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ABSTRACT

The area-tima complexity of polynomial interpolation, and of
the evaluation of a polynomial at given points is studied. ¥We
will show VLSI designs producing bounds close to the lower

bounds also derived.
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1. INTRODUCTION

In this paper, the problem of finding a polynonmial

n
i .
P{x) = E a x of degree less or egual than n,
i
i=0
such that P(x ) = £ , where { (x , £ ), i=0,1,.2-,n } is a set of
i i i i.

given points, i.e. the polynomial interpolation problem, is

studied.

The coefficients of the interpolating polynomial are the

solution of the 1linear systen V a= £, where V 1is the
i-1
(n+i)x{n+1) VvVandermonde matrix Vv = (v ), v = X ¢
ij ij i-1
T
and f=[ £ £ ... £ ] .
i 2 n

It comes out that the interpolation problem is equivalent to
the solution of a particular limear system, with Vandermonde
coefficient matrix.

In the next section, the guestion of lower bounds 1is

addressed.
In section 3, a YLSI design for the computation of

the value of the interpolating polynomial at a given point with

2 4
AT = O{n ) is obtained; another VLSI network producing the

same upper bound, is shown for the computation of the
coefficients of the required polynomial.
Moreover, the VLSI implementation of Estrin algorithm [3]

for the evaluation of a given polynomial at one point is




described, with AT2 = O(n log3n).

The evaluation of a given polynomial at n points is also
considered; this problem is equivalent +to the computation of
the product of a Vandermonde matrix by a vector.

A VLSI design derived from Estrin algorithm yields the AT2
upper bound O0(n? loy3n), while a VLSI design for generic
matrix-vector product, el e mesh of trees, produces

AT2 = 0{n2 log* n) [4].

2. Area-Time lower bounds

In this section we will prove a lower bound to the problen
of evaluating a polynomial of degree less or equal than n at a
given point, with respect to the areax(time) 2 measure.

Let a{i), i=1,...,n be the «coefficients of the given
polynomial. As usual in numerical analysis, we will assume
that a fixed nunber of aigits are used to represent such
coefficients. The evaluation of the polynomial is not easier
than the computation of the sum of the coefficients al{i),
i=1,0m ey e

For the latter problem it is possible to prove the lower
bound AT2=§(nlog2n).

Indeed, we will use the fact thét the lower bound
AT2=fl{nlog2n) holds for the "counter" problem, i.e. the problem
of counting the number of occurrences of 1-s in a binary string
of lenght =n. This result easily follows by applying the
technique used by Johnson for integer addition. Such technique

is based on the input-output functional dependence, which holds




tor the counter problem as well.

In the special case of one digit used to represent the
coefficients of the polynomial, we have that the problem of
computing the sum of such coefficients is equivalent to the
counter problem. Therefore the lower bound AT2=¢(nlog2n) holds
for polynomial evaluation, as well.

In the next section, we will show a design which produces an
upper bound to AT2, optimal up to the exponent of the
logarithnm.

For what concerns/ the interpolation problen, it 1is
equivalent to the solution of a special linear system, with
Vandermonde coefficient matrix. The upper bound derived in the
next section attains the lower bound holding for general linear
systems solution, and it 1is characterized by a simple and

modular structure.

3- VLSI designs for polynomial interpolation and evaluation

Let TT denote the set of complex or real polynomials of
n

degyree less or equal to na
Given n+1 arbitrary points (x , £ ), 1 =20,1,0e-,0n, the
i i
problem of finding the polynomial P (x) € TT. such that

n

P{x ) =1£f, 1i=0,1,2ee,0,
i i

i.e. the interpolating polynomial, is considered.




In this section, two well known algorithas for the
computation of the 1interpolatinygy polynomial are taken into
account, namely Neville algorithm (5], which is particularly
suitable to find the value of the interpolating polynomial at a
given point, and VNewton formu%a {5], which <can be efficiently
used to compute the coefficients of the required polynomial.

The basic step of Neville algorithm is described by the

following recurrent formula:

P.(x) = £

i i
(x-x ) P {(x) - (x-x ) P {x)
(2. 1) i 1 eewi i 1 enail
0 1 k k 0 k-1
p {(x) = v
i 1 .esl X - X
0 1 k i i
k 0
where P {x) is the rejuired value of the polynomial.

0 1 ecwa nn
In fig.1, a VLSI desiyn is presented, in the case n = 3;

processor [1i 1 eee. i ] receives as input the values P {x)
0 1 k 1 eeadl
1 k

and P | {x) , computed respectively by processors [i -..i ]
i ewai 1 k
0 k-1

and {1 ew-1i Js together with the values x, x , X and computes
0 k-1 i i
0 k

the value P {x), according to forwmula (2.1).
1 emasi
0 k

Observe that processors denoted by dashed sguares




in fig.1, send x (x ) to the adjacent processor, while

0 n
each other processor [i .-..i ] send X {x } to processor
0 k i i
k 0
{i "1 i. naoi ] ([i -oui i ] )o
0 O k 0 k kt1

