FAIL-SAFENESS IN A MULTIPROCESSOR SYSTEM:
A DISTRIBUTED STRATEGY

BASED ON BACKWARD ERROR RECOVERY

P. Corsini*, L. Lopriore**, L, Strigini#*##®

¥ TIstituto di Elettronica e Telecomunicazioni
Universita di Pisa, Pisa, Italy

*% Istituto di Elaborazione dell'Informazione
Consiglio Nazionale delle Ricerche, Pisa, Italy

*#*Jelenia, Industrie Elettroniche Associate, S.p.A.

Roma, Italy

FAIL-SAFENESS IN A MULTIPROCESSOR SYSTEM:

A DISTRIBUTED STRATEGY BASED ON BACKWARD ERROR RECOVERY
P, Corsini*, L. Lopriore**, 1,, Strigini*#¥*

*Tgtituto di Elettronica e Telecomunicazioni
Universita di Pisa, Pisa, Italy

#*Tgtituto di Elaborazione dell'Informazione
Censiglio Nazionale delle Ricerche, Pisa, Italy

¥*#Selenia, Industrie Elettroniche Asscociate S.p.A., Roma, Italy

Abstract: A method for fault-handling is presented, designed for
multiprocessor systems supporting concurrent processes cooperating
through message exchange. The\proposal is described in reference to a
specific system, 1i,e., the MuTEAM prototype developed in Pisa: our
requirements was that no erroneous output be generated by the system
under a single fault hypothesis. The fault-handling model adopted is
based on backward error recovery: the set of all the application
processes is partitioned into disjoint subsets (called families), which
represent the atomic unit of recovery. Recovery points are established
on communications among families. A single consistent recovery line is
maintained, thereby avoiding the domino effect. The model does not rely
ornn the usage of mass storage devices: rather, the recovery information
pertinent to all the processes is kept in the distributed main memory

of the system.

1. INTRODUCTION

Fault—tolerance 1s becoming a qualilying requirement for comput-
ing systems in an increasing range of applications, Indeed, up to now,
most fault~tolerant systems have been designed for critical
environments, justifying the high cost of developing sophisticated

ad-hoc solutions /1-5%/. It 1is felt, however, that the cost of
fault-tolerance may be substantially reduced if certain general
fault-handling techniques are devised that can be easily tuned to the
cost and performance constraints of the specific application /6/.
Distributed systems are a suitable base for implementing such
techniques. The salient potential advantages are:
1) redundancy without full duplication. Bbue to the modularity ob-
tainable, the adjunctive hardware for fault-tolerance may be provid-

ed on a per-module basis, according to the requirements for minimal

aystem performance and soft degradation,

no
—

effective hardware support for error confinement. It is possible to
enforce the separation between protection domains by mapping it onto
the physical partition of hardware modules,

3) fault-tolerance through the distribution of control /7/. Distributed
algorithms have a potential for higher robustness, to be ascribed to
the absence of singularity points /8/. The spreading of errors due
to faults may be prevented by checks being autonomously performed by

interacting processes on communications with other processes /9/.

In this paper, a proposal is made for fault-tolerance, designed
for multiprocessor systems supporting concurrent processes cooperating
through message exchange. The approach chosen ensures that no erroneous
output is generated under a single fault hypothesis. The fault-handling

model adopted is based on backward error recovey /10-11/: the set of

partitioned 1into disjoint subsets

all the application processes
(called familiean), which: represent the atomic unit of recovery.

Recovery points are estanhlished on commmications among amilies. A

sinplie consistent recovery line is maintained, thereby avoiding the

The proposal iz described in relerence to a specific system,
i.e,, the MuTEAM prototype developed in Pisa /J13/. The MuTEAM

architecture /14/ features a clugsterized /15-18/ multiprocessor orpgani-—-

zation. Tt is provided with a kernel /19/ representing the run-time
support for a message-passing concurrent Drgunge based on O5P /207,

The activity of the stem consists of running a seb of cooperating

processes, distributed among the clusters and, 1in a given cluster,
among the computer elements constitubting that cluster.

The MuTEAM hardware configuration in described in the (ollowiog
section. The subset of the MuTEAM kernel dealing with synchronous
communications is summarized in Section 3, Then, in Section 4, the
fault-handiing strategies adopted are described in detatl. Lastly, the

specific implementation of these strategies on the MUTEAM system is

reported in Section 5.

2. CONFIGURATION OF THE HARDWARE OF THE MaTEAM SYSTEM

MuTEAM is a multiprocessor system consisting of a set of clusters

loosely connected via serial links. The link topology is application
specific, but must satisfly the constraint that each pair of nodes is

connected by at least one communicabtion path despite any single link

failure.

A standard cluster consists of up to 16 computer elements (or

nodes) connected by means of two parallel buses, namely the cluster bus

and the signalling bus (Fig. 1). The cluster bus allows the processor

of a node to access the shared memory blocks of the other nodes in the
cluster. The signalling bus, on the other hand, is utilized for
inter-node asynchroncus signal transmission,

Fig. 2 shows the block diapram of the generical node, say node N.
It consists mainly of: 1) an Extended Zentral Processing Unit ECPU; ii)
a Switching and Arbitration Logic SAL; iii} a Shared Memory Subsystem

o
3

SMS: and iv) a Private Memory and I/0C Subsystem PMS,

v

The Bxtended Central Processing Unit BCPU conslisbs easentially
of: 1) a main processor MP with segmentabtion facilities (actually a
Zilog 78001 microprocessor); 1ii1) an Address Translator AT; iii) a
communication control unit CCU (actually a 780-based microcomputer);
and iv) hardware used for implementing both the normal I/0 space and
certain segments of the supervisory memory adcéress space of the 78001

