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Abstract

We propose a new non-rigid registration method for large 3D meshes from Multi-View Stereo (MVS) recon-
struction characterized by low-frequency shape deformations induced by several factors, such as low sensor
quality and irregular sampling object coverage. Starting from a reference model to which we want to align
a new 3D mesh, our method starts by decomposing it in patches using a Lloyd clustering before running an
ICP local registration for each patch. Then, we improve the alignment using few geometric constraints and
finally, we build a global deformation function that blends the estimated per-patch transformations. This
function is structured on top of a deformation graph derived from the dual graph of the clustering. Our
algorithm is iterated until convergence, increasing progressively the number of patches in the clustering to
capture smaller deformations. The method comes with a scalable multicore implementation that enables,
for the first time, the alignment of meshes made of tens of millions of triangles in few minutes. We report
extensive experiments of our algorithm on several dense Multi-View Stereo models, using a 3D scan or
another MVS reconstruction as reference. Beyond MVS data, we also applied our algorithm to different
scenarios, exhibiting more complex and larger deformations, such as 3D motion capture dataset or 3D scans
of dynamic objects. The good alignment results obtained for both datasets highlights the efficiency and the
flexibility of our approach.

Keywords: Non-ridig registration, Multi-View-Stereo, Low-frequency deformation, Scalable
implementation

1. Introduction

The generation of 3D surfaces from measured
data is a very important task in the acquisition and
computation of complete digital representations of
real-world objects. Among the various 3D scanning
technologies, Multi-View Stereo (MVS) reconstruc-
tion from images appears as a very cost-effective
solution: the ubiquitous and wide availability of
cameras gives everyone the possibility of harvest-
ing, in a short time and with inexpensive hardware,
many images to use for the 3D MVS reconstruc-
tion of the world around us. Furthermore, the rise
and the consolidation of the community photo col-
lections have increased considerably the amount of
data available for this purpose ([1], [2], [3]). The
3D models obtained with these technologies can be
used for different applications, among which mul-
timodal capture is becoming more and more fre-
quent. In this context, the MVS data can be used
for two different purposes: the 3D model comple-

tion or the temporal environment monitoring. In
the first case, the goal is to enrich an existing 3D
model obtaining a complete sampling (for example
to integrate and complete a high-quality 3D scan
of a monument with the missing parts that are eas-
ier to acquire by photogrammetry with a drone).
In the second case, the goal is to monitor the tem-
poral shape evolution of an environment or an ob-
ject automatically comparing a pair of 3D models
acquired at different points in time. For both ap-
plications, a fundamental step resides in the regis-
tration of the computed MVS mesh to a reference
model (e.g., a high-quality 3D model, a laser scan
or another MVS reconstruction). Two separate is-
sues hinder this goal. The first one is the estimation
of the unknown scale factor of the new MVS mesh
with respect to the reference model. A solution for
this issue was proposed in [4] for general 3D mod-
els and in [5] when the input can be approximated
with a height map. The second issue is the low
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Figure 1: Our algorithm deforms a 3D model obtained with multi-view stereo (MVS) methods to align it over a reference mesh.
(a) Input reference mesh by 3D scanning. (b) Input deformable mesh by MVS reconstruction. (c) Initial rigid alignment.
(d) Final alignment computed by our algorithm. (e) Cumulative Distribution Function (CDF) of the vertex-to-mesh distance
between the deformed mesh and the reference one (blue before and orange after the alignment). Our algorithm corrects the
bending introduced by the MVS reconstruction along the nave of the cathedral, preserving the significant geometric changes
like the scaffolding on the side of the building. This is also confirmed by the better CDF of the closest distance after the
alignment.

frequency deformation introduced in the model by
the Structure-From-Motion (SfM) step of the MVS
reconstruction (see the input MVS model in Figure
1) and related to several factors: (i) the low sen-
sor quality; (ii) the sampling acquisition coverage
of the objects in term of overlap among the images;
(iii) the spatial distribution of the views; (iv) the
parameters of the involved algorithms that are not
able to remove all the optical lens distortion or to
detect a sufficient number of features to constrain
the bundle adjustment step. Even if some of these
problems can be controlled in the case of an ad-hoc
photographic campaign, for example taking care of
the sampling acquisition coverage or using expen-
sive devices like a total station theodolite to acquire
a number of Ground Control Points, the situation
is worse in the case of community photo collections
where the acquisition is incidental and the photos
are acquired with different cameras.

