.tazari@igd.fraunhofer.de
mailto:helmi.ben.hmida@igd.fraunhofer.de
mailto:stephane.bergeon@cea.fr
mailto:mathieu.gallissot@cea.fr
mailto:nkak@iti.gr
mailto:kvotis@iti.gr
mailto:Dimitrios.Tzovaras@iti.gr
mailto:athstavr@iti.gr
mailto:nikolopo@iti.gr
mailto:ikom@iti.gr
mailto:clavalpe@dcom.upv.es
mailto:huy.levan@insight
mailto:pierre.barralon@tecnalia.com
mailto:javier.arcas@tecnalia.com
mailto:rohit.ail@samsung.com
mailto:andrea.carboni@isti.cnr.it
mailto:michele.girolami@isti.cnr.it
mailto:dario.russo@isti.cnr.it
mailto:rami.makela@seniorsome.com

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 2

History

Date Version Change

30-Nov-2017 0.01 Structure of the document and task assignments

December
2017

0.02 First contributions from CEA in development tools sections /
sensiNact sub-sections

 0.1 CEA contribution update

January 2018 0.11 Highlighted assignments in table of contents

 0.15 CEA contribution in deployment tools section (4.2.6)

 0.18 Added first contribution by UPV (in section 4.1) + fixed DS1
and DS2 contributors

 0.2 reorganized 3.2 section (about ACTIVAGE dev tools) in order
to have platforms as main entries (7 section = 1 by platform),
and doc/API/tuto… as sub sections

 0.3 Added contributions by CERTH, NUIG, UPV and TVES

 0.33 Added contribution by UPM

 0.37 Added contribution by TVES in deployment tools section

Updates from CERTH and CEA

 0.4 Updates from CEA in DS6 deployment tools

 0.42 Added contribution by CNR in deployment section for DS4
RER

February
2018

0.45 Added contribution by SAMSUNG in deployment tools section
for DS8 UK

 0.47 Updated contributions by CERTH and TVES

 0.5 Added contribution by SAMSUNG in deployment section for
DS8

 0.6 Polishing of Section 4 and introduction sections by CEA

 0.65 Added contribution by FIN, FhG and updates by UPM

 0.68 Added contribution by MYS

March 2018 0.7 New ToC. Formatting D4.1 version1-0 to new template.
Contribution TEC to section 2, section 3, section 4.3

 0.73 Added contribution by CERTH regarding development /
deployment tools architecture and IoTivity development /
deployment tools

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 3

Key data
Keywords ACTIVAGE, AHA, development toolkit, deployment tool, API, wiki,

documentation, source code, swagger, tutorial, IoT platform,
FIWARE, IoTivity, OpenIOT, SOFIA2, SENIORSOME, sensiNact,
universAAL

Lead Editor Stéphane Bergeon 07 CEA

Mathieu Gallissot 07 CEA

Internal Reviewer(s) Alexandre Duclos 16 MAD

Elena Tamburini 14 MEDEA

Antonio Jara 12 HOPU

Philippe Dallemagne 19 CSEM

 0.75 Added details by CERTH regarding the development /
deployment tools architecture. Added contribution to the
interactions between deployment tools and ACTIVAGE
marketplace.

 0.8 Integration of contributions by TEC, TVES, CERTH, HOPU,
Fh-IGD , IE , UPV, UPM and SEN

April 2018 0.83 Updates by TEC, UPV, SEN, CERTH, SAMSUNG and CEA

 0.85 Updates by UPM (4.2.1) , CEA (1 and 5.2.5), INSIGHT (5.2.4),
Fh-IGD (3.2.1)

 0.87 Contribution by HOPU (4.2.8 and 5.2.9)

Updates from UPM (5.2.1 and 5.2.1), UPV (4.2.5 and 5.2.6)

 0.89 Contribution by MYS (6) and updates by CEA (1 and 5.2.5.1.4)

Fixed lists of tables and figures

 0.9 Internally reviewed by A.Duclos [MADOPA] and updated by
CERTH and TECNALIA

May 2018 0.92

0.94

Peer reviewed by Elena Tamburini [MAD] + Carlos Palau
[UPV] + Antonio Jara [HOP]

Updates by INSIGHT

 0.96 –
0.98

Updates by UPV, HOPU, FhG, TEC, CERTH, TVES
UPM, MYS, SEN, CERTH

 0.99 Fnial polishing

04-Jun-2018 1.0 Official Release

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 4

Abstract
This document is the deliverable D4.1 “Developers toolkit and deployment support” and
presents the outcome of the activities T4.1 “ACTIVAGE Development tools” and T4.3
“ACTIVAGE Deployment tools” which are part of Work Package WP4 “ACTIVAGE
Application support tools and services layer”. The document makes a status of existing
development and deployment tools prior to the ACTIVAGE project and describes the ones
that are under progress to fulfill ACTIVAGE dedicated requirements.

The requirements are presented in Section 2, and the Use Cases in Section 3, precising the
uses by the kind of developer profiles listed in section 3.1.

The presented tools in Section 4 allow the development of applications (developed for
ACTIVAGE by third parties) on top of each given platform among the seven selected as
ACTIVAGE IoT platforms (Fiware, openiot, IoTivity, seniorsome, sensiNact, Sofia2 and
universAAL). They are used by application developers and platform contributors. For more
details about the seven ACTIVAGE IoT platforms, please refer to the D3.1 Report on IoT
European Platforms [1].

The presented tools in Section 5 are the ones used in the nine ACTIVAGE deployment sites
to support their hardware device installations and middleware installation on the resulting IT
infrastructure. They are used by installation/deployment and IT teams.

These existing development and deployment tools are available today and constitute the first
step of ACTIVAGE toolkit: they are heterogeneous tools available for dedicated platforms
and for specific deployment sites.

Further works in tasks T4.1 and T4.3 will aim to complete the IoT platform dedicated tools
with ACTIVAGE common development and deployment tools based on the common
ACTIVAGE APIs under specification.

Statement of originality
This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others has
been made through appropriate citation, quotation or both.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 5

Table of contents
TABLE OF CONTENTS .. 5

LIST OF TABLES .. 7

LIST OF FIGURES ... 9

1 ABOUT THIS DOCUMENT ... 12

1.1 DELIVERABLE CONTEXT ... 12

1.2 THE RATIONALE BEHIND THE STRUCTURE ... 13

2 REQUIREMENTS FOR DEVELOPMENT AND DEPLOYMENT ... 14

2.1 AIOTES DEVELOPMENT TOOL KIT FUNCTIONALITIES.. 14

2.1.1 Support consumption .. 14

2.1.2 Implementation ... 14

2.1.3 Data processing ... 14

2.1.4 IoT infrastructure management .. 14

2.2 AIOTES DEPLOYMENT TOOLKIT FUNCTIONALITIES .. 16

2.2.1 IoT infrastructure management .. 16

2.2.2 Distribution/deployment ... 16

3 USE CASES ... 17

3.1 DEVELOPER PROFILES ... 17

3.2 INDICATIVE USE CASES FOR DEVELOPMENT .. 18

3.2.1 Indicative use cases for non technical developers ... 19

3.3 INDICATIVE USE CASES FOR DEPLOYMENT .. 24

4 DEVELOPMENT TOOLS ... 26

4.1 ARCHITECTURE ... 26

4.1.1 Semantic Interoperability Layer tools ... 29

4.1.2 Data Lake tools .. 32

4.1.3 Data / visual analytics tools .. 34

4.1.4 Integrated Development Environment (IDE) ... 39

4.1.5 Support .. 46

4.1.6 Mapping between development tools requirements and modules 46

4.2 AVAILABLE DEVELOPMENT TOOLS SUPPORTED BY THE ACTIVAGE IOT PLATFORMS 48

4.2.1 universAAL ... 48

4.2.2 SOFIA2 ... 65

4.2.3 OpenIoT ... 70

4.2.4 SensiNact ... 79

4.2.5 FIWARE .. 97

4.2.6 IoTivity ... 105

4.2.7 SeniorSome .. 112

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 6

4.2.8 Summary of existing tools ... 113

4.2.9 Mapping between development tools requirements and modules 117

4.3 TOOL DEVELOPMENT PLAN ... 119

4.3.1 Planning ... 119

5 DEPLOYMENT TOOLS ... 120

5.1 ARCHITECTURE ... 120

5.1.1 IoT infrastructure management tools ... 123

5.1.2 Deployment management tools .. 127

5.1.3 Mapping between deployment tools requirements and modules 130

5.2 AVAILABLE DEPLOYMENT TOOLS SUPPORTED BY THE ACTIVAGE IOT PLATFORMS................................ 132

5.2.1 Platform independent Available Deployment tools .. 132

5.2.2 universAAL ... 134

5.2.3 SOFIA2 ... 138

5.2.4 OPENIOT .. 140

5.2.5 SensiNact ... 141

5.2.6 FIWARE .. 145

5.2.7 IoTivity ... 146

5.2.8 SeniorSome .. 154

5.2.9 Summary of existing tools ... 155

5.3 DEVELOPMENT WITHIN AIOTES .. 157

5.3.1 Functional description ... 157

5.3.2 Deployment tools description .. 158

5.3.3 Interactions between the Marketplace and deployment tools 173

6 CONCLUSION / FUTURE WORK .. 177

REFERENCES .. 179

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 7

List of tables
TABLE 1: UNIVERSAAL SUPPORT TOOLS ... 48

TABLE 2: UNIVERSAAL API ... 50

TABLE 3: UNIVERSAAL TOOLS MAPPINGS WITH ACTIVAGE DEVELOPMENT TOOLS .. 63

TABLE 4: SOFIA2 EXISTING SAMPLES AND SOURCE CODE ... 67

TABLE 5: MAPPING BETWEEN SOFIA2 AND ACTIVAGE DEVELOPMENT TOOLS. .. 69

TABLE 6: LIST OF PRIMITIVES COMPRISING THE OPENIOT SD&UM IMPLEMENTED API ... 70

TABLE 7: SERVICE DELIVERY & UTILITY MANAGER IMPLEMENTED API DEFINITION ... 71

TABLE 8: LIST OF PRIMITIVES COMPRISING THE OPENIOT LSM-LIGHT API .. 72

TABLE 9: LSM-LIGHT API SPECIFICATION .. 72

TABLE 10: MAPPING BETWEEN OPENIOT AND ACTIVAGE DEVELOPMENT TOOLS. .. 78

TABLE 11: SENSINACT RESOURCES TYPES AND DESCRIPTION. ... 81

TABLE 12: SENSINACT RESOURCE'S ACCESS METHOD. .. 82

TABLE 13: THE EIGHT IMPLEMENTED SENSINACT AHA FUNCTIONS. ... 84

TABLE 14: TWO SUPPLEMENTARY AHA FUNCTIONS UNDER DEVELOPMENT IN SENSINACT. 84

TABLE 15: SENSINACT AHA HISTORICAL STATISTICS AGENT (30 DAYS HORIZON) .. 91

TABLE 16: SUMMARY OF THE SENSINACT ACTIVAGE DEVELOPMENT TOOLS .. 96

TABLE 17: MAPPING BETWEEN SENSINACT AND ACTIVAGE DEVELOPMENT TOOLS ... 97

TABLE 18: FIWARE EXISTING TOUR GUIDES .. 101

TABLE 19: MAPPING BETWEEN IOTIVITY AND ACTIVAGE DEVELOPMENT TOOLS. .. 104

TABLE 20: MAPPING BETWEEN IOTIVITY AND ACTIVAGE DEVELOPMENT TOOLS. .. 111

TABLE 21: MAPPING BETWEEN SENIORSOME AND ACTIVAGE DEVELOPMENT TOOLS. 113

TABLE 22: HIGH LEVEL PLATFORM OVERVIEW ... 113

TABLE 23: DEVELOPMENT OVER PLATFORM ... 114

TABLE 24: DEVELOPMENT HELPING TOOLS ... 115

TABLE 25: SEMANTIC READY PLATFORM .. 115

TABLE 26: SUPPORT TOOLS ... 116

TABLE 27: IDE TOOLS .. 116

TABLE 28: DATA/VISUAL ANALYTICS TOOLS .. 117

TABLE 29: DATA LAKE TOOLS .. 117

TABLE 30: SEMANTIC INTEROPERABILITY LAYER TOOLS .. 117

TABLE 31: PLANNING ... 119

TABLE 32: THE FUNCTIONALITIES OFFERED BY THE ACTIVAGE DEPLOYMENT TOOLS. ... 121

TABLE 33: MAPPING BETWEEN UNIVERSAAL AND ACTIVAGE DEPLOYMENT TOOLS. ... 137

TABLE 37: DEVICE PARAMETERS ACCORDING TO THEIR COMMUNICATION TYPE .. 148

TABLE 38: MAPPING BETWEEN IOTIVITY AND ACTIVAGE DEPLOYMENT TOOLS. .. 154

TABLE 39: MAPPING BETWEEN SENIORSOME AND ACTIVAGE DEPLOYMENT TOOLS. ... 155

TABLE 40: DEPLOYMENT TECHNOLOGIES PER PLATFORM .. 155

TABLE 41: DEPLOYMENT TOOLS FOR DEVICE CONFIGURATION ... 156

TABLE 42: IOT INFRASTRUCTURE MANAGEMENT TOOLS ... 156

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 8

TABLE 43: DEPLOYMENT MANAGEMENT TOOLS .. 156

TABLE 44: MARKETPLACE FUNCTIONALITY AND DEPENDENCIES ON DEPLOYMENT TOOLS 175

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 9

List of figures
FIGURE 1: DEVELOPMENT AND DEPLOYMENT TOOLS FUNCTIONALITIES ... 15

FIGURE 2. PROFILES OF DEVELOPERS THAT ARE FORESSEN TO USE ACTIVAGE DEVELOPMENT AND DEPLOYMENT TOOLS17

FIGURE 3: USE CASE DIAGRAM OF THE DEVELOPMENT TOOLS FUNCTIONALITIES. .. 18

FIGURE 4: SEQUENCE DIAGRAM OF THE DEVELOPMENT TOOLS FUNCTIONALITIES. ... 19

FIGURE 6: DEVISES RELATED CASE DIAGRAM OF THE CLICKDIGITAL IDE VISUAL TOOL. ... 21

FIGURE 7: AIOTES CLICKDIGITAL API USE CASES .. 22

FIGURE 8: RULES RELATED CASE DIAGRAM OF THE CLICKDIGITAL IDE VISUAL TOOL. .. 23

FIGURE 9: VISUALIZATION RELATED CASE DIAGRAM OF THE CLICKDIGITAL IDE VISUAL TOOL. 24

FIGURE 10: USE CASE DIAGRAM OF THE DEPLOYMENT TOOLS FUNCTIONALITIES. .. 25

FIGURE 11: POSITIONING OF THE ACTIVAGE DEVELOPMENT TOOLS WITHIN THE OVERALL ACTIVAGE ARCHITECTURE.
 ... 26

FIGURE 12: ARCHITECTURE OF THE ACTIVAGE DEVELOPMENT TOOLS COMPONENT AND ITS CONNECTION TO THE

OTHER ACTIVAGE COMPONENTS. .. 27

FIGURE 13: ACTIVAGE DEVELOPMENT TOOLS. .. 28

FIGURE 14: THE SEMANTIC INTEROPERABILITY LAYER (SIL) TOOLS. .. 29

FIGURE 15: FUNCTIONALITIES AND COMMUNICATION OF THE ACTIVAGE ONTOLOGY EXPLORER. 30

FIGURE 16: FUNCTIONALITIES AND COMMUNICATION OF THE QUERY TRANSLATOR. .. 30

FIGURE 17: CONNECTION OF THE DEVICE SEMANTICS EDITOR TO THE SIL. ... 31

FIGURE 18: CONNECTION OF THE DEVICE SEMANTICS EDITOR TO THE SIL. ... 31

FIGURE 19: THE DATA LAKE MODULES. ... 32

FIGURE 20: FUNCTIONALITIES AND COMMUNICATION OF THE ACTIVAGE DATA MODEL WORKBENCH. 33

FIGURE 21: FUNCTIONALITIES AND COMMUNICATION OF THE METADATA STORAGE EXPLORER. 33

FIGURE 22: THE DATA / VISUAL ANALYTICS DEVELOPMENT TOOLS. ... 34

FIGURE 23: FUNCTIONALITIES AND COMMUNICATION OF THE DATA MANIPULATOR DEVELOPMENT TOOL. 35

FIGURE 24: FUNCTIONALITIES AND COMMUNICATION OF THE DATA ANALYSER DEVELOPMENT TOOL. 36

FIGURE 25: FUNCTIONALITIES AND COMMUNICATION OF THE FEATURE / RESULT VIEWER DEVELOPMENT TOOL. 37

FIGURE 26: FUNCTIONALITIES AND COMMUNICATION OF THE VISUALIZATION EXPLORER DEVELOPMENT TOOL. 38

FIGURE 27: THE INTEGRATED DEVELOPMENT ENVIRONMENT (IDE) COMPONENTS. ... 39

FIGURE 28: FUNCTIONALITIES AND COMMUNICATION OF THE CODE GENERATOR DEVELOPMENT TOOL. 39

FIGURE 29: FUNCTIONALITIES AND COMMUNICATION OF THE CODE TEMPLATES DEVELOPMENT TOOL. 40

FIGURE 30: FUNCTIONALITIES AND COMMUNICATION OF THE SERVICE COMPOSER DEVELOPMENT TOOL. 41

FIGURE 31: CLICKDIGITAL IDE FOR PROGRAMMING IOT SOLUTIONS ON TOP OF SEVERAL IOT PLATFORMS 43

FIGURE 32: FUNCTIONALITIES AND COMMUNICATION OF THE CLICKDIGITAL IDE. .. 44

FIGURE 33: ADDED VALUES OF CLICKDIGITAL IDE. .. 44

FIGURE 34: PLUG CAPABILITIES OF THE CLICKDIGITAL IDE. ... 45

FIGURE 35: CREATE CAPABILITIES OF THE CLICKDIGITAL IDE. .. 45

FIGURE 36: THE DELIVER CAPABILITIES OF THE CLICKDIGITAL IDE. ... 45

FIGURE 37: THE SUPPORT DEVELOPMENT TOOLS. ... 46

FIGURE 38: MAPPING BETWEEN REQUIREMENTS (ORANGE) TO THE ACTIVAGE DEVELOPMENT TOOLS (GREEN). 47

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 10

FIGURE 39 UNIVERSAAL IOT TOOL SET (BLUE), MODULES (VIOLET), AND WORKFLOW WHICH CAN BE INTERESTING TO

ACTIVAGE. .. 53

FIGURE 40 INSTALLATION PROCESS OF AAL STUDIO SUITE IN ECLIPSE ... 54

FIGURE 41 SOURCE DOWNLOAD INTERFACE ... 55

FIGURE 42 BASIC INFORMATION PROVIDED FOR THE PROJECT WIZARD ... 56

FIGURE 43 CUSTOMIZATION OF THE PROJECT DEPENDENCIES AND COMPONENTS IN THE PROJECT WIZARD. 56

FIGURE 44 BASIC INFORMTION FOR THE ONTOLOGY PROJECT WIZARD. ... 57

FIGURE 45 VIEW OF RECENTLY CREATED PROJECT. ... 58

FIGURE 46 TOOLTIPS TO CREATE ONTOLOGIES GRAPHICALLY. .. 58

FIGURE 47 A CODE-GENERATION JAVA GENERATION EXAMPLE .. 62

FIGURE 48: REQUEST DEFINITION USER INTERFACE (UI) .. 74

FIGURE 49: REQUEST PRESENTATION UI ... 75

FIGURE 50: SENSINACT GENERIC DATA MODEL. THIS GENERIC DATA MODEL ALLOWS A SIMILAR ACCESS TO THE SENSORS

AND ACTUATORS USING HETEROGENEROUS PROTOCOLS. ... 81

FIGURE 51: THE SENSINACT AHA FUNCTIONS (IMPLEMENTED AND IN PROGRESS) .. 85

FIGURE 52: SENSINACT AHA SERVICE API SPECIALIZATION ... 85

FIGURE 53: LIST OF AVAILABLE SENSINACT AHA SERVICES .. 86

FIGURE 54: SWAGGER SCREENSHOT FOR THE SENSINACT AHA SERVICE REST API ... 88

FIGURE 55: IOTIVITY JAVA API DOCUMENTATION. .. 105

FIGURE 56: A VIEW OF THE IOTIVITY ARCHITECTURE WITH CLOUD FUNCTIONALITY ... 108

FIGURE 57: ONEIOTA DATA MODELS DEVELOPMENT PROCESS. .. 109

FIGURE 58: SERVICE PROVIDER PERSPECTIVE OF IOTIVITY SIMULATOR ... 110

FIGURE 59: CLIENT CONTROLLER PERSPECTIVE OF IOTIVITY SIMULATOR. .. 110

FIGURE 60: MAPPING BETWEEN REQUIREMENTS (ORANGE) TO THE ACTIVAGE DEVELOPMENT TOOLS (GREEN). 118

FIGURE 61: POSITIONING OF THE ACTIVAGE DEPLOYMENT TOOLS COMPONENT WITHIN THE OVERALL ACTIVAGE

ARCHITECTURE. .. 120

FIGURE 62: ARCHITECTURE OF THE ACTIVAGE DEPLOYMENT TOOLS COMPONENT AND ITS CONNECTION TO THE OTHER

ACTIVAGE COMPONENTS. .. 123

FIGURE 63: THE ACTIVAGE DEPLOYMENT TOOLS. ... 123

FIGURE 64: THE IOT INFRASTRUCTURE MANAGEMENT DEPLOYMENT TOOLS. ... 124

FIGURE 65: FUNCTIONALITIES AND COMMUNICATION OF THE DEVICE MANAGER DEPLOYMENT TOOL. 124

FIGURE 66: FUNCTIONALITIES AND COMMUNICATION OF THE SERVICE MANAGER DEPLOYMENT TOOL. 125

FIGURE 67: FUNCTIONALITIES AND COMMUNICATION OF THE SEMANTIC AUTO-DISCOVERY PLATFORM DEPLOYMENT

TOOL. ... 126

FIGURE 68: FUNCTIONALITIES AND COMMUNICATION OF THE BENCHMARKING DEPLOYMENT TOOL. 127

FIGURE 69: THE DEPLOYMENT MANAGEMENT TOOLS. ... 127

FIGURE 70: FUNCTIONALITIES AND COMMUNICATION OF THE DEPLOYMENT MANAGER TOOL. 128

FIGURE 71: FUNCTIONALITIES AND COMMUNICATION OF THE COMPONENT CONFIGURATION DEPLOYMENT TOOL. ... 129

FIGURE 72: FUNCTIONALITIES AND COMMUNICATION OF THE MAINTENANCE PANEL DEPLOYMENT TOOL. 129

FIGURE 73: FUNCTIONALITIES AND COMMUNICATION OF THE UPDATE MANGER DEPLOYMENT TOOL. 130

FIGURE 74: MAPPING BETWEEN REQUIREMENTS (ORANGE) TO THE ACTIVAGE DEPLOYMENT TOOLS (GREEN). 131

FIGURE 75 RUN CONFIGURATION OF PAX RUNNER FOR ECLIPSE .. 135

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 11

FIGURE 76: A SOFIA2 DEPLOYMENT TOOL FOR SELECTING ACTIVE APPLICATIONS PER USER 139

FIGURE 77. INSTALLER TOOL MOCK ‘UP: DISCOVERING THE GROUND PLANE OF THE INSTALLATION 142

FIGURE 78. INSTALLER TOOL MOCK ‘UP: DISCOVERING THE EXISTING ASSET, IN THIS CASE THE WATER COUNTER AND

VALVE ... 142

FIGURE 79: SCREENSHOT OF THE SENSINACT STUDIO WEB DEVICE AND SERVICE NAVIGATOR 143

FIGURE 80: SENSINACT STUDIO TOOL OVERVIEW .. 144

FIGURE 81: SENSINACT STUDIO VIEW AND EDITOR COMPONENTS .. 144

FIGURE 82: SAMPLES OF DSL SCRIPT IN SENSINACT STUDIO .. 145

FIGURE 83: AUTO-COMPLETION IN SENSINACT STUDIO DSL EDITOR ... 145

FIGURE 84: IOTIVITY EASY SETUP ... 147

FIGURE 85: DEVICE MANAGEMENT MECHANISM FOR IOTIVITY PLATFORM .. 149

FIGURE 86: SEQUENCE DIAGRAM FOR DEVICE REGISTRATION FOR IOTIVITY PLATFORM 150

FIGURE 87: SEQUENCE DIAGRAM FOR DEVICE UPDATE FOR IOTIVITY PLATFORM .. 151

FIGURE 88: SEQUENCE DIAGRAM FOR DEVICE REMOVAL FOR IOTIVITY PLATFORM .. 152

FIGURE 89: SEQUENCE DIAGRAM FOR GETTING REGISTERED DEVICES FOR IOTIVITY PLATFORM 153

FIGURE 90: DEPLOYMENT TOOLS IN AIOTES HIGH LEVEL ARCHITECTURE .. 158

FIGURE 91: DEVICE MANAGER SEQUENCE DIAGRAM .. 160

FIGURE 92: DEVICE MANAGER GUI MOCKUP ... 160

FIGURE 93: SEVICE MANAGER SEQUENCE DIAGRAM .. 162

FIGURE 94: SEVICE MANAGER GUI MOCKUP .. 162

FIGURE 95: SEMANTIC DISCOVERY TOOL SEQUENCE DIAGRAM .. 164

FIGURE 96: SEMANTIC DISCOVERY TOOL GUI MOCKUP .. 164

FIGURE 97: BENCHMARKING SEQUENCE DIAGRAM .. 166

FIGURE 98: BENCHMARKING GUI MOCKUP ... 166

FIGURE 99: INVENTORY VIEWER SEQUENCE DIAGRAM .. 168

FIGURE 100: INVENTORY VIEWER GUI MOCKUP ... 168

FIGURE 101: COMPONENT CONFIGURATION SEQUENCE DIAGRAM ... 169

FIGURE 102: COMPONENT CONFIGURATION GUI MOCKUP .. 170

FIGURE 103: MAINTENANCE PANEL SEQUENCE DIAGRAM .. 171

FIGURE 104: MAINTENANCE PANEL GUI MOCKUP .. 171

FIGURE 105: UPDATE MANAGER SEQUENCE DIAGRAM .. 172

FIGURE 106: UPDATE MANAGER GUI MOCKUP .. 173

FIGURE 107: MARKETPLACE HOME PAGE MOCKUP .. 174

FIGURE 108: MARKETPLACE HOME PAGE IMPLEMENTATION .. 174

FIGURE 109: MARKETPLACE APPLICATION VIEW MOCKUP. .. 175

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 12

1 About This Document
This deliverable contributes directly to the creation of the ACTIVAGE IoT Ecosystem Suite
(AIoTES) by dealing with additional software tools on top of the AIoTES core that help non-
Activage contributors to develop and deploy AIOTES-related components. The final goal is
that third parties will be able to access the services and features provided by ACTIVAGE by
means of a Web-based API wrapped into a Software Development Kit (SDK) integrated in a
developer’s toolkit.

D4.1 strives for achieving the following more concrete objectives:

– To provide the ACTIVAGE developing infrastructure to assist the development and
usage of available IoT services/tools (existing and new): Web-based API wrapped into a
Software Development Kit (SDK) for third parties to enable the extension and
development of new applications.

– To provide, a cloud-based semantic auto-discovery platform component to support the
overall deployment process.

– To provide the ACTIVAGE technology integrators with tools to help the hardware
installation and the software deployment

– To improve the re-usability, interoperability and sharing of ACTIVAGE cross pilot IOT
services/applications

– To provide all the necessary tools for the creation of services/applications from users
with minimum technical training.

As a technical document, the expected readers of this report are mainly technical teams
involved in application development, i.e. software developers, on one side, and in site
deployments, i.e. deployment and installation teams, on the other side.

Work on this deliverable started with the identification of the different use cases for
application development and solution deployment in order to approach the two classes of
tools within a relevant context.

In a next step, we then tried to provide answers for a set of “how to” questions in the context
of each use case. For example, in the context of the application development use cases, we
examined the question “How to use the ACTIVAGE AHA1 APIs?” from the perpective of
application developers; from the perspective of service providers and platform contributors,
as another example, we examined the question “how to contribute to ACTIVAGE?”

Similarly, with regard to deployment tools we tried to deal with questions, such as “How to
deploy an ACTIVAGE solution?” and “how to support the installation of the hardware and
software elements that constitute the whole of an ACTIVAGE solution?”

1.1 Deliverable context
Project item Relationship

Objectives D4.1 contributes directly to the following ACTIVAGE objective:

O1. To deliver the ACTIVAGE IoT Ecosystem Suite (AIOTES)

Exploitable By contributing to O1, D4.1 becomes one of the necessary outputs for

1
 Active and Healthy Ageing

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 13

results creating the ACTIVAGE IoT Ecosystem Suite as one of the major
exploitable results of the project.

Work plan This deliverable reports about the progresses of the following tasks
belonging to WP4: T4.1 “ACTIVAGE Development tools” and T4.3
“ACTIVAGE Deployment tools” which are part of Work Package WP4
“ACTIVAGE Application support tools and services layer”.

– The T4.1 task works on the implementation of the ACTIVAGE
developing infrastructure to assist the development and usage of
available IoT services/tools (existing and new). It supports a basic
service-oriented functionality (implemented in T4.3) such as
registration, resolving, discovery of services and their composition to
create service federations in order to minimize development efforts of
developers/integrators that they would to be part of the ACTIVAGE IOT
ecosystem. This work aims to provide a Web-based API wrapped into
a Software Development Kit (SDK) for third parties to enable the
extension and development of new applications.

– The T4.3 task refers to the actual deployment and continuous
operation of the ACTIVAGE IOT pilot services implemented in WP9,
along with their testing, validation, evaluation and upgrading during
pilot use cases realisation. Task 4.3 works on the implementation of a
cloud-based semantic auto-discovery platform component in order to
support the overall deployment process whenever is needed (e.g. new
services offered, updated).

Milestones D4.1 is a complementary deliverable for assessing the achievement of
MS2 - DEMONSTRATE.

Deliverables D4.1 uses D3.1 and D3.2 as input. It is an important input for the next WP5

deliverables. A next version of D4.1 will be published in Month 30 (D4.4 
D4.1.2).

Risks D4.1 contributes to gaining control of the following risk:

Rk5: Failure to attract proposals for open call (the existence of tools makes
the open calls more attractive)

Rk15: Risk of time consuming due to multiple technology (tools are
appropriate means for mitigating such risk)

1.2 The rationale behind the structure
After a short overview of the requirements in Setion 2, we present the Development and
Deployment (D&D) use cases in Section 3. Then, in order to assist the developer, the report
describes (a) the available development tools supported by the ACTIVAGE IoT platforms
(Section 4.2) and then (b) the ongoing AIOTES development tools (Section 0).

In the last part of the report (Section 5), available deployment tools supported by the
ACTIVAGE IoT platforms are described (Section 5.2) as well as development within AIOTES
(Section 5.3).

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 14

2 Requirements for development and
deployment

After the analysis of AIOTES requirements extracted from different sources (i.e. background
IoT platforms, deliverable D2.1 on requirements, technical experts from deployment sites…),
23 requirements related to development tools have been identified and organised into four
categories: support consumption, implementation, data processing and IoT infrastructure
management.

Similarly, a total of 14 requirements related to deployment tools has been organised in two
categories, such as IoT infrastructure management, both devices and services, and
distribution and deployment.

Therefore, and in order to provide effective D&D tools (e.g. shortest implementation and
testing time) to external AIOTES developers a list of functional requirements has been
elaborated (Figure 1).

2.1 AIOTES Development tool kit functionalities

2.1.1 Support consumption
It provides resources and documentation, in order to facilitate the developer in developing
applications within the AIOTES (wiki, tutorials, code samples, training, live demos,
discussion forum). For more details, refer to Section 4.1.5

2.1.2 Implementation
It refers to a software application that provides comprehensive facilities to computer
programmers for software development. Close to the functionalities of an Integrated
Development Environment (IDE) it will support source code edition, compilation or
interpreter, build automation tools, and a debugger. For more details, refer to Section 4.1.4.

2.1.3 Data processing
Data processing support tools allow the operator to (a) perform AIOTES data analytics
methods or and visualise the results on existing (open) databases but also on customised
data or (b) develop a new (or improved version of) an analytics method. For more details,
refer to Sections 4.1.2 and 4.1.3.

2.1.4 IoT infrastructure management
Such functionalities refer to the ability of registering new devices or users, subscribing to
events/topics/webservices, discovering new devices or services, and searching and filtering
AIOTES components.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 15

Figure 1: Development and Deployment tools functionalities

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 16

2.2 AIOTES Deployment toolkit functionalities
Like the development functionalities, the deployment tools should address the following
aspects.

2.2.1 IoT infrastructure management
On one hand there must be tools to manage devices (identification, classification, inventory,
control, maintenance, calibration), and on the other hand dedicated methods to manage
services (registration, discovery, filtering composition). For more details, refer to
Section 5.1.1.

2.2.2 Distribution/deployment
It must contain the following functionalities: releasing, installation, configuration, installation,
updating. For more details, refer to Section 5.1.2.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 17

3 Use cases
3.1 Developer profiles
The software development and deployment tools are offered to the community with the aim
of facilitating the inclusion of new (AHA) services into the AIOTES ecosystem. The audience
and contributors will have different technical backgrounds and experiences with the
technologies embedded into AIOTES. We have identified the following developer profiles
(see Figure 2):

Figure 2. Profiles of developers that are foressen to use Activage development and deployment tools

– “Non-technical” developer

A “non-technical” developer corresponds to a person with no software development skills
but with experience and expertise on (a) applications and/or services (e.g. a set of
primary preventive interventions) and/or ux-design and/or living labs professionals
curious to explore how such applications or services could be embedded (empowered)
within AIOTES.

– Junior software developer

A junior developer is a person with basic development skills and a limited experience.
This profile might not be familiar with all technologies used in AIOTES (e.g. web, mobile,
desktop, backend, front, webservices) but has the background to learn them. He/she
would be asked to implement AIOTES-based Proof-of-Concepts (POCs).

– Senior software developer

A senior developer understands that everything in his field involves trade-off, and will
look for what that is for design patterns, libraries, frameworks, and processes. He/she
understands that his/her job is to provide solutions to problems, not writing code. Related
to ACTIVAGE AIOTES platform, a senior developer will first evaluate the strengths and
weaknesses of the ecosystem prior to intensive developments.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 18

– ACTIVAGE DS service developer

This person is an Activage Deployment Site developer and, in the course of the
ACTIVAGE project, had to develop software components communicating with the
AIOTES platform. This person has therefore a knowledge and some experience with
AIOTES modules.

– ACTIVAGE AIOTES developer

AIOTES has emerged from seven European IoT platforms (FIWARE, IoTivity, OpenIOT,
SENIORSOME, SensiNact, universAAL). An Activage IoT developer is a person who
contributed to the development of one of these seven IoT platforms and contributed to
AIOTES development. It is, therefore, someone who knows in detail the architecture and
functioning of AIOTES.