microprocessor, As will be detailed in the following section, the main

purposes of CCUs are inter-process message notification and process

scheduling. The normal I1/0 space essentially consists of the I/O-mapped
interfaces of serial controllers, utilized for intercluster
communications and for exchange of information with an external
development system. Finally, the supervisory memory segments contain
the code and working areas for: 1) bootstrap routines; 1ii) a local
debugging monitor communicating with the external development system;
and iii) routines for intercluster message routings. As well as with
other clusters and with the development system (via the serial
controllers), MP communicates with: i) SMS and PMS (via AT and SAL);
ii) the Shared Memory Subsystems of the other nodes in the same cluster
(via AT, SAL, and the cluster bus); and iii) CCU (via FIFO buffers). In
its turn, CCU is connected to the other CCUs in the same cluster by the

signalling bus: if communicating processes run on different nodes, the

J91SnTo B IO uoTaBJnfTIuc) T 814

™~
U

N,
sng 13)SNis /
/

/s

spou TeoTJausd oul IO weddeIp o0Tg 'z F14
g1ysy01Ieal aae w\u..:..é <
jsanner yEnLENE] A;rl Y31} IUES -
e g onep I sseIppe
[0:jusa ¥ B)IR 'STEILDE Am >
/
A sng Buyjzudis
N /7 /
!
P ! nnatt/m ¥\ IIIIIIIIIIIIII e
AN H m_ ajeand :Emc:\m eo o lioway ﬁ.,,\m ! _ = # = _ I !
= — FAN R
N b P DRI
7 S AV N N N i w R i
=] : !ﬂ/ =1
. T Bt O e
: p oA Ny NF N
e N
e d T ~ ZON B
LU= i N L N P 127
2 swd = 135 0414
//\ ™
e . N
“. *M " IIV/_O\ﬁnu:or__Aﬂ!Sfd!\lluﬂg
WW e ——— o)J\m/ ﬁﬂuH““”va A«J\rll
TV
| e o S oy
| TP &
4 ‘@ p— v HH;
i , o @ Ko g/
Ny nd 1
] H ~
- 1 , /\/ = (80687} dN nNdoz
Sws
/r.\\

sng 13jsngs

nerbinent messape notilications are perlormed hy the CCHs of Lhyoce
| v

nodes via the sienalling bus.
A local cpace of 128 aepments of up to GAK Ly bes ench i
associnted bo every process. When a given process | (running on MY

cenerates a local name O of o sepment, the Address Translobor A

converts the pair {P,5) into a Ib=bit virtual segment nnme relabive to
[
e

Sluster plobnal virtnal space. Such A space is composed O

a
gy s cltatically allocated Lo the nodes of the olunter, To be wmore
s

precise, bthe {iest bit (namely Private/Shared Bit) of a given virbon]

pepment name speoifies 00 Bhat mepment 1o shared or private, L.oo,

s implemented in the Shaved Memory Hubsys
apd 1/0 Subsyatenm of a node in the cluster, our further Brite {nomely
Node Bitn) spectly bhe node where that segment is allocabted. The fen

sepment wibhin the pertinent

remaining hits represent the name of the

subsystem. The conligura tion of the node hardware and the allocation
nanism described above imply that process Pocan access: 1) Tthe

shored segments implemented in the ol uster of node N: and ii) the
private sepments implemen ted in N. On the other hand, it cannot refler
to private sepnents implemented inoa diflerent node. Note thab =

qce requirves the cluster bo

complete allocation of the cluster p lohal =
be actually made up of 16 nodes.
The Switching and Arbitra Fion Looic SAL receives & virtual

voment name {rom Al and analyzes the four Node Bits., 1 they specily
) R . i K

that the sepment s allosated in a different node, the Llogic
eatablishes a pabh from the main processor MP o to the cluster hus.

Inastead i the segment is allocated in the same node, the logic
7 oy ? "

analyzes the Private/Shared Bit, and establishes a path (rom MP to SMB
N / ¥

or PM3, as required. A further task of SAL is moni torir

bus for detecting segment nmmes pertinent to SMS. Wher one such name is

detected, a path is established by the logic from the cluster bus to

SMS. An arbitration function is also perlormed, bolh to assure a single
mastership of the cluster bus and to maintain the required mutual
exclusion betweer contemporary access attempts to SMS coming from the
cluster bus and from MP. The organization described {features a high
depree of parallelism in memory accesses. Indeed, a process running on
N: 1) accesses segments 1in PMS without interfering with proceasses
running on other nodes, and accessing to segments In SM5; and i)
accesses segments in SMS without interfering at the cluster bus level
with any other process working on segments in a different memory
aubsystem,

The Shared Memory Subsystem SMS is made up of: i} a physical
memory bank of up to 1 Mbyte; 1ii) a Relocation Unit RU; and iii) a
Protection Unit PU. The Relocation Unit RU receives the 10-bit virtual
name of a segment allocated in SM5 and a 16-bit offset, and translates
such a pair into the 20-bit address of the pertinent memory location in

L i : . 10
the physical memory bank. The unit mainly consists of 2 registers,
one register for each segment of SMS. A register is 32 bits wide, and

is partitioned intc two 16-bit fields, namely the Base and the Limit

b}

fields: the quantity contained in the Base {f{ield of the register
addressed by the virtual segment name multiplied by 16 represents the
segment base in the bank. The offset is added to the base to obtain the
required physical memory address. An ad hoc logic verifies that the
of fset does not exceed the segment length, as specified by the Limit
field of the register above.

The Protection Unit PU enforces an access control list technique
/21/ for protecting the segments of SMS. The possible access rights are
READ and WRITE, and the active entities, whose accesses to the segments
must be validated, are the main processors of the nodes of the cluster

(this implies that the virtual address transmitted on the cluster bus

must be paired with the 4-bit name of the processor generating that

_) ‘ 10
address) . The unit mainly consists of 2 registers, one regicter torp

each segment allocated in SMS. ach repgisnter is 32 bits long, and bmple—
ments the access List Tor bthe pertinenl gepment. To be more procioo,

the | k—th, (kilo)-th } Bits specily the access rights held on Bhnb

sepment by MP o, k=0,1,...,1% A dedicated status line of the clustoer

bus specifies the type of the acce abtempt on the segment actually

addressed. A proper access violabtion checker compares the access bype

coment . Ao

with the riphts of the accessing processor on the specific s
will be shown in Section %, the protection mechanisms described are
abitived Vor dogicaltly dnsalating Lhe Caully node from bhe obher noden
in the cluster after a fanlt hazs been detected.