In this paper, we propose an iterative and hierar-
chical non-rigid registration method to align a large
MVS mesh to a reference 3D model while removing
the deformation introduced by the MVS algorithm.
The final goal is to correct the deformation in a rel-

ative manner since the reference model continues
to have its own distortions. This relative alignment
can be very useful for the applications that can take
advantage of an acquisition with inexpensive hard-
ware, like a camera, where the relative deformation
of one model to the previously acquired one per-
mits or to integrate the data of the two models or
to detect the changed regions in a more robust way.
Starting from a rough alignment to the reference
mesh, at each iteration, our algorithm segments the
model into patches using a Lloyd clustering. The re-
sulting segmentation is used to build a deformation
graph that allows transferring the affine transfor-
mation computed for each node of the graph onto
the original model. The affine transformations are
computed independently for each patch with an It-
erative Closest Point (ICP) procedure, using the
geometry of the adjacent patches to constrain the
local stiffness. This local ICP procedure makes the
algorithm easier to parallelize on multicore archi-
tectures, allowing, for the first time, the alignment
of meshes with tens of millions of triangles in few
minutes. When the ICP converges to a local mini-
mum, we improve the estimation by regularizing the
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local consistency of the transformation from the ad-
jacent nodes. All along the iterations, we increase
the number of patches of the Lloyd clustering to
progressively fit smaller scale deformations.

Our main contribution is a non-rigid registra-
tion algorithm that allows processing very large and
complex MVS meshes. We do not make any as-
sumptions about the type of the input data and the
amount of deformation between the models, as op-
posed to the state-of-the-art non-rigid registration
algorithms that manage specific input, like range
scan, taking advantage from their implicit 2D pa-
rameterization (for example [6] and [7]), or range
video, taking advantage of the temporal coherence
of the data (for example [8] and [9]). These as-
sumptions prevent the trivial application of these
solutions to our kind of input, and their adaptation
to our input is not straightforward. Other state-of-
the-art solutions are based on complex global non-
linear energy minimization [10], which do not scale
with the size of the input models. On the contrary,
our solution is based on a localized ICP and local
updates of the deformation model, making the algo-
rithm easier to run in parallel and scalable to large
3D meshes. In particular, our algorithm is robust
against all usual defects exhibited by a typical MVS
mesh such as noise, missing geometry, irregular tri-
angulation or irregular density. It can also handle
multi-scale input with very different level-of-details
in the same mesh and between the target and the
deformed mesh. Finally, our method is also robust
to the presence of geometric changes, like pieces
of new geometry that did not exist in the refer-
ence mesh, preserving these changes (Figure 11).
This property is key for the detection of changes
in evolving 3D data where MVS techniques offer a
practical cost-effective solution. We tested the al-
gorithm with different real datasets using reference
models of different quality, such as a high-quality
3D scanned model, a single raw LIDAR scan or an-
other MVS model. Furthermore, we tested differ-
ent scenarios that exhibit more complex and larger
deformations, such as 3D motion capture datasets
or dynamic object scans, showing that, although
specifically designed for MVS data, our method
achieves comparable results with a state-of-the-art
algorithm on a broader set of application scenarios.

2. Related Work

The deformations in an MVS reconstruction are
mainly due to the SfM step that introduces drift-

ing effects due to different reasons (low sensor qual-
ity, not good view sampling of the scene, the pa-
rameters of the involved algorithms). Cohen et
al. [11] propose a new SfM formulation to solve
this problem in the case of architectural scenes with
symmetric or repeated structures. Although this
SfM method returns a more natural coordinate sys-
tem, reducing the final deformation, the input re-
quirements prevent its application to more general
scenes. On the contrary, we formulate the problems
as a non-rigid registration using another 3D mesh
as reference.