AIOTES development and deployments tools are mainly targeting external Junior and Senior
developers. They will also be used by ACTIVAGE developpers to fasten upcoming Activage
developments. Whenever possible, specific deployment tools will be offered to “non-
technical” persons (e.g. code-generation plugin of Protégé).

3.2 Indicative use cases for development
Figure 3 illustrates the different steps that a developer would/could have to go through when
implementing a new application using AIOTES. Therefore, development tools should cover
all the listed functionalities.

Figure 3: Use case diagram of the development tools functionalities.

The interconnection between the ACTIVAGE development tools and the other ACTIVAGE
components is more explicitly depicted in the sequence diagram of figure Figure 4.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 19

Figure 4: Sequence diagram of the development tools functionalities.

3.2.1 Indicative use cases for non technical developers
In the analysis of the development tool kit requirements, a particular attention has been on
non technical developpers. As a consequence, we recently proposed to incorporate,
ClickDigital as a development tool.

In order to enable, empower and ease the usage of the AIOTES interoperability layer in the
Activage project context by the different technical developpers of the pilots’ sites, but also
byond the project duration as a part of the further exploitation and sustainability strategy, a
very important already identified barriers, which is the programming complexity &
heterogenity, should be taken inconcideration. Therefore, the main vision to enable the
widespread and to increase the acceptance of AIOTES is the creation, part of the AIOTES
APIs, of an “Enabler API” tha ease the integration of platforms, the quick development of
Smart interoperable IoT Services, but also the usage of further APIs and services from other
platforms. In this context, ClickDigital will bring a valuable added value to the project. The

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 20

Fraunhofer IGD has initially developed “ClickDigital”, a Visual and Pluggable User Friendly
Integration development enviroment for IoT platforms to ease the creation of Smart and
digital servicesfor smart living, smart city, mobility and eHealth like visually programming a
fall detection and notification services, visually adding new hardware sensor to the platform...
It allows you to quickly prepare smart digital solutions and offer the resulting application
Dashboard in a “use only” mode to your clients. In fact, the aims behind the ClickDigital as a
pluggable visual IoT IDE for different IoT platforms is

– To decrease the learning curve/complexity of creating Apps for heterogenous IoT
platforms

– To offer a new App creation experience for the developers/consumers of IoT solutions

– To optimize the path/time to the market

– To enable the IT departments to develop, optimize the cost and enhance the usage of
IoT solutions based on multitude used IoT platform through the AIOTES framework.

Figure 5: ClickDigital Logo and elevator pitch

Clickdigital has recentely achieved a very valuable conclusion in relation with quantifying its
added value from a Money/Time value perspective same from user experience ones. For
that reason, it was decided not to earlier integrate it in D5.1:Integration plan and operational
framework till validating its added value. As tangible proves about its impact on Activage and
the future sustainability of the related ecosystem as been bought, it has been recently
decided to include the ClickDigital Framwork in Activage and to created a specific
ClickDigital API for AIOTES.

In this context, the following use cases will be taken in consideration for further development
and adaptation to the single ACTIVAGE IoT platforms but also for the AIOTES.

3.2.1.1 AIOTES ClickDigital common use cases
While using ClickDigital, and as highlighted in the bellow figure, the developer as the main
addresses user should be able to address the following common usecases:

– Execute the IDE

– Connect it to AIOTES or a compatible IoT Platform through it

– Use the Drag and drop paradigm for UI – card widgets to manage the diffrents available
Widgets (Widget for devices mgmt., vizualization, monitoring, rules creation…)

– Add Widget

– Delete Widget

– Adjust Themes settings

– Adjust text size

– Resize with automatical rearranging of content

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 21

– Developpers and endusers Log-in to AIOTES framwork

– Change user

– Add Screens\Desktops\Tabs

– Export App for a use-only mode

– Create and share projects

– Create, configure, share and configure IoT Dashboards

– Configure Widgets

Once exported the dashboard to a “use only mode”, the enduser user will be able to login to
the dashboard and exploit the already prepared functionalities (cf. Figure 7 on next page).

3.2.1.2 AIOTES ClickDigital devices related use cases
From a devices perspective, the developer, and while using ClickDigital IDE plugged to
AIOTES and the targeted IoT Platform, should be able, through the usage of widgets and by
creation of dashboard widgets, to perform the following tasks:

– View existing devices

– Find a device

– Add a device

– Monitor\Visualize a device status (Functional visualization)

– Control device

– Control a group of devices

The tasks are provided mainly through the Interoperability framework from AIOTES. From a
usage perspective, the user will be only allowed to control the explored and available
devices configured by the system developer.

Figure 6: Devises related case diagram of the ClickDigital IDE visual tool.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 22

Figure 7: AIOTES ClickDigital API use cases

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 23

3.2.1.3 AIOTES ClickDigital rules related use cases
As while managing devices, ClickDigital Widgets enable the developers to visually and
smoothly create different rules logic based on AIOTES connected to one or more IoT
platforms, mainly

– Create a rule

– Edit an existing rule

– Find a rule

– Manage Rules (Activate, deactivate…)

– Rules notification

– Visulize rules

The user of the created Dashboard will be also allowed to activate or deactivate rules,

Figure 8: Rules related case diagram of the ClickDigital IDE visual tool.

3.2.1.4 AIOTES ClickDigital visualization related use cases
Finally, the bellow figure illustrates the use cases a developer and the end users can be
perform from a visualization perspective based on the AIOTES framework, mainly:

– Data workflow visualization-Visualize data from a device (historical visualization)

– Data workflow real time monitoring

– Add a device

– Monitor\Visualize a device status (Functional visualization)

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 24

– Visualize health status of a device

– Monitor a group of devices

Figure 9: Visualization related case diagram of the ClickDigital IDE visual tool.

3.3 Indicative use cases for deployment
Figure 10 illustrates the different steps that a developer would/could have to go through
when implementing a new application using AIOTES. Therefore, deployment tools should
cover all the listed functionalities.

For simple systems, installation involves establishing some form of command, shortcut,
script or service for executing the software (manually or automatically). For complex systems
it may involve configuration of the system – possibly by asking the end-user questions about
its intended use, or directly asking them how they would like it to be configured – and/or
making all the required subsystems ready to use.

The deployer can use the semantic discovery tools to search for existing components
registered by the community of IoT developers, in order to deploy them to the actual
deployment site. Configuration and maintenance functionalities are also provided, for the
proper installation and operation of the deployed application.

Activation is the activity of starting up the executable component of software for the first time.

Deactivation is the inverse of activation, and refers to shutting down any already-executing
components of a system. Deactivation is often required to perform other deployment
activities, e.g., a software system may need to be deactivated before an update can be
performed.

The update process replaces an earlier version of all or part of a software system with a
newer release. It commonly consists of deactivation followed by installation.

Version tracking systems help the user find and install updates to software systems.
For more details, refer to Section 5.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 25

Figure 10: Use case diagram of the deployment tools functionalities.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 26

4 Development tools
4.1 Architecture
The ACTIVAGE development tools offer means to facilitate the design, the implementation
and test of new AHA IoT applications. They are closely linked with the application
deployment tools described in Section 5 and allow the composition of existing applications
and tools, in order to easily generate new applications. The ACTIVAGE development tools
are part of the ACTIVAGE application tools, which operate at the highest levels of the overall
project architecture. The positioning of the development tools within the ACTIVAGE
architecture is depicted in Figure 11.

Figure 11: Positioning of the ACTIVAGE development tools within the overall ACTIVAGE architecture.

The purpose of the ACTIVAGE development tools component is to offer the appropriate
development infrastructure which facilitates the creation of new IoT applications by technical
developers, through the (re-)use of existing IoT applications already registered at the
ACTIVAGE application ecosystem.

The development tools offer functionalities that can easily be reused by developers, in order
to be integrated in a new application. Such functionalities include specification of IoT sensors
to use, security mechanisms, integration with the data lake and data analytics applications,

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 27

etc. The ACTIVAGE development tools offer means for facilitating the use of existing
applications by other developers, such as making use of available source code samples,
browsing documentation, viewing available tutorials, testing sample code and using public or
mocked data. The development tools also offer a link to the ACTIVAGE data analytics API,
in order to include data analytics services in new applications, through easy-to-use tools.

Development tools allow the developer to use the ACTIVAGE REST API, in order to
communicate with other ACTIVAGE components, such as the interoperability layer and the
Data Lake. Development tools also offer a tight link with the ACTIVAGE deployment tools,
described in Section 5, and their semantic discovery features, in order to support the
composition and combination of already existing applications and tools registered at the
ACTIVAGE ecosystem. In this way, a developer, even with limited technical knowledge, will
be able to reuse existing tools created by other developers, and combine them into larger
applications. For instance, a developer could search for existing tools providing security or
logging mechanisms, in order to use them off-the-shelf within a new application.

The conceptual architecture of the ACTIVAGE development tools component and its
connection to the other ACTIVAGE components is illustrated in Figure 12. The developer’s
toolkit communicates with the deployment tools component, via the latter’s web API, in order
to allow the developer to discover existing applications and combine existing tools as
needed, in larger applications. The development tools also communicate with the Data Layer
Support Tools, in order to allow the developer to use the Data Lake and Data Analytics
infrastructure and functionalities for the development of applications. Finally, the
development tools communicate with the Semantic Interoperability Layer (SIL), in order to
have access to the semantics of devices and services registered to the AIOTES, and the
semantics of the collected data. The SIL does not contain itself any data collected by
devices and services; these are contained in the Data Lake and in the individual IoT
platforms employed. Instead, the SIL contains the main ACTIVAGE ontology, which
describes the semantics of devices, services and collected data, which are essential for the
development of platform-agnostic applications. The functionalities offered by the
development tools are wrapped in a Software Development Kit (SDK), offered as a set of
Web services, ready to be used by developers.

Figure 12: Architecture of the ACTIVAGE development tools component and its connection to the other
ACTIVAGE components.

The requirements presented in Section 2 outline the functionalities that need to be covered
by a kit of development tools. Individual IoT platforms offer their own tools in order to

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 28

facilitate developers in developing new applications. The AIOTES development tools need to
be one level higher than these platform-specific tools, and offer functionalities that facilitate
the use of AIOTES components, such as the Semantic Interoperability Layer or the Data
Analytics, by developers. Thus, the focus of the ACTIVAGE development tools is on tools
that are related to the AIOTES components, rather than on covering all aspects of software
development, such as text editing and debugging, which are already well addressed by third-
party software.

An overview of the ACTIVAGE development tools can be seen in Figure 13.

Figure 13: ACTIVAGE development tools.

The development tools are divided in the following categories:

– Support: Tools for providing documentation and instructions about using the AIOTES
development tools.

– Integrated Development Environment (IDE): Tools for facilitating the creation of new
applications.

– Data / visual analytics tools: Tools for facilitating the introduction of data analytics and
visual analytics in an application.

– Data Lake tools: Tools for facilitating access to the data available through the Data
Lake.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 29

– Semantic Interoperability Layer tools: Tools for facilitating access to the Semantic
Interoperability Layer ontologies.

The three categories at the bottom of Figure 13 correspond to architectural layers of the
AIOTES, namely the Semantic Interoperability Layer, the Data Lake, the data analytics and
the visual analytics components.

In the following sections, the ACTIVAGE development tools of each category are presented
in detail, starting from the bottom layer, that corresponding to the Semantic Interoperabiltiy
Layer, and moving upwards towards supporting material.

4.1.1 Semantic Interoperability Layer tools
The tools of this category aim at providing utilities for accessing the central ACTIVAGE
ontology and functionalities of the Semantic Interoperability Layer (SIL). The SIL
development tools, depicted in Figure 14, are the following:

– ACTIVAGE ontology explorer

– Query translator

– Device semantics editor

– Service semantics editor

Figure 14: The Semantic Interoperability Layer (SIL) tools.

Each of the above tools is described in more detail below.

4.1.1.1 ACTIVAGE ontology explorer
The ACTIVAGE ontology explorer provides access to the ACTIVAGE ontology that is the
central part of the Semantic Interoperability layer. The developer can view the ontology
schema, through entity-relation diagrams. By selecting specific entities or relations in the
diagrams, the user can view details about the entities. The ontology schema can also be
viewed in standard ontology description formats, such as OWL, and exported to files, which
may be of use to the developer. The ACTIVAGE ontology explorer is useful to developers,
since it allows them to see which types of devices, services, attributes, etc., which form the
basic components of an application, are available in the AIOTES. In order for the ontology
explorer to operate, it is directly connected to the Semantic Interoperability Layer of the
AIOTES architecture. The main functionalities of the ACTIVAGE ontology explorer and its
connection to the SIL are depicted in Figure 15.

Usage

The ACTIVAGE ontology explorer provides a Web-based Graphical User Interface, through
which it presents the schema of the ACTIVAGE ontology, in an entity-relation diagram. The
developer is able to navigate (pan, zoom) in the visualized ontology. By selecting an entity or
relationship, more information regarding this entity/relation will be presented in a dedicated

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 30

panel (e.g. description). By selecting one or more entities/relations, or the entire ontology,
the developer is also able to extract the corresponding textual representation, in standard
ontology description formats (e.g. OWL).

Figure 15: Functionalities and communication of the ACTIVAGE ontology explorer.

4.1.1.2 Query translator
The query translator is a utility exposing to the developer a central functionality of the
Semantic Interoperability Layer, i.e. translating queries formulated for the ACTIVAGE
ontology, into IoT platform-specific queries. Through an easy-to-use interface, the developer
can write a data retrieval query, addressing it to the ACTIVAGE data model, and translate it
to the schema of any of the 7 IoT platforms available in ACTIVAGE. The platform-specific
queries may be useful to the developer in developing platform-specific applications. The
inverse translation, from a platform-specific query to a query for the ACTIVAGE data model
is also possible. In order for the query translator to operate, it is directly connected to the
Semantic Interoperability Layer of the AIOTES architecture. The main functionalities of the
query translator and its connection to the SIL are depicted in Figure 16.

Figure 16: Functionalities and communication of the query translator.

Usage

The query translator offers a text editing window, through which the developer can write an
input query, as well as drop-down menus for the selection of a target IoT platform. By
clicking on a translation button, the input query is translated into the platform-specific naming
conventions and database, and the result is presented to the developer in another text area.
The developer is thus able to copy the produced query text, in order to use it within a
platform-specific application.

4.1.1.3 Device semantics editor
The device semantics editor allows the developer to specify the semantics associated with
the operation of a specific device, so that it can be registered to the ACTIVAGE ontology.
Being able to edit the ontologies of the SIL is important in order to ensure that the
ACTIVAGE system can be extended as new devices are being used. The device semantics
editor is implemented as a form through which the developer can specify the semantics of

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 31

the device’s functionality, its parameters and outputs. The device semantics editor is
connected to the SIL, in order for the registered device to be added to the overall ontology
and be available to applications. However, care will be taken (e.g. role-based access rights)
in order to ensure that the semantics of existing devices currently used by applications are
not altered, and thus avoid application malfunctioning. The purpose of the device semantics
editor is to allow the registration of new devices in the SIL. The connection of the device
semantics editor to the SIL is depicted in Figure 17.

Figure 17: Connection of the device semantics editor to the SIL.

Usage

The device semantics editor, through its graphical user interface, presents the developer
with a list of all registered devices, from which the developer can select one, in order to edit
its semantics (the tool can also be linked to other tools, such as the ontology explorer, so
that the developer can select a device through the ontology explorer). By selecting a device,
a form is presented to the developer, where details about the device semantics can be
entered and submitted to the ACTIVAGE ontology. The developer can also create a new
device type and add it to the ACTIVAGE ontology, by selecting a “New device” option in the
tool’s GUI. The details for the new device are provided through a similar form as the one
used for editing.

4.1.1.4 Service semantics editor
Similar to the device semantics editor, the service semantics editor allows the developer to
specify the semantics associated with the operation of a specific service/application, so that
it can be registered to the ACTIVAGE ontology and be discoverable by other developers.
The service semantics editor is implemented as a form through which the developer can
specify the semantics of the device’s functionality, its inputs and outputs. The service
semantics editor is connected to the SIL, in order for the registered service to be added to
the overall ontology and be available to developers and deployers. The connection of the
service semantics editor to the SIL is depicted in Figure 18.

Figure 18: Connection of the device semantics editor to the SIL.

Usage

The service semantics editor, through its graphical user interface, presents the developer
with a list of all registered services, from which the developer can select one, in order to edit
its semantics (the tool can also be linked to other tools, such as the ontology explorer
(Section 4.1.1.1) so that the developer can select a service through the ontology explorer).
By selecting a service, a form is presented to the developer, where details about the service
semantics can be entered and submitted to the ACTIVAGE ontology. The developer can
also create a new service and add it to the ACTIVAGE ontology, by selecting a “New
service” option in the tool’s GUI. The details for the new service are provided through a
similar form as the one used for editing.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 32

4.1.2 Data Lake tools
The Data Lake development tools provide utilities for accessing the Data Lake component of
the AIOTES architecture. The Data Lake provides an entry point for the developer to access
the data available in the ACTIVAGE deployment sites, as well as to access the metadata
used by data analytics methods. As described in D4.2, “Data Layer Support Tools”, the Data
Lake, architecturally, lies in the data layer, above the SIL. The Data Lake provides data
storage for IoT platforms not having their own, stores analytics metadata, and directs queries
towards the SIL, integrating the results. The Data Lake development tools correspond to
these main Data Lake functionalities and are the following, as depicted in Figure 19:

– ACTIVAGE data model workbench

– Metadata storage explorer

Figure 19: The Data Lake modules.

Each tool is described in the following sections.

4.1.2.1 ACTIVAGE data model workbench
The ACTIVAGE data model workbench is an environment through which the developer can
view the structure of the ACTIVAGE data model and the data available in the distributed
databases of the IoT platforms. The environment is similar to common database
management workbenches, such as MySQL workbench or pgAdmin. It allows the developer
to see the structure of the ACTIVAGE data model, as if it is a database, with its tables and
schemas. By selecting an entity (table), e.g. “temperature_sensors”, the developer can view
the data available for this entity. The data are presented as if they were contained in a single
table, in a single database using the ACTIVAGE data model schema; however, they are in
fact collected dynamically from the multiple diverse IoT platform databases, through
automatic translations performed by the Semantic Interoperability Layer. The developer can
formulate and submit queries to the ACTIVAGE schema, which are again automatically
translated by the SIL, and retrieve collected results. This facilitates experimenting with
queries, in order to achieve a desired outcome. The submitted queries can then be copied
into the source code of developed applications, as needed. The retrieved data can also be
exported as needed. In order for the ACTIVAGE data model workbench to perform, it is
connected to the Data Lake component of the AIOTES architecture, as depicted in Figure
20.

Usage

The ACTIVAGE data model workbench offers a Graphical User Interface (GUI) for viewing
the data available and executing queries. The GUI consists mainly of three components:

– A tree view of the ACTIVAGE schema, in the form of tables and table columns, from
which the developer can select different tables to view data from.

– A text area, through which the developer can write queries and execute them.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 33

– A table view, for presenting the contents of a data table, after the user has selected one
from the tree view, or for presenting the results of submitted queries.

Figure 20: Functionalities and communication of the ACTIVAGE data model workbench.

The purpose of the workbench is to allow the developers to experiment with queries, in order
to compose ones that meet their needs, before including them in their developed
applications.

4.1.2.2 Metadata storage explorer
The metadata storage explorer allows the developer to explore the metadata produced by
data analytics methods and stored in the Data Lake. The interface is similar to the
ACTIVAGE data model workbench, allowing the developer to view the available schema and
perform queries. The retrieved metadata, such as features, thresholds, etc., can be exported
for further use in applications, tests and debugging sessions. The functionalities of the
metadata storage explorer and its connection to the Data Lake can be seen in Figure 21.

Figure 21: Functionalities and communication of the metadata storage explorer.

Usage

The Metadata storage explorer offers a GUI for viewing the metadata available and
executing queries. The GUI is similar to the ACTIVAGE data model workbench
(Section 4.1.2.1) and consists mainly of three components:

– A tree view of the metadata schema, in the form of tables and table columns, from which
the developer can select different tables to view metadata from.

– A text area, through which the developer can write queries and execute them.

– A table view, for presenting the contents of a metadata table, after the user has selected
one from the tree view, or for presenting the results of submitted queries.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 34

The purpose of the workbench is to allow the developers to experiment with queries and see
which kind of information is stored in the metadata, in order to finally use them during the
development of data analytics or other applications.

4.1.3 Data / visual analytics tools
The data and visual analytics development tools allow the operator to perform data analytics
methods and view results and visualizations on-the-fly, using custom data. The developer
can thus experiment with different analytics and visualization methods and their parameters
and see the results of his/her actions, before using them inside an application under
development. They consist of the following tools, depicted in Figure 22:

– Data manipulator

– Data analyser

– Feature / result viewer

– Visualization explorer

Figure 22: The data / visual analytics development tools.

The data analytics and visual analytics tools are based on the data analytics and visual
analytics Web APIs, described in Deliverable D4.2 “Data Layer Support Tools”, and offer
graphical user interfaces for easy integration of analytics services in developed applications.

4.1.3.1 Data manipulator
The data manipulator offers functionalities for pre-processing data, before further analysis is
performed. Data can be inserted either manually or through a query to the Data Lake. The
data are viewed in the form of a spreadsheet, from where the developer can select
attributes, filter records, perform transformations, etc. The source code corresponding to the
pre-processing actions performed by the developer (Data Lake queries, transformations,
etc.) can be exported, in order to be used inside developed applications. The data
manipulator is connected to the Data Lake, in order to retrieve the available data, as
depicted in Figure 23.

Usage

The Data manipulator offers a Web-based GUI, with the following main components:

– A data insertion panel, through which the developer can specify the input data to be
manipulated. The data can be inserted in one of two ways:

 Through a “Data upload” operation, where the developer is able to select and upload
local data files, e.g. in CSV or JSON formats.

 By writing a query to the Data Lake in a dedicaded text area and executing it. The
data retrieved are the ones used for further manipulation (The ACTIVAGE data
model workbench (Section 4.1.2.1) can be used at this point to assist the developer
in composing a query that meets his/her needs).

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 35

– A table view of the inserted data. Each row corresponds to a record, while the columns
correspond to the different attributes available for each record. Through the table view,
the developer is able to perform the following functionalities:

 Filter records, by inserting filters for each attribute (column). The filters can include
selecting a specific attribute, or a range of attribute values.

 Select/deselect subsets of attributes (columns).

 Create new attributes, by transforming existing ones (e.g. multiplying by a value or
adding two attributes).

Figure 23: Functionalities and communication of the data manipulator development tool.

The final data, after these preprocessing operations, can be provided as input to the data
analyser tool (Section 4.1.3.2), presented below. By selecting an “Analyse” option, the Data
analyser tool is opened, with the preprocessed data pre-loaded as its input.

4.1.3.2 Data analyser
The data analyser tool provides an interface through which the developer can experiment
with the analytics methods available in the Data Analytics component of the AIOTES. The
data analyser takes as input a set of data (usually pre-processed by the data manipulator
tool), and provides the developer with a GUI, through which he/she can select from the
available analytics methods and adjust their parameters. The available analysis types are
those supported by the Data Analytics component, i.e. feature extraction, clustering,
anomaly detection, hypothesis testing, etc. The results of an analysis, e.g. extracted features
or clusters, can be viewed using the feature / result viewer (see below). Through the data
analyser, the developer can choose the main analysis entities, select among different
analysis methods and configure them, by adjusting their parameters through visual controls
(sliders, etc.). The results of the analysis can be instantly viewed in the result viewer (within
the time limitations of each algorithm), which facilitates the developer in selecting the
appropriate analysis method and its parameters, to use in a developed application. The
source code corresponding to the selected methods and parameters can be exported, in
order to be used during application development. The data analyser is connected to the Data
Analytics component, in order to perform the analyses, as well as to the data manipulator
tool (for reading its input) and the feature / result viewer tool (for showing its output), as
depicted in Figure 24.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 36

Figure 24: Functionalities and communication of the data analyser development tool.

Usage

The Data analyser tool offers a Web-based GUI, with the following main components:

– A data selection panel, through which the developer can select data to analyse, in one of
the following ways:

 Direct data upload, where the developer can upload a local data file, e.g. in CSV or
JSON format.

 Data Lake query, where the developer can write and execute a query towards the
Data Lake and perform the analysis on the retrieved data.

 In case the user has pre-processed data through the Data manipulator tool
(Section 4.1.3.1), the pre-processed data are already pre-loaded in the data selection
area.

– An analysis type selection drop-down menu, through which the developer can select one
of the available analysis types (e.g. feature extraction, dimensionality reduction, anomaly
detection, clustering, etc.) to perform on the data. More information about the analysis
types supported can be found in deliverable D4.2 “Data Layer Support Tools”.

– A panel through which attributes of the loaded data can be selected for the specific type
of analysis (e.g. specifying that anomaly detection will be performed on the “blood
pressure” data attribute.

– A panel for configuring the parameters of the specific analysis type, e.g. thresholds for
anomaly detection or the number of clusters used in clustering. The parameters can be
selected through text boxes or sliders.

– A table view of the analysis results, e.g. the list of record ids, with an added “anomaly
score” column, indicating the “outlierness” of each record. The analysis results can be
downloaded by the developer, or linked to the Feature/result viewer tool (Section 4.1.3.3)
presented in the next section, for visualization.

– A Data Analytics API call viewer, which is a text area showing, at any time, the calls
made to the Data Analytics Web API, each time the developer performs an analysis or
modifies a parameter. The developer can copy the presented calls, in order to use them
inside a developed application.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 37

4.1.3.3 Feature / result viewer
The feature / result viewer development tool is used to present the results of an analysis in
an easy-to-perceive way. The analysis entities chosen through the data analyser tool, are
presented both in a spreadsheet-type form and using a few visualization methods. The
spreadsheet contains the analysis entities in their raw form, or the features extracted from
them. The visualization depicts each entity as a point on the screen, whose coordinates are
determined by its attributes or features. Any other analysis results, such as clustering labels
or anomaly detection scores, are visualized by using visual attributes such as color or size,
either in the spreadsheet or in the visualization view. These types of presentation, in
combination with the parameter controls of the data analyser tool, allow the developer to
quickly see the results of different extracted features, different clustering parameters,
different anomaly detection thresholds, etc. on the analysed data, before they are used in an
application. In order for the feature / result viewer to perform, it is connected to the data
analyser tool, as well as to the Visual Analytics component of the AIOTES, as depicted in
Figure 25.

Figure 25: Functionalities and communication of the feature / result viewer development tool.

Usage

The Feature / result viewer tool offers a Web-based GUI, through which the developer can
visualize the analysis results, as they are produced by the Data analyser tool. The main
panel of the viewer is a visualization area, where a few types of visualizations (scatterplots
or line plots) are used to visualize the analysis results. Each record of the selected data for
analysis is represented by a visual object (e.g. a point), whose visual attributes (position,
color, size, etc.) are mapped to selected attributes of either the original data or the analysis
results. For instance, blood pressure data may be visualized by a line plot, having
timestamps as the horizontal axis, blood pressure data as its vertical axis, while the color of
the corresponding points depends on the anomaly score, as computed by an anomaly
detection algorithm. The purpose of the feature / result viewer is to allow a quick overview of
the analysis results, being directly linked to the parameter tuning functionality of the data
analyser tool (Section 4.1.3.2), in order to facilitate the developer in analysis and parameter
selection.

4.1.3.4 Visualization explorer
The visualization explorer tool facilitates the developer in selecting the most appropriate
visualization type for a set of data, in order to use it within an application or dashboard.
Through the visualization explorer’s GUI, the developer can select among the visualization
types available in the Visual Analytics component of the AIOTES. The developer can test the

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 38

selected visualization using data provided either directly or using a query to the Data Lake.
The developer can select which data attributes are mapped to each visualization type’s
visual attributes. The source code used to generate the selected visualization can be
exported, in order to be used within an application under development. In order for the
visualization explorer to operate, it is connected to the Data Lake, for data retrieval, and to
the Visual Analytics component, for using the available visual analytics methods, as depicted
in Figure 26.

Figure 26: Functionalities and communication of the visualization explorer development tool.

Usage

The visualization explorer offers a Web-based Graphical User Interface, through which the
developer can load data and select among different visualizations to use. Its main
components include the following:

– A data selection panel, similar to (or the same as) the one used in the data manipulator
tool (Section 4.1.3.1), from which the user can select the data to visualize, in one of the
following ways:

 Direct data upload, where the developer can upload a local data file, e.g. in CSV or
JSON format.

 Data Lake query, where the developer can write and execute a query towards the
Data Lake and perform the analysis on the retrieved data.

 In case the user has pre-processed or analysed data through the Data manipulator
(Section 4.1.3.1) or Data analyser (Section 4.1.3.2) tools, the pre-processed or pre-
analyzed data are already loaded in the data selection area.

– A visualization type selection drop-down menu, from which the developer can select
among the different visualization types supported (bar charts, line charts, scatterplots,
graph-based visualizations, etc.). More information about the visualization types
supported can be found in deliverable D4.2 “Data Layer Support Tools”.

– A visualization panel, where the data visualization is displayed. After the user selects a
visualization type to use, various visualization attributes, specific to the visualization type
selected (e.g. position, color, size), can be mapped to attributes of the loaded data (e.g.
blood pressure levels).

– A code extraction text area, where the background visualization Web API calls made to
produce the presented visualization, or the HTML/JavaScript/code used to produce it,

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 39

are displayed, so that the developer can copy-paste them inside the source code of an
application under development.

4.1.4 Integrated Development Environment (IDE)
The Integrated Development Environment (IDE) contains tools that facilitate the creation of
new applications by developers. The ACTIVAGE IDE contains the following tools:

– Code generator

– Code templates

– Service composer

– ClickDigital IDE

Figure 27: The Integrated Development Environment (IDE) components.

4.1.4.1 Code generator
The code generator development tool provides generated code for manipulating devices and
sub-services, within a larger application. The code generator allows the developer to select
among available components and services using a graphical user interface. After selecting a
component (or dragging it in a design area), the developer can further select among the
functions available for this component, as they are registered in the ACTIVAGE ontology.
The developer can generate source code for implementing these functions, compatible with
any of the individual IoT platforms registered in ACTIVAGE. The translation of the
component’s characteristics to the naming conventions of each platform is handled by the
Semantic Interoperability Layer, in the background. The functionalities and communication of
the code generator development tool are depicted in Figure 28.

Figure 28: Functionalities and communication of the code generator development tool.

Usage

The code generator tool offers a Web-based Graphical User Interface, which acts as a mini
Integrated Developemnt Environment (IDE). The code generator, through a list view, allows
the developer to select devices and services registered in the AIOTES. After a device or
service is selected, the functionalities associated with this device/service are presented to

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 40

the developer. For instance, the developer can select a temperature sensor, which has a
“get status” and a “collect data” functionality, or a lamp, which as a “get status”, a “switch on”
and a “switch off” functionality. The developer can select the desired functionality from a
menu and generate the source code needed to perform this functionality for the specific
device/service. The source code is displayed in a dedicated text area and the developer is
able to select the target platrofm for which to generate the code.

4.1.4.2 Source code templates
Source code templates provide starting points for the development of applications. They
provide minimal yet buildable applications, which can then be modified by the developer.
They ease development by freeing the developer of all the details needed to be considered
for a minimal application to run. Source code templates are provided for developing
applications for various platforms, including the following:

– Server / client applications, for implementing IoT data management services

– Mobile applications, for implementing applications meant to be run in mobile devices

– Web applications, for implementing Web services or visual interfaces (dashboards) for
management of IoT devices and data.

The ACTIVAGE source code templates also facilitate the developer in creating a new
application for the individual IoT platforms registered in the ACTIVAGE federation. For each
of the above application platforms and types, code templates and sample applications exist
for each of the underlying platforms, in order to get the developer started quickly. Semantic
mappings from the Semantic Interoperability Layer can be used to provide these templates
with data-related components, which are automatically translated to the database schemas
of the individual platforms. The functionalities and communication of the source code
templates module are depicted in Figure 29.

Figure 29: Functionalities and communication of the code templates development tool.

Usage

The source code templates tool contains code templates for several application types or
functionalities, which the developer can use while creating applications either for the
AIOTES or for the underlying IoT platforms. The code templates tool presents the developer
with a list of all available templates, e.g. templates for server/client applications, for mobile
applications, for web applications, for collecting data, for controlling devices, etc. After the
developer selects a desired template, the code templates tool allows him/her to select the
target platform, where the code will be used. After the platform is also selected, the template

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 41

code is displayed in the main text area, where the developer can insert actual values and
names in the template’s placeholders, in order to instantiate the template for a specific
application.

4.1.4.3 Service composer
The service component development tool facilitates the developer in combining existing
services, tools and applications, in order to compose larger applications. The developer can
search for existing services by using the semantic service discovery tool, described above.
After the developer finds appropriate services, he/she can combine them into larger
workflows. The service composer provides two types of interface to support the composition
functionality: a textual interface, where the developer can describe how the services are
combined in an XML-style format, and a visual interface, where the developer can describe
how the services are combined by visually connecting building blocks. The two interfaces
are linked to each other, so that the developer can work with the most appropriate one at
any moment. The service composition involves the determination of each service’s inputs
and outputs and the connection of one’s outputs to another’s inputs. A characteristic
example is combining data analytics methods, in order to perform a complex analysis: the
raw data may pass through a data filtering service, before they enter a feature extraction
procedure. The extracted features may then be used as input in an anomaly detection
method, in order to find out entities not behaving in the expected manner. The developer can
subsequently generate the source code corresponding to the desired combination, in order
to import it into an application under development. The service composer tool
implementation will be based on similar service composer tools used in currently running or
previous European Projects, such as IN LIFE2 and Cloud4All3. However, new functionalities
will be needed, in order to cover the services and functionalities of ACTIVAGE. In order for
the service composer to perform, it is connected to the Semantic Interoperability Layer, as
depicted in Figure 30, in order to have access to each service’s semantics for its
functionalities, inputs and outputs, so as for the combination to become possible.

Figure 30: Functionalities and communication of the service composer development tool.

Usage

The service composer tool offers a Web-based Graphical User Interface that allows the
developer to compose services. The main components of the interface are the following:

2
 http://www.inlife-project.eu/

3
 http://www.prosperity4all.eu/related-projects/stay-connected/

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 42

– A service discovery panel, displayed as a form, through which the developer can insert
the characteristics of a needed service, or use a similar service as an example, in order
to find services with similar semantics, that fit to the developer’s needs. The discovered
services are presented in a list, allowing the developer to select each of them in order to
view its details.

– The composition area, where the selected services can be inserted and connected to
each other. The composition area can be displayed in one of two forms:

 A text area, where an XML-like description of the services and their connections is
edited. The developer can insert the description of a service, in the composition-
specific syntax, by selecting the service from the discovery panel. The developer can
also speciify how the services are connected to each other, by manually inserting
specific directives.