Note that all registers contained in both the Relocation and the
Protection Unitas of SM3 are accessible only to the Main I'rocessor of

the same node, ond only if it is running in the superviasor state. This
guarantees both protection Feom erroneous uger DrOCesEes ancd
confinement of errors due to faults in different nodes.

The protection environment is completed at the hardware level by
a feature of SAL which considers remiests for the cluster bus {rom MP
only if MP is running in the supervisor state. Thig dinplies that
commmication among processes allocated on different nodes can only bhe
obtained by calls of proper kernel routines,

The structure and internal organization of the Private Memory and

PMS is similar to that of SM5. However, no protection

T/0 Subsy

logic 1is provided, that 1is, both the access rights READ and WRITE on
all private segments implemented in PPMS are permanently assigned to MP.
Certain segments of PME may be used to contain the memory-mapped

interfaces of any possible input/output device private to node N.

3o LOW LEVREL MECHANTSEMS FOR MESSACGE EXCHANGE

'wo sophisticated procedures are provided ab the kernel level,

namely SECOURE SEND and SECURE RRECETIVE, which are utilized by processos

for interprocens message transmission, These procedures implemnent

secure communications featuring favlt-tolerant characteristics (nuch as

meaaape validation and Faill-sateness) and Lhe establishment of rocovery

points. They make wide use of two lower level procedures, namely GIEND

and RECEIVE, performing synchronous sape passing with no provision

P

for fault-handling. In turn, these {fwo procedures rely on a sel of

commands, implemented by (CUs, and mainly abilized Tor synchronizabion

s, In this section, these commands and a simplyfied

amorp proces

1

verasion of the SEND and RECEIVE procedures will be briefly describeod,

¢

whereas the SECURE SEND and DRCURE RECHIVE procedures will be described

only in Section 5. From now on, we will profer to a process 5 allocated
. ¥ }

on node N wishing to send a messagce of type T €o a process R allocated

on node N .

3.1, CCU Commands

ach CCU interfaces to the Main Drocessor of its own node by
providing a specialized set of commands. The most important o f these,
namely CCU SUSPEND _SENDER, CCU_SUSPEND_RECELVER, CCU_AWAKE SENDER and

CCU_AWAKE RECEIVER, will now be desgcribed.

The CCLJ»NJHP'&Il\H,)“_Sl?INlH‘IR command ig as {follows:

JCESS NAME: T:in

command CCU_SUSPEND_SENDER(R:in PR TYPE) ;

I

An actual invocation of this command performed by process 5 to CCU

causes S to be suspended and a new process to be dispatched to the main

processor MP_ of N . Process 5 is v
i i

gistered as waiting for the event:

R receives a message of type T from process 5.

The CCUWSUSPEND“RECMLVER command i1g as follows:

command (CU_SUSPEND_RECETVER(S:in PROCESS_NAME; T:in MESSAGE_TYPE);

An actual invocation of this command periormed by process R bto CCU.
J
causes R to be suspended and a new process to be dispatched to the main
procegssor MP_ of N _, Process R is registered as waiting lor a message
J J
of type T from process S.

The CCUMAWAKR~SENDHR command is as follows:

Ei(gmm;nlii (f(',i.!m/\W/'\Ki*',wiH‘lf‘ﬂ)i'il\‘(.’;: i PROCESS NAMIG, T i,ﬂ MESSAGE TR) .

An actual invocation of this command performed by process R to CCU

J

causes CCU . to signal to CCU. of node N, (where B8 is a ilocated) thatlt a
g i i

message of Ltype T coming from § has been received by R (consequently,
CCU. will schedule § as ready again).
i

Finally, the CCU_AWAKE RECEIVER command is as follows:

_TYPE);

command CCU_AWAKNMRRCEIVER(R:iE PROCESS NAME; T:in MESSAGE

An actual invocation of this command performed by process 5 to CCU

causes CCU. to signal to the CCU, of node N, {where R is allocated)
i J J

that a message of type T coming from S 1is available for R

{consequently, CCU will schedule R as ready again).
J

1

3.2. Data Base for Low Level Message Exchange

Let us now describe the data bhase provided in the kernel for
managing low level message exchanges among processes. It consists
essentially of a set of tables, called INCTABLEs, each one relevant to
a specific process. INCTAHLER pertinent to process R consists of a set

of entries. Each entry is associated to a pair {S$,T} , where S is the

name of the process which is allowed to utilize that entry for sending

11

messages of type T to R. To be more precise, the generical entry
consists of: i) the sgpecification of the process name S and the message
type T to which the entry is associated; 1ii) a flag W, speciflying if R
is waiting for a message of type T from 5; and iii) a pointer BF to (i.
e., the virtual segment name of) a buffer for the message. In turn, a
buffer consists of: 1) a Lock flag L. to prevent simultaneous access to
the buffer by R and S; 1ii) a Full flag F specifying if the buffer
actually contains a message; and iii) a memory space M wide enough to

contain the body of a message of type T. The declarations for these

objects in a self-explanatory notation are as follows:

INCTABLER is stored in a shared wemory segment of the node N to
J

which R is allocated. The access right READ on such a segment is grant-

ed to all processors in the cluster. The access right WRITE is only

granted to the main processor MP in node N . Buffers are stored in
J

J
separate segments of N _ . Both READ and WRITE access rights on each one
J
of these segments are granted to MP_ and to main processor MP_ of the
J i

node to which process S is allocated.