The literature of the 3D registration problem
is very wide and in this section, we analyze the
approaches more closely related to the proposed
method. Our starting point is the Iterative Clos-
est Point [12] algorithm, which serves as a basis for
many others. It estimates the rigid transformation
between two shapes by minimizing the point-to-
point [12] or the point-to-plane [13] distance of a set
of correspondences created by closest search. The
procedure iterates until convergence. To reach con-
vergence to the optimal transformation, ICP and
its variants [14] require a coarse alignment step be-
tween the two models. This initial rough alignment
can be obtained by manually picking at least four
correspondences between the two meshes or by us-
ing automatic methods based on the explicit extrac-
tion and matching of 3D key-points [15], the ex-
traction of quadruple of congruent quasi-coplanar
points ([16],[4]), or the combination of both [17].
For a complete overview of these methods we refer
the reader to the work of Diez et al. [18].

When allowing deformation, the mapping is not
encoded as rigid transformation, but as a generic
function that should ideally mediate between an ex-
act mapping of the shapes and a rigidity-preserving
mapping. To correct low frequency warps on range
scans, Ikemoto et al. [19] decompose the input
scans using a coarse-to-fine hierarchy of locally rigid
pieces that are aligned independently with a global
registration procedure. They use a very simple
splitting along the longest oriented bounding-box
direction, keeping separated and independent the
pieces without any final deformation of the original
scans. A more efficient solution is presented in [20]
where a locally weighted ICP provides the point
correspondences among the range scans over which
to define a Thin Plate Spline warping that corrects
small misalignments.

Several solutions model the deformation between
a pair of range scans as a weighted combination of
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local rigid transformations. Li et al. [6] globally op-
timize the rigid transformations and the correspon-
dences for a set of uniformly distributed vertices
connected with a deformation graph. The optimiza-
tion minimizes a global energy function that guar-
antees smoothness and rigidity among near nodes in
the graph. Huang et al. [21] propose the matching
of explicit 3D feature points to create correspon-
dences that can be used to extract rigid clusters,
points whose deformation can be described by a sin-
gle rigid transformation assuming isometric defor-
mation. Chang et al. [7] use a reduced deformable
model to optimize simultaneously the rigid transfor-
mation and the influence weight to transfer the de-
formation using a grid-based representation. Many
other techniques solve the registration using the
temporal coherence of a dense stream of depth
maps [22, 23, 8], or explicit markers [24] or a tem-
plate model to fit the range scan data [25, 26, 27].
A new reconstruction method from range video was
proposed by Zhou et al. [9], by partitioning the in-
put stream into small fragments of few consecutive
frames that are deformed using a volumetric regis-
tration formulation. Whelan et al. [28] developed
a real-time dense SLAM using an RGB-D camera
incremental acquisition to build consistent surfel-
based maps of room scale environment. This is
accomplished by using dense frame-to-model cam-
era tracking and windowed surfel-based fusion with
frequent model refinement through non-rigid sur-
face deformations. Duo et al. [29] proposed a new
pipeline for live multi-view performance capture us-
ing RGB-D cameras that combines the volumetric
fusion with the estimation of a smooth deforma-
tion field across the RGB-D views. With respect to
these solutions, our method works on general large
meshes and not only on range scan and range video,
without any assumption on the type of input.

Similar to our method, Cagniart et al. [10] pro-
pose a generic data-driven mesh deformation frame-
work based on a subdivision of the original surface
into patches with a hierarchical approach increas-
ing the patch resolutions. Unlike from our method,
which uses a local affine ICP, they propose a global
energy minimization over all the vertices to com-
pute the transformation of each patch guaranteeing
the local rigidity of the mesh. A similar Laplacian-
based deformation was proposed by Budd et al. [30]
for the non-sequential alignment of multiple un-
structured mesh sequences from non-rigid surface
capture. Even if these papers do not present any
performance analysis and data information, usually

the global energy approach does not scale with the
size of the input mesh, especially with tens of mil-
lions of triangles. On the contrary, our solution
scales better with the size of the meshes thanks to
the local ICP approach that naturally runs in par-
allel on multicore architectures. Rouhani et al. [31]
propose the non-rigid registration of point clouds
where the source is clustered in small patches and
the target is approximated with an implicit repre-
sentation. In this way, the association between the
source and the target can be replaced by a con-
tinuous distance field that reduces the energy to
minimize to a system of linear equations. Yang et
al. [32] observe that the similarity among transfor-
mations is better captured by L1 norm than by the
widely used L2 norm, which tends to overweight
outliers, and they propose a sparse no-rigid ICP
method. Both the methods use a hierarchical mul-
tiresolution approach to prevent the minimization
from getting stuck in a local minimum.