 A visual interface, where the service composition is displayed as a block diagram.
The developer can insert a block, representing a service, by selecting a service from
the discovery panel. The inserted service is presented as a block, having its inputs
and outputs as points on its border that can be linked to the inputs and outputs of
another service.

– The code export area, for exporting the service composition (described visually or
textually) as a new application or as source code that can be included in a new
application. This exported source code contains the specific low-level API calls and logic
that needs to be performed in order for the service composition to work.

4.1.4.4 ClickDigital user friendly IDE for IoT platforms
ClickDigital is a Visual and Pluggable User Friendly Integrated Development Environment for
IoT platforms. It allows you to quickly prepare smart digital solutions and offer the resulting
App/Dashboard (in use only mode) to your clients. ClickDigital aims mainly:

To decrease the learning curve/complexity of creating Apps for heterogenous IoT platforms

– To offer a new App creation experience for the developers/consumers of IoT solutions

– To optimize the path/time to the market

– To enable the IT departments to develop, optimize the cost and enhance the usage of
IoT solutions

Main extents behind ClickDigital are:

– To Increase and accelerate the frequency of use and creation of IoT solutions

– To Increase the use of IoT solutions

– To Enable the for "IoT for all" strategic vision

ClickDigital is being addressed mainly to:

– IoT/Digital solutions & applications developers: The IoT/Digital solutions & application
developers present a first level of our target users group, mainly in order to:

 Optimize the needed time to learn an IoT platform’s philosophy and structure to be
able to start developing compatible applications.

 Optimize the programming complexity and reduce the blocked status

 Perform the time usage to extend and empower the created system quality

 Reduce time to market

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 43

– The IT departments of different services providers companies in relation with the IoT
verticals: The IT departments present the strategic target group behind ClickDigital as it
will enable the correspondent IoT service providers to:

 Act independently from the developers

 Have more space for quick prototyping of ideas to be stress tested towards the
market

 Shorten the path to market

 Enable the quick time reaction toward smart solutions adjustment, modification and
extension

 Empower the user centric approach through the direct contact between the IT
departments and the respective services providers.

In the Activage context, and in order to enable/scale up the usage of IoT solutions,
ClickDigital would fit the big picture, mainly based on the following characteristics:

– Just a “Pluggable” Visual IDE to IoT platforms to create your own IoT dashboard and
present it in different modus to your clients

– Widget based

 Cover the spectrum of needed use cases for a successful IoT application, mainly

 Management

 Visualization

 Control

 Logic creation

Therfore, this tool will enable the Visual programming of IoT solutions based on different IoT
platform and AIOTES also, it will cover also tje mainly following domains:

– Smart Living

– Building management

– eHealth

– Energy economy

…

Figure 31: ClickDigital IDE for programming IoT solutions on top of several IoT platforms

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 44

The ClickDigital IDE communicates with the Semantic Interoperability Layer, in order to have
access tot he available components and services that can be used for visual dashboard
creation. The functionalities and communication of the ClickDigital IDE are presented in
Figure 32.

Figure 32: Functionalities and communication of the ClickDigital IDE.

Usage

As shown in Figure 33, the 3 main added values of ClickDigital are to:

– Plug,

– Create, and

– Deliver

Figure 33: Added values of ClickDigital IDE.

The Plug capabilities aims to offer the possibilities to the ClickDigital experts to plug it to
differents IoT Platforms based on the partners/clients requirements (Figure 34).

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 45

Figure 34: Plug capabilities of the ClickDigital IDE.

Once plugged, ClickDigital, through its marketplace-based Widget, allow the users to select,
drag and drop different widgets to the main daschboard screen, this will enable them to
Vizually plug new devices, control them, vizualize data and create smart rules.

Figure 35: Create capabilities of the ClickDigital IDE.

Once created, ClickDigital offers the possibility to deliver the created application/dashboard
in a use-only mode to the target users.

Figure 36: The deliver capabilities of the ClickDigital IDE.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 46

4.1.5 Support
The support modules provide resources and documentation, in order to facilitate the
developer in developing applications within the AIOTES infrastrucutre and resolving issues.
They offer support for the development of AIOTES applications, in a similar manner as the
support tools of T5.3 offer support for the use of AIOTES applications. The support modules
include the following, as also depicted in Figure 37:

– Documentation: Detailed documentation of all available ACTIVAGE Web APIs, and
development tools, with instructions for usage, description of inputs and outputs, etc.

– Wiki: Wiki pages, editable by the developers, providing information about issues that
commonly arise while developing IoT applications in the ACTIVAGE ecosystem.

– Tutorials: Step-by-step guides for common tasks, which facilitate new developers in
specific application types.

– Code samples: Example source code snippets or complete applications, for performing
common tasks, which can be readily used and modified by developers.

– Discussion forum: A dedicated forum, where developers can communicate with each
other, ask questions and provide answers to arising issues.

– Training: The training module includes webinars, live demos, etc., useful for training
developers in using the AIOTES components and development tools.

Figure 37: The support development tools.

Usage

The support tools are available to the developer through a Web-based help center.
Hyperlinks to the primary categories of available materia, i.e. documentation, wiki, tutorials,
code samples, discussion forum and training, are provided through the support tools home
screen. The support tools offer links to other parts of the support tools, as well as examples
of usage for all parts of the AIOTES. They also offer links to the platform-specific
documentation websites.

4.1.6 Mapping between development tools requirements and modules
The development tools, as described in the sections above, cover the development tools
requirements outlined in Section 2. Figure 38 provides the mapping between requirements
and modules. Orange boxes denote requirements, while green boxes denote the
corresponding ACTIVAGE development tools. Part of the requirements is mapped to
deployment tools (grey boxes), which are described in Section 5.1.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 47

Figure 38: Mapping between requirements (orange) to the ACTIVAGE development tools (green).

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 48

4.2 Available development tools supported by the ACTIVAGE IoT
platforms

4.2.1 universAAL
The universAAL developer tools were developed to simplify and assist the developer in
developing smart services and components for the universAAL platform. This section will
provide an overview about the available tools that will be used by end users and deployers
to install, configure and personalize universAAL based applications.

The universAAL platform is developed in Java, using Maven as basis for project
management, and GIT for source versioning control. All of its code is publicly available in
github at: https://github.com/universAAL. Taking also advantage of its project tools (such as
issue management), and documentation (such as wikis and github pages).

4.2.1.1 Support Tools

Table 1: universAAL support tools

Documentation https://github.com/universAAL/platform/wiki

API Doc http://universaal.github.io/platform/apidocs/index.html

https://github.com/universAAL/remote/wiki/REST-API

Source Code https://github.com/universAAL

Tutorial and Sample code https://github.com/universAAL/platform/wiki#core-tutorials

https://github.com/universAAL/platform/wiki/Hello-World

https://github.com/universAAL/samples

4.2.1.1.1 universAAL documentation and WIKI
universAAL IOT is an open source platform that enables seamless interoperability of
devices, services and applications on an unprecedented scale. The platform provides the
framework for communication, connectivity and compatibility between otherwise disparate
products, services and devices.

The universAALwiki (https://github.com/universAAL/platform/wiki) provides information
about:

– Introduction

– Core Tutorials

– Advanced Topics & Managers

– Community

These sections are described in detail below.

Introduction

This section contains introductive information to developers that have just started using
universAAL. Specifically it provides a detailed explanation of what universAAL is and
describes briefly some of the basic concepts of the platform. Moreover, it provides

https://github.com/universAAL
https://github.com/universAAL/platform/wiki
http://universaal.github.io/platform/apidocs/index.html
https://github.com/universAAL/remote/wiki/REST-API
https://github.com/universAAL
https://github.com/universAAL/platform/wiki#core-tutorials
https://github.com/universAAL/platform/wiki/Hello-World
https://github.com/universAAL/samples
https://github.com/universAAL/platform/wiki

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 49

information related to the middleware of the platform and its layers and explains the
ontological model used by the platform. Finally, it provides details related to the development
environment setup and examples of how to create simple universAAL-based applications

Core Tutorials

The Core Tutorials section provides an in-detail explanation of the very basic concepts of
universAAL. In particular, it contains the following sub-sections:

– Advanced topics related to ontologies and an overview about the implementation of OWL
in universAAL. Example of how to create a new ontology.

– Introduction to the Context Bus and how it works. Information about context publishers,
context events and context subscribers, and examples of restrictions and context event
patterns.

– Introduction to the Service Bus and details related to its ontological model. Explanation
of the API and how to create service profiles and service requests. Information about the
matchmaking system used by universAAL and examples.

– Introduction to the UI Bus and presentation of its components and concepts. In detail
example of how to create a universAAL-based UI.

– Example that demonstrates all the aforementioned topics of this section

Advanced Topics and Managers

Managers are parts of the platform necessary for its proper operation, or provide relevant
basic services or events for other applications. All universAAL managers are described and
explained in details. Specifically, the managers described are:

– Remote Gateway - A Gateway Manager that connects nodes in different networks so
they belong to the same uSpace, or connects different independent uSpaces to a
centralized uSpace in a server. This enables the deployment of cloud-based solutions by
introducing multi-tenancy support.

– Remote API - The Remote API allows to access an instance of universAAL running in a
server, by calling the basic functionality of the buses through a HTTP-accessible API.

– REST API - allows to access an instance of universAAL running in a server, by calling
the basic functionality of the buses through a fully RESTful API.

– Context History Entrepot - the Manager in charge of the persistent storage of Context
information and history..

– Situation Reasoner - a generic purpose reasoner (gets some basic context information
and elaborates new information out of it). Applications can use it to set up their own
reasoning rules.

– Profiling and Space Servers - the Profiling Server is a Manager that helps applications
deal with profile-related information stored in the Context History Entrepot, including
users, their information and their profiles. The Space Server is the same but deals with
information about the uSpace and its environment rather than the user.

– Space Orchestrator - provides a scripting language to interact with the buses.

– This section also provides information related to security and data protection,
development tools and container functionalities, e.g. installing and running the platform in
different container.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 50

Community

Provides access several repositories that contain the code of universAAL for contribution,
code examples and other created universAAL-based applications. Moreover, there is a
youtube channel (https://www.youtube.com/channel/UCIKF3tT_P4dz3_DmcpFjNoQ) that
contains video tutorials related to universAAL core topics and the creation of universAAL-
based applications.

4.2.1.1.2 universAAL API doc and swagger
The main API for universAAL is a Java based mechanism that allows the creation of
universAAL-based applications. The provided API doc describes in detail all the packages
and Java classes of the APl (http://universaal.github.io/platform/apidocs/index.html).

universAAL also supports a REST API mechanism that allows to access an instance of
universAAL running in a server, by calling the basic functionality of the buses through a fully
RESTful API. In the related wiki page (https://github.com/universAAL/remote/wiki/REST-API)
details related to the installation and configuration of the REST API Manager are provided.

The REST API works by handling the basic uAAL-based resources: Spaces representing
tenants can hold Context Subscribers, Context Publishers, Service Callees and Service
Callers. Subscribers and Callees can receive Context Events and Service Calls respectively,
and send them to the client through a callback. Publishers and Callers can be used to post
Context Events and Service Requests to the server.

Table 2: universAAL API

URL
4
 METH

OD
INPUT OUTPUT

{url}/uaal GET {url}/uaal/spaces

{url}/uaal/spaces GET

POST Space
(json/xml)

Space (json/xml list)

{url}/uaal/spaces/{myspace} GET {url}/uaal/spaces/{myspace}/conte
xt
{url}/uaal/spaces/{myspace}/servi
ce

PUT Space
(json/xml)

DELE
TE

{url}/uaal/spaces/{myspace}/context GET {url}/uaal/spaces/{myspace}/conte
xt/publishers
{url}/uaal/spaces/{myspace}/conte
xt/subscribers

{url}/uaal/spaces/{myspace}/context/pub
lishers

GET Publisher (json/xml list)

POST Publisher
(json/xml)

{url}/uaal/spaces/{myspace}/context/pub GET Publisher (json/xml)

4
 The {url} currently defaults to the host address, port 9000.

https://www.youtube.com/channel/UCIKF3tT_P4dz3_DmcpFjNoQ
http://universaal.github.io/platform/apidocs/index.html
https://github.com/universAAL/remote/wiki/REST-API

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 51

lishers/{mypub} POST ContextEve
nt (text/plain
Turtle)

PUT Publisher
(json/xml)

DELE
TE

{url}/uaal/spaces/{myspace}/context/sub
scribers

GET Subscriber (json/xml list)

POST Subscriber
(json/xml)

{url}/uaal/spaces/{myspace}/context/sub
scribers/{mysub}

GET Subscriber (json/xml)

PUT Subscriber
(json/xml)

DELE
TE

{url}/uaal/spaces/{myspace}/service GET {url}/uaal/spaces/{myspace}/servi
ce/callers
{url}/uaal/spaces/{myspace}/servi
ce/callees

{url}/uaal/spaces/{myspace}/service/call
ers

GET Caller (json/xml list)

POST Caller
(json/xml)

{url}/uaal/spaces/{myspace}/service/call
ers/{mycer}

GET Caller (json/xml)

POST ServiceReq
uest
(text/plain
Turtle)

ServiceResponse (text/plain
Turtle)

PUT Caller
(json/xml)

DELE
TE

{url}/uaal/spaces/{myspace}/service/call
ees

GET Callee (json/xml list)

POST Callee
(json/xml)

{url}/uaal/spaces/{myspace}/service/call
ees/{mycee}

GET Callee (json/xml)

POST ServiceRes
ponse
(text/plain
Turtle)

PUT Callee
(json/xml)

DELE
TE

Examples of the needed body requests and how to use the provided the REST-API are
provided also in the wiki page of universAAL.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 52

4.2.1.1.3 universAAL source code public access
UniversAAL is an open source plarform (available under Apache License 2.0) and everyone
is free to use, copy, modify and redistribute the platform sources (within the limits of the
license). Master repositories for the source code, as well as wikis (main source of
documentation), and issue management are all currently hosted in GitHub Repositories
(https://github.com/universAAL).

4.2.1.1.4 universAAL tutorial and sample source code
universAAL provides several development tools. In particular, there is an eclipse plugin that
help developers use universAAL (https://github.com/universAAL/tools.eclipse-plugins) and a
runtime plugin (https://github.com/universAAL/tools.runtime). Also, an Apache Karaf
distribution ready configured to run universAAL platform and applications
(https://github.com/universAAL/distro.karaf) and a Pax Runner configuration for universAAL
are provided (https://github.com/universAAL/distro.pax).

universAAL’s wiki contains detailed information about how to begin creating your own
applications. It starts with a typical “Hello World” example providing also information about
how to run it (https://github.com/universAAL/platform/wiki/Hello-World).

Moreover, it provides (https://github.com/universAAL/platform/wiki/Running-the-lighting-
sample) a more realistic example that is related to the manipulation of lighting bulbs and
provides (https://github.com/universAAL/platform/wiki/Lighting-Sample-Walkthrough) also an
analytical walkthrough of the code.

A youtube channel (https://www.youtube.com/channel/UCIKF3tT_P4dz3_DmcpFjNoQ)
contains video tutorials related to universAAL core topics and the creation of universAAL-
based applications.

Finally, there is also a repository (https://github.com/universAAL/samples) that contains
several complete samples, partially with GUI, as example for the development of new
applications.

4.2.1.2 Useful tools in the context of ACTIVAGE
The universAAL IoT platform offers a full suite of tools which help developers in the whole
development life cycle, from conception to testing. Within this suite there are some tools
which have some interest in the context of ACTIVAGE development tools, and their
conceptualization.

https://github.com/universAAL
https://github.com/universAAL/tools.eclipse-plugins
https://github.com/universAAL/tools.runtime
https://github.com/universAAL/distro.karaf
https://github.com/universAAL/distro.pax
https://github.com/universAAL/platform/wiki/Hello-World
https://github.com/universAAL/platform/wiki/Running-the-lighting-sample
https://github.com/universAAL/platform/wiki/Running-the-lighting-sample
https://github.com/universAAL/platform/wiki/Lighting-Sample-Walkthrough
https://www.youtube.com/channel/UCIKF3tT_P4dz3_DmcpFjNoQ
https://github.com/universAAL/samples

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 53

Figure 39 universAAL IoT tool set (Blue), modules (Violet), and workflow which can be interesting to
ACTIVAGE.

Figure 39 Shows the most interesting tools for conceptualizing ACTIVAGE tools, as well as
their context (IDE, run environment, or neither), and the role they play in the general
development workflow for a specific module (in green).

IDE tools (4.2.1.2.1) are useful to create source code, which is then compiled using Maven
(4.2.1.2.2), this allows developers to use IDEs other than the one proposed. With in the build
process, the developer can choose to create tests using testing frameworks (4.2.1.2.3),
which have been extended to make it easier to develop said tests. With in the runtime
environment there are 2 kinds of tools, proper tools (4.2.1.2.4) which are used to test,
monitor and produce data of existing applications; and modules of the platform it self
(4.2.1.2.5), which can be extended through specific files to create or extend applications.

4.2.1.2.1 AAL Studio
The AAL Studio is a suite which provides an integrated development environment (IDE)
based on Eclipse for building applications and components using the universAAL execution
platform. The AAL Studio makes it easier to get started with the AAL application
development, and will make some of the development tasks more efficient. Also, it gives
easier access to the resources needed by the developer such as documentation and
samples.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 54

The functionality of the AAL Studio is provided by the individual plugins that are installed
within it, including wizards for creating projects; build tools for simplifying building and
launching of applications, and modeling and transformation tools for making the
development more efficient. The AAL Studio tools created by universAAL are implemented
as Eclipse plug-ins.

Figure 40 Installation process of AAL Studio suite in Eclipse

More info about the tool might be found here: https://github.com/universAAL/tools.eclipse-
plugins/wiki/AAL-Studio-overview-and-installation

The AAL Studio is an IDE as described in Section 4.1.4, providing functions such as:
component selection, functionality selection, code generation, Server-client Application
source templates, and source translation.

The concept of SDK integrated in the IDE might be interesting for ACTIVAGE. Some of the
plugins could be recycled into ACTIVAGE, but there are several problems with this. Not
every ACTIVAGE project is a java project (ergo it would be difficoult to force non-java
developers to use Eclipse, a primarily Java IDE). Second, most of the plugins are very
specific to universAAL development.

 Development Environment Setup 4.2.1.2.1.1
This tool aims at simplifying the setup of the development environment. It is shown
automatically for every new Eclipse workspace and takes care of:

– settings for maven

– downloading source code

– importing source code into Eclipse

https://github.com/universAAL/tools.eclipse-plugins/wiki/AAL-Studio-overview-and-installation
https://github.com/universAAL/tools.eclipse-plugins/wiki/AAL-Studio-overview-and-installation

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 55

Figure 41 Source download interface

 Project and Item Wizards 4.2.1.2.1.2

This AAL Studio tool is intended to be used by developers of services and platform
components. It makes it easy to create new universAAL-compliant projects by providing a
skeleton project with all the files you need and initial content to make the project work in
universAAL. The item wizards generate new files required or optional to a universAAL
project with the proper API and protocol usage. It reduces the time of development since
without this tool an unexperienced developer would need to review and copy samples. By
using the wizards it is assured to have well-formatted files and project structures. As the
developer’s experience grows the need for this module decreases, and most of it can be
replaced by other tools such as the maven templates (see 4.2.1.2.2.3).

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 56

Figure 42 Basic information provided for the Project wizard

Figure 43 Customization of the project dependencies and components in the project wizard.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 57

 Ontology Project Wizard 4.2.1.2.1.3
The Ontology Project Wizard makes it easy for a developer to get started developing
ontologies, by setting up a valid Eclipse project containing a UML model with the correct
structure and template content typically used for ontologies in universAAL. The wizard lets
the developer enter the name and package / name-space information for the ontology, and
uses these values to set up both the initial content of the UML model and the Maven project
file. This wizard is similar to the Project and Item Wizards in setting up a Maven project for
universAAL, but the content created in the project is specifically for modelling of ontologies.

Figure 44 Basic informtion for the Ontology project wizard.

Ontology modelling tools

The Ontology Modelling Tool (OMT) provides a simple user interface that enables ontology
developers to focus on the ontology concepts instead of the java representation of it. This
tool provides the following benefits:

– Simplify the process of creating ontologies for use on universAAL

– Lower learning threshold

– Reduce effort required (time)

– Limit error-prone activities

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 58

– Reuse in universAAL and for other platforms (representations)

Figure 45 view of recently created project.

To add more concepts and properties, chose elements from the palette.

Figure 46 tooltips to create ontologies graphically.

Although the tool is used to model ontologies, it has many limitations, for example it cannot
create complex restrictions, or import ontologies other than the default ones already
included. These type of designs require the developer to review the generated code (see

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 59

next tool), and introduce them in the code. Because of these shortcomings the proposed
AIOTES tool will be based on proper ontology editors such as Protégé.

A possible extension of this tool would be to allow it to generate UML diagrams which can
later be exported to OWL independent of universAAL ontologies. The only advantage this
has is the simplicity of the tool and it being available within the Eclipse IDE; but because of
all the limitations it has it is better to reuse other ontology design tools.

 Transformation OWL UML Java 4.2.1.2.1.4
The role of the Model Transformation Tool is to be a common component for all model
transformations in AAL Studio. Currently only one transformation is available on UML files,
namely the Ontology to Java transformation. The purpose of this AAL Studio tool is to make
it easy to generate implementation resources (such as Java source code) from models
created in UML or EMF, and to give a good integration with the Eclipse development work.

Currently, the primary example of this the transformation that generates full Java source
code and Maven POM files from UML ontology models created using the Ontology Project
Wizard and modelled using our Ontology Modelling approach. The main benefit of using this
tool is that it automates (part of) the implementation work. The alternative for the user would
usually be to hand-code the implementation based on the model or some equivalent design.

The modelling and transformation approach also have the benefit that maintenance is
simplified. E.g., if there are changes in the target platform (e.g. the Java representation of
the ontologies), then correct code can quickly be re-generated once the transformations
have been updated.

When the ontology modelling tool is replaced by a proficient ontology design tool, the output
is always an OWL file. AIOTES will provide a tool which instead of transforming UML to java,
it will transform directly OWL files to Java, superseding this tool. This not only has the benefit
of using professional ontology design software, it can also be applied to existing ontologies.
Additionally the Template based Ontology code generation tool (see 4.2.1.2.6.1) will be
capable of not only generating universAAL code, but by switching the template system,
generate code for other platorms, frameworks, or programming languajes.

4.2.1.2.2 Maven extensions
The universAAL platform is built thanks to the Maven project management system. The
universAAL community has produced a series of tools to make more optimized use of this
framework. As such there are 3 main categories of tools: Compliance, Build, and Templates.
The functions that these tools offer are mainly in the realm of project management, but in the
case of the tempatlates they offer the source code templates functions very efficiently.

 Compliance and code quality 4.2.1.2.2.1

Since the beginning universAAL had very strict quality assurance rules, and many
conventions. Thus there was a need for Platform developers to provide convenient
automatic reports on these. Maven already provides many Compliance and code quality
tools. But when it comes to the universAAL specific conventions a new set of tools needed to
be developed.

A specific universAAL convention is the release policy, all universAAL components are
synchronized to the same version before releasing, along with other checks these tools help
smooth the release process. Although this tool is obviously very specific for platform
development it still might be useful for any multi-module application using Maven.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 60

 Build 4.2.1.2.2.2
These tools are used to setup each building environment for proper testing by particular
testing framework (see Section 4.2.1.2.3); they also generate parallel files used for
deploying, such as providing the start up sequence for running any particular module. These
are known as composite files used in the pax runner (see 5.2.2.1.2 and 4.2.1.2.3).

These tools are quite generic, but only useful for software modules using Maven, and OSGi
framework, in particular the Pax Runner OSGi provider. Thus it may not be useful for
AITOTES. Yet the concept of a tool that automatically generates the required runtime
configuration given a module might be interesting in AIOTES.

 Templates 4.2.1.2.2.3

The Maven framework provides many plugins, one of which, the archetype plugin, provides
a robust and flexible framework for creating projects out of templates, as well as custom
templates.

In particular universAAL provides a set of custom templates to create universAAL projects
and runners. This is an alternative way to provide the function of source code template as
offered by the AAL Studio (see 4.2.1.2.1).

4.2.1.2.3 Testing frameworks
The universAAL platform is very keen on testing, particularly automatic testing, as such it
offers specific APIs and frameworks for unit and integration testing which are automatically
recognised by Maven a well as Eclipse.

The unit testing framework and API works on top of the Junit framework, has the capability
of automatically building a run environment with the full stack of universAAL middleware for
testing particular operations. There are different levels of the provided stack, which may be
used according to if the developer is implementing tests for the middleware, or application;
the later even setting up all the required ontologies for the test.

The integration testing framework and API allows the developer to set up a full OSGi stack,
allowing also to introduce particular modules with the functions of testing a monitoring the
results. It is much slower than the unit testing, but provides more trustworthy results as the
run environment is almost exactly the same as the final deployed environment.

These frameworks provide the code quality function for the implementation phase. They are
very universAAL specific; although the integration testing could be abstracted for OSGi
applications. Yet the concept of a tool to easily set up testing could be very interesting to be
included in AIOTES tool set.

4.2.1.2.4 Runtime tools
universAAL provides a set of runtime tools. By definition these tools are meant to run in an
universAAL Runtime environment, thus they are properly deployment tools; but in many
cases the tools are also very useful for developers when testing. In this section we will
overview these tools from the development perspective, for a full view of the tools please
refer to the Section 5.2.2.1.2.

For more information about runtime tools find the full documentation in:
https://github.com/universAAL/tools.runtime/wiki.

The concept of tools which run on the platform it self is already included in ACTIVAGE.
These tools are specific for universAAL but some may be interesting to have in AITOES. For
example a visual log to easily identify what is going on in the framework; a makro recorder to
compose services “manually”; or a query inspector to check the data in the system.

https://github.com/universAAL/tools.runtime/wiki

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 61

 Log Monitor 4.2.1.2.4.1
The log monitor is a graphical viewer of all the universAAL events; it helps debug
applications by showing the internal logic behind the decicions for matchmaking services
and events, as well as showing graphical representations of the exchanged messages
between modoles; showing them in a real life sequence message diagram.

This tool covers the functionality of data analyser, in fact it is analysing the metadata
produced by the system itself and reporting on it.

This tool is specific for universAAL, and it may require a lot of effort to generalize for
AIOTES. Yet it is possible to adapt it to the specific interfaces, such as the management
interface of AIOTES, to adapt part of the functionality, such as the live view of events,
semantic graphic visualizer and sequence diagram.

 Makro Recorder 4.2.1.2.4.2
The Makro recorder is useful to create sequence of events by recording the events and
services generated in the devices in the deployed space, and being able to later replay
them. The main purpose of the Makro recorder is to enable deployers and enven end users,
to set up rules and automatic responses. But for developers it may be useful to create
sequences using a specific set of devices; and then generalize the result for any
deployment.

This tool partially provides the functionality of service composition, as it complies for specific
deployment and not for generic deployments.

Being a tool running in universAAL it may be possible to add this tool directly to the SDK of
AIOTES through the universAAL bridge.

 Sparql tester 4.2.1.2.4.3
The sparql tester is a tool which enables developers, and deployers, to issue sparql queries
to the data lake in the space.

This tool offers the function of Data model work bench, Metadata storage explorer and Data
manipulator.

The tool is specific for the universAAL module implementing the sparql interface. Thus it is
possible to directly use this tool through the universAAL AIOTES bridge, if the particular
storage implements this interface. Yet the tool is extremely simple, and for desktop use only;
thus a web interface providing the same (or more functionality) is probably a better option for
AIOTES.

4.2.1.2.5 universAAL modules as tools
universAAL offers a series of modules which can be considered as tools since they allow to
execute code from different sources, essentially providing alternative APIs and frameworks
for universAAL.

Worth mentioning in this category are the Drools Reasoner5, and the Service Orchestrator6.
Both provide the development function of service composition, the main difference is the way
they do it, one uses Drools rule production engine (a java based if-then execution), and the
second uses javascript (exporting universAAL API to javascript).

5
 https://github.com/universAAL/context/wiki

6
 https://github.com/universAAL/service/wiki/Service-Orchestration

https://github.com/universAAL/context/wiki
https://github.com/universAAL/service/wiki/Service-Orchestration

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 62

Both tools can be imported to AIOTES directly through the use of the universAAL AIOTES
bridge. Adding simple text service composition and rule based service definition are powerful
methods to enable quick service development.

4.2.1.2.6 Planned Tools

 Template based Ontology code generation 4.2.1.2.6.1

A new tool development is planned ; this tool is not exclusively a universAAL tool, but an
effort to expand the flexibility of the code-generation plugin of Protégé. The current
implementation of this plug-in enables the generation of Java code, based on the OWL API7
framework, from an OWL ontology. The code generation is done with static code, and simple
text substitutions. It also has a maven flavour, to generate code directly from an OWL file in
a maven lifecycle.

The tool to be implemented will use the Apache Velocity macro template system, which is
robust, fast and easy to use and it will be based on the development of XML template
coordination. It will allow pluggable template systems (either by attaching an OSGi bundle
fragment to the code generation plugin bundle or by loading them from the internet). This
way, communities will be able to create their own template systems and contribute them
directly to the Protégé project. They can create template systems to create code specific for
their platforms, create ontology based APIs, as well as generic needs. For example an SQL
code generator template could transform any ontology to the series of SQL commands to
create the appropriate data tables, views and populate it with the instances according to the
ontology.

It will also support maven variant. This way, it will be possible to use the same code but
launched from within a maven project, and include it in the build process.

Figure 47 a code-generation Java generation example

7
 https://owlcs.github.io/owlapi/

https://owlcs.github.io/owlapi/

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 63

As an extended use of the tool, templates can be development with specific Ontology in
mind e.g. given an ontology for Security, application developers can create extensions for it
and the output project would be the security component for the application.

This tool currently is indesign phase, it has a lot of potential. It (along with key pluggable
template systems) could be integrated in AIOTES tool suite directly, for example to provide,
or extend, non-semantic platforms with quick and easy interfaces to the AIOTES semantics,
or to provide the means to easily allow simple application development by non-technical
developers from an ontology (or through ontology based specific tools).

This tool, in conbination with protégé it self, could provide support for the functions for many
of the Semantic Interoperability Layer as well as Data analytics, and, of course, code
generation.

 universAAL Control Center 2.0 4.2.1.2.6.2
In an effort to make running tools (4.2.1.2) more coherent a similar approach to the AAL
Studio (4.2.1.2.1) will be followed. The result is a graphical framework consisting on many
plugins that provide different functionality for the deployer. This tool will also be useful for
developers. See the full description in Section 5.2.2.3.

4.2.1.3 Mapping between universAAL and ACTIVAGE development tools
Given the large amount of tools, some can be used directly for ACTIVAGE, in most cases
the concept they embody can be adapted to AIOTES tool, in other cases the tools are too
universAAL specific for any use in AIOTES.

Table 3: universAAL Tools Mappings with Activage development tools
universAAL
development
tool

Corresponding
ACTIVAGE
development
tool(s).

Can the tool be used in AIOTES?

Support tools
(documentation,
wiki, source code
samples)

Support Yes No

How? Why?

The universAAL support tools
(documentation, wiki, code
samples, etc.) will be used as
part of the overall AIOTES
support material.

Project and Item
wizard

IDE / Source
code templates

Yes No

How? Why?

 These tools are too
universAAL specific (they
relate to universAAL
projects and modules). A
Similar wizard could be
useful for AIOTES
development.

Ontology project
wizard, modelling
tool, and
transformation.

IDE / Code
Generator

Yes No

How? Why?

 These tools are too
universAAL specific (they
relate to universAAL
ontology development).
This tool would only make
sense if AIOTES requires
a project around an

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 64

ontology. A generic tool
for designing tools and
exporting code is
poropsed, see 4.2.1.2.6.1

Log Monitor Not mapped with AIOTES

Makro Recorder Not mapped with AIOTES

Sparql Tester Data Lake /
ACTIVAGE data
model
Workbench

Yes No

How? Why?

 This tool is used primariliy
to provide an accessible
interface for developers to
the SparQL database
backend, and test or
organize database
operations. This
functionality is expected
to be inclided in
ACTIVAGE data model
Workbench.

Compliance and
Code Quality

Not mapped with AIOTES

Maven build
extensions

Not Mapped with AIOTES

Maven Achetypes IDE / Source
code templates

Yes No

How? Why?

These tools can be used to
generate universAAL projects,
but also karaf features,
specially indicated for OSGi
based deployments.

Testing
frameworks

Not Mapped with AIOTES

Reasoner and
orchestrator

IDE / Service
Composer

Yes No

How? Why?

The universAAL Modules can
be used through the SIL to
execute their composition
operations.

Template Based
Ontology Code
Geneartor

Semantic
Interoperability
tools;
IDE / Code
Generator

Yes No

How? Why?

The tool will have the capability
of defining its own templates,
specific tempaltes for platform
specific adaptations (given an
arbiraty ontology) can de
defined. It can also be used to
compose other tools which
generate code or templates.
Lastly the generic templates
(e.g. SQL from OWL) can be
used for adating applications to
AIOTES Ontologies.

universAAL
Control Center

Semantic
Interoperability
Layer tools / * ;
Visual Analytics
tools / *

Yes No

How? Why?

 uCC is too universAAL
Specific. The concept of
an In-platform running tool
for monitoring the

https://github.com/iotivity/iotivity/tree/master/resource/examples

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 65

deployment can be useful
for ACTIVAGE.

4.2.2 SOFIA2
SOFIA2 is a middleware that allows the interoperability of multiple systems and devices,
offering a semantic platform to make real world information available to smart applications
(Internet of Things).

It is multi-language and multi-protocol, enabling the interconnection of heterogeneous
devices. It provides publishing and subscription mechanisms, facilitating the orchestration of
sensors and actuators in order to monitor and act on the environment.

Cross-platform and multi-device through its SDK, APIs and extension mechanisms that allow
integration with any device.

4.2.2.1 Documentation and WIKI
SOFIA2 has available in site (http://sofia2.com/desarrollador_en.html#documentacion)
several documentations, it is proving information about:

– SOFIA2 Basic information

– SOFIA2 User level.

– SOFIA2 Developer

– SOFIA2 Advanced developer.

In addition provides more news, information, help and guides in its Blog :
https://about.sofia2.com/

4.2.2.2 APIs and libraries
SOFIA2 offers several communication protocols between KP (device) and SIB(interface of
communication whit SOFIA2):

– MQTT (Message Queue Telemetry Transport) is a connectivity protocol focusing in M2M
(machine-to-machine) and IoT (Internet of Things). It is a lightweight messaging protocol
based on TCP and especially designed for remote devices with little memory and little
processing power. It is based in a publish/subscribe messaging model that eases one-to-
many distribution.

– Restful: the deployment of SOFIA2 in sofia2.com provides a RESTful Gateway to invoke
operations on that instance. This Gateway works around SSAPResource, which
represents, along with the Gateway HTTP verbs, the different SSAP operations.