A directory, called the INCTABLE Directory, 1is stored in the

12

private memory of each node. 1Tt has one entry for each proces Ehe
k—th one contains a pointer to Ehe TNOTARLE of the F-th proce A
N TR T . Foby oy en o gm HEEN ey Ny N e eyt P

deciaration for these direcltorie res an tol lows
[SRIRT P

P £ b ; - ; 3

’ ;

whieeo PROCESHE NUMRCR ia bhe acbiad nomber ol processes
3.3, The SEND and RAPCHIVE Procedores

The SEND and RECETVE procedures allow a sender process ooand a

receiver process to periform

message is oA pair message Ty

body is always an array ol byte

contents ol the array.

A heading or the HEND proce

procedure SEND{D, R:

Broan MESS BODY

AGE_

Execution of the procedure

messapge type T (as specilied |

message body B. Frocess 5 is

the two following events: 1) the

message previously inserted by ©

and ii) process R is not waiting

Let us now consider the

follows:

procedure RECELIVE (R,8: in PROCESS

out MESSAGE

in PROCESS NAMIG

Catsan

suspended

synchronous message exchange. Lach

messagpge where the message

e,

and the message Type aualifies the

o
oy

rodure as ol lows:

s
SR

Tioin MESSAGE_TYPE;

Vs

the huffer pertinent to process

INCTABL to be filled with

R

the

Yy

at of either

occurrence

huflfer is full (that 1=, it containg a
and not yet completely ahsorbed by R);

for a message of type T from 3

Receive procedure. A heading

CNAME; T:oin MESSAGE TYPR;

BODY)

Eyeontion of the procedure causes the contents ol bhe bulfer pertinent
oy the commmication to he copied into bthe wvariable B local to i
Process [is suspended only on Lhe cccurronce of a condition of buller
ampty .

It ahoul

i he clear Lhat process blookings and conseguent awalken-

:

inps involved in both the procedurves menbioned above arve obtained by

ubilizing the OO commands previously described.

AL RINCONFTGURATEON AND RECOVIRY

Our requirement for system (anlt tolerance was that the system
must tolerate any single Fanlt,

By single fault we mean: 1) & node fault, 1.e.

5 oine O more

faulte localized in the same node; or ii) any set of simoltaneous node
Farilts on nodes each of which belongs bto o different cluster; or 1ii) a
link fault i.e., any get of asimultaneous faults on intercluster serial
links that do not split the aystem into non-connected subsyatems. In
this paper, we only deal with single fanlts of the irst two K inds:
1ink failures are dealt with by means of slrategles hased on succeasive
/

message routings among clusters through non-faulty links /22-24/

A

By tolerate we mean that outpubts generated by the system towards

its environment are guaranteed to be correct. We model the system

environment by means of a get of specialived processes (namely actuator

pr‘ocesges) dedicated to driving external actuators. We do not

hypothesize any ability of bFhese specialized processes to deal with

lost or repeated messages. Indeed, by correct output we mean that if a
F £ . I

message should be generated towards an actuator process, then 1L is

actually generated, and only once.

The chosen is based on: i) validating system outpubts by

14

means of autotest procedures /25-26/; 1i) rveconfiguring the aystem, in
order to cut out the node which has failed; and 1ii) the backward
recovery /23-24/ of the set of processes affected by the fault. A
single consistent recovery line is maintained, thereby avoiding the
domino effect /25/. The strategy has to work in a system which is not
provided with any mass storage device. This implies that the number of
past states maintained for each process musht be kept minimized to one.
However, in order to ensure the availability of at least one safe past
state for each process after any fault, a back-up copy and an auxiliary
back-up copy of the state must be mainbtained, stored in two different
nodes. Moreover, efficiency requires thal the frequency of updating
these copies must be reduced as far as possible, while, in order to
avoid too much degradation in the performance of the system, the

hack—up copies should be updated for a few processes at a time.

The problem of partial update is twofold. At any given time: i)
sach copy must contain correct gtate information for the pertinent

process; and ii1) the entire contents of all the copies must be

s
o

consistent, 1i.e., they must represent state of Tthe whole system
admissible when no faults are present, and congruent with the past
interaction between the system and Lts environment. The Ewo

requirements stated above represent a central isaue in fault-tolerance

for distributed systems.

4.1. Process Families

The goals mentioned previously are achieved by partitioning the
set of all the processes into disjoint subsets, called families. The
processes in the same family cooperate closely to achieve a common
functionality. They communicate with each other frequently, and, much

less frequently, with the processes of the other families, in a

controlled fashion. To be more precise, interfamily interactions are
performed sequentially, so that a family can be assimilated from its
outside to a single powerful process. Furthermere, it a data [low
occurs across +the boundary of a family, the information involved is
certified as correct: this ls obtained by validating such in formation
through the execution of the autotest procedures.

This suggests a simple criterion satisfying the two requirements
for partial update: corresponding to each interfamily communication, a
new back-up copy is put in the place of the old one, for each process

in the two families involved. This copy is: 1)} correct, as it s
validated by auvtodiagnosis; and 11) congruent with the copies of the
other proceases in the system, since rolling back all the processes of
the two families involved to this back-up state, would not undo any
interfamily communication.

The actual composition of each family, i1.e., the names of the
processes belonging to that family, is stated by the applicative
programmer, and represents a further input for the compiler. In order
to guarantee the correctness of the messages to the actuator procesgses,
the constraint should be followed whereby each of them is a family on
its own. Moreover, the resulting frequency of interfamily communication
should be the outcome of a tradeoff between two opposite reguirements:
i) the system must not be overburdened with too frequent activities of
back-up state updating; and ii) the recovery line available in case of

failure must not be too remote from the present state of the system.

4.2. Family arbiters

In order to guarantee the required serialization of interfamily
communications performed by processes belonging to the same given flam-

ily, each family is provided with an arbiter processg. Before starting

an interfamily communication, each process must obtain a grant from the
arbiter of its own family. This grant is returned only after the
arbiter has communicated properly with the other arbiters, so as to
avoid the enforced serializabion of communications becoming a source of
deadlock /27/.

