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The aim of this paper is to prove the strong convergence of the solutions to a
vector-BGK model under the diffusive scaling to the incompressible Navier-Stokes
equations on the two-dimensional torus. This result holds in any interval of time
[0,T], with T" > 0. We also provide the global in time uniform boundedness of the
solutions to the approximating system. Our argument is based on the use of local in
time H*-estimates for the model, established in a previous work, combined with the
L2-relative entropy estimate and the interpolation properties of the Sobolev spaces.
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RESUME

L’objectif de cet article est de présenter un résultat de convergence forte des solutions
d’un modele BGK vectoriel, en régime diffusif, vers les équations de Navier-Stokes
incompressibles. Le domaine est le tore bidimensionnel et ce résultat est valide dans
lintervalle de temps [0,7], ot T" > 0. En outre, on démontre que les solutions
du modeéle BGK restent uniformément bornées. Notre approche est basée sur des
estimations dans les espaces de Sobolev H?, obtenues dans un article précédent,
combinées avec la méthode de l'entropie relative et les propriétés d’interpolation
des espaces de Sobolev.

© 2019 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper we deal with the incompressible Navier-Stokes equations in two space dimensions,
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with (¢,7) € [0,+00) x T2, and initial datum
u™V3(0, ) = ug(x), V-u =0. (2)

In (1), uV% and VPV? are respectively the velocity field and the gradient of the pressure term, and v > 0
is the viscosity coefficient.

Here we consider a vector-BGK model for the incompressible Navier-Stokes equations, i.e. a discrete
velocities BGK system endowed with a vectorial structure, whose general formulation has been introduced in
[15], while further developments were presented in [11] from the numerical side and in [8] from the analytical
point of view. Precisely, we study the following five velocities (15 equations) vector-BGK approximation to
the incompressible Navier-Stokes equations,

Ouff + 20, f = 2= (M (w®) — f5),

O f5 + 20, f5 = 7= (Ma(wf) — f5),

O[5 — 20,15 = 7 (Ma(w®) — f5), (3)
O f§ — 20y [ = 7= (Ma(w®) — f§),

O fs = L2 (Ms(w®) — f5),

where
5
wF = (oF epus, epus) = (p°,ep°ut) = (0, ) = S fF (4)
i=1
Its main properties are as follows:

o fE, M;(w®), i=1,---5, are vector-valued functions taking values in R3;
e p°(t,x) on RT x T? is the approximating density, taking values in R;
o ue(t,z) = (u5(t,w),u5(t,x)) on RT x T? is the approximating velocity field, taking values in R2.

Precise compatibility conditions to be satisfied by the constant parameters of the model and the Maxwellian
functions, together with their explicit expressions, will be provided in details in Section 2.

BGK models were introduced by Bhatnagar, Gross and Krook as a modified version of the Boltzmann
equation, characterized by the relaxation of the collision operator. Since they present most of the basic
properties of hydrodynamics, they are considered interesting models even though they do not contain
all the relevant features of the Boltzmann equation. Essentially, vector-BGK models are inspired by the
hydrodynamic limits of the Boltzmann equation [3,4,16,20,24], but later they have been generalized as
approximating equations for different kinds of systems. In this regard, one of the main directions has been
the approximation of hyperbolic systems with discrete velocities BGK models, as in [13,29,35,10,36,17,18].
Similar results have been obtained for convection-diffusion systems under the diffusive scaling [32,12,30,2,28,
25,9]. Originally, they presented continuous velocities, see [36], but later on discrete velocities BGK models
inspired by the relaxation method have been introduced, see [34] for a survey. In the spirit of the relaxation
approximations, see for instance [22] and references therein for general diffusive relaxation systems, the
main advantage of discrete velocities BGK models is to deal with semilinear systems, see [35,14,26,40,45].

Now, let us present our main result. We prove the strong convergence in the Sobolev spaces, for any
interval of time [0, T], T > 0, of the vector-BGK model presented in (3) to the incompressible Navier-Stokes
equations on the two-dimensional torus. To achieve this result, the novelty relies in using local in time
H*-estimates from a previous work, see [8], combined with the L2-relative entropy estimate and the standard
interpolation theorem. More precisely, part of the results of [8] provides uniform (in €) estimates of Gronwall
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type in the Sobolev spaces, which hold in [0,7*], where T* > 0 is depending on a fixed constant M > 0
and on the norm of the initial data. These local bounds guarantee the existence, the minimality and the
dissipative property of the kinetic entropy, i.e. a convex entropy for (3), see [10]. Next, the relative entropy
allows us to get a precise rate of convergence of the solutions to our model to the Navier-Stokes equations,
which holds for ¢ € [0,7*], see Theorem 3.3. Thus, the interpolation theorem for Sobolev spaces applied to
the relative entropy estimate provides a bound for the solutions to our system which is much more precise
than the previous pessimistic Gronwall type estimates. This is the key point in order to close the argument
and to prove the strong convergence for all times of the solutions to (3) to system (1), together with the
global in time boundedness of the approximating solution itself, in Theorem 3.1. In particular, Lemma 2.8
plays a crucial role in quantifying the dissipation term coming from the entropy inequality. At the best of our
understanding, the expansions in Lemma 2.8 are the only way to establish the relative entropy inequality
when, as in our case, the explicit dependency of the kinetic entropy on the singular relaxation parameter is
not known.

We start from initial data in (16) that are small perturbations of the Maxwellians and, thanks to the
uniform bounds, in the end we prove that everything remains in a bounded set of the densities. This local
setting perfectly fits the framework described in [10].

The relative entropy method, [19,21], represents an efficient mathematical tool for studying stability
and limiting process and it is based on a direct calculation of the relative entropy between a dissipative
solution and a conservative smooth solution for the considered system, which provides a remarkable stability
estimate. Far from being complete, we collect here a pair of references for hydrodynamic limits [23,38]. In
the context of singular hyperbolic scaled systems, we refer to [43,44]. Let us point out that this procedure
has been successfully applied to the vector-BGK model considered in this paper and presented below (3)
to prove its convergence to the isentropic Euler equations under the hyperbolic scaling, see [39]. Again, the
relative entropy in hyperbolic relaxation has been used for one-dimensional discrete velocities Boltzmann
schemes, see [5], while in the multidimensional case the question in this context seems to be open. On the
other hand, the relative entropy method in diffusive relaxation is of course a more delicate issue, being
the diffusive limit the next order approximation of the starting system in the Chapman-Enskog expansion,
see [37]. Besides hydrodynamic limits of the Boltzmann equation, our main reference in this framework
is [31]. In this paper, the authors apply the relative entropy method to the equations of compressible gas
dynamics with friction under the diffusive scaling, so obtaining precise estimates coming from the entropy
of the limit hyperbolic system. However, in our case, further complications are due to the fact that the
explicit dependency of the kinetic entropy on the singular parameter is not known for our model (3). The
BGK framework in [10] only guarantees the existence of such an entropy, whose expression is defined by
means of the inverse function theorem. This difficulty requires a better understanding of the dissipative
terms provided by the entropy inequality in diffusive relaxation, and new ideas are needed with respect to
the existing works, for instance [31,5].