– AJAX (Asynchronous JavaScript And XML) is a web development technique to create
interactive applications or (Rich Internet Applications). Those applications run in the
client, meaning in the user’s browser, while at the same time an asynchronous
communication with the server is kept on the background.

– WebSocket is a technology that provides a bidirectional communication channel and
fullduplex on a single TCP socket. It is designed to be implemented in browsers and web
servers, but can be used by any client/server application. The use of this technology
provides similar functionality to opening multiple connections in different ports, but
multiplexing different WebSocket services over a single TCP port (at the cost of a small
protocol overhead) .

http://sofia2.com/desarrollador_en.html#documentacion
https://about.sofia2.com/

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 66

In addition, SOFIA2 provides several APIs to connect in easy way different devices using
several technologies:

– JAVA API: SOFIA2 provides a Java API to develop KPs. This API is made of a set of
JAVA classes and interfaces that ease the generation and maintenance of SSAP
message, as well as the connection with the Platform using connectors that
communicate with the Platform’s gateways.

– ANDROID API: The Android application development is createdin Java programming
language and a set of development tools called Android SDK. SOFIA2 provides a Java
API for developing KPs on the Android SDK. This API consists of a set of Java classes
and interfaces that facilitate the generation and process of SSAP messages as well as
the connection to the platform through connectors that communicate with the platform’s
gateways

– ARDUINO API: This API provides the Platform for Arduino devices. It includes operations
to interoperate with the SIB: connect, send and receive messages from the SIB.

– JAVASCRIP API: The Platform also provides an API to interoperate with the SIB using
JavaScript. The JavaScript API provides a set of functions covering all the SSAP
operations, thus abstracting the programmer from the message building process.

– NODE JS API: Node.js (http://nodejs.org/) is a platform that enables the development of
JavaScript on the server side through V8 JavaScript engine developed by Google. Its
architecture is eventbased and designed for asynchronous programming. It consists of
several modules that facilitate the use of this language. SOFIA2 provides a Node.js API
for the development of KPs. This API is a set of utilities that facilitate the generation and
processing of SSAP messages and the connection with the platform through MQTT to
communicate with the platform’s gateways.

– C API: It provides a dynamic link library for the development of KPs using the C
language. For compatibility among platforms, the source code of the library is provided
along with a Makefile to compile it.

4.2.2.3 Source code public access
SOFIA2 has created a Git-Hub repository where to find all the open source code to apply to
your field.

Source code of SOFIA2 is accessible through the https://github.com/Sofia2

4.2.2.4 SOFIA2 tutorial and sample source code
SOFIA 2 offers tutorial in YouTube Channel in the form of videos that show how to use the
platform: www.youtube.com/channel/UC6VGV_lN9gB2mJcPdIYHB0A.

In addition, SOFIA2 has a tutorial of first steps in SOFIA2:

https://www.iorad.com/player/19843/Primeros-Pasos-Sofia2

In relation with samples and source code, there are several demonstrators to show example
of how easy is to work with Sofia2. All examples are available with its source code. The next
table does a summary of them.

https://github.com/Sofia2
http://www.youtube.com/channel/UC6VGV_lN9gB2mJcPdIYHB0A
https://www.iorad.com/player/19843/Primeros-Pasos-Sofia2

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 67

Table 4: SOFIA2 existing samples and source code

Example DESCRIPTION

Geographic
viewer

This demonstrator shows geographically public info managed by
Sofia2. https://sofia2.com/gsma_dashboard/Apps/DGSMA.html

OpenData Viewer OpenData Viewer integrated in the platform.
https://sofia2.com/console/opendata/search#

Dashboard Smart
Health

Dashboard example where each patient have a wearable bracelet
type capable of measuring information on steps walked, sleep,
oximetry,
https://sofia2.com/demos/smarthealth/pages/dashboard_phillip.html

Geographical
search Twitter

This demonstrator allows you to search in a custom zone tweets
talking about this topic.

http://sofia2.com/demos/tweets_finder/tweets_finder.html

Demo Twitter
Streaming

This demonstrator shows the capabilities of the platform is to receive
real-time information from Twitter and their representation once
stored.

http://sofia2.com/Kp_TwitterReglaLexico/

4.2.2.5 Useful tools in ACTIVAGE context
SOFIA2‟s Platform has integrated several tools for deployment and development. The
current section shows tools for development.

Ontologies management tool

This allows for a complete management of the ontologies, including:

– Creating , modifying and delete an ontology and a ontology group.

– Searching an ontology and ontology group following some criteria.

– Finding and subscribing to an ontology and ontology group.

– Subscription to an ontology

– Authorization to one ontology or group of ontologies. The permissions a user can have in
relation to ontology are as follows:

– QUERY: They user can launch queries about ontology insertions performed by the
KP‟s that the user owner has created.

– INSERT: The user can make ontology additions for the KP‟s that the user owner has
created.

– ALL: The user with this privilege on an ontology has both QUERY and INSERT
permissions.

The goal of the ontologies is becoming the schema against which the ontology insertions
made by the KP‟s will be validated.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 68

KPs/APPs management tool

This allows to manage the KP‟s with which the Platform will interact. This can be managed
in several ways:

– Create and modify KP‟s.

– Search KP‟s.

– See active KP‟s.

– Manage the tokens and instances associated to a KP.

Token management tool

This functionality allows to manage the tokens associated to a KP. All the users extant in

Platform can access this functionality, thus a user can manage the tokens on the KP‟s that
user has the right permissions:

– Users with ADMINISTRADOR role: Can manage the tokens of all the KP‟s in the

– Platform.

– Users with COLABORADOR role and others: Can manage the tokens of all the KP‟s that
are owned by that user.

Rules management tool

From this functionality will be allowed management Scrips for the following types of users:

– Users with ADMINISTRADOR role can management all rules created on the platform.

– Users with COLABORADOR role can create CEP Rules, events and Scripts on the

– ontologies that the users have Insert or All permissions. Users may view and modify
onthe Rules that they have create.

Visualization tool

That tool allows work whit the type of gadget you want to create a screen to choose a KP
and name the gadget will appear. In the case of selecting the External HTML, we should
introduce the external URL. To save, press "Create" button. These gadgets can be selected
to create a Dashboard

Predefined Queries Management

Itallows predefined queries on ontologies stored in the platform to retrieve instances of those
ontologies sent by KPs. You can query in two types of languages: o SQL-Like: If the SQL-
like language is used. o Native: If the native language of BDTR (MongoDB) is used. The tool
provides a list of predefined queries with the options: View, Edit, Launch or Delete.

In other words, all these tools participate in the deployment and expansion of the platform
itself but are not directly related to any other element of the ACTIVAGE Framework.
Thereby, It is important to highlight that these tools are PLATFORM SPECIFIC and cannot
be generalized to AIOTES.

Send SSAP Messages tool

we can send SSAP messages to the SIB and simulate a communication between KP‟s and
SIB from this menu option.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 69

When accessing, you will be shown a page with two text areas. The one in the left must
contain the SSAP Message that you want to send to the SIB. The one in the right will contain
the synchronous message with the SIB‟s response.

API Manager tool

This section is used to allow the availability of Ontologies as APIs. You can also make the

subscription to APIs published and query the API Key generated for invoking them.

This allows platform users to interact SOFIA2 through the REST resources without the need
to handle the advanced concepts of SOFIA2 (ontologies, KPs,…), allowing also SOFIA2 to
have a catalogue of APIs REST that allows the user to access the information stored to
develop their own applications or extend their own in a simple way.

Only users with Administrator and Collaborator role will have access to My APIs option. The

other options are available to all users.

4.2.2.6 Mapping between SOFIA2 and ACTIVAGE development tools
Part of the SOFIA2 development tools, described through Section 0 can be used within the
AIOTES infrastructure as ACTIVAGE development tools (Section 4.1). This mapping is
presented in Table 5 where it is specified if a tool can be generalized to be used within
AIOTES and how.

Table 5: Mapping between SOFIA2 and ACTIVAGE development tools.
SOFIA2 development
tool

Corresponding
ACTIVAGE
development
tool(s).

Can the tool be used in AIOTES?

Ontologies
management tool

Not mapped with AIOTES

KPs/APPs
management tool

Not mapped with AIOTES

Token management
tool

Not mapped with AIOTES

Token management
tool

Not mapped with AIOTES

Rules management
tool

Not mapped with AIOTES

Visualization tool Not mapped with AIOTES

Predefined Queries
Management

Not mapped with AIOTES

Send SSAP Messages
tool

Not mapped with AIOTES

API Manager tool Not mapped with AIOTES

Support tools
(documentation, wiki,
source code samples)

Support Yes No

How? Why?

The SOFIA2 support tools (documentation,

https://wiki.iotivity.org/iotivity_simulator

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 70

wiki, code samples, etc.) will be used as
part of the overall AIOTES support material.

Source code samples IDE / Code generator

IDE / Source code
templates

Yes No

How? Why?

SOFIA2 source code samples can be used
to design source code templates for
SOFIA2, which will be used as part of the
code generator and code templates
ACTIVAGE development tools.

4.2.3 OpenIoT
This section is devoted to the presentation of the components comprising the prototype
implementation release of the core OpenIoT platform that enable a user/developer to
download, install and use the modules of OpenIoT platform. Since the OpenIoT platform will
keep evolving over time, an updated version of the information provided in this section will
be provided regularly at the OpenIoT Wiki8 space under the Documentation9 section.

4.2.3.1 Service Delivery & Utility
The Service Delivery & Utility Manager has a dual functionality. On the one hand (as a
service manager), it is the module enabling data retrieval from the selected sensors
comprising the OpenIoT service. On the other hand, the utility manager maintains and
retrieves information structures regarding service usage and supports metering, charging
and resource management processes.

4.2.3.1.1 API
The current release of the OpenIoT Service Delivery & Utility Manager implements the
functionalities/capabilities that are reflected in the interface listed in Table 6.

Table 6: List of primitives comprising the OpenIoT SD&UM implemented API

<<interface>>

SDUManagerInterface

pollForReport (applicationID: String): SdumServiceResultSet

getApplication(applicationID: String): OAMO

getService (serviceID: String): OSMO

getAvailableAppIDs (userID: String): DescriptiveIDs

getAvailableServiceIDs (applicationID: String): DescriptiveIDs

getUser (userID: String): OpenIotUser

The services description as long as their inputs and outputs are listed Table 7.

8
 https://github.com/OpenIotOrg/openiot/wiki

9
 https://github.com/OpenIotOrg/openiot/wiki/Documentation

https://github.com/iotivity/iotivity/tree/master/resource/examples
https://github.com/OpenIotOrg/openiot/wiki
https://github.com/OpenIotOrg/openiot/wiki/Documentation

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 71

Table 7: Service Delivery & Utility Manager implemented API definition
Service Name Input Output Info

pollForReport
String
serviceID

SdumServiceResultSet
Invokes a previously defined Service
having the specified applicationID. This
call will produce only one Result Set.

getService
String
serviceID

OSMO
Used to retrieve the description
(OSMO) of an available service.
Requires as input a Service ID.

getApplication
String
applicationID

OAMO
Used to retrieve the description
(OAMO) of an available Application.
Requires as input an Application ID.

getAvailableAppIDs String userID DescriptiveIDs

Used to retrieve the available
applications (a list of applicationID /
ServiceName / ServiceDescription
triplet) already registered by a specific
user. Requires as input a User ID.

getAvailableServiceIDs
String
serviceID

DescriptiveIDs

Used to retrieve the available services
(a list of serviceID / ServiceName /
ServiceDescription triplet) already
registered by a specific user. Requires
as input a Service ID.

getUser String userID OpenIotUser
Used to retrieve the user’s information
for implementing access control
mechanisms.

4.2.3.1.2 Published Interface
This module is expected to be used from the OpenIoT Request Presentation user interface.
Third party applications can invoke SD&UM services via restful web services at the URLs
listed below:

– Welcome message listing the available services:
http://localhost:8080/sdum.core/rest/services/

– Poll for Report:
http://localhost:8080/sdum.core/rest/services/pollforreport

– Get Service Status:
http://localhost:8080/sdum.core/rest/services/getServiceStatus

– Get Application:
http://localhost:8080/sdum.core/rest/services/getApplication

– Get Service:
http://localhost:8080/sdum.core/rest/services/getService

– Get User:
http://localhost:8080/sdum.core/rest/services/getUser

– Get Available Application IDs:
http://localhost:8080/sdum.core/rest/services/getAvailableAppIDs

– Get Available Service IDs:
http://localhost:8080/sdum.core/rest/services/getAvailableServiceIDs

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 72

4.2.3.2 Linked Stream Middleware Light
Linked Stream Middleware Light (LSM-Light) is a platform that brings together the live real
world sensed data and the Semantic Web. The implementation of the OpenIoT platform
uses the LSM Middleware, which has been re-designed with push-pull data functionality and
cloud interfaces for enabling additional cloud-based streaming processing.

An LSM deployment is available at http://lsm.deri.ie/. It provides functionalities such as 1)
Wrappers for real time data collection and publishing; 2) A web interface for data annotation
and visualization; and 3) A SPARQL endpoint for querying unified Linked Stream Data and
Linked Data. The first and third functionality are the ones used in the proof-of-concept
implementation in OpenIoT.

4.2.3.2.1 API
In order for LSM-Light to support stream data processing programmatically, a Java API is
provided. By using this API, a developer can add, delete and update GSN-generated sensor
data into the implemented LSM-Light Server (triple store). Table 8 below illustrates the main
API primitives that provide the LSM-Light functionalities, while Table 9 provides more details
about all services that comprise the API.

Table 8: List of primitives comprising the OpenIoT LSM-Light API

<<interface>>

LSMServerInterface

getSensorById(sensorID:String): Sensor

getSensorBySource(sensorSource:String): Sensor

sensorAdd(newSensor:Sensor): void

sensorDataUpdate(observation:Observation): void

sensorDataUpdate(triples:String): void

deleteTriples(graphURL:String,triples:String): void

deleteTriples(graphURL:String): void

Table 9: LSM-light API Specification

Service Name Input Output Info

getSensorById String sensorID Sensor

Used to retrieve an existing sensor from LSM by
sending a request. Requires as input a sensorID, in
String format, which is a unique value to identify the
sensor. Returns a Sensor object that includes all the
available metadata describing the sensor.

getSensorBySource
String
sensorSource

Sensor

Used to retrieve an existing sensor from LSM by
sending a request. Requires as input a sensorSource in
String format. Returns a Sensor object that includes all
the available metadata.

sensorAdd Sensor sensor void

Used to register a new sensor into LSM. Requires as
input a Sensor class instance. This method returns a
notification and sensorId indicating whether the sensor
was successfully added or not.

sensorDataUpdate
Observation
observation

void

Used to update the latest observed data generated by
a sensor. Requires as input an Observation object that
includes all the available observed data. This method
returns a notification indicating whether the observed
data was successfully updated or not.

http://lsm.deri.ie/

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 73

deleteTriples String graphURL void

Used to clear all the triple data of a specific graph.
Requires as input the graphURL. This method returns a
notification indicating whether the data were
successfully removed or not. Note that the data cannot
be restored after this method is called.

deleteTriples
String
graphURL,
String triples

void
Used to clear specific triples from a specific graph.
Requires as input the graphURL and triple patterns.

4.2.3.3 User Interfaces
OpenIoT User Interfaces module comprises of three main components that can be useful to
the development of ACTIVAGE UI. These are:

– Request Definintion module: provides WYSIWYG UI to create service (similar to
NodeRED) which can be an analytics service in case of ACTIVAGE.

– Request Representation: similar to Feature/Result viewer where it displays results using
graphical representations.

– Schema Editor: only supports annontating sensors using the OpenIoT ontology. For
ACTIVAGE ontology, it needs major changes to work.

4.2.3.3.1 Request Definition
The request definition module is a web application that allows end-users to visually model
their OpenIoT-based services using a node-based WYSIWYG (What-You-See-Is-What-You-
Get) UI (User Interface). Modelled service graphs are grouped into “applications” (OAMOs).
Each application e includes a collection of different services (OSMOs) which represent real
life data (i.e. weather reports). This enables end-users to manage
(describe/register/edit/update) their applications from a single user interface.

All modelled services are stored by the OpenIoT Scheduler and are automatically loaded
when a user accesses the web application.

Figure 48 illustrates the main application interface components:

– The menu bar provides commands for creating new applications or for opening existing
applications for editing. Once an application has been opened for editing, its name will
appear at the top right of the menu bar.

– The central pane serves as the workspace area for modelling services.

– The node toolbox (left pane) contains the list of nodes that can be dragged into the
workspace. Nodes are grouped by functionality.

– The properties pane (right pane) provides access to any selected node's properties.

– The console pane (bottom pane) provides workspace validation information
(problems/warnings) as well as a debug preview of the generated SPARQL code for the
designed service.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 74

Figure 48: Request Definition User Interface (UI)

Below is a list of the Request Presentation main functionalities:

– Create a new application

– Load and Edit an existing application

– Modelling the service graph of an application by the configuration and usage of the
provided toolboxes and more specifically the:

 Data source node

 Selection filter node

 Comparator nodes

 Group node

 Aggregation nodes

 Sink nodes

 Line chart sink node

 Pie chart sink node

 Meter gauge sink node

 Map sink node

 Passthrough sink node

– Workspace validation

– Save/update an application

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 75

4.2.3.3.2 Request Representation
The request presentation module is a web application that provides end-users with a visual
interface to services created using the Request Definition web application. When a user
accesses the web application, all his/her modelled applications are automatically loaded.
Each application contains one or more visualization widgets.

To access the widget dashboard for a particular application, click on the file menu and then
the open application sub-menu, and select an application to load. The request presentation
layer will parse the application metadata and generate a self-updating widget dashboard
(Figure 49).

Dashboards refresh automatically every 30 seconds. However, the user may manually
trigger an update by clicking on the current application menu and selecting the “Manual data
refresh” option. To clear the data of a specific widget, click on the “Clear data” button on its
top-right corner.

Figure 49: Request Presentation UI

4.2.3.3.3 Schema Editor
The Sensor Schema Editor supports the average user in annotating sensor and sensor-
related using the OpenIoT ontology and Linked Data principles. The interface automates the
generation of RDF descriptions for sensor node information submitted by users.

The Sensor Schema Editor has two parts, namely the frontend interface and the backend
LD4Sensors Server. The Schema Editor interface depends on the LD4Sensors Server for
generating descriptions of sensor metadata and sensor observations.

The LD4Sensor exposes a REST API that takes as input the senor metadata and returns the
RDF representation. The Sensor Schema editor is developed using a JSF framework and

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 76

deployed on JBOSS AS 7.1.1. The LD4Sensor server is a standalone server that runs the
restlet framework (http://restlet.org/).

4.2.3.4 Utilities & Libraries
Finally in OpenIoT a project called Commons is maintained where the "common" Objects,
Schemata and utilities used for most of the modules across the OpenIoT platform are stored
and developed. This project is included in the binary file distribution as a library to all the
projects that are using it but has to be added as a separate project for development. This
project is available under the /utils/utils.commons/10 folder.

The modules that are currently using this library are the:

– Request Definition

– Request Presentation

– Service Delivery & Utility Manager (SD&UM)

– Scheduler

– LSM-Light

Currently util.commons hosts the following objects, schemata, utilities:

– Schemata (xsd):
 OSDSpec
 SdumServiceResultSet
 SPARQL

 protocol-types,

 rdf,

 result
 AppUsageReport
 DescriptiveIDs
 SensorTypes

– Java models generated from schemata:
 descriptiveids
 osdspec
 SDUM

 appusagereport

 serviceresultset
 sensortypes
 sparql

 protocol-types,

 rdf,

 result

– Utilities
 CDataAdapter
 PropertyManagement

10

 https://github.com/OpenIotOrg/openiot/tree/master/utils/utils.commons

http://restlet.org/
https://github.com/OpenIotOrg/openiot/tree/master/utils/utils.commons

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 77

4.2.3.5 Source Code & Binaries

4.2.3.5.1 Source Code Availability
The OpenIoT repository is hosted at the GitHub11 and can be found at the following link:
https://github.com/OpenIotOrg/openiot

The OpenIoT repository is divided into branches. Each branch is separated into two thematic
categories. One is the Documentation (i.e., site storage hosted at the “gh-pages”). And the
other one is the Open IoT source code branches. Under the source code category various
Branches will exist that are listed below:

– Main branches with an infinite lifetime:
 Master branch
 Develop branch

– Supporting branches:
 Feature branches
 Release branches
 Hotfix branches

4.2.3.5.2 Source code Structure
The OpenIoT source code is organised in functionality themes. For example all utilities are
under the “utils” folder and all user interfaces under the “ui” folder. The code structure is
shown below:

– doc: provides all the related documents with the platform.

– Modules: provides the core modules of the platform
 CUPUS
 QoSManager
 x-gsn
 scheduler

 scheduler.core

 scheduler.client
 sdum

 sdum.core

 sdum.client
 lsm-light

 lsm-light.client

 lsm-light.server
 security

 security-client

 security-server

 security-webapp-demo

– sandbox: provides space for developers to store their test code/apps (developers
“playground”).

– Ui: provides all the modules related to the User Interface
 RDFSensorSchemaEditor

11

 http://github.com/

https://github.com/OpenIotOrg/openiot
http://github.com/

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 78

 Ide.core
 ui.requestCommons minor
 ui.requestDefinition
 ui.requestPresentationaEditor

– utils: provides utilities related with the platform
 demoData
 lib
 utils.commons

4.2.3.5.3 Binaries Availability
OpenIoT binaries are available through the OpenIoT Wiki site12 under the
Users>Downloads13 section. They follow the versioning of the stable releases and are
currently in the alpha stage. They are available as standalone executables per module that
can be downloaded separately or in groups where one can download the complete platform
in one zip file.

4.2.3.6 Documentation
The OpenIoT Wiki is publicly available on Github14 which provides access to all support
materials necessary for developers and users to start working on and/or using the platform.

4.2.3.7 Mapping between OpenIoT and ACTIVAGE Development Tools
Part of the OpenIoT development tools described above correspond to specific ACTIVAGE
development tools, described in Section 4.1. This mapping is presented in Table 10. Some
of the mapped tools may be used within the AIOTES infrastructure, possibly with some
modifications or generalizations. Table 10 also summarizes which tools can be generalized
to be used within AIOTES, or are too specific to be included.

Table 10: Mapping between OpenIoT and ACTIVAGE development tools.

OpenIoT
development
tool

Corresponding
ACTIVAGE
development
tool(s).

Can the tool be used in AIOTES?

Service Delivery
& Utility

Not mapped with AIOTES

Linked Stream
Middleware Light

Not mapped with AIOTES

User Interfaces /
Request
Definition

Data/Visual
Analytics Tools /
Data Analyser

Yes No

How? Why?

Request Definintion
module provides
WYSIWYG UI to create
service (similar to
NodeRED) which can be

12

 https://github.com/OpenIotOrg/openiot/wiki

13
 https://github.com/OpenIotOrg/openiot/wiki/Downloads

14
 https://github.com/OpenIotOrg/openiot/wiki

https://github.com/OpenIotOrg/openiot/wiki
https://github.com/OpenIotOrg/openiot/wiki/Downloads
https://github.com/OpenIotOrg/openiot/wiki

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 79

an analytics service in
case of ACTIVAGE.

User Interfaces /
Request
Representation

Data/Visual
Analytics Tools /
Feature/Result
viewer

Yes No

How? Why?

Request Representation is
similar to Feature/Result
viewer where it displays
results using graphical
representations.

User Interfaces /
Schema Editor

Semantic
Interoperability
Layer tools / Device
Semantics Editor

Yes No

How? Why?

 Schema Editor only supports
annontating sensors using
the OpenIoT ontology. For
ACTIVAGE ontology, it
needs major changes to
work.

Utilities &
Libraries

Not mapped with AIOTES

Documentation Support Yes No

How? Why?

The OpenIoT
Documentation can be
used as part of the overall
AIOTES support material.

Source Code &
Binaries

IDE / Code
generator

IDE / Source code
templates

Yes No

How? Why?

 OpenIoT code base is old
and uses many outdated
libraries which might
generate conflicts during
compilation. Until we are
clear of how the code
generating functions work,
we cannot commit to making
these features.

4.2.4 SensiNact
Eclipse sensiNact aims at creating a common environment in which heterogeneous devices
can exchange information and interact among each other in the IoT world.

Eclipse sensiNact is composed of two tools, sensiNact Gateway aiming at integrating
devices and aggregating data from various sources and sensiNact Studio aiming at
interacting with the sensiNact Gateway to visualize the devices and the data.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 80

4.2.4.1 sensiNact documentation and WIKI
The sensiNact wiki documentation is accessible at https://wiki.eclipse.org/SensiNact and
help to install, develop and use sensiNact in application environment with different use
cases.

The wiki proposes two guides. A quick guide for the users wanting to setup the installation of
sensiNact quickly and full guides where a detailed description is proposed to understand
some of the concepts behind sensiNact.

A Tutorials section proposes various tutorials to help users and developers to learn more
about sensiNact.

– How to create a sNa application (requires no particular knowledge)

– How to develop a southbound bridge (requires knowledge about Java, such as the
architecture and the data model of sensiNact)

The sensiNact project uses the continuous integration infrastructure from Eclipse.

The Eclipse Jenkins runs a compilation of the sensiNact Gateway every day (or night,
depending on your timezone). The resulting compilation generates a stand alone snapshot
distribution that is available at the following address: latest build. Ten builds are kept in the
download area of Eclipse.

Each module of the sensiNact gateway is available in the Eclipse Nexus.

4.2.4.2 sensiNact API doc and swagger
As described in the D3.2 deliverable, the sensiNact IoT platform provides the followingREST
APIs:

Storing API A REST API is available for both data read (paginated or not) and write
(singular and plural) in the historical database. Statistical information is also available. More
details on the historical storage API can be found in https://git-
lialp.intra.cea.fr/sensinact/historical-storage/tree/master/rest-endpoint, and a swagger
documentation page is given in http://193.48.18.251:8080/swagger-ui.html.

https://wiki.eclipse.org/SensiNact
https://git-lialp.intra.cea.fr/sensinact/historical-storage/tree/master/rest-endpoint
https://git-lialp.intra.cea.fr/sensinact/historical-storage/tree/master/rest-endpoint
http://193.48.18.251:8080/swagger-ui.html

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 81

API Format For all sensiNact available REST API (historical storage, data model, event and
service API) format is JSON.

Data Model API The sensiNact data model API is based on the information model as
described in Figure 50Figure 50: sensiNact generic data model. This generic data model
allows a similar access to the sensors and actuators using heterogenerous protocols.. A
REST API is available for reading inside a deployed instance of the data model. Using this
API it is possible to retrieve providers, services and resources, get last measured value on a
given resource and set current value. More details on the data model API are given in
http://open-platforms.eu/library/sensinact-aka-butler-smart-gateway/ and a swagger
documentation can be found in http://sensinact.ddns.net/swagger-api/index.html#/.

Services and Events API Subscription and unsubscription to a resource exposed by a
specified service provided by a given provider can be managed through the same API. See
http://open-platforms.eu/library/sensinact-aka-butler-smart-gateway/ and the swagger
documentation http://sensinact.ddns.net/swagger-api/index.html#/.

The sensiNact Service and Resource model allows exposing the resources provided by an

individual service. The latter, characterized by a service identifier, represents a concrete

physical device or a logical entity not directly bound to any device. Each service exposes

resources and could use resources provided by other services. Figure 50 depicts the Service

and Resource model.

Figure 50: sensiNact generic data model. This generic data model allows a similar access to the
sensors and actuators using heterogenerous protocols.

Resources and services can be exposed for remote discovery and access using different
communication protocols, such as HTTP REST, JSON-RPC, etc., and advanced features
may also be supported (as semantic-based lookup). Resources are classified as shown in
Figure 50, while the access methods are described in Table 11.

Table 11: sensiNact resources types and description.

TYPE DESCRIPTION

SENSORDATA Sensory data provided by a service. This is real-time information provided,
for example, by the SmartObject that measures physical quantities.

ACTION Functionality provided by a service. This is mostly an actuation on the
physical environment via an actuator SmartObject supporting this
functionality (turn on light, open door, etc.) but can also be a request to do
a virtual action (play a multimedia on a TV, make a parking space
reservation, etc.)

STATEVARIABLE Information representing a SmartObject state variable of the service. This
variable is most likely to be modified by an action (turn on light modifies the

http://open-platforms.eu/library/sensinact-aka-butler-smart-gateway/
http://sensinact.ddns.net/swagger-api/index.html#/
http://open-platforms.eu/library/sensinact-aka-butler-smart-gateway/
http://sensinact.ddns.net/swagger-api/index.html#/

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 82

light state, opening door changes the door state, etc.) but also to intrinsic
conditions associated to the working procedure of the service

PROPERTY Property exposed by a service. This is information which is likely to be
static (owner, model, vendor, static location, etc.). In some cases, this
property can be allowed to be modified.

Table 12: sensiNact resource's access method.

TYPE DESCRIPTION

GET Get the value attribute of the resource

SET Sets a given new value as the data value of the resource

ACT Invokes the resource (method execution) with a set of defined parameters

SUBSCRIBE Subscribes to the resource with optional condition and periodicity

UNSUBSCRIBE Remove an existing subscription

The access methods that can be associated to a resource depend on the resource type, for
example, a GET method can only be associated to resources of type Property, StateVariable
and SensorData. A SET method can only be associated to StateVariable and modifiable
Property resources. An ACT method can only be associated to an action resource.
SUBSCRIBE and UNSUBSCRIBE methods can be associated to any resources.

4.2.4.3 sensiNact source code public access
The sensiNact platform is an open source project, hosted as a technology project in the
Eclipse foundation. The sensiNact license is the Eclipse License v1.0.

Source code is accessible through the Eclipse git repositories:
https://projects.eclipse.org/projects/technology.sensinact/developer

You can use the code from these repositories to experiment, test, build, create patches,
issue pull requests, etc. This project uses Gerrit Code Review; please see contributing via
Gerrit.

sensinact/org.eclipse.sensinact.gateway

Clone: https://git.eclipse.org/r/sensinact/org.eclipse.sensinact.gateway

Review With Gerrit: https://git.eclipse.org/r/p/sensinact/org.eclipse.sensinact

Browse Repository: http://git.eclipse.org/c/sensinact/org.eclipse.sensinact.git

sensinact/org.eclipse.sensinact.studio

Clone: https://git.eclipse.org/r/sensinact/org.eclipse.sensinact.studio

Review With Gerrit: https://git.eclipse.org/r/p/sensinact/org.eclipse.sensinact.studio

Browse Repository: http://git.eclipse.org/c/sensinact/org.eclipse.sensinact.studio.git

sensinact/org.eclipse.sensinact.studioweb

Clone: https://git.eclipse.org/r/sensinact/org.eclipse.sensinact.studioweb

Review With Gerrit: https://git.eclipse.org/r/p/sensinact/org.eclipse.sensinact.studioweb

Browse Repository: http://git.eclipse.org/c/sensinact/org.eclipse.sensinact.studioweb.git

https://projects.eclipse.org/projects/technology.sensinact/developer
https://git.eclipse.org/r/sensinact/org.eclipse.sensinact.gateway
https://git.eclipse.org/r/p/sensinact/org.eclipse.sensinact
http://git.eclipse.org/c/sensinact/org.eclipse.sensinact.git
https://git.eclipse.org/r/sensinact/org.eclipse.sensinact.studio
https://git.eclipse.org/r/p/sensinact/org.eclipse.sensinact.studio
http://git.eclipse.org/c/sensinact/org.eclipse.sensinact.studio.git
https://git.eclipse.org/r/sensinact/org.eclipse.sensinact.studioweb
https://git.eclipse.org/r/p/sensinact/org.eclipse.sensinact.studioweb
http://git.eclipse.org/c/sensinact/org.eclipse.sensinact.studioweb.git

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 83

4.2.4.4 sensiNact tutorial and sample source code
Through the sensiNact wiki web page, it is possible to reach the tutorials public repository,
organized as follow:

sensiNact tutorials

This section proposes various tutorials to help users and developers to learn more about
sensiNact.

– How to create a sNa application (requires no particular knowledge)

– How to develop a southbound bridge (requires knowledge about Java, such as the
architecture and the data model of sensiNact)

sensiNact/Tutorial Studio

This tutorial aims at discovering the sensiNact Gateway and the sensiNact Studio. In this
tutorial, you will mainly use the Studio or the RESTful API enabling to interact with the
Gateway.

This tutorial give details on the following topics:

– sensiNact environment overview

– Configure the Studio

– Create an application

– Deploy and start an application

– Access the Gateway using the RESTful API

4.2.4.5 sensiNact ACTIVAGE development tools

4.2.4.5.1 sensiNact ACTIVAGE documentation and WIKI
The co-conception process organized in DS6 resulted in a specification document called
“cahier de conception”. This conception file describes the features that are expected to be
implemented, based on the IoT system to be deployed in DS6. These feature specifications
are used as basis for the functional analysis that specifies the needed IoT infrastructure and
topology. Resulting hardware devices and communication network are described in D3.6
deliverable.

The functional analysis provides also the service layer specifications that describes the
mandatory AHA functions to be provided in the service layer in order to fulfil the expected
features.

This service layer specification specifies the eight first AHA functions for DS6.

The following function providers are available in the sensiNact AHA service API, classified
by three different main categories: building configuration functions, AHA alert functions and
AHA monitoring functions.

Building configuration functions API proposes two providers in order to describe and
parameterize the instrumented rooms and buildings.

 AHA-building function provider

 AHA-studio function provider

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 84

Notification and alert functions API proposes providers that trigger notifications (towards
patient) and alerts (towards carers) when attention should be given on the elderly comfort
and activity.

 AHA-temperature-control

 AHA-bedroom-activity-alert

 AHA-bathroom-activity-alert

 AHA-shower-alert

Activity monitoring function API provides service to measure both “in live” and historized
nightly and daily activity.

 AHA-night-rising-monitor

 AHA-day-laying-monitor

These 8 AHA functions are implemented on the top of the generic sensiNact API, using the
provider/service/resource pattern described in section 4.2.4.2. AHA functions are
specialization of providers, with dedicated services and resources.

The table below describes the 8 specified AHA function for DS6:

Table 13: The eight implemented sensiNact AHA functions.

Category Function Description

Building
configuration

AHA-building Provides service to configure the overall building
gathering several studios

AHA-studio Provides service to configure the elementary living place
considered for AHA functions. This elementary living
place is called studio and is constituted of a bedroom
and a bathroom

Notifications
and alerts

AHA-temperature-
control

Provides service to trigger a notification to the patient
when an uncomfortable temperature is measured in a
given bedroom, and then alert to carer if necessary (no
notification acquitment by the patient)

AHA-bedroom-
activity-alert

Provides service to trigger a notification to the patient
when a long inactivity is detected in a given bedroom,
and then alert to carer if necessary (no notification
acquitment by the patient)

AHA-bathroom-
activity-alert

Provides service to trigger alert to carers when long
inactivity is detected in a given bathroom

AHA-shower-alert Provides service to trigger alert to carers when long
shower duration is measured in a given bathroom

Activity
monitoring

AHA-night-rising-
monitor

Provides service to get “in live” and past occurrences of
risings during night in a given bedroom.