The arbiters are also responsible for starting a diagnostic and
fault~handling (DFH) session corresponding to each interfamily
communication. Indeed, a request from one single arbiter is sufficient
to trigger off a DFH session: proper software mechanisms embedded in
DFH algorithms guarantee that multiple requests for system diagnosis
issued during a DFH session do not cause useless repetition of the
session. In order to ensure that at least one arbiter starts a DIFH
session at each given interfamily communication even when a faulty ncde
is present, arbiters of different communicating families are allocated
in different nodes. Moreover, =a further restriction is that any two
communicating processes belonging to different families must be allocat-
ed in different nodes. In such a way, we are assured that at least one

of the two processes makes a request for interfamily communication to

its arbiter.

4.3. Cluster Reconfiguration

After a fault has occurred and has been diagnosed in node Nf,
proper reconfiguration activities are carried out reallocating all the
processes previously allocated in Nf to non-faulty nodes. In actual
fact, in order to avold possible inefficiencies in the resulting
workload distribution among nodes, we provide a mechanism which allows
reallocation of the processes allocated in every node. To be more
precise, according to our model for faults, in each cluster as many

different faults may occur as there are nodes in that cluster: for each

17

fault, we store proper information about where to reallocate every
process in the cluster. However, ef{iciency considerations for
reconfiguration suggest that, in order to generate the lowest
information flow: i) a process allocated on a non-faulty node should be
reallocated on the node containing its back-up copy, or on its own node
{storing the auxiliary back-up copy of the process); and 11) a process
allocated on the faulty node should be reallocated on the node
containing its back-up copy. These criteria should also be kept in mind
by the applicative programmer when distriboting back-up copies and

auxiliary back-up copies amony nodes.

Let us consider a proceas P allocated on node N . We designate:
8

i) by CDP and W/’\D the two sets of segments containing the code and the
working area ol P, respectively {thewe segments are gstored in the
private memory of N”); and 1i) by INC'I"P and BUFp the two sefts of
segments contalning JNCW\B],]CP and meszapge buffers for P (these segments
are stored in the shared memory of N). In order to allow recovery
after a failure, it is sufficient to maintain a single back-up copy of
the process code: the pertinent set of sepgments is called B(II)P, and 1t
is stored in a node Nv different from Nxf On Nv we also maintain the
back—-up copy of the past state of process P, that is, of WAP’ '[N(}TP and
BUFP: the pertinent sets of segments are called BW!\P, B INCTP and l’sHLH*P,
respectively. Moreover, let /\W/\P, /\‘J'NC‘I‘P and /—\BUFP he the set of
segments storing the auxiliary back-up copies of the state of P: in

order to minimize the utilization of the cluster bug during their

updating, these copies are maintained in the private memory of node N .
U

5.1. Data-Bage for Fault-Handling

All the configuration information pertinent to process P is con-
tained in a table, called Process Jfault [andling Table PFHT), Besides
the name of the process and of the node where the process is allocated,
the table contains an array of node names, the {-th one specifying
where P must be relocated after a failure has occurred in node Nf,
Moreover, the table contains pointers to the process code area, working
area, INCTABLE area and bhuffer area, and +to all the back-up and
auxiliary back-up copies of these areas, as described above: in order
to reduce the slze of the table, we make |t oblipatory for each area to

be stored in a set of consecutive virtual memory segments, so that it

fondo

s completely addressed by the name of the first segment, together with
the number of the segments constituting that area. A structure for

PFHTP is given by the following declaration:

PFHTP is stored in the private memory of node N . A back-up copy

u

of PFHTP, called BPFHTP, is stored in the private memory of the same

node N where the back-up copy of the process state is stored. A
v

directory in each node, called the Fault-Handling Directory, contains
pointers to all PFHTs and BPFHTs stored in that node. A definition for

these directories is as follows:

19

where the range is stated according to the actual number of PEHTs and
BPFHTe stored in the szpecific node.

The data base for fault-handling is completed aft the node level
by twe tables, called Family Configuration Table FCT and Arbiter Table
ART, both stored in the private memory of the node, The f{irst has one
entry for sach process: the contents of the r-th entry specifies the
family +the r-th process belongs to. A null family name sgpecifies that
the pertinent process must be considered ns belonging to every family:
as will be shown later, the only processes characterized in This way
are family arbiters and diagnostics and fault-handling processes { these
processes, whose concurrent execubion produces a DFH session, will be
described later in this section). The Arbiter Table has one entry for
each family: the contents of the s-th entry specify the name of the

arbiter associated to the s—-th family. bDeclarations for these tables

are as follows:

5.2. Secure Message Passing

As stated in Section 3, a process wishing to send or receive a
message should not utilize the SEND or RECEIVE procedures. Instead, it
should make use of two higher level procedures, namely SECURE _SEND and
SECURE_RECEIVE, whose aim 1is to enforce the digcipline on message

passing described in the previous section. Indeed, these procedures 1n

20

turn actunlly

the effective

and validation

Let S

]

follows:

Cons ider act

ar

\
3

g {aliocated on

T and body B

procedure exedt

Configuration

families of S a

is an intrafami

proper call of
interfamily

one

name AR

the)

requesting to

communication,

process. A mes

is accorded by

have taken

arbiters of

call

now

Table

enter

plac

oth

the SEND and RECEIVE procedures Cor obtaining bobh

bransfer of informalion and the reguired serializnbion
of interfamily communicabions,
refer to the SECURE SEND procedure. A program 16 a

b j
.
BE
i
] [
(A
3 i
i Eeky N
RS K ‘

ual invocation of the procedure, performed by a (S

| BRI

node N) wishing to gend n message ol a specified fype
i
o a receiver process [(allocated on node N). e

ition firstly causes proper accesses 1n

N o Tor obtaining the names

node . 1o
i bt R

o
i

nd R, respectively., I F =1 , {that is, the communicnbion
50R

iy one), message transmission is simply obtained by a

the SEND procedure. Instead, if the communicabion 1o an

the Arbiter Table is f{irstly accessed for obtalni

ng

¥

f the arbiter of family I . A message 15 sent

i

the critical section congtituted by the interfam)

and B the name of the intended recelver

specifying

age containing the prant is Then wailted [or: ant

the only after syncronization activities

arbiter proper

ce, dnvolving arbiter AR of family F and, poss ibly,
) R i N
er families communicating with F_. When the pgrant has
O