In the context of the surface similarity, Bron-
stein et al. [33] address the problem of the partial
matching between a template model and another
surface with a multi-dimensional scaling algorithm
that computes the mapping between the two sur-
faces minimizing the distortion. On the assump-
tion of isometric deformation Bronstein et al. [34]
introduce a diffusion distance robust to topologi-
cal noise, Jain et al. [35] use correspondences in
the spectral domain and Litman et al. [36] propose
a scheme for learning optimal spectral descriptors.
Chen et al. [37] showed how to model the mini-
mization of this intrinsic distortion function with a
Markov Random Field optimization, increasing the
registration precision. Typically, all these solutions
are less robust to noisy data, which is a typical de-
fect of MVS reconstructions. Recently a very spe-
cialized solution was proposed by Wei et al. [38] to
use deep learning methods for finding correspon-
dences among 3D scans of humans.

3. Algorithm Overview

Given two triangular meshes A and B, the goal of
our algorithm is to align B over A when B exhibits
a deformation that cannot be modeled with a single
affine transformation. Our strategy follows and ex-
tends the classic procedure presented in [6] which is
based on the computation of a deformation graph
of B, the estimation of an affine transformation for
each node of the graph and the transfer of the de-
formation from the graph to the original mesh. We
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Figure 2: Algorithm overview.

propose a new scalable pipeline that is able for the
first time to align meshes with tens of millions of
triangles in few minutes.

Starting from an initial estimation of a rough
alignment of the two meshes, our method can be
decomposed into four steps (see Fig. 2):

1. the decomposition of B into patches with a
Voronoi clustering to build the topology of the
deformation graph (Section 3.1);

2. the registration of each patch with the mesh A
using a local ICP algorithm (Section 3.2);

3. the collaborative improvement of the registra-
tion for all the patches with few geometric con-
straints (Section 3.3);

4. the smooth reconstruction of a transformation
field from the finite set of estimated transfor-
mations at the nodes of the deformation graph,
to compute the final per-vertex deformation of
B (Section 3.4).

The initial rough alignment can be obtained auto-
matically using [4] or [39] if the two meshes were
created from multi-modal data and present large-
scale differences. The procedure is iterated using
as input the output of the previous iteration until
convergence. After the first iteration, we increase
the number of the nodes in the deformation graph
in order to create more patches and capture smaller
deformations. Last, when the procedure converges,
we compute a final warp to recover the registration
of the smallest features (Section 3.5).

3.1. Patch Decomposition

The patch decomposition procedure uses a sim-
ple Lloyd’s algorithm to compute a Voronoi clus-
tering P (see left image in Figure 3) of the mesh B
which is adaptive to the mesh density: in the areas
with more triangles we create more patches assum-
ing that it indicates more geometric details. This
adaptivity is particularly important for the meshes

created from a multi-scale input with a very dif-
ferent level of details. Starting from a user-defined
target number m of patches, we use an adaptive oc-
tree to distribute n initial seeds for the segmenta-
tion. Each leaf of the octree must contain at least
v/m vertices with v the number of vertices of B.
The seeds are initialized with the vertices of the
mesh which are the closest to the center of the oc-
tree leaves. The procedure continues with the two
classic steps of a Lloyd iteration:

1. the computation of the Voronoi diagram of the
current seeds according to an appropriate met-
ric L taking account of the mesh topology;

2. the optimization of the seed of each patch.

In the first step, we assign each vertex to the nearest
seed according to the geodesic metric L computed
using the mesh topology. In Section 4.3 we ana-
lyze the performance of the algorithm with seven
different metrics L varying the number of Lloyd it-
eration. For the last steps, the idea is to assign as
seed the centroid of the patch, that is the point that
minimizes the sum of the square distances from the
vertices of the patch. To approximate this point,
we compute the quadric using all the vertices of
the patch and we select the vertex that maximizes
this quadric. To make the computation indepen-
dent from the local triangulation, the contribution
of each vertex to the quadric is weighted by its
Voronoi region area defined by the local triangu-
lation using the method proposed in [40].