AHA-day-laying-
monitor

Provides service to get “in live” and past occurrences of
bed presences during daytime in a given bedroom.

Two supplementary functions are under development in the DS6 deployment site

Table 14: Two supplementary AHA functions under development in sensiNact.

Category Function Description

Notifications
and alert

AHA-pain-alert Provides service to trigger a notification to the patient to
auto-evaluate his pain degree and then alert the carer if

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 85

necessary

AIOTES
management

AHA-kpi Provides service to measure technical performance
indicators such as the number of installed
sensors/rooms/buildings, size and number of records in
the rough database.

The link to download and view the documentation is:

ACTIVAGE > 3 ACTIVAGE PROJECT > 010 Work Packages > 004 WP4 - CERTH - App.
Su... > T4.1 > ACTIVAGE-DS6-sensiNact-AHA-service-API-171204.xlsx

4.2.4.5.2 sensiNact ACTIVAGE API doc and swagger

 Documentation of the sensiNact AHA service API 4.2.4.5.2.1
As described in Table 13 and Table 14, the sensiNact AHA service API gives access to ten
specified functions (see Figure 51)

Figure 51: the sensiNact AHA functions (implemented and in progress)

The sensiNact AHA service API specializes the generic sensiNact API, proposing one
dedicated provider by function.

The class diagram below describes the sensiNact AHA service API specialization from the
generic sensiNact API

Figure 52: sensiNact AHA service API specialization

https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objaction=overview&objid=16462222
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objaction=overview&objid=16462222

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 86

This hierarchy diagram shows the specialization of AHA service API in terms of attribute
(wich is always value attribute) and metadata for the value attribute that always contains at
least one description metadata.

This last constraint on description metadata makes the API auto documented. Thus API user
can find information on every resource through this resource/value/description information.

The class diagram below describes the available AHA services specified for AHA function
providers

Figure 53: list of available sensiNact AHA services

This class diagram shows all available services for AHA functions. There are mainly 7
different AHA services: ‘aha’, ‘configuration’, ‘alert’, ‘notification’, ‘control’, ‘monitor’, ‘history’.

All AHA functions are marked with a “aha” named service. This “aha” service is used when
using the sensiNact API, to filter only AHA function providers. The “function-type” resource in
the “aha” service gives a supplementary key for filtering among AHA functions.
Example of function-type resource value is “TEMPERATURE_CONTROL”

All AHA functions also provide a “control” service. The “control” service holds at least one
“status” resource that is used to activate/deactivate the AHA function. This “control” service
can contains also acquitment resources to be set when acquitting notifications (by patient)
and alerts (by carer).

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 87

The “configuration” service is used to parametrize the function when necessary. Example of
configuration resource is “comfort-range-threshold” that set the lower temperature value of
the comfort range in a given room.

The “alert” and “notification” services bring exposes the resource value of the notification to
patient (notification service) or alert to carers (alert service). The alert and notification
resources need to be linked to acquitment resources (that should be set by patient/carer).
This link between alert/notification resource with acquitment resource is described in the
“acquit-resource” metadata.

The “monitor” service gives the activity status with dedicated resource values. Example of
monitor resource is "is-night-rising" that checks if the patient is currently rising during the
night.

The “history” service provides predefined history samples for a given resource, with a
constant horizon (30 days) and a given sampling period (1 day). Example of such a history
resource is "last-30-nights-rising-counters" that returns an array of 30 integers where each
integer is the number of night risings for each of the last 30 days. Index 0 is today, 1 is
yesterday (etc.). These history data are computed through a dedicated “historical statistics
agent” bundle embedded in the ACTIVAGE specialized version of the sensiNact distribution
(cf. 4.2.4.5.3)

A complete documentation of the height available sensiNact AHA functions is available and
published in the livelink ACTIVAGE project shared repository. The link to download and view
the documentation is:

ACTIVAGE > 3 ACTIVAGE PROJECT > 010 Work Packages > 004 WP4 - CERTH - App.
Su... > T4.1 > ACTIVAGE-DS6-sensiNact-AHA-service-API-171204.xlsx

In addition to these functions API, the sensiNact AHA service API provides a helper API
which role is to ease the use of the functions API:

The sensiNact AHA helper API gives also filtering and grouping features:

Filtering API: available filtering by alert / monitoring / building

Grouping API: feature to set a group of provider with same resource values in a single
request.

 Swagger of the sensiNact AHA service API 4.2.4.5.2.2
A swagger documentation of the sensiNact AHA service API is available on line:

http://193.48.18.245:8081/swagger-api/index.html

The swagger web application provides the list of available requests as illustrated in Figure
54.

https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objaction=overview&objid=16462222
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objaction=overview&objid=16462222
http://193.48.18.245:8081/swagger-api/index.html

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 88

Figure 54: swagger screenshot for the sensiNact AHA service REST API

For each request, through the web application, it is possible to test the REST http requests
as specified in the documentation (cf. Section 5).

For example, the request to get all the available providers is described expanding the “GET
/providers” section:

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 89

The swagger description for this particular “GET / providers “ request contains:

– A short description of the request

– The format of the expected answer

– The mandatory and optional parameters

Once parameter values have been entered, click the “Try it out!” button send the request.

The sent http request is displayed, and the response code, header and body.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 90

4.2.4.5.3 sensiNact AHA historical statistics agent
The sensiNact AHA historical statistics agent is a bundle embedded in the ACTIVAGE
distribution of sensiNact which role is to compute specialized statistics aggregations in the
database. These AHA specialized statistics computations have been specified by the
medical team with ethical considerations compatible with GDPR recommandations (limitation
of data processing and storage). This module is designed to compute data for two different
sampling periods (mainly daily and rarely hourly) for a time horizon of 30 days. The table
below gives the list of available statistics computations provided by the sensiNact AHA
historical statistics agent.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 91

Table 15: sensiNact AHA historical statistics agent (30 days horizon)

Statistics aggregation Sampling period

dayLayingCounter day

dayLayingDuration day

nightRisingCounter day

nightRisingDuration day

tapOnDuration day

showerOnDuration day

showerAlertCounter day

washingNotificationCounter day

temperatureAlertCounter day

stepCounter day and hour

painAlertCounter day

averagePainLevel day and hour

falseAlertCounter day

alertCounter day

notificationAcquitmentCounter day

4.2.4.5.4 sensiNact public access to ACTIVAGE dedicated source code
The source code is not available yet in a public git repository. AHA sensiNact bridges
implementation will be pushed to the sensiNact public git repository in the next months.

4.2.4.5.5 sensiNact tutorial and sample source code
In this section, we present the work that has been done in collaboration with application
developers, from the Technosens technical team, customers of the AHA service API.

The work aims to make the use of AHA service API easier, and to minimize the number of
http requests.

The principle of the code optimization is to manage temp dictionaries in a backend between
the application and the AHA service API.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 92

The sequence diagram below illustrates the use of a parameter dictionary to improve the
configuration parameter access for a given studio in a building.

Following the proposed sequence diagram, several requests to retrieve the needed
providers are factorized in a pre initialization of the parameter dictionary.

The next sequence diagram describes the initialization of the parameter dictionary

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 93

The same way, sequence diagrams are available to pre initialize room dictionary and alert
dictionary

The next sequence diagram describes the initialization of the room dictionary

The next sequence diagram describes the initialization of the alert dictionary

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 94

From these sequence diagram, Technosens implemented the backend component in the
application layer, and provided source code that can be used as sample source code for the
AHA service API usage.

First, simple pojo for room and response are proposed:

package fr.technosens.alertes.backend.sensiNact;

class SNaRoom {

 final String buildingId, studioId, studioName, roomId, roomType;

 SNaRoom(String buildingId, String studioId, String studioName, String roomId, String

roomType) {

 this.roomId = roomId;

 this.buildingId = buildingId;

 this.studioId = studioId;

 this.studioName = studioName;

 this.roomType = roomType;

 }

}

package fr.technosens.alertes.backend.sensiNact;

import java.util.ArrayList;

import java.util.List;

class SNaResponse {

 int statusCode;

 boolean isSuccess() {

 return statusCode == 200;

 }

 static class ProviderIdsResponse extends ArrayList<String> {}

 static class ResourcesResponse extends SNaResponse {

 List<String> resources;

 }

 static class ResourceResponse extends SNaResponse {

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 95

 ResourceResponseResponse response;

 static class ResourceResponseResponse {

 String name;

 long timestamp;

 String value;

 String type;

 }

 }

}

The next class shows an implementation of the room map initialization in method

buildRoomMap().
package fr.technosens.alertes.backend.sensiNact;

import com.google.gson.Gson;

import com.google.gson.stream.JsonReader;

import java.io.BufferedWriter;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import java.lang.reflect.Type;

import java.net.HttpURLConnection;

import java.net.URL;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.HashSet;

import java.util.List;

import java.util.Map;

import java.util.Set;

public final class SNaBackend {

 private Map<String, SNaRoom> roomMap;

 private final String baseUrl;

 public SNaBackend(String baseUrl) {

 this.baseUrl = baseUrl;

 }

 public synchronized String[] loadBuildings() throws IOException {

 List<String> buildingProviderIds = requestGet("aha/sensinact/getBuildingProviderIds",

SNaResponse.ProviderIdsResponse.class);

 return buildingProviderIds.toArray(new String[buildingProviderIds.size()]);

 }

 private <T> T requestGet(String path, Type typeOfResult) throws IOException {

 return request(path, null, typeOfResult);

 }

 private <T> T request(String path, String body, Type typeOfResult) throws IOException {

 HttpURLConnection urlConnection = (HttpURLConnection) new URL(baseUrl +

path).openConnection();

 if(body != null) {

 urlConnection.setDoOutput(true);

 urlConnection.setRequestProperty("Content-Type", "application/json");

 urlConnection.setRequestProperty("Accept", "application/json");

 BufferedWriter writer = new BufferedWriter(new

OutputStreamWriter(urlConnection.getOutputStream()));

 writer.write(body);

 writer.flush();

 }

 T response = new Gson().fromJson(new JsonReader(new

InputStreamReader(urlConnection.getInputStream())), typeOfResult);

 if(response == null) throw new IOException("Null response");

 if(response instanceof SNaResponse && !((SNaResponse) response).isSuccess()) throw new

IOException("Error status code: " + ((SNaResponse) response).statusCode);

 if(response instanceof SNaResponse.ResourceResponse && ((SNaResponse.ResourceResponse)

response).response == null) throw new IOException("Response subelement is null");

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 96

 return response;

 }

 private synchronized Map<String, SNaRoom> getOrBuildRoomMap() throws IOException {

 if(roomMap == null) buildRoomMap();

 return roomMap;

 }

 private synchronized void buildRoomMap() throws IOException {

 Map<String, SNaRoom> map = new HashMap<>();

 List<String> studioProviderIds = requestGet("aha/sensinact/getStudioProviderIds",

SNaResponse.ProviderIdsResponse.class);

 for(String studioProviderId : studioProviderIds) {

 SNaResponse.ResourceResponse roomResponse = requestGet("sensinact/providers/" +

studioProviderId + "/services/studio/resources/id/GET", SNaResponse.ResourceResponse.class);

 String studioName = roomResponse.response.value;

 SNaResponse.ResourceResponse buildingResponse = requestGet("sensinact/providers/"

+ studioProviderId + "/services/studio/resources/building/GET",

SNaResponse.ResourceResponse.class);

 String buildingId = buildingResponse.response.value;

 SNaResponse.ResourceResponse bedroomResponse = requestGet("sensinact/providers/" +

studioProviderId + "/services/studio/resources/bedroom/GET",

SNaResponse.ResourceResponse.class);

 String bedroomId = bedroomResponse.response.value;

 map.put(bedroomId, new SNaRoom(buildingId, studioProviderId, studioName,

bedroomId, Alert.ROOMTYPE_BEDROOM));

 SNaResponse.ResourceResponse bathroomResponse = requestGet("sensinact/providers/"

+ studioProviderId + "/services/studio/resources/bathroom/GET",

SNaResponse.ResourceResponse.class);

 String bathroomId = bathroomResponse.response.value;

 map.put(bathroomId, new SNaRoom(buildingId, studioProviderId, studioName,

bathroomId, Alert.ROOMTYPE_BATHROOM));

 }

 roomMap = map;

 }

More java sample source codes are available for download in livelink. The code is provided
by the Technosens partner and describes how to use efficiently the sensiNact AHA service
API:

ACTIVAGE > 3 ACTIVAGE PROJECT > 010 Work Packages > 004 WP4 - CERTH - App.
Su... > T4.1 > ealertes-backend.zip

The sample source code illustrates how to build the alert dictionary and use it to handle alert
triggering and acquitment.

4.2.4.6 Summary of sensiNact development tools provided for ACTIVAGE
The table below summarizes the sensiNact development tools, the generic ones and those
developped for AHA services, specified for the ACTIVAGE project needs (in DS6).

Table 16: Summary of the sensiNact ACTIVAGE development tools

 documentation API doc and
swagger

Public
source
code

Tutorial Other

sensiNact
 sensiNact wiki

Swagger (real data) for
live data

sensinact.ddns.net/
swagger-api/

and historic data

Eclipse
sensiNact

Git
repository

sensiNact
tutorial

section in
wiki

sensiNact studio
web

https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objaction=overview&objid=16534032
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objaction=overview&objid=16534032
https://wiki.eclipse.org/SensiNact
http://sensinact.ddns.net/%20swagger-api/index.html
http://sensinact.ddns.net/%20swagger-api/index.html
https://projects.eclipse.org/projects/technology.sensinact/developer
https://projects.eclipse.org/projects/technology.sensinact/developer
https://projects.eclipse.org/projects/technology.sensinact/developer
https://projects.eclipse.org/projects/technology.sensinact/developer
https://wiki.eclipse.org/SensiNact#Tutorials
https://wiki.eclipse.org/SensiNact#Tutorials
https://wiki.eclipse.org/SensiNact#Tutorials
https://wiki.eclipse.org/SensiNact#Tutorials
http://sensinact.ddns.net/studio-web/index.html
http://sensinact.ddns.net/studio-web/index.html

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 97

193.48.18.251:8080/
swagger-ui.html

AHA
sensiNact
service
API

sensiNact AHA
service API shared

documentation

193.48.18.245:8081/
swagger-api/ (mock

instance)

To be
published

Sequence
diagrams and

sample
source code

in livelink

A public
sensiNact

instance running
with mocked AHA
functions provides
dynamic random

values for test
purposes

4.2.4.7 Mapping between sensiNact and ACTIVAGE Development Tools
Part of the sensiNact development tools described above correspond to specific ACTIVAGE
development tools, described in Section 4.1. This mapping is presented in Table 17. Some
of the mapped tools may be used within the AIOTES infrastructure, possibly with some
modifications or generalizations. Table 17 also summarizes which tools can be generalized
to be used within AIOTES, or are too specific to be included.

Table 17: Mapping between sensiNact and ACTIVAGE development tools

sensiNact development
tool

Corresponding
ACTIVAGE
development tool(s).

Can the tool be used in AIOTES?

sensiNact AHA historical
statistics agent

Data/Visual Analytics
Tools / Data Analyser

Yes No

How? Why?

Embedded in the sensiNact ACTIVAGE
distribution, computation results are
accessible through the sensiNact AHA
API and through the AIOTES API

sensiNact Studio Web Data/Visual Analytics
Tools / Feature/Result
viewer

Yes No

How? Why?

The sensiNact Studio web is a web
application used for resources and data
monitoring, and can be used as basis
for the AIOTES management module.

Support tools
(documentation, wiki,
swaggers, source code
samples)

Support Yes No

How? Why?

The sensiNact support tools
(documentation, wiki, swaggers, code
samples, etc.) will be used as part of the
overall AIOTES support material.

4.2.5 FIWARE
FIWARE15 is an open middleware platform, driven by the European Union under the Future
Internet Public Private Partnership Programme16, for the development and global

15

 https://www.fiware.org/

http://193.48.18.251:8080/%20swagger-ui.html
http://193.48.18.251:8080/%20swagger-ui.html
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objaction=overview&objid=16462222
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objaction=overview&objid=16462222
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objaction=overview&objid=16462222
http://193.48.18.245:8081/%20swagger-api/index.html
http://193.48.18.245:8081/%20swagger-api/index.html
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objaction=overview&objid=16534032
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objaction=overview&objid=16534032
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objaction=overview&objid=16534032

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 98

deployment of Smart Applications for Future Internet in multiple vertical sectors. Is an open
sustainable ecosystem, built around public, royalty-free and implementation-driven software
standards.

4.2.5.1 Supports Tools

4.2.5.1.1 Documentation and WIKI
FIWARE provides an enhanced OpenStack-based cloud environment plus a rich set of open
standard APIs that make it easier to connect to the Internet of Things, process and analyze
Big data and real-time media or incorporate advanced features for user interaction.

The FIWARE wiki17 complements the general FIWARE landing page by providing
information about:

– Useful resources to get started with FIWARE

– FIWARE Platform documentation

– FIWARE Agile dynamics

– FIWARE Lab resources

– FIWARE Community resources

– Useful Resources for the challenges and hackathons

– Questions

This sections are described in detail below.

Useful resources to get started with FIWARE

This section contains a list of links of interest when a developer start using FIWARE.

First of all it is provided a quick FIWARE tour guide18 focused on the most common
instructions to make a programmers familiar with FIWARE. On the other hand, a link to the
GitHub FIWARE platform repository is provided. It is also included the FIWARE Catalogue19
which a rich library of components (Generic Enablers) with reference implementations that
allow developers to put into effect functionalities such as the connection to the Internet of
Things or Big Data analysis, making programming much easier. All of them are public,
royalty-free and open source. Lastly, it is presented the FIWARE Academy, where it can be
found training courses, lessons and many other contents regarding FIWARE technology.

FIWARE Platform documentation

This category brings information related to FIWARE documentation including:

16

 https://www.fi-ppp.eu/.

17
 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Welcome_to_the_FIWARE_Wiki

18
 https://www.fiware.org/developers-entrepreneurs/

19
 https://catalogue.fiware.org/

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 99

– A Developer Guidelines where this guide is intended to describe the best practices for
FIWARE Platform Development, particularly for those projects which deal with the
development of a GEi or accompanying module.

– A summary information about the FIWARE GEris and associated specs in FIWARE
Release 6.

– Information about current supported features and roadmap of products working as
FIWARE GE reference implementations (GEris).

FIWARE Agile dynamics

In this section it is presented the FIWARE Agile Development Methodology20 which
elaborates on how Agile principles are being applied in FIWARE and a list of Releases and
Sprints of the platform.

FIWARE Lab resources

Contains information about activities of the FIWARE Lab Chapter as well as general
information on the set-up and operation of FIWARE Lab Nodes.

FIWARE Community resources

This section brings information related to FIWARE Community resources including:

– FIWARE Technical Steering Committee: a complementary wiki that complements the
general FIWARE Community page by providing information about the FIWARE Technical
Steering Committee activities.

– FIWARE Community Support Chapter: includes the activities to maintain the FIWARE
Catalogue and FIWARE Academy platforms.

– FIWARE QA Activities: analyse and assess the level of quality of FIWARE Generic
Enablers, from a functional and non-functional point of views.

– FIWARE Chapter Active Contributors: a public list of FIWARE active contributors.

Useful Resources for the challenges and hackathons

This section includes documentation from FIWARE events such as valuable information for
developers running the FIWARE hackathon at Campus Party Brazil 2015 in addition to
sample applications created in the hackathons.

Questions

In this category, different facilities to ask for info/help about FIWARE and forward specific
requests are provided.

4.2.5.1.2 API doc and swagger
The FIWARE platform has a large number of components with very different APIs, which
makes it impossible to explain the details of each one. So as to benefit from FIWARE

20

 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE_Agile_Development_Methodology

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE_Technical_Steering_Committee

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 100

automatic documentation generation systems developers must use markdown for
documentation and Apiary Blue Print for API specification. Usually these use RESTful APIs
where the content format is JSON. There are also programming interfaces in Java for some
of the components.

FIWARE APIs share the following characteristics:

– They are RESTful web services.

– Each HTTP request in a FI-WARE RESTful API may require the inclusion of specific
authentication credentials

– Resource representation is transmitted between client and server by using HTTP 1.1
protocol.

– They may support XML or JSON as representation format for request and response
parameters. Each API specification indicates which of them is the default format.

More information about the different APIs that make up the different FIWARE services can
be found in the link provided below:

Summary of FIWARE API Open Specifications is available on https://forge.fiware.org/ under
plugins/mediawiki/wiki/fiware/index.php/Summary_of_FIWARE_API_Open_Specifications.

The common aspects in FI-WARE Open Restful API Specifications can be found under
plugins/mediawiki/wiki/fiware/index.php/Common_aspects_in_FI-WARE_Open_Restful_API_Specifications.

Additionally, each GE can be accessed through its own API (normally REST), for example
http://fiware-orion.readthedocs.io/en/master/user/walkthrough_apiv2/index.html.

Regarding the Swagger specification, for that purpose Apiary Blue Print was selected. There
isn't any plan to develop a Swagger specification.

4.2.5.1.3 Source code public access
The FIWARE Community is not only formed by contributors to the technology (the FIWARE
platform) but also those who contribute in building the FIWARE ecosystem and making it
sustainable over time. As such, individuals and organizations committing relevant resources
in FIWARE Lab activities or activities of the FIWARE Accelerator, FIWARE mundus or
FIWARE iHubs programmers are also considered members of the FIWARE community.

Source code of FIWARE is accessible through the GitHub Repositories:

https://github.com/Fiware

4.2.5.1.4 FIWARE tutorial and sample source code
There is not a unique tutorial to start using FIWARE. Since FIWARE is composed by several
components, a specific guide for each one is needed which makes it impossible to detail
each one. In the general FIWARE landing page, developers can find a section called quick
FIWARE tour guides21 dedicated to the gathering all the getting starting guides of the
FIWARE components. Table 18 lists all the guides along with a short description.

21

 https://www.fiware.org/developers-entrepreneurs/

https://forge.fiware.org/%20under%20plugins/mediawiki/wiki/fiware/index.php/Summary_of_FIWARE_API_Open_Specifications
https://forge.fiware.org/%20under%20plugins/mediawiki/wiki/fiware/index.php/Summary_of_FIWARE_API_Open_Specifications
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Common_aspects_in_FI-WARE_Open_Restful_API_Specifications
http://fiware-orion.readthedocs.io/en/master/user/walkthrough_apiv2/index.html
https://github.com/Fiware

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 101

Table 18: FIWARE existing tour guides

TOUR GUIDE DESCRIPTION

Development of
Context-Aware
Applications using
FIWARE

Orion Context Broker allows you to model, manage and gather context
information at large scale enabling context-aware applications.

Real time
processing

of Context Events

Proton Complex Event Processing (CEP) analyses events, e.g. updates on
context, in real-time to detect scenarios where actions have to be triggered
or new events are created.

Publication of
Context Information
as Open Data

FIWARE incorporates CKAN as part of its architecture for open data.
CKAN extensions allow to manage access not only to static historic data
but real-time context information, as well as the management of access
control rights.

Creating
Application
Dashboards

Wirecloud is a web mashup platform aimed at empowering end users,
without programming skills, to easily create fully-fledged application
dashboards built up from widgets, operators and other pre-existing
mashups.

Providing an
Advanced
User Experience
(UX)

These components allow you to incorporate advanced features in your
web-based user interface, such as Augmented Reality or 3D visualization.

Connection to the
Internet of Things

IDAS IoT Agents allow your application to easily gather context information
from sensors or actuate upon physical objects.

Handling
Authorization
& Access Control
to APIS

FIWARE brings a powerful framework that will allow you to setup
Authorization and Access Control policies based on widely adopted
Security standards (OAuth, XACML).

Big Data Analysis
of Historic Context
Information

Cygnus allows you to inject historic context information records into an
HDFS based storage. BigData analysis or advanced queries can then be
performed over historic data.

Real time
processing of
Media Streams

Kurento allows you to process, in real-time, multimedia information so that
you can incorporate into your application extended sensing capabilities
based on cameras or microphones (detecting faces, crowds, plates,…)

Hosting your
Application
on a FIWARE Cloud

The FIWARE Cloud is an Infrastructure as a Service platform based on
OpenStack, comprising the Compute (Nova), Storage (Cinder), Network
(Neutron) and Image (Glance) services. All the application components
running in a centralized data center can be provisioned and managed using
the FIWARE Cloud capabilities.

Furthermore, in the FIWARE Academy22 developers have at their disposal a large number of
courses to training on the use of FIWARE Enablers.

4.2.5.2 Tools supported by FIWARE
The FIWARE Platform comprises a set of building blocks that ease creation of smart Internet
Applications. These technological blocks, called Generic Enablers (GEs), allow developers

22

 http://edu.fiware.org/

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 102

to put into effect functionalities such as the connection to the Internet of Things or Big Data
analysis. All of them are public, royalty-free and open source.

Generic Enablers consists of library of components with reference implementations that
provides developers a wide range of general-purpose functions to make programming
easier. These functions, offered through well-defined APIs, facilitate the development of
smart applications in multiple sectors such as those detailed below. They divided into 7
technical chapters (see FIWARE catalogue23):

– Data/Context Management

– Internet of Things (IoT) Services Enablement

– Advanced Web-based User Interface

– Security

– Interface to Networks and Devices (I2ND)

– Applications, Services and Data Delivery

– Cloud Hosting

The Reference Architecture, associated to each FIWARE chapter, can be instantiated into a
concrete architecture by means of selecting and integrating products implementing the
corresponding FIWARE GEs (i.e., products which are compliant with the corresponding
FIWARE GE Open Specifications). However, the description of the Reference Architecture
associated to a chapter does not depend on how FIWARE GEs in that chapter can be
implemented. Any implementation of a FIWARE GE (also referred as FIWARE GEi) will be,
by nature, replaceable.

The FIWARE platform has a large number of Generic Enablers and each GE has its own
APIs (normally REST) to access them. This fact makes impossible to explain the details of
each one. Therefore, this document doesn't include information of each one. Thereby, it
must be pointed out that all the information of each GE can be found inside of its
corresponding section of the FIWARE Catalogue23. Inside of each FIWARE GE section, it
can be found an overview, general documentation, available downloads, Open API
Specification of each GE and so on. It should be noted that Generic Enablers provide open
interfaces for both, to Application Developers (APIs) in addition to support interoperability
with other GEs.

All these tools are inherent to the FIWARE platform and participate in the creation of the
platform itself, given that, as mentioned above, the architecture of FIWARE is implemented
through these products.

In other words, all these tools participate in the deployment and expansion of the platform
itself but are not directly related to any other element of the ACTIVAGE Framework.
Thereby, It is important to highlight that these tools are PLATFORM SPECIFIC and cannot
be generalized to AIOTES.

The Orion Context Broker is an implementation of the Publish/Subscribe Context Broker GE,
providing the NGSI9 and NGSI10 interfaces.

Orion Context Broker allows to manage all the whole lifecycle of context information
including updates, queries, registrations and subscriptions. Using the Orion Context Broker,
you are able to register context elements and manage them through updates and queries. In

23

 http://catalogue.fiware.org/

http://catalogue.fiware.org/

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 103

addition, you can subscribe to context information so when some condition occurs (e.g. a
context element has changed) you receive a notification.

Using these interfaces, clients can do several operations:

– Register context producer applications, e.g. a temperature sensor within a room

– Update context information, e.g. send updates of temperature

– Being notified when changes on context information take place (e.g. the temperature has
changed) or with a given frequency (e.g. get the temperature each minute)

– Query context information. The Orion Context Broker stores context information updated
from applications, so queries are resolved based on that information.

Once said that FIWARE has numerous GEs and presented the Orion Context Broker, the
following will describe those that are more remarkable for ACTIVAGE's eco-system.

Short Time Historic

The Short Time Historic (STH, aka. Comet) is a component of the FIWARE ecosystem in
charge of managing (storing and retrieving) historical raw and aggregated time series
information about the evolution in time of context data (i.e., entity attribute values) registered
in an Orion Context Broker instance.

All the communications between the STH and the Orion Context Broker as well as between
the STH and any third party (typically for data retrieval) use standardized NGSI9 and
NGSI10 interfaces.

Connector Framework (Cygnus)

Cygnus is a connector in charge of persisting certain sources of data in certain configured
third-party storages, creating a historical view of such data.

Internally, Cygnus is based on Apache Flume, a technology addressing the design and
execution of data collection and persistence agents. An agent is basically composed of a
listener or source in charge of receiving the data, a channel where the source puts the data
once it has been transformed into a Flume event, and a sink, which takes Flume events from
the channel in order to persist the data within its body into a third-party storage.

Cygnus is designed to run a specific Flume agent per source of data.

Current stable release is able to persist the following sources of data in the following third-
party storages:

– NGSI-like context data in:

 HDFS, the Hadoop distributed file system.

 MySQL, the well-know relational database manager.

 CKAN, an Open Data platform.

 MongoDB, the NoSQL document-oriented database.

 FIWARE Comet (STH), a Short-Term Historic database built on top of MongoDB.

Complex Event Processing - Proactive Technology Online

The CEP GE analyses event data in real-time, generates immediate insight and enables
instant response to changing conditions. While standard reactive applications are based on
reactions to single events, the CEP GE reacts to situations rather than to single events. A
situation is a condition that is based on a series of events that have occurred within a

https://www.fiware.org/
https://github.com/telefonicaid/fiware-orion
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/ngsi-v1-0

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 104

dynamic time window called processing context. Situations include composite events (e.g.,
sequence), counting operators on events (e.g., aggregation) and absence operators. The
Proactive Technology Online is an implementation of the FIWARE CEP (Complex Event
Processing) GE. The Proactive Technology Online is a scalable integrated platform to
support the development, deployment, and maintenance of event-driven applications. The
Proactive Technology Online authoring tool allows the definition of CEP applications using a
web user interface. The Proactive Technology Online engine is a runtime tool that receives
information on the occurrence of events from event producers, detects situations, and
reports the detected situations to external consumers.

The technology and implementations of CEP provide means to expressively and flexibly
define and maintain the event processing logic of the application, and in runtime it is
designed to meet all the functional and non-functional requirements without taking a toll on
the application performance, removing one issue from the application developer’s and
system managers concerns.

4.2.5.3 Mapping between FIWARE and ACTIVAGE development tools
Part of the FIWARE development tools, described through Section 0, can be used within the
AIOTES infrastructure as ACTIVAGE development tools (Section 4.1). This mapping is
presented in Table 19 where it is specified if a tool can be generalized to be used within
AIOTES and how.

Table 19: Mapping between IoTivity and ACTIVAGE development tools.

FIWARE
development tool

Corresponding
ACTIVAGE
development
tool(s).

Can the tool be used in AIOTES?

Short Time Historic Not mapped with AIOTES

Connector Framework
(Cygnus)

Not mapped with AIOTES

Complex Event
Processing

Not mapped with AIOTES

Support tools
(documentation, wiki,
source code samples)

Support Yes No

How? Why?

The FIWARE support tools (documentation,
wiki, code samples, etc.) will be used as
part of the overall AIOTES support material.

Source code samples IDE / Code generator

IDE / Source code
templates

Yes No

How? Why?

FIWARE source code samples can be used
to design source code templates for
FIWARE, which will be used as part of the
code generator and code templates
ACTIVAGE development tools.

https://wiki.iotivity.org/iotivity_simulator
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v1.0-UPV.docx%23_Support
https://github.com/iotivity/iotivity/tree/master/resource/examples
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v1.0-UPV.docx%23_Code_generator
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v1.0-UPV.docx%23_Source_code_templates
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v1.0-UPV.docx%23_Source_code_templates

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 105

4.2.6 IoTivity
The IoTivity platform is an open source project sponsored by the Open Connectivity
Foundation (OCF). IoTivity code contributions are shared under the Apache 2.0 license.

4.2.6.1 Support tools

4.2.6.1.1 Documentation
IoTivity offers a wiki that provides detailed documentation and tutorials [4] about setting-up
and using it. The main sections of this wiki are the following:

– Getting Set up to Develop (Guidelines, how-to etc)

– Programming Guide

– Technical Notes

– Concepts (keywords)

– Release Management Function

– QA Function

– Frequently Asked Questions

IoTivity also offers detailed documentation about the IoTivity API, for different programming
languages.

4.2.6.1.2 APIs

Figure 55: IoTivity Java API documentation.

IoTivity offers an API and detailed documentation for the following supported programming
languages:

– C <https://api-docs.iotivity.org/latest-c/>

https://openconnectivity.org/
https://openconnectivity.org/
https://www.iotivity.org/about/apache-license
https://wiki.iotivity.org/iotivity_simulator

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 106

– C++ <https://api-docs.iotivity.org/latest/index.html>

– Java <https://api-docs.iotivity.org/latest-java/index.html>

4.2.6.1.3 Source code samples
A majority of tutorials including sample source code covering a variety of aspects and
functionalities of IoTivity are available through the official wiki of IoTivity:
https://wiki.iotivity.org/

Various samples are also included in for each version of IoTivity:
https://github.com/iotivity/iotivity/tree/master/resource/examples

The most indicative samples in C++ are the following:

– devicediscoveryclient: This sample demonstrates the device discovery feature. The client
queries for the device related information stored by the server.

– devicediscoveryserver: This sample demonstrates platform and device discovery feature.
The server sets the platform and device related info, which can be later retrieved by a
client.

– fridgeclient: This fridgeclient represents a client trying to discover the associated
fridgeserver. The device resource is the only one available for discovery on the server,
so we have to take the fact that we know the device tag to then generate a Resource
object.

– fridgeserver: The purpose of this server is to simulate a refrigerator that contains a
device resource for its description, a light resource for the internal light, and 2 door
resources for the purpose of representing the doors attached to this fridge. This is used
by the fridgeclient to demonstrate using std::bind to attach to instances of a class as well
as using constructResourceObject.

– garageclient: garageclient.cpp is the client program for garageserver.cpp, which uses
different representation in OCRepresention.

– garageserver: This sample describes how to use various JSON types in the
representation.

– lightserver: This sample provides steps to define an interface for a resource (properties
and methods) and host this resource on the server.

– mediaserver: This sample provides steps to define an interface for a resource (properties
and methods) and host this resource on the server.

– presenceclient: A client example for presence notification.

– presenceserver: This sample provides steps to define an interface for a resource
(properties and methods) and host this resource on the server.

– roomclient: It defines the entry point for the console application.

– roomserver: This sample shows how one could create a resource (collection) with
children.

– simpleclient: This sample is the starting point for understanding the main functionalities
of an IoTivity client.

– simpleclientserver: This sample provides steps to define an interface for a resource
(properties and methods) and host this resource on the server. Additionally, it'll have a
client example to discover it as well.