21

been obtained, the actual transfer of the message to process R is

i

accomplished by utilizing the SEND procedure. Afterwards, a message i

sent to arbiter AR, asking permission to exit the critical section. A

)]

{

message containing permission is then walted for: permission is
accorded by the arbiter only after a Jdiagrostic and fault-handling
session has taken place, validating message transmission and elther
updating back-up states (as required) or possibly causing a backward
error recovery., It should be noted that a call of the SECURE_SEND or
SECURRE__RECETIVE procedure in communications between arbiters simply
turns into a call of the SEND or RECEIVE procedure, respechtively: this

happens because each arbiter belongs to all lamilies.

Let us now refer to the SECURE RECEIVE procedure, A program is as

follows:

As in the case of SECURE_SEND, consider an actual invocation of the pro-
cedure, performed by a process R wishing to receive a message of a
specified type T from a process S into a 1local wvariable B. The
procedure execution firstly checks if R and S belong to the came
family. If so, message recelving is simply accomplished by a proper
call of the RECEIVE procedure. Otherwise, the same call is a critical
section. So it must be preceded and followed by proper message

exchanges with arbiter ARR of the family FR. These message exchanges

22

are similar to those described above for the SEND procedure: their aim
is to request and obtain permission to enter and leave the critical
section, respectively (the behaviour of arbiter ARR is similar to that
of AR : it allows the critical section to be entered only after
synchronizing with ARS and, possibly, with other family abiters;
moreover, it allows the critical section to be abandoned only after

triggering off a DFH session, and waiting for session termination).

5,3, Fault Handling

Let us now analyze a diagnostic and fault-handling session in
more detail., It is supported by a set of highest priority processes,
called Diagnostic and Fault-Handling Processes (DFHPs), one for each
node. DFHPs may communicate with each other; moreover, each of them may
communicate with all the family arbiters in its own node. In all cases,
as DFHPs and arbiters are considered to belong to every family, these
communications are carried out as intrafamily ones. No back-up
information about the states of DFHPs is maintained; indeed, after a
fault, these processes are neither reallocated nor rolled back.

As long as no DFH session is being carried on, all DFHPs are su-
spended, waiting for a message from any of the respective potential
partners in a communication. When a DFHP receives a request from an
arbiter for a DFH session, it extends the request to all other DFHPs:
this triggers off the session, which always begins with system
diagnosis. During this phase, DFHPs execute a parallel algorithm
characterized by the consistency of results obtained by each DFHP
running on a non-faulty node, and by syndrome decoding being local to

each DFHP. This algorithm, detailed in /26/, guarantees a satisfactory

23

depree of fault coverage alb low cost, 10 propecly suppor bed by
specialized test and error detection hardware .

Let us now consider a no-fanlt aituation. In this aase, opon
termination of the diapgnostic activity, each DFHP avtonomously enters a
back-up phase: concurrent exccubion of this phase by atl DEHPa prodoces
updating of the back-up and auxil Lary back-—up coples ol all procesaes
belonging te the families involved in Lhe interfamily communication

which caused the DFH session. let us refer to DFHP allocated on node

m

N o Tiretily, it looks up the Family Configuration Table FTC stored in
i i

N for obbaining bthe names of Lhope procosses which are both alloonted
m

in N and belong to the families above. Then, DFHP npdates the bhack-up

m m

and auxiliary bhack-up copies ol each of these processes hy exchanyging

nroper messapges with the DFHPs In the node storing the copies. Lastly,
DEHP concludes its own elaboration by sending an acknowledgment

mn

message to tThe arbiters possibly allocated in N and a
im

ssociated to the
families involved in interfamily communication.

nstead, let us congider the case in which a fault exiasts in the
system, localized in node N . In this case, each DD terminates the

diagrnostic phase after having idenliiied and localized the fault. In

this way it enters a faul t-handling phase: concurrent execution ol this

se by all DFHPs on non-faulty nodes produce global fault-handling

pha

activity consisting of three steps. In the first step, node N is
‘

lopically disconnected from non-Canlty nodes. In the second step,

processes are redistributed among these nodes, and hackward recovered.

ror me

Lastly, 1in the third step, consistency of the data e

exchange is restored.

ain to DFHP allocated on node N and ashall

We now refer

m im

describe its activities pertinent to the three sbteps above. In the
first step, it deletes from the registers of the Proftection Unit U of

N all access rights owned by N on shared memory segments implemented
m N t

24

in N . Moreover, it notifies CCU that any communication coming Trom
m m

CCcU must be ignored.
. !

Tn the second step, DFHP carries out two interleaved activities,
m
that is: 1) it receives recovery information pertinent to processes to
be reallocated on N ags a consequence of reconfiguration; and pi) it
m ’

transmits recovery information pertinent to processes whose back-up

copies are stored in Nm and which are reconfigured onto other nodes.
Tn both cases, information transfer is performed one segment at a bime
by @ message containing: 1) the name of the process to which the
sepment is associated; 11} the length of the segment; iii) the
specification whether the segment belongs to the process code area,
working area, INCTABLE area or buffer area; iv) the global segment
name; v) the segment name local to the process; and, finally, vi) the
actual contents of the segment.