The paper is organized as follows. In Section 2 we introduce the vector-BGK model and provide some
preliminary results. Section 3 is devoted to the relative entropy inequality and the strong convergence of
the model for all times, in the Sobolev spaces. In the last part of this section we also show the global in
time boundedness of the solutions to our model.

2. Presentation of the model, formal limit, and intermediate results

First, we aim at providing a relative entropy inequality for a vector-BGK model approximating the
two-dimensional incompressible Navier-Stokes equations. Next, this inequality will allow us to extend for
long times the local convergence for smooth solutions achieved in [8]. Let us introduce the setting that will
be taken into account hereafter.
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Our approximating vector-BGK model has been presented in (3), together with a list of the main prop-
erties. We point out that, in order to get consistency with the incompressible Navier-Stokes equations, the
Maxwellian functions M;(w®), i = 1,--- , 5, need to satisfy the following compatibility conditions:

o Lo Mi(wr) = w
o S0 N My(w) = Aj(w), j=1,2, with A; in (6),

with discrete velocities \; = (A1, Aiz). More precisely, A1 = (A,0), A2 = (0,A), A3 = (=\,0), \y =
(0,=X\), As = (0,0), where X is a positive constant value.
We provide here the explicit expressions of the Maxwellian functions

Mys(wf) = auws + Alg”s), Moa(wF) = auws + AZ(;”E), Ms(wf) = (1 — dayur, (5)
i 5
M) = [ GEL PG |, A= | BB, (6)
a G-+ P(p7)
P(p°) = (05)2_— 52’ (7)

where p > 0 is constant value.
The consistency with respect to the incompressible Navier-Stokes equations (1) and the stability of our
vector-BGK model hold under the following hypotheses.

Assumptions 2.1. Let us assume

1
v 0<a< -, (8>

@ oney 4

where v is the viscosity coefficient in (1). Besides, we also take the parameter A > 0 “big enough”. This is
necessary in order to:

o guarantee the positivity of the symmetrizer in [8];
« satisfy the sub-characteristic condition, i.e. the positivity of the spectrum of the Jacobian matrices of
the Maxwellians.

Let us discuss more precisely the previous assumptions.

Remark 2.2 (Consistency and stability under certain assumptions).

e First of all, equality v = 2a7)? is needed to get consistency of the vector-BGK model (3) with respect to
the incompressible Navier-Stokes equations, as remarked below.

e From (5), one observes that Ms(w®) = (1 — 4a)w®. This means that 0 < a < § is a necessary condition
for the positivity of the spectrum of the Jacobian of My(w®). As widely discussed in the course of the
manuscript and in Remark 3.2, the result in [[10], Thm. 2.1] provides the existence of a kinetic entropy for
the vector-BGK model (3) under certain hypotheses. We roughly explain the idea behind this result. One
considers a convex entropy for the limit system under the hyperbolic scaling (the system that is obtained by
fixing e and sending 7 to zero in (3), i.e. the isentropic Euler equations). Then, the discrete version of the
Boltzmann H-Theorem (see [10]) allows us to get an (implicit) expression for the kinetic entropy by taking
the inverse of the Maxwellian functions. In order to invert the Maxwellians by using the inverse function
theorem, one needs the positivity of the spectrum of the Jacobians of the Maxwellians. For My(w®), this is
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true if 0 < a < i. For the other Maxwellians, as a further discussion in Remark 3.2 and simple computations
show, the conditions rely on a lower bound for the discrete velocity A,

1 eM eM
— 1+ — 9
>2a<p5M+\/ + p)’ ®)

where the constant M is introduced in (24).

e Finally we aim at providing more details on the assumption on the parameter A “big enough”. More

precisely, following [8] and Remark 2.3, for fixed 0 < a < 1, and 0 < p < we choose

4a’

1 1+ 5a(1 — 4a)
)\>max{\/m, \/a(1—4au)’\/ 1a2(1 = ) }ﬂ(()) (10)

The meaning of the lower bound in (9) has already been explained above. The other one assures both the

positivity of the constant symmetrizer and the negativity of the linear part of the source term of system
(12), as proved in [8]. In other words, the local in time bounds in [[8], Lemma 4.2 and Proposition 3] hold
under that condition.

Now, the change of variables introduced in [8],
5
€ g >\ g € € >\ € g
:Zfia m :E(fl_f3)’ £ :g(fz—f4),
=1 (11)
=fi+fs, P =f+11
allows us to recover the consistency with respect to (1) in a simple way at the formal level. Thus, the

vector-BGK model (3) reads:

Orw® + 0, m® + 0,&° =0,
Oym® + 20,k° = Ly (1) ey,

@$+§%m—;xmw>§m (12)
Ok® + 0,m° = (2aw — k*),

Och® 4 0y€° = L(2(1w — h®).

Moreover, we denote by M;(w®) := f¢ the perturbed Maxwellian, i.e. the next order correction, due to the
diffusive scaling, to M;(w®) in (5).
The relaxation formulation (12) of the system gives:

= g(ff —f5) = g(Ml(wE) — Ms(w®)) = %we) — TA20,k% 4+ O(£?),

A2 (’U)g)

€=§%—ﬁw=§Mmﬂ—wmwn= — X0+ O(), (13)

= [ + f5 = Mu(w®) + M3(w®) = 2aw® 4 O(e?),
=[5 + [§ = Ma(w®) + Ma(w®) = 2aw® + O(?).

Substituting the last two expressions of (13) in the other ones, from the first equation of (12), one gets

Ow® + = 2a\’TAw® + O(£%).

893141 (wa) + 8yA2 (w8>
3
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From Assumptions 2.1, v = 2a7\?, therefore we get

&TAl (we) + 8yA2 (ws)

Ow® + = vAuw® + 0(e?),

which explains the meaning of the consistency condition v = 2a\?7 in Assumptions 2.1, see also [15]. More
explicitly, from the expressions of w®, Ay (w®), A2(w®) in (4)-(6),

= p pus pus
V2 -2
0 | epui | +0 | epf(us)? + L2 | + 0, Sp%’i?i)?ﬂ
eptus epujus ep®(u3)® + %
pe=p
=vA | epful | +0(2).
eptus

Dividing the last two lines by ¢, this yields
(" — )+ V - = vA(p" — ) + O(2), "
£\2_ =2
0i(p7uf) + V - (pfuf @ uf) + YUEL ) — yA(pouf) + O(e),
which is the compressible approximation to the incompressible Navier-Stokes equations. Let us make a few
comments on the last system.