– simpleserver: This sample is the starting point for understanding the main functionalities
of an IoTivity server.

https://wiki.iotivity.org/
https://github.com/iotivity/iotivity/tree/master/resource/examples
https://github.com/iotivity/iotivity/blob/master/resource/examples/devicediscoveryclient.cpp
https://github.com/iotivity/iotivity/blob/master/resource/examples/devicediscoveryserver.cpp
https://github.com/iotivity/iotivity/blob/master/resource/examples/fridgeclient.cpp
https://github.com/iotivity/iotivity/blob/master/resource/examples/fridgeserver.cpp
https://github.com/iotivity/iotivity/blob/master/resource/examples/garageclient.cpp
https://github.com/iotivity/iotivity/blob/master/resource/examples/garageserver.cpp
https://github.com/iotivity/iotivity/blob/master/resource/examples/lightserver.cpp
https://github.com/iotivity/iotivity/blob/master/resource/examples/mediaserver.cpp
https://github.com/iotivity/iotivity/blob/master/resource/examples/presenceclient.cpp
https://github.com/iotivity/iotivity/blob/master/resource/examples/presenceserver.cpp
https://github.com/iotivity/iotivity/blob/master/resource/examples/roomclient.cpp
https://github.com/iotivity/iotivity/blob/master/resource/examples/roomserver.cpp
https://github.com/iotivity/iotivity/blob/master/resource/examples/simpleclient.cpp
https://github.com/iotivity/iotivity/blob/master/resource/examples/simpleclientserver.cpp
https://github.com/iotivity/iotivity/blob/master/resource/examples/simpleserver.cpp

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 107

– threadingsample: This sample demonstrates : running one server in main thread,
another server in a separate thread, and running 2 clients in each thread.

There are also similar examples in Java
https://github.com/iotivity/iotivity/tree/master/java/examples-java, Java Android
https://github.com/iotivity/iotivity/tree/master/java/examples-android and javascript
https://github.com/otcshare/iotivity-node/tree/master/js.

The source code for IoTivity itself is also available. The source code of all versions of IoTivity
is publicly available through the following page: https://www.iotivity.org/downloads

The master Git location for IoTivity projects is gated by an instance of the Gerrit reviewing
system, such that pushing a change in Git is intercepted by Gerrit and presented as a review
page. The process of setting up and using Gerrit for IoTivity is documented in a pair of wiki
pages:

– https://wiki.iotivity.org/how_to_use_gerrit

– https://wiki.iotivity.org/submitting_to_gerrit

Unreleased code and latest contributions are also available in a Git repository:
https://gerrit.iotivity.org/gerrit/gitweb?p=iotivity.git;a=summary

Another mirror is provided in GitHub for easy forking: https://github.com/iotivity/iotivity

There are many ways to get involved in the IoTivity community, and not all involve
contributing code. Ways to get involved to IoTivity Community are by submitting patches,
reviewing submission by others, subscribing to mailing lists and participatring in active
channels of the platform.

4.2.6.1.4 Tutorials

IoTivity Tutorials are included in the IoTivity wiki <https://wiki.iotivity.org/iotivity_simulator>,
covering all aspects mentioned above, in Section 4.2.6.1.1. IoTivity tutorials also contain
sample source code, as presented in Section 0.

4.2.6.2 Tools useful in the ACTIVAGE context

4.2.6.2.1 CoAP - HTTP Proxy
CoAP - HTTP Proxy is a tool provided in order to build the connection between the Web and
the Web of Things by allowing CoAP clients to interact with resources from HTTP servers.

4.2.6.2.2 Cloud connection tools
IoTivity provides cloud connection tools, which consist of four components:

– Resource-directory server: It is responsible for registering the IoTivity Resources on
Cloud, by keeping records on a MongoDB database.

– Account server: This server handles the authentication the IoTivity Server/Client that
connect to the cloud in order to register their resources.

– MessageQueue server: It is responsible for handling creation, publishing and
subscription to topics, by using Apache Kafka messaging system.

– Interface server: It is the interface that forwards the requests from IoTivity Server to the
other three components of the IoTivity Cloud through Coap over TCP.

https://github.com/iotivity/iotivity/blob/master/resource/examples/threadingsample.cpp
https://github.com/iotivity/iotivity/tree/master/java/examples-java
https://github.com/iotivity/iotivity/tree/master/java/examples-android
https://github.com/otcshare/iotivity-node/tree/master/js
https://www.iotivity.org/downloads
https://gerrit.iotivity.org/
https://gerrit.iotivity.org/
https://wiki.iotivity.org/how_to_use_gerrit
https://wiki.iotivity.org/submitting_to_gerrit
https://gerrit.iotivity.org/gerrit/gitweb?p=iotivity.git;a=summary
https://github.com/iotivity/iotivity
https://wiki.iotivity.org/coap-http_proxy
https://wiki.iotivity.org/iotivity_cloud_-_programming_guide
https://wiki.iotivity.org/resource-directory_rd
https://wiki.iotivity.org/message_queue_mq_for_publish-subscribe_interactions

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 108

Figure 56: A view of the IoTivity architecture with Cloud functionality

In order to deploy IoTivity Cloud, it is required to build and deploy more than one
component. Moreover, the cloud components have dependencies such as the Apache
Kafka, the Zookeeper and the MongoDB. In case of a production or a test deployment, it
would require to install all dependencies on the machine or in case of a multi-node system it
would be needed to define what will run on which machine without orchestration possibilities.
In order to automate the process and easily deal with these demands the IoTivity was

dockerized
24

. The docker compose file contains all required services for running the whole

IoTivity cloud stack and it is composed from:

– Apache Kafka and Zookeeper <https://hub.docker.com/r/spotify/kafka/>

– Mongo DB <https://hub.docker.com/_/mongo/>

– IoTivity Interface <https://hub.docker.com/r/iotivity/interface/>

– IoTivity Message Queue <https://hub.docker.com/r/iotivity/messagequeue/>

– IoTivity Account Server <https://hub.docker.com/r/iotivity/accountserver/>

– IoTivity Resource Directory <https://hub.docker.com/r/iotivity/resourcedirectory/>

4.2.6.2.3 OneIoTa OCF design tool
IoTivity is a reference implementation of OCF specification. OCF define the connectivity
requirements to improve interoperability between the billions of devices making up the
Internet of Things (IoT). This enables the devices to communicate in a similar way specifying
the same properties between the devices.

OCF specification defines a set of core Device Types and their required Resource Types. A
Resource is the minimal interoperable component in OCF. It has a URI and a collection of
Properties.

24

 https://hub.docker.com/u/iotivity/

https://hub.docker.com/u/iotivity/

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 109

Creating data models (resource models) for OCF IoT Devices is done by oneIoTa25 which is
an open web-based tool created by the Open Connectivity Foundation (OCF) to encourage
the design of interoperable device data models for the Internet of Things. Only a certain
number of devices are defined by OCF specification and for each there is only one core
definition. Derived data models can provide alternative device definitions, but they must be
unambiguously tied to a core definition. This allows new devices to be quickly built using
existing devices where possible, and guarantees interoperability between devices that use
other data models already in the database. The created resource needs to pass an approval
process in order to be made available in the oneIoTa repository.

Figure 57: oneIoTa data models development process.

4.2.6.2.4 Provisioning Manager
Provisioning Manager (PM)26 is a tool of IoTivity that could act as a security administrator of
IoT devices in its IP subnet. Provisioning Manager has two major roles: Ownership
Transferring and Security Management of owned devices.
When new device is introduced in the IP subnet, Provisioning Manager takes the ownership
of the new device and provisions security information such as credential and access control
policy to manage new device securely. If PM doesn’t take ownership and provide proper
security policy to the newly introduced device in its IP subnet, the new device might be under
control of unwanted subjects and perform undesirable operations such as turning on the light
during midnight and ignoring user’s commands. All security functionality operate using
CBOR data (.dat files).

4.2.6.2.5 IoTivity simulator
IoTivity provides a tool <https://wiki.iotivity.org/iotivity_simulator> that can simulate 1) OCF
resources and 2) the functionality of an OCF client, which aims to help developers with
testing during development and before purchasing the real hardware. The tool is written in

25

 https://openconnectivity.org/developer/oneiota-data-model-tool

26
 https://wiki.iotivity.org/provisioning

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 110

Java as an Eclipse plugin and provides two perspectives. However, in ACTIVAGE physical
hardware will be deployed and IoTivity Simulator will only be used for testing reasons.

OCF resources can be simulated by using Resource model definition (RAML) files or created
by using GUI wizards. The simulated resources are able to handle requests that are
received and send appropriate responses to clients. When the simulator resource server
receives any GET/PUT/POST/OBSERVE requests, “Service Provider Perspective” shows
the log messages with the request information and sends appropriate responses as shown
in figure below.

Figure 58: Service Provider Perspective of IoTivity Simulator

Figure 59: Client Controller Perspective of IoTivity Simulator.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 111

The OCF client can also be simulated. It has the following functionalities: find resources of
certain types in the given network, provides support for observing resource changes and
provides support for sending automatic requests (GET/PUT/POST) to remote resources with
the help of remote resource RAML file. Below screenshot shows the “Client Controller
Perspective” view.

4.2.6.3 Mapping between IoTivity and ACTIVAGE development tools
Part of the IoTivity development tools described above correspond to specific ACTIVAGE
development tools, described in Section 4.1. This mapping is presented in Table 20. Some
of the mapped tools may be used within the AIOTES infrastructure, possibly with some
modifications or generalizations. Table 20 also summarizes which tools can be generalized
to be used within AIOTES, or are too specific to be included.

Table 20: Mapping between IoTivity and ACTIVAGE development tools.

IoTivity
development tool

Corresponding
ACTIVAGE
development tool(s).

Can the tool be used in AIOTES?

CoAP - HTTP Proxy Not mapped with AIOTES

Cloud connection
tools

Data Lake tools /
ACTIVAGE data model
workbench

Yes No

How? Why?

The functionalities of the IoTivity cloud
connection tools will form a conceptual basis
for the implementation of the cloud-based Data
Lake functionalities.

oneIoTa OCF design
tool

Semantic Interoperability
Layer tools / ACTIVAGE
Ontology Explorer &
Device semantics editor

Yes No

How? Why?

The general idea of the oneIoTa OCF design
tool is directly relevant to the ACTIVAGE
ontology-related development tools. The
design, source code and interface of oneIoTa
can be used as reference for the design of the
ontology explorer and device semantics editor
tools in AIOTES.

Provisioning
manager

Not mapped with AIOTES

IoTivity simulator Not mapped with AIOTES

Support tools
(documentation,
wiki, source code
samples)

Support Yes No

How? Why?

The IoTivity support tools (documentation, wiki,
code samples, etc.) will be used as part of the
overall AIOTES support material.

Source code
samples

IDE / Code generator

IDE / Source code
templates

Yes No

How? Why?

IoTivity source code samples can be used to
design source code templates for IoTivity,
which will be used as part of the code
generator and code templates ACTIVAGE
development tools.

https://wiki.iotivity.org/coap-http_proxy
https://wiki.iotivity.org/iotivity_cloud_-_programming_guide
https://wiki.iotivity.org/iotivity_cloud_-_programming_guide
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v2.3_CERTH_03_04_2018.docx%23_ACTIVAGE_data_model
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v2.3_CERTH_03_04_2018.docx%23_ACTIVAGE_data_model
https://openconnectivity.org/developer/oneiota-data-model-tool
https://openconnectivity.org/developer/oneiota-data-model-tool
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v2.3_CERTH_03_04_2018.docx%23_ACTIVAGE_ontology_explorer
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v2.3_CERTH_03_04_2018.docx%23_ACTIVAGE_ontology_explorer
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v2.3_CERTH_03_04_2018.docx%23_Device_semantics_editor
https://wiki.iotivity.org/provisioning
https://wiki.iotivity.org/provisioning
https://wiki.iotivity.org/iotivity_simulator
https://wiki.iotivity.org/iotivity_simulator
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v2.3_CERTH_03_04_2018.docx%23_Support
https://github.com/iotivity/iotivity/tree/master/resource/examples
https://github.com/iotivity/iotivity/tree/master/resource/examples
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v2.3_CERTH_03_04_2018.docx%23_Code_generator
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v2.3_CERTH_03_04_2018.docx%23_Source_code_templates
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v2.3_CERTH_03_04_2018.docx%23_Source_code_templates

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 112

4.2.7 SeniorSome
SeniorSome development tools can be used for Activage but for reuse of tools in AIOTES
the main tools are the API:s that are available in the gateway level/Bridge level and in the
cloud-based REST interface. The tools are mainly industry standard tools that can be used
due to open interfaces provided as API:s for developers in Activage.

The SeniorSome API’s can be used in Services layer: development, deployment, analytics,
data, with AIOTES API and for Semantic interoperability layer: broker. The SeniorSome
development tools set is based the usage of API definitions, examples and descriptions. This
API set can beused as a part of AIOTES development tools where needed.

The primary tools that are used are tools like Android studio and Eclipse so any
development project format shall follow the form used in these solutions.

The mapping of the tool to AIOTES and Activage the Section 4.2.7.6 shall provide this
information. As a reference the tools are also explained in the following list:

4.2.7.1 Support
Support: (Tools for providing documentation and instructions about using the AIOTES
development tools.)

– The SeniorSome API documents in https://api.seniorsome.net. Including information
about how to use and with short examples.

4.2.7.2 Integrated Development Environment
Integrated Development Environment (IDE): (Tools for facilitating the creation of new
applications.)

– SeniorSome can be developed for example with Android Studio, Eclipse and others like
Swift-tools. The scripting parts can be developed in an environment that the coder
chooses. Examples are provided only in one like Android Studio.

– As a higher level tool the SeniorSome Backend can be used for service
creation/development.

4.2.7.3 Data- and visual analytics tools
Data and visual analytics tools: (Tools for facilitating the introduction of data analytics and
visual analytics in an application.)

– SeniorSome dashboard/qnalytics-tool is available for the SeniorSome service. the
dashboard can be used through the API:s.

4.2.7.4 Data Lake tools
Data Lake tools: (Tools for facilitating access to the data available through the Data Lake.)

– For the Data Lake seniorSome offers an API connection to SeniorSome stored data.

4.2.7.5 Semantic Interoperability Layer
Semantic Interoperability Layer (SIL) tools: Tools for facilitating access to the Semantic
Interoperability Layer ontologies.

– SeniorSome API:s can be used for semantic interoperability.

– The Seniorsome database service can be used for storing rules/rulesbases for
ontologies and mappings.

https://api.seniorsome.net/

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 113

4.2.7.6 Mapping between SeniorSome and ACTIVAGE Development Tools
Part of the SeniorSome development tools described above correspond to specific
ACTIVAGE development tools, described in Section 4.1. This mapping is presented in Table
21. Some of the mapped tools may be used within the AIOTES infrastructure, possibly with
some modifications or generalizations. Table 21 also summarizes which tools can be
generalized to be used within AIOTES, or are too specific to be included.

Table 21: Mapping between SeniorSome and ACTIVAGE development tools.

SeniorSome
development tool

Corresponding ACTIVAGE
development tool(s).

Can the tool be used in AIOTES?

SeniorSome API:s Support,

Bridge, Data/Visual Analytics
tools /Data Analyser,

Semantic Interoperability layer

Yes No

How? Why?

By using the API definition and
adding this to the Activage tools and
development process.

SeniorSome
Backend

Data/Visual Analytics Tools /
Feature/Result viewer / Device
control, Semantic Interoperability
layer

Yes No

How? Why?

through the API definitions and/or
Bridged connectivity. Partly can be
used as a ui/interface for the
AIOTES where needed.

Documentation Support,

API development, Semantic
Interoperability Layer tools /

Yes No

How? Why?

As a support means for AIOTES
compliant development.

Source Code &
Binaries

Support Yes No

How? Why?

The SeniorSome Documentation
can be used as part of the overall
AIOTES support material.

4.2.8 Summary of existing tools
This section presents a synthesized set of tables providing a quick overview of the
development tools for each of the platform designated to be interoperable with AIoTES
framework. This section main purpose is to provide an interested developer with a vision of
the different tools provided regarding the platform and, at the same time, serve as a listing of
the desirable functionality over the AIoTES framework.

4.2.8.1 Platform-specific development tools comparison
General information about each platform is depicted in Table 22. Aspects like the main
programming language, license or where to find related documentation with the platform
might serve an interested user to deploy one or another platform

Table 22: High level platform overview
Platfor
m

Progra
mming

Ope
n

Lice
nse

API documentation Wiki documentation

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 114

languag
e

sour
ce

univer
sAAL

Java
(plain,
OSGi,
Android)
JavaScri
pt

Yes Apac
he
2.0

Yes -
https://github.com/universAAL

Yes -
https://github.com/universAAL/platform/wik
i

SOFIA
2

Java,C,
Javascri
pt
(Multilan
guage)

Yes Apac
he
2.0

Yes -
http://sofia2.com/desarrollador_e
n.html#documentacion

Yes -
http://sofia2.com/desarrollador_en.html#do
cumentacion

OpenI
oT

Java Yes LGP
L
V3.0

Yes -
https://github.com/OpenIotOrg/op
eniot/wiki/Documentation

Yes -
https://github.com/OpenIotOrg/openiot/wiki

Sensi
Nact

Java Yes Eclip
se
Lice
nse
v1.0

Yes -
http://sensinact.ddns.net/swagger
-api/index.html#/

Yes - http://wiki.eclipse.org/SensiNact

FIWA
RE

Multilan
guage

Yes Apac
he
2.0

Yes -
http://www.fiware.org/developers/

Yes -
https://forge.fiware.org/plugins/mediawiki/w
iki/fiware/index.php/Main_Page

IoTvity C, C++,
Java

Yes Apac
he
2.0

Yes -
https://www.iotivity.org/document
ation

Yes -
https://wiki.iotivity.org/iotivity_simulator

Senior
Some

Not
available

Not
Avail
able

Not
avail
able

Not available Not available

Table 23 represents the way in which a developer can build and compile its code over a
specific platform. Information about the IDE and its functionalities are shown.

Table 23: Development over platform
Platform Provides

IDE
IDE How the IDE is

provided?
What functionalities are offered by the IDE?

universAAL Yes AAL Studio
over Eclipse

via plugins – wizards for creating projects,

– build tools for simplifying building and
launching of applications,

– modeling and transformation tools for making
the development more efficient.

SOFIA2 Yes Ecplise via plugins – ontologies management,

– KPs/APPs management,

– token management ,

– rules management,

– predefined queries management,

– send SAPP messages,

– API manager

OpenIoT Yes Ecplise via plugins – API for logging in and out,

– Token validity check

– Access control utility methods

SensiNact Yes SensiNact
Studio over
Ecplise

Uses Eclipse tools to
perform continous
integration

Eclipse Jenkins runs a compilation of the sensiNact
Gateway every day, the resulting compilation are
kept in the download area of Eclipse

https://github.com/OpenIotOrg/openiot/wiki/Documentation
https://github.com/OpenIotOrg/openiot/wiki/Documentation

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 115

FIWARE No - - -

IoTvity Yes Ecplise via plugins Enables the simulation of services, OCF resources
and OCF clients

SeniorSome Not
available

Not Available Not available Not available

Table 24 represents the existing tools to development helping. The tools are classified in different
types: samples of code, dependency manager, code generator, build manager, service composition
builder or GUI Tool for management and configuration.

Table 24: Development helping tools
Platform Samples

of code
Dependency
manager

Code generator Build manager Service
Composition
Builder

GUI Tool for
management and
configuration

universAAL Yes Yes – Maven Yes -AAL Studio
plugins

Pax Runner
osgim, Maven

Yes, for
SPARQL –
SPARQL
Tester

Yes, AAL Space
Monitor

SOFIA2 Yes Yes - Maven Yes Not specified Yes Provides
visualization tools
but not specified
whether the
requirements are
matched

OpenIoT Yes Not specified Yes – Request
definition tool

Yes, Request
definition tool

Yes, Request
definition tool

Yes, Request
definition tool

SensiNact Yes Uses Maven Yes Uses Maven and
Jenkins

Yes –
SensiNact
Studio

Yes – SensiNact
Studio

FIWARE Yes Different
components use
different
technologies.
Some provides
other no

Different
components use
different
technologies.
Some provides
other no

Different
components use
different
technologies.
Some provides
other no

No Fiware-lab could be
used to deploy and
configure new
components. No for
development

IoTvity Yes Uses - Maven Yes docker can be
used to create
containerized
packages

Yes - IoTivity
simulator

Yes - IoTivity
simulator

SeniorSome Not
available

Not Available Not available Not available Not available Not available

Table 25 represents existing semantic platform in IoT Platforms. It differs if IoT Platforms provides
semantic tools and semantic enhanced. Also, other functionalities are shown it, if they exist.

Table 25: Semantic ready platform
Platform Semantinc enhanced Semantic tools Offered Functionalities

universAAL Yes Yes – Simplify the process of creating ontologies
for use on universAAL,

– Lower learning threshold.

– Reduce effort required (time)

– Limit error-prone activities.

– Reuse in universAAL and for other
platforms (representations)

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 116

SOFIA2 Yes Yes - Ontologies
Management tool,
API Management
tool

– Creating, modifying adne delete an
ontology and a ontology group.

– Searching an ontology and ontology group
following some criteria.

– Finding and subscribing to an ontology
and ontology group.

– Subscription to an ontology.

– Autorization to one ontology or group of
ontologies

OpenIoT Yes APIs, Request
Definition GUI,
Common utils and
libraries

The console pane (bottom pane) provides
workspace validation information
(problems/warnings) as well as a debug
preview of the generated SPARQL code for
the designed service.

SensiNact Provider/service/resource
generic datamodels

Provides APIs Provices query methods over devices based
on sensiNact data model

Provides dedicated AHA service providers
specialized for DS6 specified AHA functions

FIWARE No - -

IoTvity Yes OneIoTa OCF
design tool

Data models creation in order to reach
interoperability between devices and platforms

SeniorSome Not available Not Available Not available

4.2.8.2 Mapping between platform-specific development tools and proposed
ACTIVAGE development tools

For each of the tools that are described as necessary in AIoTES, from Table 26 to Table 30 a
mapping is made with the tools provided by each platform.

Table 26: Support tools
Platform Document

ation
Wiki Tutorials Code

samples
Discussion forum Training

universAAL Yes Yes Yes Yes Not specified Not specified

SOFIA2 Yes Yes Yes Yes Not specified Not specified

OpenIoT Yes Yes Yes Yes Not specified Not specified

SensiNact Yes Yes Yes Yes Not specified Not specified

FIWARE Yes Yes Yes Yes Not specified Not specified

IoTvity Yes Yes Yes Yes Not specified Not specified

SeniorSome Not
available

Not
Available

Not available Not available Not available Not available

Table 27: IDE tools
Platform Code generator Code templates Service composer

universAAL Not specified Not specificied Not specificied

SOFIA2 Yes - source code templates Yes - source code templates Yes - source code templates

OpenIoT No tool matching AIOTES
requirements

No tool matching AIOTES
requirements

No tool matching AIOTES
requirements

SensiNact Not specified Yes – source code templates Yes – sensiNact Studio

FIWARE Yes - source code templates Yes - source code templates Yes - source code templates

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 117

IoTvity Yes - IoTivity source code
samples

Yes - IoTivity source code
samples

Yes - IoTivity source code
samples

SeniorSome Not available Not Available Not available

Table 28: Data/visual analytics tools
Platform Data manipulator Data analyzer Feature/result viewer Visualization

explorer

universAAL Not specified Not specified Not specified Not specified

SOFIA2 No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

OpenIoT No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

SensiNact Historical statistics
agent

Historical statistics
agent

Technosens E-lio
manager web application

Not specified

FIWARE No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

IoTvity No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

SeniorSome Not available Not Available Not available Not available

Table 29: Data Lake tools
Platform ACTIVAGE data model workbench Metadata storage explorer

universAAL Not specified Not specified

SOFIA2 No tool matching AIOTES requirements No tool matching AIOTES requirements

OpenIoT No tool matching AIOTES requirements No tool matching AIOTES requirements

SensiNact Not specified Not specified

FIWARE No tool matching AIOTES requirements No tool matching AIOTES requirements

IoTvity Yes - IoTivity cloud connection tools No tool matching AIOTES requirements

Platform ACTIVAGE data model workbench Metadata storage explorer

Table 30: Semantic Interoperability Layer tools
Platform ACTIVAGE ontology

explorer
Query translator Device semantic

editor
Service semantics
editor

universAAL Not specified Not specified Not specified Not specified

SOFIA2 No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

OpenIoT No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

SensiNact Not specified Not specified Not specified Not specified

FIWARE No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

IoTvity No tool matching
AIOTES requirements

Yes - oneIoTa OCF
desing tool

No tool matching
AIOTES requirements

SeniorSome Not available Not Available Not available Not available

4.2.9 Mapping between development tools requirements and modules

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 118

Figure 60: Mapping between requirements (orange) to the ACTIVAGE development tools (green).

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 119

The development tools, as described in the sections above, cover the development tools
requirements outlined in Section 2.1. Figure 38 provides the mapping between requirements
and modules. Orange boxes denote requirements, while green boxes denote the
corresponding ACTIVAGE development tools. Part of the requirements is mapped to
deployment tools (grey boxes), which are described in Section 5.1.

4.3 Tool development plan
The development tools will be presented to developers using the planned information
channels of the project:

– The ACTIVAGE web page, where a dedicated section will inform about the existence of
the development tools.

– During the dissemination phase of the project, making public the availability of the tools
in forums, conferences, etc.Web forums of the platforms included in the ACTIVAGE
architecture (Fiware, UniversAAL, etc.), where developers can be informed about these
new tools.

Finally, the new GIT repositories containing source code and examples will be public and
therefore, indexed by major search engines, making much easier their access for external
developers.

Next, the plan to deliver the development tools before they are effectively accessible by
external users.

4.3.1 Planning
All the aforementioned development tools will be available at the end of month 30, after
tasks 4.1 and 4.2 have been finished. More in detail, the working periods of the different
tools will be as follows:

Table 31: Planning

Tool Start (month) End (month)

Semantic Interoperability Layer tools 2 20

Data Lake tools 2 16

Data / visual analytics tools 12 22

Integrated Development Environment (IDE) 18 30

Support 2 30

This distribution ensures that all developer tools are available by the specified date.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 120

5 Deployment tools
5.1 Architecture
The ACTIVAGE deployment tools allow IoT site administrators and application developers to
register IoT components and applications to the overall IoT ecosystem and allow deployers
to discover already existing ones, thus facilitating the actual deployment of IoT applications
in the deployment sites.

The ACTIVAGE deployment tools offer web-based means for developers to register their
components (devices, applications, etc.) to the AIoTES. They also offer cloud-based means
for the semantic discovery of already registered components, in order to support the overall
deployment process. The deployment tools are part of the ACTIVAGE application tools,
which operate at the higher level of the AIoTES architecture, along with development tools
and data analytics. The positioning of the deployment tools within the overall ACTIVAGE
architecture is depicted in Figure 61.

Figure 61: Positioning of the ACTIVAGE deployment tools component within the overall ACTIVAGE
architecture.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 121

Components that can be registered and deployed can roughly be separated in the following
categories:

– Devices (sensors, actuators, etc.)

– Infrastructure (gateways, servers, etc.)

– Applications (software that runs on top of the infrastructure, using information from the
devices)

The functionalities offered by the ACTIVAGE deployment tools are summarized in Table 18.
The developer or IoT site administrator can register new components and modify his/her
registered components. The developers may be anyone creating IoT applications and
components, either from inside or outside ACTIVAGE, wishing to make their components
available through the ACTIVAGE marketplace. The deployer can use the semantic discovery
tools to search for existing components registered by the community of IoT developers, in
order to deploy them to the actual deployment site. Configuration and maintenance
functionalities are also provided, for the proper installation and operation of the deployed
application.

Table 32: The functionalities offered by the ACTIVAGE deployment tools.
Functionality Description

register The developer of a new component can register it to the ACTIVAGE AIoTES, in order to
be discoverable by deployers (or other developers, for combining components for new
applications) and facilitate the deployment at a deployment site.

edit The developer can edit the information regarding an already registered component.

delete The developer can delete an already registered component.

discover The deployer can search for existing registered components meeting his/her needs, either
by searching for a specific component or for semantically similar components, through
semantic queries.

deploy The deployer can proceed to the actual deployment of a registered component in the pilot
site.

commissioning The deployer can set up and configure the component in the deployment unit, specifically
adding the information required for the correct functioning of the system, which the system
cannot automatically detect (such as the position of devices within the home).

benchmarking Determine if a component is working appropriately in a secure environment. A deployer
can determine whether the component deployer is working properly or not based on the
device status and resource consumption. Benchmarking should provide functions to
retrieve memory consumption, computation consumption and input/output traffic flow.

inventory Keep track of the components as a whole: where they are, who was the last person to
operate them, when the last update was, and what is their status (operational, storage,
under maintenance, end of life, etc.). There is traceability for every component.

update Keep the software binaries and configuration up to date, specifically for remote and batch
operations over many deployment units.

maintenance Keep the components working in optimal conditions. Some components will require
consumables (like batteries, or ink), and/or part replacements; the deployer needs to
know, and be notified when this is required.

The above functionalities suggest the following workflow for the deployment of a component
at a deployment unit:

– The developer/administrator registers a new component to the ACTIVAGE AIoTES. In
case of an application component, it could be an application developed using the
ACTIVAGE development tools described in Section 4.1.

– The developer/administrator can modify or delete the registered component, as needed.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 122

– When a deployer needs to deploy a component at a specific deployment unit, he/she
uses the deployment tools discovery functionalities to search for components meeting
his/her needs.

– Once the desired component has been discovered, it can be deployed at the actual
deployment unit.

– The deployer uses the commissioning functionalities, in order to configure the deployed
application at the specific deployment unit.

– The deployer uses the maintenance functionalities (benchmarking, inventory, update,
maintenance), in order to ensure the proper operation of the application.

All functionalities of the ACTIVAGE deployment tools are offered through a cloud-based
platform, which is based on similar platforms developed for other European projects, such as
the In Life and Cloud4All projects.

Component registration, along with edit/delete functionalities, is offered through appropriate
web forms. Regarding the discovery of a registered component, the ACTIVAGE deployment
tools offer semantic query functionalities. The developer can search for existing components
by providing queries regarding the semantics of the desired devices or functionalities. For
instance, a deployer may wish to search for sensors for motion detection or for applications
providing behavioral monitoring of an individual. The deployment tools discovery
functionalities can use this query and search for components which are semantically similar
to the desired ones, e.g. PIR27 motion sensors and sound-based motion sensors, or
appliance usage and indoor localization applications, respectively for the above examples.

In order to perform such semantic queries, the deployment tools are directly connected to
the ACTIVAGE interoperability layer. Architecturally, all registered components are viewed
as assets, whether they are hardware or software ones. The semantic interoperability layer
maintains ontologies and semantic mappings for all types of registered components
(sensors, devices, cloud servers, applications, etc.). Once a new component is registered,
the component-related ontologies and data models are updated accordingly. When a user of
the deployment tools submits a discovery query, the corresponding ontologies are used, in
order to search for semantically similar components.

As already mentioned, the registration and discovery services of the deployment tools are
available to the user through a cloud-based web graphical user interface (GUI). However,
they are also exposed through a web application programming interface (API), in order to be
used by the ACTIVAGE development tools, as described in 4.1.

The high-level architecture of the ACTIVAGE deployment tools component and its
connection to the other ACTIVAGE components is depicted in Figure 62.

The actual deployment of a component at a deployment unit (e.g. a specific house) involves
the parametrization and configuration of the component, for the needs of the actual unit, as
well as ensuring it is executed in a secure environment, it is regularly updated, etc. The
configurations needed by the ACTIVAGE deployment sites will guide the design of the
ACTIVAGE deployment tools, so that the registered components and the associated
semantic models include all the necessary information.

An overview of the ACTIVAGE deployment tools is depicted in Figure 63. They are divided in
the following categories:

– IoT infrastructure management tools: Tools for registering devices and services to the
AIOTES ecosystem, as well as for semantically discovering and testing them.

27

 Passive Infrared sensor

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 123

Figure 62: Architecture of the ACTIVAGE deployment tools component and its connection to the other
ACTIVAGE components.

– Deployment management tools: Tools for component configuration and management
of installations in deployment units.

Figure 63: The ACTIVAGE deployment tools.

In the following sections, the ACTIVAGE deployment tools are described in detail.

5.1.1 IoT infrastructure management tools
The IoT infrastructure management tools provide utilities for managing the components of
the IoT infrastructure, i.e. the devices and the developed services and applications, in order
to facilitate their deployment in an actual deployment unit. The IoT infrastructure
management tools consist of the following, as also depicted in Figure 64.

– Device manager

– Service manager

– Semantic auto-discovery platform

– Benchmarking

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 124

Figure 64: The IoT infrastructure management deployment tools.

The IoT infrastructure management deployment tools are described in detail in the following
sections.

5.1.1.1 Device manager
The device manager deployment tool is a Graphical User Interface (GUI), through which an
IoT device can be registered into the AIOTES and its characteristics be
edited/updated/deleted when necessary. The registration of a device involves specifying its
functionality, its type (sensor, actuator, etc.), the type of data it collects, the type of
commands/parameters it accepts, etc. Proper registration of a device in the AIOTES also
involves specifying the semantics of the device’s characteristics, i.e. which ACTIVAGE data
model ontology/attribute it belongs/corresponds to. This is important for later discovery of the
device by application developers, as well as for the proper translation of the device’s data
into the naming conventions of the unified ACTIVAGE data model, in order for its data to be
available through the Data Lake. The device manager tool offers forms through which the
user can insert the required characteristics and edit or delete them later, if an update is
needed. It also provides fields through which one can specify those parameters of the device
that should be configurable when it will be deployed in a specific deployment unit (e.g.
configurable operational range, depending on the deployment unit’s area). The device
manager tool is connected to the Semantic Interoperability Layer of the AIOTES, as depicted
in Figure 65, in order to have access to the device ontologies and semantic attributes.

Figure 65: Functionalities and communication of the device manager deployment tool.

Usage

The device manager tool is offered as a Web-based form, through which the deployer can
insert the details about a device to be registered, or open the information for an already
registered device, to edit it. The form fields correspond to the data needed for a device to be
properly registered:

– Device type (sensor, actuator, etc.)

– Type of data it collects

– List of parameters it accepts

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 125

– List of commands it supports

– Which device entity it corresponds to, in the ACTIVAGE ontology (the available entities
are displayed through a drop-down menu). The corresponding entities are ones that
have been inserted to the ACTIVAGE ontology through the Device semantics editor
development tool.

– How the device parameters and commands are semantically mapped to the attributes of
the corresponding ontology entity.