To be more precise, the receiving activity 1is organized as
follows: i) all segments which are part of the working areas and
INCTABLE areas of processes allocated on Nm are retrieved, and the
pertinent memory portions are considered to be free; ii) messages are
received from other DFHPs running on non-faulty nodes, each relevant to
one segment of a process to be reallocated in Nm; iii) for each
message, the length of the segment (as specified by the message itself)
is considered; memory portions made available as a consequence ol point
1) above and of transmission activity are searched for a free memory
space of that length (this space must belong to the shared memory, 1f
the segment is relevant to the process INCTABLE area or buflfer area;
otherwise, it must belong to the private memory); the free memory space
is loaded with the segment contents {(as specified by the message); V) a

global segment name among those pertinent to N (i.e., among Those
m

whose Node Bits codify the quantity m) is associated to that memory

29

space by updating the pertinent register of the Relocalion Unit R
this global segment name ig then mapped into the segment name local Lo

the process (as specified by Tthe messape) by updating the pertinent
register of the Address Translator AT .
m

The transmitting activity, on the other hand, is organized as

follows: i) each Process Fault Handling Table stored in N (I
m

Il

considered, as well as each back-up copy of a Process Faullt Handling

Table stored in N and pertinent to processes allocated in Hf\, ard its
m ‘

NEW ALLOCATION field is accessed f{or obteining the name ol Lhe node
where the pertinent processg mist be renllocated asg a conseguence ol a
fault in N i) of the processes wmentioned above, each one ig

i

considered which must be reallocated onto n node containing nelther the
process back-up state, nor the auxiliary back-up state: all segments
constituting the back-up state are transmitted (one at » time) to the
DFHE of the new node; and 1ii1) physical memory areas pertinent to
transmitted sepments are made available Tor the receiving activity.
In the third step, W”Pu npdates the INCTARLEs of all the
i

processes reallocated in N , by writing into the BEF ffield of each entry
m

the global name of the segment where it has reallocated Tthe pertinent
buffer. Afterwards, proper messages are btransmitted by DFHP to all
other DFHPs, specifying the name of each process reallocated in N,
together with the virtual name of the first segment of the INCTABLE
pertinent to that process. Then, IJI"HPm utilizes the same kind of
information (received from others DFHPs) for: i) updating the INCTABLE
Directory in node Nm {by writing into each entry the global name of the

segment where the pertinent INCTABLE has heen reallocated); Pi)

updating the Protection Unit PU {by assigning proper access rights to
- m

each processor, as stated in Section 3); and iii) transmitting to CCU

the names of the processes allocated in each node (this information is

hen autonomously utilized by CCU for updating its own data base: lor
m

26

this purpose, (fi(,‘/Um accomplishes preper information transfers with the
other CCUs via the signalling bus}.

AMfter the node which has failed has been repaired, proper actions
are performed, restoring the configuration of the whole system as it

was previous to the fault. These reconfiguring actions are gimilar To

those described above, so they will not be described again in detail.

6, CONCLUSTONS

Fault-handling stratepies may be roughly divided intoe two
classes, tailored to two different models for system architecture., In
the first model the architecture 1is physically partitioned into
processors and mass storage devices. FKach processor is subject Lo
erash: however, a crashing procegssor may only corrupt the data involved
in the device access possibly in progress. Moreover, erroneous system
outputs possibly generated by that processor are tolerated by the
external environment. After repair, the processor resumes operations
using the state information available in mass storage. In its turn, a
mass storage device may fail, which implies the loss of all data stored
in that device: however, a device failure causes no harm to the
contents of other devices. In these kinds of architecture, fault-
tolerance is typically pursued either by stable storage methods /28/ or
other congistency techniques /29/. Typical applications concern
scientific environments, data-base management and pergsonal computing.
In the architecture in the second model, ‘there is no inherent
geparation between the process working areas and the state information
relevant to recovery. A low-end example is a microcessor-based
controller made up of few tightly interacting components, so that a
fault in one of them causes both a processor crash and the loss of

state information. A high-end example 1is a multiprocessor system 1in a

21

critical environment: here, the presence of interactions among

processors outside mass storage makes 1U possible for a processor error

to cause unacceptable disruption of operations in other processors.

Fault-tolerance 1is wusually pursued either by software replication

/2,6/, or by system-wide ad hoc hardware /30,31/,

In this paper, we have been concerned with multimicroprocessor
system architectures for real-time applications. The lault-handling
approach adopted was intended to take inte account the following
hardware and software characteristics:

1} The sgystem does not need to he provided with mass storage devices.
This dimplies that the amount of recovery information available must
be as small as possible. Moreover, the storage medium is volatile,
and a failure in one processor may imply the loss of the whole
contents of the associated memory banks. Processors are subject to
non-crash faults: no protection is enforced between processors and
the storage containing system state information by the physical
separation of the respective hardware environments.

2) The system must not generate erroneous outputs towards its external
environment even when a fault is present. However, the hardware is
not provided with system~wide fault-handling facilities, nor is the
application software replicated.

3) The software model does not define passive object entities, but only
active processes whose global states represent the state of the

system.

The characteristics described led to the fault-handling strategy
reported in the present paper. It is believed that such a strategy may
be a valid alternative to more classical methods in the case of similar

hardware/software system specifications.

28

/2/

/4

/ 8 /‘/

Aul. Hopkins et oal., TFTMP -~ A Hiohly Reliable Pnult=Tolerant

Multiprocessor for Alrovalb' Proceadings of Lhe JRER, Vol. 66,

No., 10, Oct. 1978, pp. 122011239,
J.H. Wensley el al., USTET: Desipn and Anaslysis of & lanlt-

Tolerant Computer for Aircraflt Controi®, Proceedings of the TEEL,

Val. 66, No. 10, Oct. 1978, pp. 1240=1200,
Db Burchby et al. "Specificaltion of the Fault-Tolerant

Opnoshorne Compober [y,

tional Symposium on Fau L t—Tolerant Conpubing, Pittsburpg, Penn.,

June 1976, pp. 129-133.

inp-And-Repairing)

AL Avizien et al., "The STAR

§

Computer: An Investipation of the Theary and Practice of Fault-

Tolerant Computer Design', TEE Transactions on Computer, Vol.

(=20, No. 11, Nov. 1971, pp. 1312

W.N. Tog, "iault-Tolerant esien of Local IDER

Proceedings of the IEREE, Vol. 66, Ne, 10, Oct. 1978, pp. 1126=1140,

F. Farber tTaskspecific Jmplementation of Fault Tolerance in
¥

Process Automation System', Proceedings of the Worlkshop on Sell-

Diagnosis and Fault=Tolerance, Tubingen, July 1981, pp. B4-102.