Remark 2.3. [The incompressible limit to the Navier-Stokes equations] The vanishing e-limit of system (14)
to the incompressible Navier-Stokes equations, known as low Mach number limit or acoustic limit, is quite
classical and can be found for instance in [42] (or in [33] for the inviscid case). We briefly recall the idea at
the formal level and we refer to the quoted books for a rigorous proof. We assume the asymptotic expansions:

p°=p+e?P+0(?),

U = W, + 2wy + O(e?).

The incompressible Navier-Stokes equations are obtained at main order by inserting the previous ansatz in
system (14). Note that the divergence free condition comes from the mass balance equation in (14), which
is linked to the term P in the expansion for p*. The pressure P is incompressible, it does not depend on the
density (which, by the way, is constant) and it can be simply seen as a Lagrange multiplier related to the
divergence free constraint.

We point out that a different relaxation approximation to the two dimensional Navier-Stokes equations
is presented and analysed in [14]. The main difference with respect to our system is precisely related to
compressibility. In the semilinear hyperbolic approximation proposed in [14], the velocity field is divergence
free, and the relaxation parameter leads to the limit nonlinear system, i.e. the incompressible Navier-Stokes
equations. For the vector-BGK system considered in (3), the diffusive relaxation parameter ¢ encodes both
the approximation to the nonlinear system (in the spirit of relaxation models) and the compressible limit,
as it can be seen from (14). This is a very good point for our BGK in (3), since the divergence free condition
is only reached in the limit. By contrast, it is a constraint of the model [14], where a projection on the
divergence free vector fields (which increases the error from the numerical point of view) is needed.

Now we find an expression of the formal limit in terms of the original kinetic variables (3). The limit
solution is obtained by solving the linear system (13) in the unknowns M;(w®), i =1,---,5, so providing
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My (w®) = My (w®) — aeAT0,w",

Mo (w®) = My(w®) — agATO,w*,

Msz(w®) = M3 (w®) 4+ aeAT0,w®, (15)
My(w) = My(w®) + ae AT, ws,

M (w®) = Ms(w®).

In order to avoid further complications due to initial layers, in our convergence proof the two-dimensional
vector-BGK model is endowed with the following initial data:

ff(oa'r) :Mz(ﬁvgﬁﬁ0)7 1= la a57 (16)
where g is in (2) and p is a positive constant value.
2.1. Preliminary results

Here we collect some preliminary results, which hold for local times, essentially due to our previous work
[8]. Let us start with the following remark.

Remark 2.4. We discuss some differences between [8] and our current setting.
o In [8], the compressible pressure P(p°) in (7) is linear. More precisely, from [[8], (10)],
P(p%) = p* — p.

In this paper, we consider the case of a quadratic pressure P(p®) in (7). A simple remark shows that,
from (7),

P(pa) _ (pg)Qﬁ_ P
_20(p° = p) + (p° — p)?
2p
e 2
=(p"—p)+ (p 2pp)

Thus, the estimates in [8] still hold here: the quadratic pressure only provides an additional quadratic
term in the fifth and the ninth line of the nonlinear vector N (w+w) in [[8], (26)]. These supplementary
quadratic terms can be handled exactly as the other ones in the energy estimates in [8]. However, we
point out that the same argument holds exactly in the same way for a general compressible pressure

P(pg) — { %[(pe)'y - ﬁ’y]’ v > 1,
klp*log(p®) — plog(p)], v =1,

where k is a positive constant value.

o In [[8], (18)-(19)], we consider a translated version of the relaxation system (12). Of course this is an
equivalent formulation of the approximating model, and since the translation vector (p, 0, 0) in [[8], (18)]
is constant in ¢ and z, most of the energy estimates in [8] can be used here.
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o A further change of variables, involving the dissipative constant right symmetrizer ¥ in [[8], (28)] is
defined in [[8], (30)]. However, here the energy estimates from [8] are expressed in terms of the original
relaxation variables (11) to avoid further complications. The explicit change of variables is written in

[[8], (78)]-

Taking into account Remark 2.4, we state some results that will be applied below. Hereafter, we denote
by T¢ the maximum time of existence of the solution to the semilinear vector-BGK approximation (3) with
initial data (16), see [33]. Of course T could depend on ¢. In the following, we recall and adapt some results
from [8], showing that there exist £y and a fixed and positive time T, independent of ¢ and depending on
the Sobolev norm of the initial data, such that, for ¢ < g¢, some local in time H®-estimates on the solutions
to the approximating system hold uniformly with respect to €. In this context, we consider the constant
vector (p,0,0) and the translated variables:

w*(t,x) = ’lU(t7£E) - (ﬁv 0, 0)7
k*(t,z) = k(t.z) — 2a(p,0,0), (17)
h*(t,z) = h(t.z) — 2a(p,0,0),

where w®, k¢, h® are defined in (11). We also remark that hereafter we drop the apex & when there is no
ambiguity.

Lemma 2.5. Consider the vector-BGK system (3) with initial data (16), and ug in (2) belonging to H*(T?),
for s > 3. Then, the following estimates hold true.

lw* (D112 + > (Im @)1 + 1E@I2) + I @I + 1R (@)]12

T
1 1 * *
/—2 O + Im(O)]12 + ||£(9)H§+€—2(||k O + [I7*(0)112) 46
0
< ce?([luoll? + [[Vuo[3)
T (18)
+c(lp = plrrre /e, IHIL;OLgc)/Hw*(@)H?+€2(||m(9)\|§+||€(9)||§)d9
0
+cllp = ploere /e, |U|L$°L:°)/||k*(9)”§+||h*(9)||§d97 t<T".
lw* (O + 2(Im@I + 1EG12) + 1K O3 + I1h*@)3 19)
< c2?(|Jug|f2 + ([ Vg |2)ec P Plezra /o ulez=re)t g < e,
185w ()21 + 2 (|03 1 + 10:EWD12_1) + [0k ()21 + [10:h* (1)]13_, (20)
< e ([luol2-, + Va2, + | V2ug||2_, )eclpmPlezrae /o lulezmae)t 1y < e,
Moreover, there exist g, M and T* < T¢ fixed such that, for e < g,
|pu(t)|00 < M7 ‘p(t) - p‘oo < 5M7 te [07T*}7 (21)
_ M .
Ip()]oe < p+eM,  |u(t)]e < € [0,77]. (22)

p—eM’
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T

/|p(t) — pledt < c(M)e2, T € [0,T"]. (23)

Proof. We discuss each result separately.