Once the clustering is computed, we build the
deformation graph G of the mesh B as its dual
graph, where its vertices gi are the nearest vertices
of the mesh to the final centroid of each patch and
the edges capture the topological adjacency among
the patches using the topology of the mesh B (see
right image in Figure 3). In order to guarantee the
stiffness of the transformation between the differ-
ent connected components of the mesh B, we force
the construction of a connected deformation graph
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by building a minimum spanning tree between the
connected components of G. Each new edge in the
spanning tree simply connects the nearest nodes of
two components of the graph.

3.2. Super-Patch ICP

Starting from the Voronoi segmentation P and
the deformation graph G, we compute an affine
transformation for each node of the graph indepen-
dently using an ICP approach. More precisely, we
associate to each node a super-patch, composed at
least by the patch of the node and its 1-ring ad-
jacent patches. Then, we grow the super-patches
radially until its geometry reaches a good distribu-
tion of normals in the Gauss Map. We approxi-
mate the Gauss Map with a spherical histogram of
40 seed normals generated with the Spherical Fi-
bonacci point sets [41]. This growing procedure
is stopped when the solid angle subtended by the
biggest triangle defined by the most populated bin
and two other non-empty bins of the histogram is
greater than π/2. We discard the bins containing
a number of elements less than 0.1% of the most
populated bin. This growing procedure avoids the
creation of too flat super-patches that could present
too few geometric anchors for the convergence of
the following ICP algorithm. Moreover, the redun-
dancy of geometric data in the super-patches par-
tially constrains the local stiffness between adjacent
nodes.

Then, we compute the ICP between each super-
patch and the mesh A. Our procedure extracts a
subset of points pi from the super-patch using a
uniform distribution of normals npi

and seeks the
nearest points qi with normal nqi in the mesh A for
each of them. We discard all the correspondences
that are distant (|pi − qi| < d) and have inconsis-
tent normal (npi

·nqi < cos (π/4)). These heuristics
are the most used and robust for the ICP algorithm
[14]. With the resulting k good correspondences, we
estimate the affine transformation T by minimizing
the classical point-to-plane error metric [13]:

E =
k∑

i=0

‖(Tpi − qi) · nqi‖
2

(1)

The maximum distance d for the correspondence
rejection is set equal to the minimum between the
maximum distance of the super-patch from A and a
user selected distance expressed or as a percentage
of the bounding box of B or as a percentile of the
vertices of B. The percentile is useful when the two

meshes contains strong differences, such as no sam-
pled areas or completely new geometry, to indicate
the amount of change in B.

The estimated affine transformation, composed
by rotation, translation and uniform scale, is stored
at each node of the deformation graph (see top im-
age in Figure 4). In particular, the uniform scale is
required to correct small scale differences between
the multi-view stereo geometry and the reference
mesh A that the initial rough alignment, obtained
also with the most robust existing solution [4], was
not able to correct.

3.3. Alignment Improvement

To evaluate the quality of the transformations
computed for each node of the deformation graph,
we use the metric proposed by Gelfand et al. [42].
The goal is to detect when the ICP converges to
a local minimum due to a set of correspondences
not able to constrain unstable transformations, pro-
ducing the sliding between the surfaces. With
the points pi of the correspondences used in the
ICP procedure, we create the covariance matrix
C = FFT with

F =

[
p1 × n1 · · · pk × nk
n1 · · · nk

]
(2)

and we compute its condition number c =
λmax/λmin as the ratio between the largest and the
smallest eigenvalues of C. We consider as valid the
transformations of the nodes with c ≤ t. Based on
our experiments, we set the value t = 5 for all the
datasets.

For the nodes with an unstable transformation
(c > t), or where the ICP failed due to few corre-
spondences, our algorithm adopts a relative opti-
mization strategy to improve the affine transforma-
tion quality. At this stage, the key idea is to prop-
agate the transformation from the valid nodes with
an advancing front approach following the topology
of the deformation graph G. The order depends on
the geodesic distance of the invalid patches from the
nearest valid patch in the graph (see the bottom im-
age in Figure 4). Starting from the closest ones, all
the patches with the same distance are processed in
parallel at the same time. During the propagation,
we minimize the registration error with respect to
the valid transformation of the neighbors. In the
first step, we take 100 uniform random vertices s of
the patch Pi and we compute the weighted average
position s′ of each one using the transformations Tj
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Figure 3: (Left) Voronoi clustering of the Cathedral1 dataset. (Right) Deformation graph computed as dual graph of the
Voronoi clustering.