B.D. Jensen, “Distributed Systems', Advanced Course on Distributed

Systems Architectures and Implementation, Lecture Notes in

Computer Science, Springer—Verlag, 19380.

J.M. Jaffe, "Parallel Computation: Sy nechronization, Scheduling and

5, Massachussetts Institute of Technolo;

Schemes', Ph.D.
August 1979,
A.K. Jones, P. Schwarz, "hxperiences Us ing Multiprocessor Systems

~ A Status Heport', Compubing Hurveys, Vol. 12, No., 2, June 193(

/10/

/11/

/12/

/13/

/14/

/16/

/17/

B. Randell, P.A. lee, D’.C. Treleaven, "YReliability Issues in

Computing System Design", Computing Surveys, Vol. 10, No. 2, .June

1978, pp. 123~-165.
T, Anderson, PJA. Lee, Sl Shrivastava, A Mode] f'or

Recoverability in Multilevel syatema’, TEER Transaction or

Software Engineering, Vol., BE-4, No. &6, 1978, pp. 486-4193.

D,L. Russel, "State Restoration in Systems of Communicating

Processes', IEEE Transactions on Software Engineering, Vol. BSE-6,

No, 2, Mar. 1980, pp. 183-194,
. Grandeni et al., ""The MuTREAM System: General Guidelines',

Proceedings of the Eleventh Annual International Symposium on

Fault-Tolerant Computing, Portland, June 1981, pp. 15-16.

G. Cioffi, P. Corsini, G. Frosini, L. Lopriore, PMuTEAM:
Architectural Insights of a Distributed Multimicroprocessor

System', Proceedings of the Eleventh Annual International

Symposium on Fault-Tolerant Computing, Portland, June 1981, pp.

17-19.
R.J. Swan, S.H. ruller, D.P. Siewiorek, "Cm* —~ A Modular,

Multimicroprocessor'™, Proceedings of the AFIPS 1877 National

Computer Conference, AFIPS, Vol. 46, pp. 637-644.

M, Ajmone Marsan, G. Conte, D. Del Corso, F'. Gregoretti,

"Architecture, Communication Procedures and Performance Evaluation

of the mx Multimicroprocessor System', Proceedings of the First

International Conference on Distributed Computing Systems,

Huntsville, Alabama, 1979.
J. Archer Harris, D.R. Smith, "Hierarchical Multiprocessor

Organizations”, Proceedings of the Fourth Annual Symposium on

Computer Architecture, 1977, pp. 41-48.

G. Magaré, "MSC - A Symmetric Multi-Micro-Processor System',

Proceedings of the Second Euromicro Symposium on Microprocessing

and Microprogramming, Venice, 1976, pp. 135-140.

30

/19/

/20/

/21/

/23/

/24/

/25/

/26/

/27/

' Bailardi, A. Fantechi, A. Tomasi, M. Vanneschi, "Mechanisms flor
a Robust Multiprocessing Environment in the MuTEAM Kernel',

Proceedings of the FEleventh Annual International Symposium on

Fault~Tolerant Computing, Portland, June 1981, pp. 20-24,

C.A.R. Hoare, '"Communicating Sequential Processes!", Comnunications

of the ACM, Vol, 21, No. 8, Aug. 1978, pp. 668-679.
J.H. BSaltzer, M.D. Schroeder, "The Protection of Information in

Computer Systems', Proceedings of the IEEE, Vol. 63, No. 9, Sept.

1975, pp. 1278-1308.
C,H, Bequin, A.M. Despain, D.A. Patterson, "Communication in

X~TREE, A Modular Multiprocessor System', Proceedings of the ACM

1978 Annual Conference, Washington, D.C,, Dec. 1978, pp. 194-203.

H. Sullivan, T.R. Bashkow, "A Large Scale, Homogeneous, Fully

Distributed Parallel Machine'", Proceedings of the Fourth Annual

Symposium on Computer Architecture, 1977, pp. 105-117,

F, Baiardi, N. De Francesco, G. Vaglini, "A Remote Process
Communication Facility for the MuTEAM System’, 1ISI Technical
Report, University of Pisa, 1982.

L, Simoncini, F. Sahebam, A.D. Friedman, "Design of Self-
Diagnosable Multiprocessor Systems with Concurrent Computation and

Diagnosis', IEEE Transactions on Computer, Vol. C-29, No. 6, June

1980, pp. 540-546.
P. Ciompi, F. Grandoni, L. Simoncini, "Distributed Diagnosis in

Multiprocessor Systems: The MuTEAM Apprcach', Proceedings of the

Eleventh Annual International Symposium on Fault-Tolerant

Computing, Portland, June 1981, pp. 25-29.
L. Lamport, "Time, Clocks, and the Ordering of Events in a

Distributed System', Communications of the ACM, Vol. 21, No. 7,

July 1978, pp. 558-565.

31

JOs/ BLW. Lampson, HoBL o SGloargis, YOrash Recovery o Dby i b e

Storapge Syotem™, unpublished paper, Computer

Paolo Alto arch Cenbter, Palo Albo, Calif.,, [976.

/29 WM. Kohler, YA sSurvey ol Techniques oy Synchronizabion ond

Recovery in lecentralived Computer Systems', Comp

Vol. 1%, No. 2, June 1981, pp. 14918373,

/307 RUB. Glaser, G.M. Masson, "The Containment Set Approach to

Crash-Urool Microprocessor Controllior Design'™, |

Twel fth International Symposium on Faglit-Tolerant Compulir

Momvioa, CA, June 1982, pie =000,
JarS L, Slewiovek ot al,, A Case Study of Commp, Cm?oand Oovmpo: ot
I~ Experiences with Fault Tolerarce in Multiprocessor Systems?

R, Volo 66, Noo 10, Oct. 1978, np. 78— 1109

Proceedings of the 1