o Estimate (18) follows from [[8], Lemma 4.2], the change of variables [[8], (30)] and the Sobolev embedding
theorem. The only difference is the dependency of c(|p — p|rere=/e,-) on |p — p|rsere /€, which is a
consequence of the quadratic extra term in the compressible pressure (7), see Remark 2.4. We briefly
sketch here the argument that allows us to handle that quadratic extra term, essentially by following
the proof in [[8], Lemma 4.2]. Let us recall that, by using the change of variables (11), our vector-BGK
system (12) can be written in compact form as follows,

OWE + BS0,WE + B50,W*¢ = —L*W* + N(w?),

where W¢ := (w®, e2m*®,2¢%, 2k, %),

0 0 0 0 0
010
{1 00| —%Id 0 0 0
000
.1
L= 00 1
1o o0 o0 0 —%1d 0 0
100
2ald 0 0 -%Id
2ald 0 0 0 —%Id
and
0
0
2
uSws + (f’2;160)
) USWs
N(w®) =~ 0
T
uiwy
ugwng (PQ;;)
0
0

Under Assumptions 2.1, one can find a positive constant right symmetrizer %:¢ for the system, such that
—L®¥¢ is semi-negative definite (cf.. conservative form in [8] and conservative-dissipative form in [7]).
Therefore, we define the new variable W¢ such that W¢ := 2¢W¢, and the symmetrized system reads:

YOW 4 B1X0,W + BoX0,W = —LYXW + N((EW); + ).

The energy estimate and the higher order estimates on the symmetric system above are explained in
details in [8]. Starting from that, one recovers the bounds on the original variable W< by using the
diffeomorphism W¢ = SWe. Here we limit ourselves at showing how to control the extra quadratic
term in the compressible pressure, in the estimate for the nonlinear term.
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Again, from [8],

(N(w+w), W)

(p—p)*

2~ 2~
76 76
25 ma)o + (urws, e“ms)o

1
= —{(U1UJ2 +
-

2F (p— 5)2 27
+(ugwe, £%€2)0 + (ugws + Tﬁ’g &)o}

(0= p)?II5

1 - 1
< - {lunwa[[§ + e lmallf + lurws 1§ + erel

- z = 1 _
+et|mslf + luzwa§ + 162113 + lluaws]|3 + €*[1€ 5 + Wll(p =215}

4
_ et ;
< elfulzgre, [p = Pl s /o) wlls + 5= (Iml5 + 1]15)-

The higher order estimates follow in the same way from [[8], Lemma 4.2].

By applying Gronwall’s inequality to (18), one gets (19).

Estimate (20) follows from [[8], Proposition 3 and (30)].

For a fixed constant M > My := cgp||lug||s+1, where cg is the Sobolev embedding constant, let us define

T := sup
te[0,7¢)

{M + |pu(t)|os < M}. (24)

The Sobolev embedding theorem applied to (19) yields, thanks to (17),

lp(t)=pPloc

+lpu(t)]oo < Moe®t™ 2 Mlegeg)t 0y <, (25)

[p(t) = Ploo

The uniform bounds (21)-(22) are due to the Sobolev embedding theorem applied to (19) and the
definition of 7%, which depends on M, M.

The last uniform bound is a consequence of the Sobolev embedding theorem applied to (18), the previous
bounds in (21)-(22), and the definition of w* in (17). O

2.2. Kinetic entropies and the relative entropy

Here we recall the definition and the conditions that assure the existence of a kinetic entropy for a discrete

velocities BGK model, see [10] for a detailed discussion.

Let £ be a non-empty set of convex entropies for a given limit system. Assume also that £ is separable.

A general BGK model under the diffusive scaling reads as follows

Ai
5

Oufit 2 Vafi= (GO~ f), i=1 L (26)

where L > d, fori=1,---,L,

fi(t7x):(fi1 7fiN) :R x RY - RV,
Al:(Azl? a/\?)7
M;(u®) = (M} MNY RN - RN

i i
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and, under precise consistency conditions, see [10,15,1,2,12] for a detailed discussion, u® = ZiLzl fi €
RY is the approximating vector field to the solution to the limit system. An important feature of these
approximations is the existence, under some reasonable assumptions, of a kinetic entropy. Set D; := {M;(u) :
uelu}.

Definition 2.6. A kinetic entropy for system (26) is a convex function H(f) = Zle Hi(f:), with H; : D; — R,
such that, for n(u) € &,

o (E1) H(M(u)) = n(u) for every u e U,
o (E2) H(M(us)) < H(f), where uy := Zle fi€U, f; € D;.

Such a property provides an energy inequality which gives robustness for the scheme. Indeed, it is easy
to see that, multiplying the BGK system (26) by V #H(f), the minimality (E2) together with the convexity
property, provide the following entropy inequality

A 1
OH(E) + = V. H(f) = E—QVfH(f) - (M(u) —f) <0, (27)
which means that, according to the definition given in [27], the kinetic entropy H(f) is dissipative. More

precisely, properties (E1)-(E2) under the hypotheses of [[10], Thm. 2.1] assure that, for any n(u) € &,
defining the projector P such that

L
PE=) fi=nu, (28)
i=1
then
n(w) = min H(6) = H(M(w). (29)

In this context, the Gibbs principle for relaxation and, in particular, [[43], Prop. 2.1], imply that
ViH(M(u)) L Ker(P). (30)

Since f — M (u) € Ker(P), the convexity property of H(f) together with condition (30) allow us to get the
following inequality:

VAH(E) - (f— M(w)) < —clf - M@)], = c(flx), (31)

meaning that the kinetic entropy H(M (u)) is strictly dissipative, as in [27]. According to the theory de-
veloped by Bouchut [10], the existence of a kinetic entropy for system (3) is subjected to the existence
of a convex entropy for the limit of system (3) under the hyperbolic scaling. The hyperbolic parameter
of the vector-BGK approximation (3) is represented by 7 and the limit equations approximated by (3) in
the vanishing parameter of the hyperbolic scaling 7 are the isentropic Euler equations. The convergence
of the hyperbolic-scaled system is guaranteed by the structural properties of our vector-BGK model listed
before, see [15], while a rigorous proof is provided in [39]. A convex entropy for the limit equations under
the hyperbolic scaling, i.e., the isentropic Euler equations, is given by

= + k(p°)2. (32)

We can immediately state the following result.
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Proposition 2.7. Consider the vector-BGK approzimation (3) under Assumptions 2.1 and emanating from
smooth initial data (16). Then, in the time interval [0,T*], there exists a kinetic entropy H(f®) =
ZZ 1 Hi(f;°) for system (3), satisfying the properties listed in Definition 2.6 in a neighbourhood of the
Mazwellians M (w®) (5), with n(w®) in (32).