Figure 4: (Top) Patch-wise transformation computed by
the procedure in Section 3.2. (Center) Improvement of the
patch-wise transformation computed by the procedure in
Section 3.3. (Bottom) Color coding of the geodesic distance
of the invalid patch from the valid one (blue=valid patch,
azure= distance 1, green=distance 2, yellow=distance 3).
This distance is used to set the order of propagation of the
valid transformations described in Section 3.3

of the 1-ring valid patches N (i):

s′ =

∑
j∈N (i) fij(Tjs)∑

j∈N (i) fij
(3)

The weight function fij is defined as:

fij = bij exp−cj/2t (4)

where bij is the number of border edges between
the patch Pi and the patch Pj and cj is the con-

dition number of the patch Pj . This weight func-
tion gives more influence to the neighboring patches
with a transformation computed with a higher qual-
ity (lower c values) and with a longer shared bound-
ary with the patch Pi. With the pairs of points
〈s, s′〉, we compute the new transformation T ′ for
the patch Pi that minimizes the point-to-point er-
ror metric:

E =
100∑
i=0

‖Ts− s′‖2 (5)

This new transformation is refined with the ICP
procedure described in Section 3.2 applied to the
patch Pi and the mesh A. At the end of the ICP
refinement, we recompute the quality c of the new
estimated transformation and we mark the patch
as valid to allow the propagation of its transfor-
mation to the nearest non-valid patches. This for-
ward propagation from the valid patch is followed
by a back propagation of the computed alignment
to guarantee a smoother deformation in the critical
areas, especially in the regions with strong changes.
In this back propagation, we follow the reverse or-
der used in the forward propagation starting with
the farthest originally invalid patches. In particu-
lar, for each of these patches, we estimate the trans-
formation that minimizes the metric in Equation 5
using the pairs of points 〈s, s′〉 computed with all
the 1-ring patches. The middle image in Figure
4 shows the registration improvement obtained by
applying this procedure.

3.4. Transformation Blending

To smoothly transfer the deformation from the
graph G to the mesh B, we use the method pro-
posed by Sumner et al. [43]. For each vertex bi, we
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compute its deformed position b̃i as the weighted
mean of its positions after the application of the
affine transformations Tj of the k-nearest nodes of
the deformation graph to the patch to which the
vertex belongs:

b̃i =

∑k
j=0 wj(bi)[Tjbi]∑k

j=0 wj(bi)
(6)

The k-nearest nodes are selected using the graph
topology. Doing so, our approach is more robust
in the case of close structures with opposite orien-
tation and not topologically connected where the
relative transformations are not influenced (for ex-
ample the sides of a wall that must be moved in the
opposite direction). We define the weights wj as:

wj(bi) = (1− ‖bi − gj‖ /dmax)2 (7)

where dmax is the distance to the k+1-nearest node
from the vertex. In all our experiments we use k =
8, the best value proposed by Sumner et al. [43] to
avoid interpolation artifacts.

Using the same interpolation procedure, we com-
pute two scalar fields to measure for each vertex
the amount of displacement D and local flexibil-
ity S starting from the value computed for each
node of the graph. The displacement field evalu-
ates the amount of movement of each vertex of the
mesh after the application of the computed defor-
mation graph. The local flexibility gives a measure
of how much locally similar are the final deforma-
tions computed for each vertex. For each node gi
of the graph, the displacement value D(gi) is com-
puted as the average distance between the vertices
aj of the bounding box of the relative patch before
and after the estimated transformation Ti:

D(gi) =

7∑
j=0

‖Tiaj − aj‖/8 (8)

The use of the bounding box vertices allows a better
estimation of the amount of rotation introduced by
the computed transformations. The local flexibility
S(gi) is computed as:

S(gi) =

∑
j∈N (i) ‖Tjgi − Tigi‖

#N (i)
(9)

where N (i) is the set of neighboring patches of Pi.
Figure 5 shows the scalar fields computed after the
first iteration of the algorithm on a performance
capture example.