5.1.1.2 Service manager
The service manager deployment tool is similar to the device manager tool described above,
but it regards developed services instead of devices. Through the GUI of the service
manager tool, the developer of a service or application can register it to the AIOTES, in order
for it to be later discoverable and composable by other developers. The registration of a
service in the AIOTES involves specifying its functionality, its inputs and outputs, the types of
data it needs or exports, etc. Service registration also involves specifying the semantics of
the service’s functionality, inputs, outputs, etc., so that it is added to the corresponding
ontologies of the AIOTES SIL. The service manager provides forms through which the
developer can provide all this information, as well as update it when necessary. Similar to
the device manager tool, the service manager tool also allows the developer to specify which
parameters should be configurable for the deployment of the service in a specific
deployment unit (e.g. configurable number of temperature sensors used by the application).
The service manager tool is connected to the AIOTES SIL, as depicted in Figure 66, in order
to have access to the service-related ontologies and semantic mappings.

Figure 66: Functionalities and communication of the service manager deployment tool.

Usage

The service manager tool is offered as a Web-based form, through which the deployer can
insert the details about a service to be registered, or open the information for an already
registered service, to edit it. The form fields correspond to the data needed for a service to
be properly registered:

– Functionality description

– List of input parameters it accepts

– List of output parameters it produces

– Types of data needed

– Types of data exported

– Which service entity it corresponds to, in the ACTIVAGE ontoloty (the available entities
are displayed through a drop-down menu). The corresponding entities are ones that

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 126

have been inserted to the ACTIVAGE ontology through the Service semantics editor
development tool.

– How the service parameters (inputs, outputs, etc.) are semantically mapped to the
attributes of the corresponding ontology entity.

5.1.1.3 Semantic auto-discovery platform
The semantic auto-discovery platform allows the deployer to discover AIOTES components
(devices and services) that meet certain semantically-specified criteria. The semantic auto-
discovery platform offers a GUI through which the deployer can formulate a semantic query
for devices or services with desired functionalities and characteristics. The auto-discovery
platform communicates with the AIOTES SIL, in order to discover which devices and
services semantically match the criteria submitted by the deployer, and retrieves relevant
components. This basic mode of operation is enhanced with a second mode of operation,
similar in concept to content-based search engines. In this second mode, the deployer can
use an existing device or service as the query, and ask the tool to retrieve devices or
services with semantically similar characteristics to the query one. The functionalities and
communication of the semantic auto-discovery platform are depicted in Figure 67.

Figure 67: Functionalities and communication of the semantic auto-discovery platform deployment
tool.

Usage

The semantic auto-discovery platform is offered through a Web-based Graphical User
Interface. The deployer can insert the characteristics of a desired service, in order to
discover semantically similar services. The desired characteristics can be inserted in one of
two ways:

 Through a form, where the deployer can manually insert the characteristics of the
desired device/service, such as types of inputs/outpus, parameters, etc.

 Through the selection of another device/service and selecting a “discover similar
devices/services” option.

The list of discovered devices or services is presented to the deployer in a list view, from
which he/she can select one to view further details.

5.1.1.4 Benchmarking tool
The benchmarking tool allows deployers to determine whether an application or service is
working properly or not. Benchmarking should provide functions, in a REST-based way, to
retrieve performance values such as: memory consumption, computation consumption and
input/output traffic flow; and status values like correct configuration in terms of security and
privacy, both key points in ACTIVAGE. At the same time, a graphical user interface must be
provided allowing non-technical users to visualize the current status of the services deployed
in its property. In order to perform the performance validation operations the interaction with
the deployment management tools is required, in the same way that the interaction with the

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 127

deployment technology used. For the security and privacy validation the interaction with the
Security and Privacy ACTIVAGE tools is required. A more detailed study of the relationships
between the benchmarking module and Security and Privacy ACTIVAGE tool will be
provided in next releases. In the same way, the choice of a concrete technology for
deploying new services in the system will help us to know better the way in which
performance information can be gathered. The benchmarking tool is connected to the
Semantic Interoperability Layer, in order to retrieve the services supported by the AIOTES.
The functionalities and communication of the benchmarking deployment tool are depicted in
Figure 68.

Figure 68: Functionalities and communication of the benchmarking deployment tool.

Usage

The benchmarking tool offers a Graphical User Interface, through which the deployer select
a service to benchmark, can provide test input to the service being benchmarked, and view
the results of performance analysis, after the service has been executed.

5.1.2 Deployment management tools
The deployment management tools handle the actual deployment of a component (device or
service) in a deployment unit, and the management of the deployment. They cover aspects
of component configuration, traceability and maintenance and consist of the following tools,
as also depicted in Figure 69.

– Deployment manager

– Component configuration

– Maintenance panel

– Update manager

Figure 69: The deployment management tools.

The deployment management tools provide management functionalities for the deployer of
an application at a specific deployment unit, e.g. a house. They are similar in nature, and in
correspondence, to the deployment management functionalities of the AIOTES Management
Toolkit of Task T5.3, described in Deliverable D5.2 “Support and training plan for
deployment of AIoTES”, although the latter provides management functionalities for the
administrator of a whole Deployment Site. They are also similar to the capabilities offered by
the AIOTES management dashboard, presented in Deliverable D5.1 “Integration plan and

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 128

operational framework”, which provides functionalities for the management of the whole
ACTIVAGE ecosystem.

5.1.2.1 Deployment manager
The deployment manager tool provides a graphical interface through which the deployer can
create/edit a specific deployment installation (e.g. in a specific home) and have an overview
of the deployment inventory, along with its installed devices and services. Through the
deployment manager, the deployer can edit/view the component installation characteristics,
such as the locations where devices are installed, their current operational status, etc. The
deployer can also view the change history regarding the component, such as who was the
last person to operate a device or service, when a device or service was last updated, when
maintenance activities were last performed, etc. Such kind of deployment-specific metadata
are stored in the Semantic Interoperability Layer, while the raw data collected by the
deployed devices are stored in the platform-specific databases and are accessible through
the Data Lake. Thus, the deployment manager communicates with the Semantic
Interoperability Layer, as depicted in Figure 70, in order to retrieve all deployment-related
metadata.

Figure 70: Functionalities and communication of the deployment manager tool.

Usage

The deployment manager is a Web-based graphical user interface, through which the
deployer can create a new deployment installation. Its main interface is a tree-like structure,
showing the components (devices, services, etc.) of a deployment. The deployer can
perform the following actions, regarding a deployment installation:

– Create a new deployment installation

– Add devices/services in the installation. The devices/services can be added to the tree-
like structure by selecting among the devices/services registered in AIOTES.

– View/insert/edit installation-specific information for the devices/services of an installation,
through edit forms.

– Configure selected devices/services, through the component configuration tool

– View maintenance information for selected devices/services, through the maintenance
panel tool.

– Perform update operations for seleted devices/services, through the update manager
tool.

5.1.2.2 Component configuration
The component configuration deployment tool is a GUI through which the deployer of a
component (device or service) can provide appropriate values for all configurable
parameters that are necessary for the deployment of a component in an actual deployment
unit. Example of configurable parameters include the operational range of a device, which
may be adjusted according to the deployment unit’s area, or the number of temperature

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 129

sensors used by an application, which may be adjusted according to how many sensors are
available in the deployment unit. The component configuration is connected to the Semantic
Interoperability Layer, in order to store the deployment-specific configuration. It is also
connected to the deployment manager tool (see below), from which the deployer can select
the device to configure. The functionalities and communication of the component
configuration deployment tool are depicted in Figure 71.

Figure 71: Functionalities and communication of the component configuration deployment tool.

Usage

The component configuration tool is offered as a form where the deployer can insert and
submit the configuration parameters for a specific device in a deployment. The component
configuration tool is connected to the deployment manager, from which the deployer can
view the whole deployment installation and select devices to configure.

5.1.2.3 Maintenance panel
The maintenance panel deployment tool provides a graphical interface in order to facilitate
the deployer in performing maintenance activities in a deployment installation. Through the
maintenance panel’s interface, the deployer can view the operating status of all components
(devices and services) installed in a deployment unit. Operating status includes possible
malfunctions of devices or services, battery levels, etc. The maintenance panel also provides
a notification service, in order to provide notifications to the deployer whenever a change in
the operating status of a component happens. The maintenance panel communicates with
the Semantic Interoperability Layer, as depicted in Figure 72, in order to retrieve all
deployment-specific information about the devices and services installed. It also
communicates with the deployment manager, from which the deployer can select the
installation components for which to open the maintenance panel.

Figure 72: Functionalities and communication of the maintenance panel deployment tool.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 130

Usage

The maintenance panel tool offers a Graphical User Interface, through which the deployer
can view the maintenance information for the selected divice/service, and control the
operation of the notification mechanisms, i.e. turn on or off notifications for specific
devices/services.

5.1.2.4 Update manager
The update manager deployment tool provides a graphical user interface which facilitates
the deployer in updating the installed components (devices and services) when new versions
are available. The update manager GUI displays the versions of the devices and services
installed in a specific deployment unit, and shows notifications if new versions are available
for each component. Using the interface, the deployer can select a specific component and
perform the update, by e.g. downloading and installing a new version of a service, or being
directed to relevant online stores for ordering new versions of equipment. The update
manager communicates with Semantic Interoperability Layer, as depicted in Figure 73, in
order to retrieve all relevant metadata regarding the installed component versions. It also
communicates with the deployment manager, from which the deployer can select the
devices/services for which to open the update manager.

Figure 73: Functionalities and communication of the update manger deployment tool.

Usage

The update manager tool offers a Graphical User Interface (GUI), through which the
developer can view the version status of the selected devices or services. The GUI offers
links to new versions of devices/services and allows the deployer to directly perform an
update, from within the update manager, whenever possible.

5.1.3 Mapping between deployment tools requirements and modules
The deployment tools, as described in the sections above, cover the deployment tools
requirements outlined in Section 2 provides the mapping between requirements and
modules. Orange boxes denote requirements, while green boxes denote the corresponding
ACTIVAGE deployment tools. Part of the requirements is mapped to development tools
(grey boxes), which are described in Section 4.1.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 131

Figure 74: Mapping between requirements (orange) to the ACTIVAGE deployment tools (green).

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 132

5.2 Available deployment tools supported by the ACTIVAGE IoT
platforms

5.2.1 Platform independent Available Deployment tools

5.2.1.1 Docker
Docker28 is software container platform that encapsulates applications to run and manage
them side-by-side in isolated containers to obtain better performance and compute density.

Docker allows to package an application with all of its dependencies into a standardized unit
for software development. Docker containers wrap up a piece of software in a complete
filesystem that contains everything it needs to run: code, runtime, system tools, system
libraries; to sum up, anything that could be installed on a server. This guarantees that it will
always run the same, regardless of the environment it is running in.

These containers can communicate with each other through a Docker network specifying the
direction and port, and the Docker tool can handle the lifecycle of the containers in a way
that this packages of software run isolated on a shared operating system being started, ran
or stopped when needed.

Despite other virtualization methods or machines, containers do not build a full operating
system, instead only libraries and settings required to make the software work as needed.

5.2.1.2 Virtual Machine
A virtual machine (VM) is an emulation of a computer system. Virtual machines are based on
computer architectures and provide functionality of a physical computer. Their
implementations may involve specialized hardware, software, or a combination.

Specialized software, called a hypervisor, emulates the PC client or server's CPU, memory,
hard disk, network and other hardware resources completely, enabling virtual machines to
share the resources. The hypervisor can emulate multiple virtual hardware platforms that are
isolated from each other, allowing virtual machines to run Linux and Windows Server
operating systems on the same underlying physical host. Virtualization limits costs by
reducing the need for physical hardware systems. Virtual machines more efficiently use
hardware, which lowers the quantities of hardware and associated maintenance costs, and
reduces power and cooling demand. They also ease management because virtual hardware
does not fail. Administrators can take advantage of virtual environments to simplify backups,
disaster recovery, new deployments and basic system administration tasks.

5.2.1.3 OSGi based deployment
According to the OSGi Aliance29, the OSGi technology is a set of specifications that define a
dynamic component system for Java. These specifications enable a development model
where applications are (dynamically) composed of many different (reusable) components.
The OSGi specifications enable components to hide their implementations from other

28

 https://www.docker.com/

29
 https://www.osgi.org/

https://www.osgi.org/

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 133

components while communicating through services, which are objects that are specifically
shared between components. This surprisingly simple model has far reaching effects for
almost any aspect of the software development process.

OSGi reduces complexity by providing a modular architecture for today’s large-scale
distributed systems as well as small, embedded applications. Building systems from in-
house and off-the-shelf modules significantly reduces complexity and thus development and
maintenance expenses. The OSGi programming model realizes the promise of component-
based systems. The following list contains a short definition of the mai concepts of OSGi:

Bundles – Bundles are the OSGi components made by the developers.

Services – The services layer connects bundles in a dynamic way by offering a publish-find-
bind model for plain old Java objects.

Life-Cycle – The API to install, start, stop, update, and uninstall bundles.

Modules – The layer that defines how a bundle can import and export code.

Security – The layer that handles the security aspects.

Execution Environment – Defines what methods and classes are available in a specific
platform.

These specifications are then implemented by different frameworks, such as:

– Framework OSGi Knopflerfish
Knopflerfish 30is the leading universal open source OSGi Service Platform. Led and
maintained by Makewave, Knopflerfish delivers significant value as the key container
technology for many Java based projects and products.

– Apache Felix
Apache Felix 31is a community effort to implement the OSGi Framework and Service
platform and other interesting OSGi-related technologies under the Apache license.

– Eclipse Equinox
The Equinox project32 is to be a first class OSGi community and foster the vision of
Eclipse as a landscape of bundles. As part of this, it is responsible for developing and
delivering the OSGi framework implementation used for all of Eclipse.

Different groups also provide additional component, and component implementations to
build ever more complex Java/OSGi applications.

– Pax Runner
Pax Runner 33is a tool to provision OSGi bundles in all major open source OSGi
framework implementations (Felix, Equinox, Knopflerfish, Concierge).

– Apache Karaf
Karaf 34is a lightweight, powerful, and enterprise ready container powered by OSGi. By
polymorphic, it means that Karaf can host any kind of applications: OSGi, Spring, WAR,
and much more.

30

 https://www.knopflerfish.org/

31
 http://felix.apache.org/

32
 http://www.eclipse.org/equinox/

33
 https://ops4j1.jira.com/wiki/spaces/paxrunner/overview

34
 http://karaf.apache.org/

https://www.osgi.org/
https://www.makewave.com/
https://www.knopflerfish.org/
http://felix.apache.org/
http://www.eclipse.org/equinox/
https://ops4j1.jira.com/wiki/spaces/paxrunner/overview
http://karaf.apache.org/

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 134

– Apache ACE
Apache ACE 35is a software distribution framework that allows you to centrally manage
and distribute software components, configuration data and other artifacts to target
systems. It is built using OSGi and can be deployed in different topologies.

5.2.2 universAAL
The universAAL platform is a multi container platform, allowing its modules, as well as the
middleware, to be installed in different containers. Currently there are 2 containers offered:
OSGi and Android. And there are tools to help in the deployment of both.

Additionally To the tools for deployment, there are tools to customize, configure and set up
each deployment.Pax Runner

5.2.2.1 Distributions
Distributions are ready made containers, and tools for said containers.

All these tools offer the function to deploy the container, as well as component configuration.
Their use is limited to applications using the same container, thus the usage of these tools in
AIOTES support tool set is limited to this factor.

5.2.2.1.1 OSGi Container
universAAL uses the Pax Runner framework to provide runnable instances of universAAL
over OSGi. Within universAAL community there are templates and docuementation to
configure custom runnables.

The AAL Studio tool offers an extension of the open source project Pax Runner for Eclipse.
It provides a user interface for managing provision of OSGi bundles on Eclipse. This tool is
very useful for deployers, so people creating packages of AAL Applications and platform
components can really benefit from this extension. The Pax Runner plugin extension is used
for running and debugging uAAL applications that have been developed within Eclipse with
AAL Studio. It extends the original Pax Runner plugin, in order to provide a more user
friendly interface and a better support for the latest version of Eclipse and OSGi runtimes. To
create a start-configuration for universAAL

This tool parses the ".launch" configuration file of the project that is selected in the
Project/Package explorer of Eclipse, sorts the bundles according to the start level that they
belong and displays them in the tree structure as above. The developer may select which
bundle or level should be included or started in the OSGi runtime. Moreover, a new button
("Add Level") has been added for adding levels in the configuration.

Like the Pax runner, karaf is a tool which provides an OSGi environment. But the power of
karaf relies on the extensive tool set for deployment, provisioning and other container
operations which are installable in each container. universAAL has provided36 the
configuration files and other customizations of the karaf container for a more reliable, robust
and pleasant deployment experience.

35

 http://ace.apache.org/

36
 https://github.com/universAAL/distro.karaf/wiki

http://ace.apache.org/
https://github.com/universAAL/distro.karaf/wiki

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 135

Figure 75 Run configuration of Pax Runner for Eclipse

5.2.2.1.2 Android universAAL Middlware App
To provide easy installation of universAAL middleware there is an universAAL middleware
app37 which makes it easy. Then adding modules to this container is as easy as installing
universAAL-android ready apps on the system.

5.2.2.2 Runtime tools
There is a suite of deployment tools which run on the deployed instance of the container
running universAAL. These offer main deployment operation facilities. Here is a small list of
the tools:

– Log Monitor: The log monitor is a graphical viewer of all the universAAL events; it helps
debug deployments by showing the internal operations of the system, as well as showing
graphical representations of the exchanged messages between modoles.

– Makro Recorder: The Makro recorder is useful to create sequence of events by
recoriding the events and services generated in the devices in the deployed space, and
being able to later replay them. The main purpose of the Makro recorder is to enable
deployers and enven end users, to set up rules and automatic responses.

– Sparql tester: The sparql tester is a tool which enables deployers to issue sparql queries
to the data lake in the space. Thus giving full control over configurations held in that
space.

37

 https://github.com/universAAL/nativeandroid/wiki

https://github.com/universAAL/nativeandroid/wiki

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 136

– Security Profile Management: a simple tool that helps create and manage user
credentials.

– AAL Space Monitor: a tool that displays graphically the status of the current AAL
Space, showing nodes and their capabilities.

– Ace server: a software module, part of karaf suite, which enables automatic update of
bundles in a batch of deployments.

Some of these tools are also used for developers while testing, thus you may recognise some

of them from Section 4.2.1.2.4.

5.2.2.3 Deploy Management & uCC
The universAAL platform initially planned for a digital store, the uStore, which offered
support for a market place of software, hardware, services, human resources as well as
combinations of these.

As a client for this framework the universAAL Control Center (uCC) was developed. It
enabled end users buy, hire, download and install easily AAL apps and services in their AAL
space. For this to work the universAAL middleware implemented a deployment management
framework which analysed the space’s nodes resources, as well as the application
(described in xml) to determine which bundles should be installed in which nodes, and
whether there could be replication. This function would only work on karaf based
deployments.

This system is very interesting to be included in AIOTES since it will facilitate the user
management of their services. This concept brings the user perspective to the deployment
operations. Sadly this tool is too universAAL specific to be imported in AIOTES support
suite.

An extension of the uCC’s functionalities is planned. The new functions include:

– User Profile and Security management

– Log Monitor and the capability of recovering remote node logs

– Functional manifest explorer (configuring access rights, etc...)

– Deploy Management improvement; visual tool to deploy uAAP packages, and select the
nodes where each module should be installed

– AALSpace physical definitions editor, for defining shapes and positions of objects inside
a home or deployment.

– Advanced Configuration Editor

– Ontological explorer: look and browse ontologies, concepts, properties,etc. in the AAL
Space

– Graphical Resource Editor (GRE): edit graphically RDF graphs, with special graphic aids
for particular resource types (such as locations or shapes).

– AAL space visual statistics

– Connection manager: configure where the space is connected.

– Batch Deployment Manager: to deploy, configure and upgrade many
homes/deployments at a time.

– Advanced container function control.

– Visual reasoner, and orchestrator management.

This tool is also usable for developers, thus it has been mentioned as Section 4.2.1.2.6.2.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 137

5.2.2.4 Mapping between universAAL and ACTIVAGE deployment tools

Table 33: Mapping between universAAL and ACTIVAGE deployment tools.

universAAL
development
tool

Corresponding
ACTIVAGE
development
tool(s).

Can the tool be used in AIOTES?

Log Monitor Maintenance
Panel / operating
status notifications

Yes No

How? Why?

 This tool is too universAAL
specific. Although it could be
used to observe events and
calls coming from the AIOTES
universAAL Bridge.

Makro
Recorder.

Service Manager /
semantics
specification

Yes No

How? Why?

The makro recorder can be
used to record actions to
manually specify semantical
statements. Both recording
and replay can be
performed thanks to the
AIOTES universAAL
Bridge.

This tool needs
maintainence.

Sparql Tester Maintenance
Panel

Yes No

How? Why?

 This tool is used primariliy to
provide an accessible interface
for developers to the SparQL
database backend, and test or
organize database operations.
This functionality could be too
low level to be included in an
ACTIVAGE deployer tool set.

Security Profile
Management

Not mapped with AIOTES

AAL Space
Monitor

Maintenance
Panel

Yes No

How? Why?

 This tool is too universAAL
Specific, it relates to the
uSpace, describing all
reachable IoT gateways with
universAAL middleware.

Deploy
Management &
uCC

Device Manager;

Service Manager;

Deployment
Manager;

Component

Yes No

How? Why?

 This tool is too universAAL
Specific. It is relative to
universAAL modules and

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 138

Configuration;

Maintencance
Panel;

Update manager

applications.

5.2.3 SOFIA2
SOFIA2 provides a software management tool to define software versions and
configurations of applications deployed as well as listing the assigned and created
configurations.

Only the users with the role “Administrador” and “Colaborador” will have access to this
menu.

Bear in mind the following considerations:

– A KP can have multiple software applications and each application can have multiple
software configurations. Only one software configuration can be active at a time.

– Once a configuration is active and assigned to a KP and Instance, it cannot be changed.
When you modify an application or softwareconfiguration, the version will increse in one
and will be saved as disabled by default.

 By default, when a configuration or software application is modified o cloned it will be
saved as disabled.

– The software configurations and the software applications may be cloned with their
assignments, by default they will be saved as disabled.

– Software applications can be turned off but can not be removed from the system. And
can only be modified if they haven´t been assigned to any KP o Instance of KP.

With this management massive updates can be made that affect a large number of KPs
and/or instances of KPs.

The main capabilities of that tool are Management of Software Configuration and
Assignment of Software in KPs.

Management Software Configuration

An administrator can see all the applications and software configurations created in the
System. At the top of the screen, there is a field that allows you to filter by name of the
software application. There is a filter by “user” only available for users with Administrator role
(cf. Figure 76).

In the list we can see the name of the application, version, description and if is activated or
not. The list also includes the option to view the details of the softwre configuration or to
modify if the software application has not been assigned.

In the first part of the screen is a button “New Configuration” to redirect us to another screen
to register a new software application and configuration.

La UI consists of two main parts, “SW Management Inf.” and “Configuration Information”.

In the first part we will indicate the details of software management:

– Name of the application: The system will warn us if we try to create software application
with a name that already exists.

– Active: It will indicate us if we want to activate the application or not.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 139

– Application: Allows selecting the war with the software used by clients.

– Description: It is to include on the software application.

Figure 76: A Sofia2 deployment tool for selecting active applications per user

In the configuration data part, we will indicate the software configuration properties (for
example: kp, instance of kp, connection token, ip, port, etc.)

Assignment of Software in KPs

Using this option we can list application assignments and software configuration for KPs and
Instances of KPs.

From this function we can set specific assignments to a KP and Instance of KP, as well as
performing massive assignments such as assign the same software configuration to all
instances of a KP, selecting “*”. Or establishing a software configuration for all the KPs and

Instances of KP with “*”. An asiggnment can be removed using the icon .

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 140

5.2.3.1 Mapping between deployment tools requirements and modules
Table 34: Mapping between SOFIA2 and ACTIVAGE deployment tools.

FIWARE
development
tool

Corresponding
ACTIVAGE
development
tool(s).

Can the tool be used in AIOTES?

Management
Software
Configuration tool

Not mapped with AIOTES

Assignment of
Software in KPs

Not mapped with AIOTES

5.2.4 OPENIOT
OpenIoT is categorised as a middleware platform which means there is no prebuilt
application for end users. This also means that there is no deployment tool available for
OpenIoT applications. It is up to the developers to use the provided APIs to build their own
applications and deployment tools.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 141

5.2.5 SensiNact
As sensiNact is deployed in the DS6 deployment site, the related deployment tools are those
developed and used in this deployment site for the needs of the ACTIVAGE project.

5.2.5.1 Deployment tools around sensiNact
The DS6 ISE comprises three separate panels, with the first two for a residential and
individual population, while the third is for a specialized collective residence. In this
configuration, the DS6 has two different set-ups :

– In institution, the IoT suite is quite generic, with a high reproducibility for each rooms in
each building. In addition, application are unique and can be deployed with very little
personalization across all users. Finally, the cloud environment is existing, with identified
procedures for deployment of new services and support for these services. These
procedures are defined upon a medical context with well defined path for
experimentation.

– In individual housing, the IoT suite has to be tailored in order to match the local
constraints and opportunities. Indeed, each house is unique in both its design and its
occupancy, devices shall be chosen given these differences. Cloud and application will
be implemented on a new infrastructure, on which software components has to be
deployed given WP3 recommendations.

5.2.5.1.1 Device deployment tools
Prior to Activage developments, IoT devices are deployed manually. They are paired on-site
to the gateway and if necessary between themselves. Their deployment is ideally made by
an integrator in order to calibrate the different sensors given the service requirements.

In panel 1 and 2, a specific deployment procedure in two step will be used for the
deployment, and a specific tool will be developed in order to assist this procedure. First step
will be an audit in order to establish a summary recognition of the place: number of rooms,
placing of the rooms, approximate sizes, location of some devices such as electrical meter,
type of heating, etc. This information will be used for the preparation of the IoT suite in which
each device will be pre-located in its future placing. Once the IoT suite is properly prepared,
the second step consist of deploying the devices on-site and validate the overall deployment
by testing individually each device and make sure data is properly forwarded to the gateway.

The device development tool planned for panel 1 and 2 will be based on a tablet for any
installer or professional care-giver. It will be designed to be intuitive and easy to use by an
untrained. The goal is to prevent any mismatch of the IoT kit toward the final user nor any
misconfiguration of the devices to reach the objective service.

The device deployment tool will report on:

– In the audit / pre-deployment phase:

 the approximate ground-plane of the housing, with approximate size and disposition
of the room together.

 equipment already in place, whether they are connected or not.

– In the deployment phase:

 exact location of the device to be deployed

 safety instruction if necessary to deploy the device

 installer notice and user manual of the device in deployment

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 142

 specific instruction if needed, such as calibration

 security provisioning, if available

 on-site test of the device

Figure 77. Installer tool mock ‘up: discovering the ground plane of the installation

Figure 78. Installer tool mock ‘up: discovering the existing asset, in this case the water counter and
valve

The same tool can be further extended to the maintenance phase in order to access to the
history of the home as well as to device’s diagnostics.

In panel 3, device deployment is less exposed to human risks of errors due to its
reproducibility, each room having the same configuration. The first step (audit) will be made
once manually for the building and then a generic connected solution can be prepared for
each room. The deployment of the devices can be made by or with support of the building
technical manager using a generic deployment plan.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 143

5.2.5.1.2 Gateway deployment tools
The gateway is a raspberry pi. The image that is flashed is already pre-configured with
software such as middleware, firewall and tools needed for the functioning of the gateway.
SensiNact is deployed using the repository online available on eclipse. It is then configured
by developers in order to implement the corresponding bindings and rules running at the
gateway level.

Existing deployment methods for the gateway, such as prebuild image and generic software
containers that can be remotely configured, are sufficient enough at the scale of the
deployment site. Thus, an issue is to handle the provisioning of security information such as
unique identification and authentication data. At the time of this deliverable, open discussion
are carried out in order to address this issue, with either a hardware dedicated device or with
a specific tool.

5.2.5.1.3 Cloud deployment tools
As the DS6 ISE comprises three panels, it distinguishes two different architectures which on
one side is defined by the CEA for panel 1 and 2 and on other side by Korian for panel 3. For
this last, Korian has provided the server and granted access for developers in order to
deploy tools and middleware. As for the gateway sensiNact is deployed using the eclipse
platform and configured by the developers. This installation requires to be done once for the
server and will be available for all of the building Korian benefits.

The Studio Web application embedded in the sensiNact platform can be used to check the
status of deployed devices and services. This web application make it possible to localize
devices through the ‘Navigator’ panel (cf. Figure 79). This Studio Web navigator gives the
status of both installed devices and deployed services.

Figure 79: screenshot of the sensiNact Studio Web device and service navigator

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 144

5.2.5.1.4 Application deployment tools
There are four kinds of application provided by Technosens. One is for the resident called
“e-resident” deployed on a tablet or smartphone such as the one for the family “e-lio family”.
There are available on the play store. One interface of management is already deployed on
the cloud. The last application is deployed as an .apk which is an android application for
tablet or smartphone for nurses.

Figure 80: sensiNact studio tool overview

The sensiNact studio standalone software delivered with the sensiNact platform, as atool on
top of the sensiNact gateway API (see Figure 80), provides facilities for gateway monitoring
and application creation.

sensiNact studio is a Eclipse-RCP based software containing views to monitor available
devices, and an editor to create applications (see Figure 81).

Figure 81: sensiNact studio view and editor components

Throught the DSL38 editor, it is possible to program Event-Condition-Action scripts (called
“applications”) in a dedicated language.

38

 Domain Specific Language

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 145

Figure 82: samples of DSL script in sensiNact studio

Auto-completion, type checking, validation features are provided by the DSL editor (see
Figure 83).

Figure 83: auto-completion in sensiNact studio DSL editor

5.2.5.2 Mapping between deployment tools requirements and modules
Table 35: Mapping between DS6/sensiNact and ACTIVAGE deployment tools.

sensiNact
deployment
tool

Corresponding ACTIVAGE
deployment tool

Can the tool be used in AIOTES?

sensiNact
Studio and
studio web

IoT infrastructure management
tools / Device and Service
manager

Yes No

How? Why?

The web application will be used as
device managing tool at deployment
phase in DS6, and also may be used as
monitoring elements in the AIOTES
management module.

Installer tool Distribution/deployment
Component configuration and
update

Yes No

How? Why?

The Installer tool can be shared to other
DS with minor adaptations

5.2.6 FIWARE
As described in Section 0, FIWARE offers Generic Enablers, which are a set of building
blocks that ease creation of smart Internet Applications. So as to use GEs by means of their
specific APIs, it is necessary to deploy a dedicated GE instance. So as to do that, there are
two available options.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 146

On the other hand, there is a dedicated section in the FIWARE Catalogue dedicated to
provide access to available instances of each Generic Enabler. This section is located in the
Instances tab of the catalogue entry where the instances are freely available without
restrictions.

The second option consists of creating your own dedicated instances and using it. So as to
create the instances, it should be followed the instructions provided in the tab "Creating
Instances" of the corresponding Generic Enabler section in the FIWARE Catalogue. For
each particular generic enabler instance it is offered a step-by-step guide to deploy the
instance.

It must be pointed out that FIWARE does not provides any tool for management, installation
or maintenance. For the deployment of the FIWARE platform, Docker and/or Virtual Machine
can be used. This two tools are platform independed and has already been described in
Section 5.2.1.

5.2.6.1 Mapping between deployment tools requirements and modules
Table 36: Mapping between FIWARE and ACTIVAGE deployment tools.

FIWARE
deployment
tool

Corresponding
ACTIVAGE deployment
tool

Can the tool be used in AIOTES?

Docker Platform independent
Available Deployment
tools / Docker

Yes No

How? Why?

Docker allows to package up any ACTIVAGE
application or application needed by
ACTIVAGE with all of the parts it needs, such
as libraries and other dependencies, and ship it
all out as one package.

Virtual
Machine

Platform independent
Available Deployment
tools / Virtual Machine

Yes No

How? Why?

For better performance, durability and host
ability ACTIVAGE tools can be build as Virtual
Machines.

5.2.7 IoTivity

5.2.7.1 Easy Setup
One deployment tool of IoTivity is Easy Setup. Easy Setup is a primitive service layer
developed using native platform and IoTivity APIs for making UI-less unboxed devices to be
easily connected to the end user's IoTivity network seamlessly, thus enabling the devices to
be part of the IoTivity network in a user friendly manner. Specifically, user can transfer a
bunch of essential information to the unboxed devices in easy setup phase, which the
information includes: WiFi AP connection information needed for the device to connect to
Home AP and device configuration settings. Additionally, user can provide a cloud access
information to the devices so that they can register them to an IoTivity cloud server
(CoAP Native Cloud) and user can access them via IoTivity cloud even from a distance.

https://wiki.iotivity.org/easy_setup
https://wiki.iotivity.org/easy_setup
https://wiki.iotivity.org/cloud

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 147

There are three types of roles defined in Easy Setup for various devices involves in Easy
Setup method. These roles are; Enrollee, Mediator and Enroller and their architecture view is
depicted with below diagram:

Figure 84: IoTivity Easy Setup

Easy Setup is used to transfer data through the Mediator (e.g. a smartphone) to the enrollee.
After running the application Enrollee receives WiFi Properties, SSID, password, Auth type,
Cloud properties etc.

5.2.7.2 Device Management
The IoTivity device management is a deployment tool developed by CERTH within the
context of ACTIVAGE, in order to handle device registration and update. Although it has
been used for IoTivity applications, it is implemented as a set of RESTful web services,
which can be readily used by any IoT platform within ACTIVAGE. The Device Management
tool has not yet been documented elsewhere, thus it is hereby presented in detail, in order to
make all relevant information available to the reader.

IoTivity is a reference implementation of OCF specification. OCF specification defines a set
of core Device Types and their required Resource Types. A Resource is the minimal
interoperable component in OCF. It has a URI and a collection of Properties. The following
Properties are mandatory: Resource Type (‘rt’) e.g. ‘oic.r.light’, Resource Interface(s) (‘if’)

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 148

e.g. ‘oic.if.a’, Resource Properties with associated key/value pairs e.g. ‘status: binary’.
Resources provide operations that comply with the OCF Interaction Model – CRUDN
(CREATE, RETRIEVE, UPDATE, DELETE, NOTIFY). Resources can be also mapped to
models from non-OCF ecosystems using Derived Models, which describe the mapping of
resources between External Models (User-defined) and Native Models (OCF).

For the devices of smart home scenario the related IoTivity Resources have been created,
providing the required operations, and are exposed by the IoTivity Server. These resources
need to communicate with physical devices or sensors through a gateway in order to update
their resource representation. In order to ease the work of development for the
communication layer in IoTivity Server and make it more configurable, we have implemented
a device management mechanism.

The mapping of the actual hardware with the resources is done through a device
management mechanism, which enables the system administrator to register specific
information for a device/sensor (e.g. the mac address of a device) that will be used for the
communication of the resources with the corresponding devices/sensors.

The device management system holds the devices information in a Relational Database,
which is used to update the Iotivity Server with the mapping between physical devices and
resources.

A device has several properties. Some of them are mandatory and some are optional,
depending on the communication type. The following table shows this in detail.