Proof. First of all, the local in time estimates in Lemma 2.5 provide the boundedness of the densities f¢.
This result and Assumptions 2.1 allow us to prove the positivity of the spectrum of the Jacobian matrices
of the Maxwellians (5), see Remark 3.2. The statement follows from [[10], Theorem 2.1]. O

The relative entropy can be seen as a perturbation of the kinetic entropy near to the equilibrium rep-
resented by the solution to the limit system. A precise definition in the context of hyperbolic relaxation is

provided in [43]. For diffusive relaxation, we will use the following;:

H(HE) = H(f) - H(M(w)) — VIH(M(w)) - (£~ M(w))

= ST ) — H(M@) — V(L) - (f — Mi(@)), (33)

where H(f) is in Definition 2.6, and M(w) = (M;(w));=1,... 5 are the perturbed Maxwellians in (15),
evaluated in the solution w = (p,epu) to the incompressible Navier-Stokes equations (1).

2.3. Quantifying the dissipation

The aim of this part is to characterize and to quantify the dissipative terms resulting from the relative
entropy estimate.

Lemma 2.8. Let n(w) be defined in (32). Let H(f) = Z?:1 Hi(f:) be a kinetic entropy associated with the
vector-BGK model in (3), such that H(M (w)) = n(w). Then the following entropy expansion is satisfied:

T
= / / / > Vi) (M ) drdady
1 J/[%
Sk

/ ]

/// _&%“aw—mw

+0(e?)

2a)\2 ' €

_ M)] ~(m — Aliw)) dtdz dy

2a>\2 €

_ A2(w) )] (5_ A?iw)) dtd:rdy

2(152

- 2aw)] - (k — 2aw) dt dx dy

- (daw — (k + h)) dt dx dy
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Proof. First of all, Proposition 2.7 guarantees the existence of a kinetic entropy for (3), such that
H(M(w)) =n(w) in (32), VyHi(Mi(w)) = Vun(w), i=1,---,5.

We point out that the spectrum of the Jacobian matrices of the Maxwellians in (5) is positive provided
that the parameter a in the expressions (5) is positive and A > 0 is big enough (Assumptions 2.1 and
Remark 2.2). This remark, together with the bounds in (22), assure the existence of a kinetic convex and
dissipative entropy for our system, thanks to [[10], Theorem 2.1], as stated in Proposition 2.7. Notice that
in the course of our computations, the densities f¢ remain in a bounded set, close enough to the hyperbolic
equilibrium.

Now we consider the following expansion

Zvﬂ M fz)

val (M; = fi) + va (fi = Mi) - (M; — fi)

i—Mi\?’

+o(? )

52
5
_5i2 Z V.QiHi(Mi) (fi = M) - (fi — My)

\fi = Mil®
e2

( )7

where the first term vanishes thanks to the orthogonality property [[43], Proposition 2.1]. For i = 1,--- ,4,
the first term of the last equality reads

B E%/T//vfclHZ(Ml) (fi = M;) - (fi — M;) dtdedy
0
0

Note that, from (4)-(6) and Lemma 2.5,

p o(1)
w=|epu; | =] Oe) |,
Epus O(e)

£pua O(e)

M(w)= | 2ot 252 | = | 06 |
€2PU1U2 0(52)
pus o)
As(w) = e2puyug =| 0@?
0O(g?)

s
2 02 4 P2=b
Epus + 55—

This way,
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Ai(w)
22

v,

i

H(M;(w)) =ViH <a + ) =V, H(aw) 4+ O(e).

Moreover, from [10], it is also known that
Vi H(Mi(w)) = Ven(w).
Differentiating again the previous equivalent expressions,
1
V2 Hilaw) = = V2 n(w) + O(). (35)

Thus, the last equality yields

T
B 6%/// v?’iHi(aw + A;(/,\w)) (fi = M) - (fi — M;) dtdxdy
0

< ——/// —Von(w) - (fi = My) - (fi = M;) dt da dy

L a4 2000 = S0+ 0m) 4 5y (0am £ X20.R),
Mgg—gfg =0fs - gc?zfg = %(Btk + Opm) — Q—ig(s%tm +A20,k), -
Mzsi;f? =0 fo+ gayfz = l<8th +9y€) + %( 20,€ + A20,h),
M%h =0ifa- gam = 5(Oh+8y€) — i (€201 + N20yh).

Lemma 2.5 and the previous equalities imply that

c(lw|pgere)

ELE = Mif e = ()

and so, by using the change of variables (11),

é]//ivfiﬂi(fi)'(Mi_fi) dt da dy
B 52///2 ~Viun (M; — f;) - (M; — f;) dt da dy + O(?)

Sk

2(1)\2 . €

— M)] - (m — Aliw)) dt dx dy
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/// l w6 iw))l (€~ A2€(w)) dt da dy
I
/// l 2a52 (h - 2‘“")] - (h = 2aw) dt dx dy + O(e?).

U) 77
a2

(k— 2aw)] - (k — 2aw) dt dz dy

The expansion

T
%2// Vi Hs(f5) - (M5 — f5) dtdx dy

/[

is obtained in analogous way. O

(4aw — (k+ h))| - (4aw — (k + h)) dt dz dy + O(e?)

(1- 4a 752

Lemma 2.9. Consider M, fori=1,---,4, in (15). Then

Vi Hi(M;) = Vi, Hi(M;) F acAtVF,Hi(M;)0,w + O(?)
= Vun(w) F AetVon(w)d,,w + O(%), j=1,2.

Proof. The proof follows by Taylor expansions and (35), in the spirit of Lemma 2.8. O
3. Relative entropy estimate for the vector-BGK model
Our main result is stated here.

Theorem 3.1. Consider the vector-BGK model in (3) for the two-dimensional incompressible Navier-Stokes
equations in (1) on [0,4+00) x T2, endowed with a kinetic entropy H(f%), whose existence and properties
are given by Proposition 2.7. Let u = (iy,1z), VP be a smooth velocity field and pressure satisfying the
incompressible Navier-Stokes equations (1) on [0,+00) x T2 and {f} be a family of smooth solutions to
(3) and emanating from smooth initial data uy in (2) and fy = (fi(0,2))i=1,... 5 in (16). Then, defining
w® =, ff = (p°,ep°ur), the following estimate holds for any T > 0 and for e < &g, where €q is fized and
depends on My = p|lugl|s+1,

e(t) = ol .,
sup Hp ( ) p”s + Hua(t) _ ﬁ(t)Hs’ < CE%_67
t€[0,T] €

with s >3, 0 < s < s andd := 55:'. Moreover, for e < eg, the solutions (p®,u®) to the approrimating
system (3) are globally bounded in time, and for e — 0,