At the end of the computatioh, processor [ 0 1 «ua n Jy
holds the result.
If each processor is supposed to have two storage cells,

the values X ,-wa2ysX can be sent to the proper processor
G n

before startiny the computation.
Neville algorithm 1is not practical to compute the
coefficients of the interpolating polynomial. For this purpose,
it is convenient to use Newton formula, that is
fix)y = £ ,
i i
f{x geo= g X ) = E(X yee.sX )
i+1 i+k i i+k-1
f(x‘,x gommgX ) =

i i+ i+k X - X
i+k i

The required coefficient a , corresponding to the k-th power
k

of x, results to be a = £(X , X yevey X )y K = 0,1,0ma, e
k 0 1 k
The design for this alyorithm is very similar to that one
shown in fig.1, a part from the differeant computation performed
by each processor. Moreover, the rejuired coefficients are
available, at different stages of the computation, in

processors [ 0], [0 1], weey, [0 1 acu 01




In both cases, it is convenient to rearrange the networks,
in order to obtain the upper diagonal part of an nxn mesh of
processors (see figy.2). It readily follows that

A= 0(n2) and T = 0{n)a

Note that the computation proceeds by diagonals; therefore
the circuit is very suitable for a pipelined implementation.

The output period P of the network, defined as the maximum

time between two successive data passages at any output port

when the circuit is used in a pipelined fashion, is P = 0(1);
then AP2 = 0(n2?) and, moreover, the complexity AT2 = 0O(n#%) is
obtained for the <computation either of the interpolating

polynomial at n given points or of n interpolating polynonmials

at one pcint.

REMARK

Note that if X = wl, i=1,2,e<e-,n, w being a n-th principal
i

root of the unity, them the Vandermonde matrix associated to
the interpolation problem becomes the Fourier matrix [2]; for
this particular interpolation problem {trigonometric
interpolation) the well known optimal VLSI designs for DFT [1]
can be used.

We turn now to the problem of evaluating a given polynomial

at given points.

Let a , @ sewe, @ be the coefficients of a polinomial
0 1 n



P e}l -
n

The following problems are considered:
3.1 evaluate P at a given point x,
3. 2 evaluate P at n different points.
Note +that problem 3.1 is not easier than evaluating the
expression
n

E a for which the #ma~nde¥ lower bound
i

i=0

2 2 . .
AT =5Zé» eugn,) géga begsproved, n secT«on 2.

In the following, some VL5I designs are derived, which are
optimal up to logarithmic factors.
Problem 3.1 can be solved by Estrin algorithm {3], which
computes P({x) as
n/2+1
(3-3) P(x) = ¢{x) x + R{x).

k
Let n = 2 ; then a recursive VLSI design can be readily

obtained from {(3.3) (see f£ig.3).
Let us consider the npetwork performing the n-th power of x,

in time T (n) = O{log n) and area A4 (n) = L {n) H (n), vwhere
1 1 1 1




the width L (n) and the height H {(n) can be chosen respectively
1 1

of order O0(lag n) and 0{1).
Then, the complexity analysis of the network showed in

fig.3, produces the following bounds:

T{n} = max { T1(n/2), T({(n/2) } = 0O{log n),
Lin) = max { L1(n/2), L{n/2) } # 0{1) = 0{log n),
H{(n) = 2 H{(n/2) + H1(n/2) = 0{n).
2
Hence, the areax{time) complexity 1is
3

O{(n loghn)-

Problem (3.1) <can also be solved by Dormn algorithm [3],

which computes

k k {(k-NHk
g {(x) = a + 38 X % ... t a X
0 0 k (k-1 k
k k (k-1 k
g {x) =a + a X + awa # a X
1 1 k+1 {k=1) k+1
k k (k-1 k
g {(x ) =a + a X + -2= + 23 x ’
k-1 k-1 2k-1 n

and then



k k k-1 k
P{x) =g (x) + x g (x) +.c0 + x g (x)-
0 1 k-1

2
Let n=k ; then a straightforward VLSI implementation of this

algyorithm can be obtained according to the following three

stages:

2 k-1 k 2k {k-1)k
0. Compute X, X , voe, X and X 4 X 4, eesg X ¢

1. Compute the matrix-vector product

a a e = w a 1
0 k {k-1H k
k
a a s e a X
1 k+1 {k-1) k+1 - - ¢
{(k-1) k
a a . e e a X
k—=1 2k-1 n

2. Compute P({x) as a scalar product.

The area-time complexity of this desiyn would be of the sanme
order of the previous one up to logarithmic factors, if the
input and the output nodes of the module performing
matrix-vector product are not required to lie on the border of
the circuit.

Let us consider the evaluation of a given polynomial at n
points; it is easy to see that this problen is equivalent to

the computation of the product of a Vandermonde matrix by a



vector.

For this problem, the lower bound 52 {n2) holds, since the
Fourier matrix, for which this lower bound has been proved [{6],
is a special Vandermonde matrix.

A VLSI design for generic matrix-vector product, using the

structure of mesh of trees [4], produces ATZ = 0O {n2 log® n) for

this problenm.
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Fig.3. Becursive VLSI design.