Table 37: Device parameters according to their communication type

Device
Properties

Communication Type

Bluetooth Wifi Zigbee ZWave

Device Id mandatory mandatory mandatory mandatory

Name mandatory mandatory mandatory mandatory

Type mandatory mandatory mandatory mandatory

Address mandatory mandatory mandatory mandatory

Password optional optional optional optional

Manufacturer optional optional mandatory mandatory

Model optional optional mandatory optional

The device management mechanism supports four main functionalities:

– Register a device

– Update a device

– Unregister a device

– View all registered devices

These functionalities are implemented by corresponding operations of the Registration
Service. The operations are described in the next sub-chapters 6- 6.

The definition of the four service operations implemented in Java, is shown below.
@Path("/service")

public class WebService {

 @POST

 @Path("/register")

 @Consumes(MediaType.APPLICATION_JSON)

 @Produces(MediaType.APPLICATION_JSON)

 public Response generateResponse(RegInfo info) throws Exception {

 WorkflowClass newClass = new WorkflowClass();

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 149

 Response response = newClass.parseResponse(info);

 return response;

 }

 @PUT

 @Path("/update")

 @Consumes(MediaType.APPLICATION_JSON)

 @Produces(MediaType.APPLICATION_JSON)

 public ResponseUpdate generateResponse(UpInfo info) throws Exception {

 WorkflowClass2 newClass = new WorkflowClass2();

 ResponseUpdate response = newClass.parseResponse(info);

 return response;

 }

 @DELETE

 @Path("/remove")

 @Consumes(MediaType.APPLICATION_JSON)

 @Produces(MediaType.APPLICATION_JSON)

 public ResponseDelete generateResponse(DelInfo info) throws Exception {

 WorkflowClass3 newClass = new WorkflowClass3();

 ResponseDelete response = newClass.parseResponse(info);

 return response;

 }

 @GET

 @Path("/getall")

 @Produces(MediaType.APPLICATION_JSON)

 public ResponseGet generateResponse() throws Exception {

 WorkflowClass4 newClass = new WorkflowClass4();

 ResponseGet response = newClass.parseResponse();

 return response;

 }

}

The IoTivity server requests to get all registered devices at start up. Whenever there is a
request for device registration, update or removal, the database and the IoTivity server are
updated accordingly by the related services. Apart from the services a dedicated endpoint
has been implemented also on IoTivity Server side in order to handle any addition, deletion
or update of devices. The following sequence diagram shows this process.

Figure 85: Device Management Mechanism for IoTivity Platform

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 150

Device Registration

When a new device is deployed it needs to get registered before it can communicate with
IoTivity Server. The installer or administrator of the device will need to enter the appropriate
information to the system.

The sequence diagram below illustrates the device registration procedure that takes place
after a physical device deployment and the software components that participate in this
process. This procedure takes place upon request.

Figure 86: Sequence diagram for device registration for IoTivity Platform

For this functionality, a POST operation is used, with the appropriate parameters:

Resource URL: “/service/register”

Input example

{

 "name": "Bloodpressure

monitor",

 "type": "bloodpressure",

 "mac": "00:12:A1:B0:77:AE",

 "password": "123"

}

Output

{

 "message": "The device with name: Bloodpressure monitor was registered."

}

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 151

Device Update

The sequence diagram below illustrates the steps that take place for the update of an
already registered device’s property and the software components that participate in this
process. This procedure takes place upon request.

Figure 87: Sequence diagram for device update for IoTivity Platform

For this functionality, a PUT operation is used with the following parameters:

Resource URL: “/service/update”

Input

{

 "name": "Bloodpressure monitor",

 "password": "789"

}

Output

{

 "message": "The device with name: Bloodpressure monitor was updated."

}

Device Removal

The sequence diagram below illustrates the steps that take place for the removal of an
already registered device and the software components that participate in this process. This
procedure takes place upon request.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 152

Figure 88: Sequence diagram for device removal for IoTivity Platform

For this functionality, a DELETE operation is used with the following parameters:

Resource URL: “/service/remove”

Input

{

 "name": "Bloodpressure monitor"

}

Output

{

 "message": "The device with name: Bloodpressure monitor was deleted."

}

Retrieve Registered Devices

The sequence diagram below illustrates the steps that take place in order to retrieve the list
of the registered devices.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 153

Figure 89: Sequence diagram for getting registered devices for IoTivity Platform

For this functionality, a GET operation is used with the following parameters:

Resource URL: “/service/getall”

Input Example

No Input is required

Output Example

{

 "devices": [

 {

 "ip": null,

 "mac": "00:12:A1:B0:77:AE",

 "manufacturer": null,

 "model": null,

 "name": "Bloodpressure monitor",

 "password": "123",

 "type": "bloodpressure"

 },

 {

 "ip": null,

 "mac": "00:12:A1:B1:04:CB",

 "manufacturer": null,

 "model": null,

 "name": "Thermometer1",

 "password": "123",

 "type": "thermometer"

 }

]

}

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 154

5.2.7.3 Mapping between deployment tools requirements and modules

Table 38: Mapping between IoTivity and ACTIVAGE deployment tools.

IoTivity
deployment
tool

Corresponding
ACTIVAGE
deployment tool

Can the tool be used in AIOTES?

Easy Setup Deployment
management tools /
Component
configuration

Yes No

How? Why?

The tool’s user-friendly configuration
interface and the functionality for
transferring essential information to
the devices can be used as
conceptual basis for the design of
the ACTIVAGE component
configuration tool.

The tool offers a C++
SDK, which cannot
easily be used to
implement
ACTIVAGE web-
based tools.

Device
Management
Tool

IoT infrastructure
management tools /
Device manager

Yes No

How? Why?

The tool is implemented as RESTful
web services, which can be used
directly in ACTIVAGE, with few
modifications.

5.2.8 SeniorSome
The existing development and deployment tools are the same as described in Section 4.2.8
but without AIOTES connectivity or direct connectivity to protocols described in general
sections.

The mapping to Section 5.1. is:

– Services layer: development, deployment, analytics, data: The development api can be
used with different applicable tools.

 For deploying the SeniorSome backend can be used through the deployment api.

Aiotes API:

– The AIOTES API is included in SeniorSome API:s.

Semantic interoperability layer / Broker and Platform layer:

– The Broker can utilize the SeniorSome broker through the SeniorSome API:s like the
Broker Api.

The deployment tools mapping to AIOTES is described in the below table. Further
informations is maintained at https://api.seniorsome.net.

https://wiki.iotivity.org/easy_setup
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v2.3_CERTH_03_04_2018.docx%23_Component_configuration
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v2.3_CERTH_03_04_2018.docx%23_Component_configuration
file:///S:/360-Architecture_Conception_Logiciel/360.69-sensiNact/projects/ACTIVAGE/WP4/D41-2018/ACTIVAGE_D41-v2.3_CERTH_03_04_2018.docx%23_Device_manager
https://api.seniorsome.net/

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 155

Table 39: Mapping between SeniorSome and ACTIVAGE deployment tools.

Seniorsome
deployment tool

Corresponding
ACTIVAGE
deployment tool

Can the tool be used in AIOTES?

SeniorSome API-
based backend
tool

Deployment
management tools /
Component
configuration

Yes No

How? Why?

The tool can best be used for AIOTES through
API integration. When using directly it requires
a seniorsome compliant device. However
through the API configuration other devices like
the bridged devices can possibly be deployed.

Seniorsome
Device
Management Tool

IoT infrastructure
management tools /
Device manager

Yes No

How? Why?

This tool can be used through API-
configuration and possibley through an
application layer integration.

Documentation Support As a part of the AIOTES support
documentation.

5.2.9 Summary of existing tools
This section presents a synthesized set of tables providing a quick overview of the
deployment tools for each of the platform designated to be interoperable with AIoTES
framework. This section main purpose is to provide a interested developer with a vision of
the different tools provided regarding the platform and, at the same time, serve as a listing of
the desirable functionality over the AIoTES framework.

5.2.9.1 Platform-specific deployment tools comparison

Table 40: Deployment technologies per platform
Platform Orchestrated

deployment
Package
technology

Deployment
and
configuration
technology

Accesible
service
repository

Marketplace GUI Tool for
deployment
and
configuration

universAAL Yes Pax Runner karaf Yes, but not
specified

UniversAAL
Control
Center (uCC)

universAAL
Control Center
(uCC)

SOFIA2 Yes Not specified Not specified Not
specified

Not specified Management
Software
Configuration

OpenIoT Yes docker and
virtual
machine

new: virtual
machines,
future: docker

Not
specified

Request
definition tool

Yes

SensiNact Not specified Virtual
machine

Not specified Not
specified

Not specified sensiNact studio

FIWARE Yes docker and
virtual
machine

docker and
docker-
compose

docker-hub,
fiware-lab

fiware
marketplace

fiware-lab

IoTvity Yes docker docker- Not Not specified Cloud

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 156

compose specified connection tools

SeniorSome Not available Not
Available

Not available Not
available

Not available Not available

Table 41: Deployment tools for device configuration
Platform Provides device deployment and

configuration?
Provides status monitoring and software updates on
physically deployed devices

universAAL Not specified Not specified

SOFIA2 Yes - Management software
configuration

Yes - Easy Setup tool

OpenIoT Yes - Request definition tool Yes - Request definition tool

SensiNact No - manual pairing No - manual pairing

FIWARE Yes - IDAS and Orion Yes - IDAS and Orion

IoTvity Yes - Easy Setup tool Yes - Easy Setup tool

SeniorSome Not available Not Available

5.2.9.2 Mapping between platform-specific deployment tools and proposed
ACTIVAGE deploymenttools

Table 42: IoT infrastructure management tools
Platform Device manager Service manager Semantic auto-

discovery platform
Benchmarking

universAAL Not specified Not specified Not specified Not specified

SOFIA2 No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

OpenIoT No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

SensiNact sensiNact Studio and
studio-Web

sensiNact Studio and
studio-Web

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

FIWARE No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

IoTvity Yes - Device
Management tool

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

SeniorSome Not available Not Available Not available Not available

Table 43: Deployment management tools
Platform Deployment manager Component

configuration
Maintenance panel Update manager

universAAL Not specified Not specified Not specified Not specified

SOFIA2 No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

OpenIoT Yes - Virtual machine
and docker manager

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

SensiNact Virtual machine No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

FIWARE Yes - Virtual machine No tool matching No tool matching No tool matching

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 157

and docker manager AIOTES requirements AIOTES requirements AIOTES requirements

IoTvity No tool matching
AIOTES requirements

Yes - Easy setup No tool matching
AIOTES requirements

No tool matching
AIOTES requirements

SeniorSome Not available Not Available Not available Not available

5.3 Development within AIOTES

5.3.1 Functional description

The objective of this section is to provide a detailed description of the tools that are going to
be developed and presented as deployment tools in the scope of the ACTIVAGE project, all
this together with an action plan for the development of the platform based on an analysis of
the dependencies between the different modules that compose it. These tools come from the
AIOTES framework requirements, the different use cases taken and explained in Section
3.3, the architecture description done in Section 5.1, the deployment tools specification done
for each platform in the previous section and of course the attempt on the project partners to
advance the needs of third parties developers.

As can be seen in Figure 90 the deployment tools can be separated regarding the IoT
infrastructure and services deployed in: the set of IoT services that are going to be deployed
in the AIOTES framework southbound layer, and deploy, discovery and manage of services
running over the framework. At this point is important to remark that the section describe
only tools presented on top of the framework, even when platform specific tools and
functions are mentioned or treated the purpose is to provide this capabilities through a suite
of centralized and agnostic functions on services. For a better understanding of the different
services a brief description is provided:

IoT infrastructure management, compile a set of functions that, even when are platform
specific, must be presented in a platform-agnostic way. That is providing a reduced set of
functions that can be transformed and processed by the interoperability layer to allow main
functionalities, as the registration, discovery or manage of new devices or services, from a
platform independently definition to a platform specific function. The tools need cover also
functionalities like configuration and security, both considered key points in the project.

Distribution and deployment cover the set of functions that have to be presented as the
named semantic auto-discovery platform. This platform must assure a complete support to
the overall deployment process and also mut handle semantically enhanced discovery of
existing services by using semantic query mechanisms on existing and newly created
semantic models.

According to the functional descriptions and tools identification provided in Section 5.1 the
Figure 90: Deployment tools in AIOTES high level architecture is created trying to put in
place the deployment tools in the complete AIOTES architecture. In the following sections
each tool will be analysed exposing its concrete functionality and deploy and presentation
method of the tool.

The interest, from the project point of view, is not to start from scratch but reuse all valid
platform-specific tool developed, at least as much as it can be used. In this way, the previous
sections turn out to be extremely important in the planning and deployment of the different
tools outlined in Architecture section.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 158

Figure 90: Deployment tools in AIOTES high level architecture

5.3.2 Deployment tools description

5.3.2.1 Deployment Tools Proxy

5.3.2.1.1 Functional description
This service provides a unique point of access to the deployment tools functionality. Its
purpose is to limit and control the access to certain operations in the system and, at the
same time, serves like a mechanism of dependency reduction between the rest of the tools.

Even when the deployment tools could work without this tool, its use provides simplicity by
processing the complex operations maintaining this complexity hidden to the end users. The
tool may be developed stateless assuring its replicability behind a load balancer in a cloud
environment.

5.3.2.1.2 Deploy and presentation method
The service must provide a REST-based API with the main functions discussed throughout
this document.

Once the service has been developed and tested the service must be containerized and
presented as a docker container ready to be deployable. Together with the tool an API,
functionality and deploy documentation is required.

5.3.2.2 Deployment Tools User Interface

5.3.2.2.1 Functional description
The user interface should provide a simple, intuitive and friendly way of interaction with the
deployment tools for technical and non-technical users. This tool should represent the
overall functionalities covered by the deployment tools. Capabilities like:

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 159

– a web semantic query engine, with historic, a query helper builder, some samples or
change between ontology raw data and a more readable view will be really helpful;

– a building block composer, a visual tool to create and compose services private
networks;

– a service status dashboard, that could provide users with services status real time
information.

Other functionalities, like services upload, edit and deploy could be provided through forms.

5.3.2.2.2 Deploy and presentation method
As a web development the service will be deployed in a HTTP server, Nginx or Wildfly are
possible solutions. This servers will be deployed in docker containers to assure the
consistency of the entire system.

In order to retrieve information the user interface will use the Deployment Tools Proxy.

5.3.2.3 Device Manager

5.3.2.3.1 Functional description
Device Manager covers the main functionalities related to a device registered in the
framework. This service must provide methods to:

– device registration,

– provide device configuration,

– provide semantic specification,

– manage device status and operations.

5.3.2.3.2 Deploy and presentation method
The service must provide a REST-based API with the main functions aforementioned.

The service will be presented as a stateless microservice container.

5.3.2.3.3 REST-based methods
Device Manager must provide REST-based methods allowing application developers and
deployers to:

– Register a new device in AioTES framework,

– Provide custom configuration by device,

– Provide semantic descriptor by device

5.3.2.3.4 Sequence diagrams
For a better understanding of the functionalities provided by the component, the shows
Figure 91 the operation flow and components interactions.

5.3.2.3.5 User interface
A first graphical user interface is proposed in Figure 92.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 160

Figure 91: Device manager sequence diagram

Figure 92: Device manager GUI mockup

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 161

5.3.2.4 Service Manager

5.3.2.4.1 Functional description
Service Manager covers the main functionalities related to a service or application published
or not published yet but ready to be upload. This service must provide REST-based methods
to:

– upload a service in the catalog,

– publish the service like a ACTIVAGE application or service,

– delete the application,

– configure a service descriptor specifying its semantic discovery or other interesting
information,

– release a service new version,

– and retrieve services published information: like property or use statistics.

5.3.2.4.2 Deploy and presentation method
The service must provide a REST-based API with the main functions aforementioned.

The service will be presented as a stateless microservice.

5.3.2.4.3 REST-based methods
Service Manager must provide REST-based methods allowing applications developers to:

– Register a new service in the system,

– Provide service configuration in terms of inputs and outputs,

– Provide service semantic descriptor,

– Remove a service,

– Upgrade a service version

5.3.2.4.4 Sequence diagrams
For a better understanding of the service manager component and its interactions Figure 93
is presented. This figures describes the methods main flow in terms of components
relationships.

5.3.2.4.5 User interface
A first graphical user interface is proposed in Figure 94.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 162

Figure 93: Sevice manager sequence diagram

Figure 94: Sevice manager GUI mockup

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 163

5.3.2.5 Service and Device Catalog

5.3.2.5.1 Functional description
Service Catalog and Device Catalog are abstractions layers over storage systems allowing
postpone and change the specific storage technology chosen. The service must provide
only a couple of methods to retrieve and store a non-instantiated version of the services
registered as ACTIVAGE applications.

Currently, in the Service Catalog case, the technology chosen to store and deploy all the
services in the system is Docker, so the Service Catalog must provide this abstraction layer
directly over a Docker Registry.

5.3.2.5.2 Deploy and presentation method
This service must provide a REST-based API with the main functions aforementioned.

The service will be presented as a stateless microservice deployed inside a docker
container. At this point, in the service Catalog case, the real need of develop an abstraction
layer over a well defined container (registry is made and containerized by the docker
community) is being analysed.

5.3.2.6 Semantic Discovery Tool

5.3.2.6.1 Functional description
This service can handle semantically enhanced discovery of existing IoT services and
applications on the client side by using semantic query mechanisms on existing and newly
created semantic models with extra help of software agents.

5.3.2.6.2 Deploy and presentation method
The service must provide a REST-based API with the main functions aforementioned.

The service will be presented as a stateless microservice.

5.3.2.6.3 REST-based methods
Semantic auto-discovery platform must allow deployers and application developers to:

– Search for IoT devices and services based on the semantic output required,

– Search for services based on the semantic input and output,

5.3.2.6.4 Sequence diagrams
The Figure 95 provides a clear vision of the interactions between components in AIoTES
when each method is called.

5.3.2.6.5 User interface
A first graphical user interface is proposed in Figure 96.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 164

Figure 95: Semantic discovery tool sequence diagram

Figure 96: Semantic discovery tool GUI mockup

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 165

5.3.2.7 Composition Building Service

5.3.2.7.1 Functional description
Composition Building Service must be compatible and extend a similar development tool.
While in the development tools a graphical service and a couple of functions must allow the
composition of services in order to create new applications and services, this tool must add
functionality allowing the description of private network services. That is, a small set of
services that work together in an isolated scope.

5.3.2.7.2 Deploy and presentation method
The service must provide a REST-based API with the main functions aforementioned.

The service will be presented as a stateless microservice.

The service must assure the storage of the services composition and net descriptions in
order to be able to monitor and recreate it on failure conditions

5.3.2.8 Benchmarking

5.3.2.8.1 Functional description
This service must provide real time information about the state of the services. Data like
status, running or stopped; resources consumption or input and output traffic data through
the service must be listed.

5.3.2.8.2 Deploy and presentation method
The service must provide a REST-based API with the main functions aforementioned.

The service will be presented as a stateless micro-service.

5.3.2.8.3 REST-based methods
Benchmarking must provide a set of well-defined REST-based methods in order to:

– Retrieve service’s performance status,

– Retrieve service’s security and privacy status.

5.3.2.8.4 Sequence diagrams
Figure 97 provides a visual description of the complete operation flow for both capabilities
presented.

5.3.2.8.5 User interface
A first graphical user interface is proposed in Figure 98.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 166

Figure 97: Benchmarking sequence diagram

Figure 98: Benchmarking GUI mockup

5.3.2.9 Deployment Manager

5.3.2.9.1 Functional description
Deployment Manager must assure the correct services and application deployment and its
configuration once they are running. Assuming that the framework is developed and
deployed using docker technology, this service must have access to the docker-engine, in
order to be able to instantiate, stop or restart any of the containers running.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 167

5.3.2.9.2 Deploy and presentation method
The service must provide a REST-based API with the main functions aforementioned.

The service will be presented as a stateless micro-service.

5.3.2.10 Inventory Viewer

5.3.2.10.1 Functional description
Inventory Viewer provides a set of well-defined methods to retrieve the current status of the
different deployment sites providing services deployed, status of those services and the
resource consumption.

5.3.2.10.2 Deploy and presentation method
The service must provide a REST-based API with the main functions aforementioned.

The service will be presented as a stateless micro-service.

5.3.2.10.3 Supported functionalities
Inventory viewer must provide a set of well-defined REST-based methods in order to:

– Retrieve deployment site status,

– Retrieve service status,

– Retrieve operation historical by service.

5.3.2.10.4 Sequence diagrams
For a better understanding of the flow process, the operations provided by the module are
depicted in Figure 99.

5.3.2.10.5 User interface
A first graphical user interface is proposed in Figure 100.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 168

Figure 99: Inventory viewer sequence diagram

Figure 100: Inventory viewer GUI mockup

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 169

5.3.2.11 Component Configuration

5.3.2.11.1 Functional description
Component configuration must provide a set of methods to be able to configure the service
and its interactions with other ACTIVAGE Applications, like Data Lake and Analytics.

5.3.2.11.2 Deploy and presentation method
The service must provide a REST-based API with the main functions aforementioned.

The service will be presented as a stateless micro-service.

5.3.2.11.3 REST-based methods
Component configuration module must provide the set of REST-based methods that allows
a deployer to:

– Manage deployed services’ configurable parameters,

– Deploy a new service instance,

– Comission a deployed service in order to provide a custom configuration

5.3.2.11.4 Sequence diagrams
For a better understanding of the flow process, the operations provided by the module are
depicted in Figure 101.

Figure 101: Component configuration sequence diagram

5.3.2.11.5 User interface
A first graphical user interface is proposed in Figure 102.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 170

Figure 102: Component configuration GUI mockup

5.3.2.12 Maintenance panel

5.3.2.12.1 Functional description
The maintenance panel provides a set of well-defined methods in order to facilitate the
deployer the view and status of all components (devices and services) installed in a
deployment unit or site.

5.3.2.12.2 Deploy and presentation method
The service must provide a REST-based API with the main functions aforementioned.

The service will be presented as a stateless micro-service.

5.3.2.12.3 REST-based methods
Maintenance panel must provide a set of well-defined REST-based methods in order to:

– Retrieve services’ operation status by deployment site,

– Subscribe to notification by service

5.3.2.12.4 Sequence diagrams
For a better understanding of the flow process, the operations provided by the module are
depicted in Figure 103.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 171

Figure 103: Maintenance panel sequence diagram

5.3.2.12.5 User interface
A first graphical user interface is proposed in Figure 104.

Figure 104: Maintenance panel GUI mockup

5.3.2.13 Update manager

5.3.2.13.1 Functional description
The update manager deployment tool provides a set of well-defined methods which
facilitates the deployer in updating the installed components and for this provides a
notification service that notifies when new versions are available for each component.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 172

5.3.2.13.2 Deploy and presentation method
The service must provide a REST-based API with the main functions aforementioned.

The service will be presented as a stateless micro-service.

5.3.2.13.3 REST-based methods
Maintenance panel must provide a set of well-defined REST-based methods in order to:

– Update a selected component,

– Notify interested user when a new component version is released.

5.3.2.13.4 Sequence diagrams
For a better understanding of the flow process, the operations provided by the module are
depicted in Figure 105.

Figure 105: Update manager sequence diagram

5.3.2.13.5 User interface
A first graphical user interface is proposed in Figure 106.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 173

Figure 106: Update manager GUI mockup

5.3.3 Interactions between the Marketplace and deployment tools
As already described, deployment tools cover the processes of publishing, configuring,
deploying and monitoring services in the AIOTES framework. Meanwhile, the ACTIVAGE
Marketplace provides a user-friendly portal for creators/developers, deployers, technicians,
stakeholders and end-users to carry out these exact processes of publishing, configuring,
deploying, updating and, to some extent, monitoring AIOTES applications.

In this way, the Marketplace serves as front-end, and to be exact a higher-level user
application that encapsulates deployment tools. The deployment tools, then, provide some,
but not all, the fundamental functionality of the ACTIVAGE Marketplace. For the sake of
completeness, first the overall Marketplace functionality is presented here, before examining
dependencies on deployment tools.

Figure 107 shows a wireframe/mockup of the Marketplace Home Page, which shows an
overview of featured and top rated apps, and the ability to search for apps using various
filters and categories (tags). It also allows the current user to edit his profile, billing options,
devices etc. An implementation of this wireframe is shown on Figure 108. Selecting an
application leads to the Application View, a mockup of which is shown on Figure 109. This
view presents screenshots of the application, information on home many installs it currently
holds, user comments and replies and most importantly, the ability to buy and deploy it to a
selection of the current user’s connected platforms and devices.

While the Marketplace is presented thoroughly in D4.3, this deliverable highlights the
interactions between it and the deployment tools. Table 44 briefly lists all functionality, for
completeness, with indications of where deployment tools are needed to realize these
processes. In all cases, the Marketplaces delegates and takes advantage of the deployment
tools REST-based API. These cases are mostly associated with discovering the user’s
active connected devices and platforms to deploy to or manage and the service and device
managers to actually deploy or update the applications. The rest of the functionality is
implemented within the Marketplace itself, including not only the standard front- and back-

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 174

end of the web application to store and view the applications but also application search and
discovery with the aim to support users and boost application sales.

Figure 107: Marketplace Home Page mockup

Figure 108: Marketplace Home Page implementation

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 175

Figure 109: Marketplace Application View mockup.

Table 44: Marketplace functionality and dependencies on Deployment Tools

Functionality User
Role

Description Deployment Tools

Publish
Applications

Developer Developers can publish their
applications provided with a certain
well-formed description, tags and
features that will best allow for their
discovery.

-

Sell Applications Developer Developers can receive and track
payments, installs and uninstalls.

-

Receive and
Reply to Ratings
and Comments

Developer Receive Ratings and Comments on
developed applications and respond to
them.

-

Search
Applications

All End-users can browse and search the
repository of applications by maker,
title, tags, category and description as
well as discover links to applications
similar to the ones the like.

-

Buy Applications End-user Pay for application using standard,
secure payment methods

-

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 176

Deploy
Applications

End-user Download and deploy applications to
compatible devices, either locally (i.e.
same device the Marketplace is
browsed from) or remotely (remote
device is associated with the user and
has internet access)

All

(e.g. Service
Manager/Catalog, Device
Manager/Catalog,
Semantic Discovery etc.)

Update
Applications

End-user Update applications with latest version
automatically or after approval

All

(e.g. Service
Manager/Catalog, Device
Manager/Catalog,
Semantic Discovery etc.)

Rate and
Comment on
Applications

End-user Rate owned applications, comment
and get replies

-

Manage User
Account

All Manage user profile, application
wishlist, transactions, installed
applications and associated devices.

Device Manager/Catalog

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 177

6 Conclusion / Future Work
This is the first version of deliverable D4.1 that reports on the progress and work done in
Task 4.1 and 4.3, aiming at providing a set of development and deployment tools that can
facilitate the adoption of ACTIVAGE approach for AHA IoT solutions, and that are part of
AIOTES.

One of the main barriers frequently reported for the extended use of IoT platforms in AHA
domain, according to the developers’ community of the input platforms, is the lack of easy to
use development and deployment tools, especially for less technical specialist stakeholders,
so the tools defined in this report constitute important assets of ACTIVAGE project to
achieve acceptance from external stakeholders and succeed in the goal of enlarging the
ecosystem.

The proposed tools cover the whole lifecycle of AHA solutions based on IoT, from design to
operation, and the initial steps have advanced the needed identification of use cases and
requirements related to development and deployment tools.

After the analysis of the requirements extracted from different sources (i.e. background IoT
platforms, deliverable D2.1 on requirements, technical experts from deployment sites…), 23
requirements related to development tools have been defined, organising them in four main
categories: support consumption, implementation, data processing and IoT infrastructure
management.

Similarly, a total of 14 requirements related to deployment tools has been organised in two
main categories, such as IoT infrastructure management, both devices and services, and
distribution and deployment.

In the analysis of these requirements it has been taken into account the different level of
skills and competences of developers, so the definition of use cases reflects the complexity
of the potential users of the tools. In particular, it is proposed to incorporate in the set of tools
a new one specially developed for non-technical developers, ClickDigital, a pluggable visual
IoT IDE for different IoT platforms, and that will be connected to IoT platforms deployed in
ACTIVAGE through AIOTES interoperability layer.

As result of this work, the conceptual architecture of the ACTIVAGE development tools
component as well as deployment tools component and its connection to the other
ACTIVAGE components have been defined, specially with regard to the AIOTES SIL, data
lake and data analytics layers. A total of 21 development tools and 8 deployment tools have
been specified, describing their goal, main functionalities and intended usage. The proposed
tools address all identified requirements.

One of the cornerstone of ACTIVAGE project is the reusability, from all possible aspects, so
the next step once we have defined the needed tools has been to analyse which tools are
already provided by the IoT platforms integrated in ACTIVAGE and could form the basis for
the set of development tools. The result of this analysis can be viewed in section 5.2.8 and
provides an accurate landscape of available tools.

A similar analysis has been done for the deployment tools, this time also including other well-
known platform independent tools, such Docker or OSGi based tools. The result of this analysis
can be viewed in section 6.2.9 and in this case, it evidences the lack of appropriate tools for
deployment that could be potentially reused. As a consequence, a more detailed functional
description, including use cases diagrams and mock-up GUI are provided in section 6.3

The next steps regarding the development and deployment tools is to start the
implementation work of the different tools according to the agreed plan, summarized in

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 178

Section 4.3.1 for the development tools. An initial set of tools will be available at the time of
launching ACTIVAGE first open call, as described in D7.1, [36], as they are needed for the
external stakeholders participating to develop and deploy their solutions on top of AIOTES.

Deliverable 4.1 – Developers toolkit and deployment support

Version 1.0 I 2018-06-05 I ACTIVAGE © 179

References
[1] D3.1 REPORT ON IOT EUROPEAN PLATFORMS: ACTIVAGE > 3 ACTIVAGE PROJECT > 014 Project Deliverables >

Deliverables Month 3 > Deliverable 3.1 - Report on IoT European Platforms

[2] HTTPS://FORGE.FIWARE.ORG/PLUGINS/MEDIAWIKI/WIKI/FIWARE/INDEX.PHP/WELCOME_TO_THE_FIWARE_WIKI

[3] WWW.FIWARE.ORG

[4] HTTPS://WWW.FIWARE.ORG/DEVELOPERS-ENTREPRENEURS/

[5] HTTPS://CATALOGUE.FIWARE.ORG/

[6] HTTP://WWW.OPENIOT.EU

[7] HTTPS://GITHUB.COM/OPENIOTORG/OPENIOT

[8] HTTPS://GITHUB.COM/GOLLUM/GOLLUM#README

[9] HTTP://SOFIA2.COM

[10] HTTP://SOFIA2.COM/DESARROLLADOR_EN.HTML#DOCUMENTACIO

[11] SWAGGER: https://swagger.io/

[12] ORACLE APIARY: https://apiary.io/

[13] GIT: HTTPS://GIT-SCM.COM/

[14] GIT DOCUMENTATION: HTTPS://GIT-SCM.COM/DOC

[15] UNIVERSAAL IOT, SEMANTIC INTEROPERABILITY FOR RAPID INTEGRATION & DEPLOYMENT:
HTTPS://GITHUB.COM/UNIVERSAAL

[16] SOFIA2 WEB SITE: HTTP://SOFIA2.COM/HOME_EN.HTML

[17] OPENIOT – OPEN SOURCE CLOUD SOLUTION FOR THE INTERNET OF THINGS: HTTP://WWW.OPENIOT.EU

[18] HTTPS://GITHUB.COM/OPENIOTORG/OPENIOT/WIKI

[19] HTTPS://GITHUB.COM/OPENIOTORG/OPENIOT/WIKI/DOWNLOADS

[20] HTTPS://GITHUB.COM/OPENIOTORG/OPENIOT/WIKI/USER-INSTRUCTIONS

[21] SENSINACT WEB SITE: HTTPS://PROJECTS.ECLIPSE.ORG/PROJECTS/TECHNOLOGY.SENSINACT

[22] HTTP://EDU.FIWARE.ORG/

[23] HTTP://SOFIA2.COM/DOCS/(EN)%20SOFIA2-SOFIA2%20CONCEPTS.PDF

[24] HTTP://SOFIA2.COM/DOCS/(EN)%20SOFIA2-FIRST%20STEPS%20WITH%20SOFIA2.PDF

[25] HTTP://SOFIA2.COM/DOCS/(EN)%20SOFIA2-HOW%20TO%20DEVELOP%20ON%20THE%20SOFIA2%20PLATFORM.PDF

[26] HTTP://SOFIA2.COM/DOCS/SOFIA2-APIS%20SOFIA2.PDF

[27] HTTP://SOFIA2.COM/SIB/

[28] HTTPS://WWW.OPENLDAP.ORG/

[29] HTTPS://HUB.DOCKER.COM/U/IOTIVITY/

[30] FIWARE WEB SITE: HTTPS://WWW.FIWARE.ORG/

[31] IOTIVITY WEB SITE: HTTPS://WWW.IOTIVITY.ORG/

[32] SENIORSOME WEB SITE: HTTP://WWW.SENIORSOME.COM

[33] ONEM2M WEBSITE: HTTP://WWW.ONEM2M.ORG

[34] ECLIPSE TECHNOLOGY: HTTPS://PROJECTS.ECLIPSE.ORG/PROJECTS/TECHNOLOGY

[35] ECLIPSE PUBLIC LICENSE V1.0 : https://www.eclipse.org/org/documents/epl-v10.php

[36] D7.1 INITIAL ECOSYSTEM MANAGEMENT PLAN: ACTIVAGE > 3 ACTIVAGE PROJECT>014 PROJECT DELIVERABLES > 05 -
DELIVERABLES MONTH 15 D.7.1 INITIAL ECOSYSTEM MANAGEMENT PLAN

https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objaction=overview&objid=15374661
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objaction=overview&objid=15374661
https://catalogue.fiware.org/
https://github.com/OpenIotOrg/openiot
https://github.com/gollum/gollum#readme
http://sofia2.com/
http://sofia2.com/desarrollador_en.html#documentacio
https://swagger.io/
https://apiary.io/
https://github.com/universAAL
http://www.openiot.eu/
https://projects.eclipse.org/projects/technology.sensinact
http://edu.fiware.org/
http://sofia2.com/docs/(EN)%20SOFIA2-How%20to%20develop%20on%20the%20SOFIA2%20platform.pdf
http://sofia2.com/sib/
https://www.openldap.org/
https://www.fiware.org/
https://www.iotivity.org/
http://www.seniorsome.com/
http://www.onem2m.org/
https://projects.eclipse.org/projects/technology
https://www.eclipse.org/org/documents/epl-v10.php
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objId=6684555&objAction=open
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objId=10419218&objAction=browse
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objId=10419218&objAction=browse
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objId=15633949&objAction=browse
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objId=15633949&objAction=browse
https://dms-prext.fraunhofer.de/livelink/livelink.exe?func=ll&objId=15641571&objAction=browse