€\2 _ 72 _
V((p ) P )A*VP in L;:)CH;—?)
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Remark 3.2 (Looking at the macroscopic variables). Note that the existence of a kinetic entropy H(f€) is
due to the boundedness of {f°}, as stated in Proposition 2.7. The reason lies in the assumptions of [[10],
Theorem 2.1], where the positivity of the Jacobians of the Maxwellian functions is the crucial property.
More precisely, the spectrum of these Jacobian matrices is the following:

Euy

EU
Xa a-VwMgA(w) =azx N

2X

+ _ Euy 1 /p + _ ElU2 1 /p
P My s (w) = 4 Sy + w5 1Y My a(w) = @ F 22 2\

O—VwM173(U)) =a=x

This implies that the eigenvalues are strictly positive provided that w® = (p,eu;,ecuz) is bounded
(Lemma 2.5) and A > 0 is big enough (Assumptions 2.1 and Remark 2.2). This way, the setting exactly fits
the hypothesis of [[10], Theorem 2.1], which guarantees the existence of a dissipative entropy,

H(fs) — H(ws7€2m57€2§5’€2k57€2h5),

at least for local times, where Lemma 2.5 holds. Actually, the dissipative entropy can be interpreted as
an energy for the whole system, in terms of the macroscopic variables (12). The following estimate of
Theorem 3.3 will be provided in L?, since a little information on the entropy, which is defined by means
of the inverse function theorem, is not enough to get more. However, the precise local in time estimates of
Lemma 2.5 will be used in the final argument to obtain the strong convergence in H* (T2), 0 < s’ < s, of
(uf, VPe = W) to the smooth solutions to the incompressible Navier-Stokes equations (@, VP) for
any positive time T > 0.

The global in time convergence proof is based on the use of the relative entropy inequality, which is stated
and proved here.

Theorem 3.3. Under the hypothesis of Theorem 3.1, let T* be defined in (24). Then the relative entropy
method provides the following estimate:

£ t — N __
sup WO =Plo vt 1) — pmry o < e
t€[0,77) €

Proof. We start by recalling the definition of the relative entropy in (33),

H(fIf) = H() — H(M) — VEH(M) - (f— M)
=D Hilfi) = Hi(Mi) = Vi, Hi(My) - (fi = M),

K2

where M; = M;(p,epu), i = 1,---,5, are in (15), p is a constant density, @ is the smooth solution to (1),
and the associated entropy-flux is given by

= : (Hl(fl) — H3(fz) — (Ha (M) — H3(M3))>
Halfo) — Ha(f2) = (M) — Ha(VE)

e
A Vlel(
€ vaHQ(

)(f1 = My) — Vg, Ha(

M,y
Mo)(f2 = Ma) = V 1, Ha(

Hereafter, we adopt the following notation, H; := H;(M;).
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Now we proceed to get the desired inequality.
T
/ / OH(RE) + V. - Q(flf) dt dzx dy

///at )+ 8 (H1(f1) — Hs(f:s))"‘gay(?'lz(h) — Ha(fa)) dtdzdy

T
- / / OH(M) + 20, (Ha (M) — Hs(My) dt dir dy
0

T
7// 20, (H> (M) — Ha(My)) di da dy
0

T

- / / OV 1, Ha (M) (f1 — ) + V1, Ho (M) (fo — M) dt i dy
0
T

- / / (Y 1, Hs (M) (fs — Ms) + V 5 Ha (M) (fo — M) dit dis dy
0

T
—// (Vs Hs(Ms)(f5 — Ms)) dtdz dy
0

T
_ // gaw(vlel(ﬂl)(fl — M) — Vi, Hz(M3)(fs — M3)) dt dx dy

— /// §8y<vfz,H2(m2)(f2 - My) - Vf4/H4(M4)(f4 - M4)) dtdx dy
0

=L+ L+ 13+ 14

First of all, I; is already estimated in Lemma 2.8. Now, let us consider I5.
The following expansions are based on Lemma 2.9.

—// O(H1 + Ho + Hs + Ha + Hs) dtdz dy
T
Ao o= = AL -
—// E8w(’H1—'H3>+gay('H2—H4) dt dx dy

T
=- / / / (Vun(w) — aeArV3 H10,w) (8, My + gagﬂﬂl) dt dz: dy
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- ///(an(w) + aa)\TV%ﬁg&@T))(@tﬂg - 58$M3) dt dz dy
13
0
_ S W
_ / / / (Vun(®@) — askr V3, Hody ) (0 Mo + 20, M) di d dy
0
_ S W
_ / / / (V@) + asXr V3, Hady@) (0 Ma — 20, M) dt d dy
0
T
—///an(uv) O M dt dx dy
///vwn ) 0,(M + Mo + M + My + Ms) dt de dy
///vwn 0.(My ~ My) + 20, (My — M) dt da dy

+2a7)\2/// B)0 + (V2() - B, @)Dy dt da dy + O(?)

= / / / Vo) (@0)[0y 0 + O, Alf’) +9, Az(w) _ V(D0 + Dy )] dt da dy

3

2 T —

// v?a)\2 QQ@JL) ) (/\zay}_l) dt dx dy

///V“’” 10+ 0, ( ) +9y A0) — V(Do + Oyyw)] dt da dy

3

2 —
+/ // T VTA(?) (Form + 2° 3%’“)] (20 + N0, ) dt da dy

L ) _ _ _
" ///T ng;;v) (0L + )‘28?/”)] -(£20:E + N29yh) dt dz dy + O(<?)
0

—T/// V;,Z)E;D) . (528tm)‘| '(52615771) + VZ"/?\(;I]) . (628tM)] . ()\28:5];3) dt dz dy
0 L

[ ] [ 0] oo + [T 0] - o e
0 L
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Notice that the order (with respect to €) of the last two expressions is due to the terms (£29;7m)-0,k, (20,£)-
Ayh, |e20,m|?, |e20:£|?, where

b
Ok = 2a0,w = 200, | epuy | = O(e),
Eﬁﬂg
dyh = 2a0,w = O(e),
and
_ pu
A _
e29,m = 5234& — v, w] = 20, [ epus +eP | —vo,w| = O(e?),
c 6/3’[7,1'(7,2
_ puz
- A
82(9t§ = €2at[ Q(w) — Vay’tzl] = 52815 [ 6[7’[7,117,2 — I/ayw = 0(62).
c epu3 + P

This way, every remainder term (the last two expressions above) is O(g3). Next, we consider I3.