0.0 0.5 1.0

Figure 5: From left to right: initial alignment; alignment
after the first iteration of the algorithm; the normalized dis-
placement scalar field D computed with Equation 8; the nor-
malized local flexibility scalar field S computed with Equa-
tion 9.

3.5. Iteration and Final Warp

Although the first execution of the proposed al-
gorithm is able to correct most of the deformation
between the two meshes, this procedure is iterated
using as input the output of the previous iteration.
After the first iteration, we evolve two parameters
of the algorithms assuming that the mesh B has
been moved to a closer position with respect the
mesh A in order to capture smaller deformations.
In particular, we double the target number m of
nodes of the deformation graph to create smaller
patches and we halve the maximum distance for
the rejection of the point pairs to use in the ICP
procedures. We detect convergence when, for all
the nodes gi of the deformation graph, the displace-
ment value D(gi) < 2ei, where ei is the mean length
edge of the patch of the node. Experimentally, we
see that few iterations are sufficient to achieve good
results.

Finally, after convergence, we compute a final
warp to recover the registration of the smaller fea-
tures. This warp is obtained by running a simplified
version of the proposed algorithm without the step
described in Section 3.3. In particular, we extract
the Voronoi segmentation, we compute the ICP for
each patch bounding the creation of super-patches
to the only 1-ring adjacent patches and finally, we
blend the estimated transformations. In this final
warp step, we quadruple the target number m of
nodes of the deformation graph used in the last it-
eration of the algorithm.

4. Results

We tested the method with two different datasets
(Section 4.1): a set of MVS meshes using models
of different quality as reference (high-quality 3D
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Figure 6: Registration results obtained for the dataset Cathedral using a high quality 3D model as reference mesh. For each
test we show the starting alignment, the computed final registration and the color mapping of the distance from the reference
mesh after and before our algorithm. The MVS models were created with Agisoft Photoscan (Cathedral1 and Cathedral3),
COLMAP (Cathedral2 and Cathedral4) and MVE (Cathedral5).

scanned models in Figure 6, a single raw LIDAR
scan in Figure 7, another MVS model in Figure
8); a set of more complex test cases made by 3D
motion capture and 3D scanning of dynamic ob-
jects. Then we analyze the parallel performance
of our multi-core implementation (Section 4.2) and
the influence of the Voronoi clustering metrics to
the registration results (Section 4.3), which is the
most crucial step since it determines the amount
and the type of deformation that we correct. For
all the other input parameters of the algorithm we
always used the same values, the best ones reported
by the original papers.

4.1. Dataset

The MVS dataset is composed of four scenes
(Cathedral, Arena, Excavation, Square),
each one with several models reconstructed with
three different MVS software: Agisoft Pho-
toscan; Multi-View Environment (MVE) [44];
COLMAP [45] which is one of the best MVS re-
construction software according the recent bench-
mark in [46]. Cathedral is composed of 3 dif-
ferent photographic campaign acquired with dif-
ferent cameras. The first one was reconstructed
from some frames of a video acquired with an ac-
tion cam using both Photoscan (Cathedral1) and
COLMAP (Cathedral2). The second one was ac-
quired with a reflex camera and reconstructed with
Photoscan (Cathedral3) and COLMAP (Cathe-
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Figure 7: Registration results obtained for the dataset Square using a single LIDAR scan as reference. For each test we show
the starting alignment, the computed final registration and the color mapping of the distance from the reference mesh after and
before our algorithm. The MVS models were created with Agisoft Photoscan (Square1 and Square2) and MVE (Square3).

dral4). The third one was acquired with a re-
flex camera with a better view sampling and re-
constructed with MVE (Cathedral5). For this
scene, we used a high-resolution Time-of-Flight 3D
scanned model as reference for the registration.
Similarly, Square is composed of 3 MVS models:
Square1 acquired with an action cam and recon-
structed with Photoscan; Square2 acquired with
a reflex camera and reconstructed with Photoscan;
Square3 acquired with a reflex camera and recon-
structed with MVE. The reference mesh is a single
and partial raw triangulated Time-of-Flight scan.
Arena is composed of 3 MVS models acquired by
multiple people in an incidental way with different
cameras and reconstructed with MVE. We used the
first MVS model as reference for the registration of
the others (Arena1 and Arena2). This dataset
shows irregular density with very different level-of-
details in the same mesh and among the models.
Excavation is composed of 3 MVS models of an
archaeological excavation acquired with two differ-
ent cameras at distance of years (2013, 2014, 2016)
and reconstructed with COLMAP. The first MVS
model is used as reference for the others. For each
test, the initial position for the non-rigid registra-
tion was obtained with a rigid alignment procedure.
In particular, we computed a coarse alignment by
manually picking at least four correspondences be-
tween the models to compute the affine matrix that
minimizes the least square error. Then the regis-