T
Iy = —// MV, Hi(My)(f1 — My) + Vi, Ha(Ma)(f2 — Ma)] dt dx dy
0
T
- / / OV g Hs(Ms)(fs — Ms) + Vi, Ha(Mu)(fa — My)] dt da dy
0
~ [ [ 5 54155 M) ey
0
T
= _// W[ Vun(w) - (w —w)] dt dz dy
0
T
tear 8t[v12u77(71)) 0w - (f1 — f3 — (M1 — M3))] dt da dy
/)

T
vox [ [[ alin) - a0+ (12 = fi~ (M = F2) dedwdy + O(e?)
0

T

= —/// O Vun(w) - (w — w)] dt dx dy

0

T
Al
4 527// O V2 (W) - B, - (m — # +2a)\?70,w)] dt dx dy
0

As(w)

T
42 / / HVEn(®@) - 0,0 - (€ — =2 + 2aN*79,)] dt du dy + O()
0
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T

-1

0

Ay (w)

Aol
+ 0y 2§W) — 2a\*T0,, W — 2aN*T 0y W] - (w — W)

+ Vun(w) - [0zm + 0y — 0y Alg(w) — Oy + 200?70 W + 2a X% 0y 0]

A (@)
g

+ 7V 0(w0) - Db - (£20ym + N20,k) — TAPVE (@) - Dy - D,k

V2 0(0) - Oy - (20,6 + N20yh) — TAZVE (@) - Dy - Dyh| dt dx dy

+0(e%).

It remains to deal with the last term.

_// gam[vflﬂl(ﬂl)(fl - Ml) - vf:sti(MB)(ffi - m:g)] dt dx dy
0

T

- // gay[vfi’%(mﬁ(f? — My) = Vg, Ha(My)(fs — My)] dt dz dy

0

e

— (Vun(w) + ATV n(w)d.w)(fs —Ms)] dt dx dy

e

— (Vun(@) + eArVin(w)dyw)(fs — M4)] dtdzx dy + O(e?)

T
[ [[ 20u0vun@ (1 - f2) - (- o)) de oy
0

T

/// 20y [Vun(®) - ((f2 = f2) — (Ms — My))] dt dz dy

0

— ATV ()0, w)(f1 — My)

— eATV2 () 0y w) (f2 — Mz)

T
+ A?T// 0. [V2n(w) - 0y - (f1 + f3 — (My + Ms))] dt dz dy
0

N7 / / 0, [V2 (@) - 0y - (fo+ fu — (Mo +Ma))] dt da dy + O(c%)

///8 V(@) - (m — 22 ( AD) L o0ra20,)] di de dy
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- /T// Oy Vun(w) - (£ — @ + 2a7A*0,w)] dt dx dy
0
T
+ )\270/// 02 [V2n(w) - 00 - (k — 2a1w)] dt dx dy

T
+ A7 9y[V2n(w) - 9, - (h — 2aw)] dt dz dy + O(£%)
I

=- / / /T V(i) - [0 + 9 — Aléw) —a, Ai@
0

+ 2a7 A2 0y W + 2aT A0,y W) dt dz dy

— /T// V2n(w) - 0pw - (m — Aliw)) dt dz dy
0

T —
- // Ve n(w) - 0y - (Al(w) - Al(w)) dt dz dy
0

T
— 2a1\? // V20(W) - 0 - Oyt dt dx dy
0

_// V(@) - 0y - (& — A2<w))dtdxdy
0

T
- [ [[vin@ o0 (AL A0
0
T
0
T
a2 / // V20() - D0 - (Dpk — 200,0) + VA1() - Dyt - (k — 2a0) dt dz dy
0
T
+ 227 / // V() - 8yw - (Oyh — 2a0yw) 4+ Van(w) - yyw - (h — 2aw) dt dz dy
0

wr [ [ [ 9hn@) 0.k - 200) + Vin(@)(@,0)? (1 - 2a0) dtdedy + O()
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///vwn am—i-(’)yf—Aéw)—ayA2£w)]dtdmdy

—2a7'/\2///8mu_)—|—8yyﬂ) dt dz dy
0

/// - 0w - T(£20pm + N20,k) dt dx dy
f A A (w
—///vin(@).azw.( 1;“’)_ iw))dtdmdy
0
—4(17')\2// \ - 0, - Opw dt dx dy
/// -0y - T(20,& + N20yh) dt dx dy
i A A (w
f///vi}n(@).ayw.( 2;“’)7 2§w))dtdxdy
0
—4aT)\2/// - Oyw - Oyw dt dx dy

+ NP7 // \% -0y - Ok + V2 () - Oyw - Oyh dt dz dy

T

A / // V(@) - Ozatd - (k — 2aw) + 20Vn(w) - Orptd - (w — ) dt dz dy
0

+ A2 /// Oy - (h — 2aw) + 2aV2 n(w) c By - (w — w) dt da dy

T
+ A1 // V2 n(0)[(0,w)? (k — 2aw) + (9yw)*(h — 2aw)] dt dx dy + O(£?).
0

As an intermediate step, let us look at the sum

T
I3+ 1y =27 / // V20 (w) - 0y - (£20ym + N20,k) dt dx dy
0

T
+ 27 / / VEn(w) - 0yw - (€20,€ + N*0,h) dt dx dy
0
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—// V2 (@) - i - (AL A@) AWy agay
0

9 9 9

9 9 9

T
o Aa) A @)
0// V(@) - Oy ( (w — ) dt de dy
FPLH /T / / V2 () - (0000 - (k — 2aw) + By - (h — 2aw)] dt dar dy
74(17)\2/// [0, - Opw + Oyw - Oy w] dt dz dy

+ M%7 V3 n(w) - [(0,w)*(k — 2aw) + (0,w)*(h — 2aw)] dt dz dy
H

+0(e?)

We analyse each line separately.

e The first one can be written as

2av/// (€20 4 N20,k) - (£20ym + N20,k) dt dx dy + O(£3).

e Similarly for the second line.
o The third/fourth lines are equivalent to

T
Vin@irss [ [[lw-of didedy + 0
0

e The fifth line can estimated by

T
C1(\V12u77(7«71)|L?°Lg°)///52|8mw|2 + £%|0y,w|? dt dx dy
0

T
k — 2aw|? h — 2aw|?
+C2(|V120"7(U_1)|Lt°°L;°)// | 2aw| —|—| 2aw| dt dx dy,
€ €
0

where the first term is O(g*), while the second one is absorbed by the dissipation in I;.
o The sixth term can be written as

—z ///v (e20pm 4 N20,k) - (£20,m + N20,k) dt dx dy
a

= // V2 (@) - (20, + A20,h) - (£20:€ + N\20,h) dt da dy + O(&).
a
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e The last term presents the following form

T
X / / V3 0(@)(9,0)2(k — 2a) + V() () (h — 2a) dt dz dy
= M7 /// V3 n(w)(0,w)%(k — 2aw) — 2aV3 n(w)(9,w)*(w — w) dt dx dy

+ 227 / / V(@) (9yw)* (h — 2aw) — 2aV4,n(w)(9yw)* (W — w) dt da dy

T
B B k — 2awl? h — 2aw|?
<C(‘V%U77(w)|L§OL;°)// |w7w|2+| = | +| > | dt dx dy
0

+0(),
where the right-hand side is controlled by using the dissipation coming from ;.

Remark 3.4. Denoting by (V2 n(w)), ui(VZn(w)) the eigenvalues of V2 n(w), VZn(w) respectively, by
simple computations one gets that

T T
/ i (Vin(w(t)) — wa(Vin(@(t))]o dt < C/ |p(t) = Plos dt = O(e?),
0 0

where the last equality follows from Lemma 2.5. Thus, we can write

a2 /// (£20ym + N20,k)) - (€20ym + N20,k) dt dx dy
T
(2046 + A20yh)) - (€20,€ + N20,h) dt dz dy
0
2a)\2 /// 2atm+>\2a k)) ( 2atm+>\26xk) dt dx dy
T 32 /// (200 + N20yh)) - (20, + AN*0yh) dt dx dy + O(e?).
a

Now we consider the total sum, given by

L+ L4 I3+ 1, < |Vin(w |LooLoo///|w w|? dt dx dy

2a)\2 // Vi (20ym + N20xk) - (€0ym + N0, k) dt dx dy
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2 /\2 // Van(@) - (€20:€ + N?0yh) - (€20:€ + N*0yh) dt dz dy
a

ar? /// (20um + N0y k) - (20 + N0, k) dt du dy
aX? /// (€20, + N°0yh) - (£20:€ + N20yh) dt da dy

B c(|VEn(w)|peree (1 —35))
2are?

T
// |k — 2aw|* 4 |h — 2aw|? dt dz dy

_C(W(i—(z;;i:;m // daw — (k + h)[? dt d dy + O(%).

The Gronwall inequality, together with the definition of w in (4), yields the following estimate

sup le(®) = llo + [lpu(t) — pu(t)flo < cve, (38)

te[0,7%] €

where the local time T is defined in (24). O

Proof of Theorem 3.1. We start by using the interpolation property of the Sobolev spaces, see [41], for
0 < s’ <sandtel0,T*], which gives

—— 1-5"/s —— s'/s
lou(t) — pa(t)|s < llpu(t) — pa(t) g~ lou(t) — pace)|;”
< CES;_:I(MO + CMOeC(\P—ﬂL,?OLgO/Ev ‘“‘L?"Lgc)t)s//s’

where the last inequality follows by

e the H*®-bound of the solution to the incompressible Navier-Stokes equations on the two-dimensional
torus, i.e.

lpa@)lls < lluolls < eMo;
o the Gronwall inequality applied to estimate (18),
pu(t)||s < cMyefIP=Plrgerge /e ulngonee)t,
Taking s’ big enough, the Sobolev embedding theorem yields
lpu(t) — pu(t)|oo < csllpu(t) — pu(t)lls
< e 5 (My + eMoeeP=Plierge /o ulgezo)tys' /s

and so

|pu(t)] oo < Mo + ce 2 (Mo + cMoe P =Pluge g /e Mulige g )tys'/s
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Similarly,
lp(t) = ploo < csllp(t) — plls
_nl1—s"/s —n1s’/s
< esllo(t) = pllo " "llo(t) — plIz (41)
< 5 (ceMpeeUP=Plrre iz /= alugerge )ty /s,
i.e.
plt, 1) > p— e T (ceMelP=Plegerge /e, llugergo)tys' /s,
p(t, (IJ) <p+ 08352—:Sl) (choeC(‘P*mLch;O /& |alpgo poo )1‘/)8’/87
and
p()]e < P+ ce ™5 (ceMyeclP—Plrongs /o ulngege)tys'/s (42)
Now, since
_ u,_
u—u=—(pu—pu)+ ;(p—p),

then from (41)-(40)-(41),

1 s—s’ o 4
() — (0)]oe < + (C“WMO F eMoeloPlue iz /5 Wlage iy /s
p
(13
+ (353(827?,) (c&‘MOeC(lpiﬁ‘Ltngc /&5 |“|L§>°Lg°)t)5//5> )
ie.,
u(t)]o < 1<Mo +ee T (M + eMoecUPPlugerg /= ez nge )ty /s
p
(44)

3(s—s’

+ e 5 (05M06C(|P—5\L§0Lgc/57 |“|L§°Lg°)t)8'/5> )

Recalling the definition of 7% in (24) and taking M = 4M, estimate (44) implies that there exists g
fixed such that, for ¢ < eg and t < T,

ut)]oo <

M
(Mo +ce37%) < 2My/p = 25

=

for0 < d = ;—; < % Similarly, for ¢t < T,

() = Ploc

M
5 + pu(t)]so < Mo+ ce2 70 < 2My = - (45)

Now let us assume 7% < T*. Then, by definition (24),

T*) — Bloc .
1P(T") = Ploc )E Plos | (%) oo = 4Ny = M.
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On the other hand, estimate (45) implies that there exists a fixed g, depending on Mj and small enough
such that, for ¢ < gg,

1p(T") = Ploo

+ |pu(T*)|oo < My + ce2 70 < 20,
€

Now, by contradiction one gets that T* > T* for € < g¢, where T™* is independent of . As a consequence,
for e < g¢ the solutions (p,u®) to the approximating system evaluated in T¢ are bounded. This way, the
Continuation Principle, see [33], implies that they are globally bounded in time. Moreover, since the uniform
bounds in Lemma 2.5 are based on the L L2 boundedness of (p®,u®), it turns out that they hold globally
in time for ¢ < gy. In the end, we proved:

o the global in time existence and uniform boundedness of (p°,u®) in H*(T?2) for a fixed € < ¢ depending
on Moy;

o the strong convergence in [0, T}, for any T > 0, of the solutions (p,u®) to the approximating system
(3) to the solutions (7, 1) to the incompressible Navier-Stokes equations in H* (T?2), for 0 < s’ < s and
s> 3;

o the rate of this strong convergence.

Finally, the convergence to the gradient of the limit incompressible pressure VPN? in (1) is discussed in
details in [8]. O

Remark 3.5 (A comment on the 3D case). About a possible application of the strategy to the three di-
mensional case in space, except for the explicit construction of the right symmetrizer that provides the
conservative-dissipative form in [8] (i.e. a dissipative entropy for the linearized system), which can be rather
different in the three dimensional case, the method should be applicable to a 3D vector-BGK system ap-
proximating the 3D incompressible Navier-Stokes equations (with the obvious limit on the smoothness of
the solution, see [6]) as presented in [15].
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