tration was refined by a rigid ICP. Only for the
dataset Arena, we computed the initial registra-
tion with the procedure proposed by Mellado et
al. [4], to estimate automatically the scale difference
between the models. All the tests present some de-
formations, with differences in the amount and the
type of distortions, and show some geometric in-
consistency in the areas where the MVS algorithm
fails. All the tests contain some consistent temporal
changes with the reference, like no sampled area or
completely new geometry. Figures 6, 7 and 7 show
the obtained results. Figures 13, 14 and 15 show
closeups of the color mapping of the distance to
the reference mesh before and after the non-rigid-
registration. Table 1 contains the data of each test
reporting the size of the input meshes, the num-
ber of nodes of the deformation graph used in the
different steps, the number of iterations of the algo-
rithm, the computation time, and the Root Mean
Square error (RMS) computed on the distance of
each vertex of the reference model from the closed
point of the deformable mesh before and after our
algorithm. We performed our test on a PC with an
Intel Core i7-4790k 4.00GHz and 32 GB RAM.

In general, our method significantly improves the
initial registration, as we can see in the color map-
ping of the distance from the reference mesh (Fig-
ures 6, 7 and 7). This is confirmed also by the
RMS values in Table 1. The method corrects strong
deformations, also of different type, due to the
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Figure 8: Registration results obtained for the datasets Arena and Excavation using a MVS model as reference. For each
test we show the starting alignment, the computed final registration and the color mapping of the distance from the reference
mesh after and before our algorithm. The Arena models were created with MVE while the Excavation models were created
with COLMAP.

Structure-from-Motion step, like in Cathedral1
and Cathedral4, where some not aligned images
do not permit to close the loop around the cathedral
producing an incremental drifting, or in Cathe-
dral1, where the low quality of the input images
generates a bending along the nave of the cathedral.
It also manages input models with a very bad and
partial triangulation like in Square3. For all the
tests, the method takes some minutes to compute
the registration of huge models with several million
of triangles. The higher time in the tests Square3
and Arena2 is due mainly to the Voronoi cluster-
ing biased by the irregular and partial triangulation
of the models that present very long and narrow
connected components.

We also tested the robustness of the method on
different scenarios that exhibit more complex and
larger deformation. In particular, we used some
cases from the motion capture datasets published
in [47] (Dancer), in [48] (Face), and the Torso
dataset from [6]. To manage these larger deforma-
tions, we modified our algorithm for the dataset
Face and Torso using a preprocessing step. In
this step, we iterate our procedure until conver-

gence using a low and fixed number of patches and
with a less strict convergence criterion (D(gi) <
10ei for each node of the deformation graph). The
mesh obtained at the end of the preprocessing is
used as input to our standard procedure. This step
permits to correct the low-frequency general defor-
mation of the models, avoiding the estimation of
wrong transformations. Although for this kind of
data there exist more appropriate and specialized
algorithms, the obtained results show the flexibil-
ity of our method (Figure 9 and Table 1). The
method can correct the general deformation of the
shape, but it does not recover very small deforma-
tions, like the high-frequency changes of the dress
in the Dancer or the smallest features of the fa-
cial expression in the Face dataset. Anyway, our
method obtains comparable results with Li et al.
[6], as shown in Figure 10, starting from the same
initial conditions. This is confirmed also by the
RMS values (our method RMS = 0.501, Li et al.
[6] RMS = 0.498).

Furthermore, the method is robust to the pres-
ence of significant geometric changes in two differ-
ent ways. First, it preserves new geometry appear-
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Figure 9: Dynamic dataset. For each dataset, we show the reference mesh and two test cases with the initial alignment of the
input mesh B, the output registration and the color mapping of the distance from the reference model. For the Torso dataset,
the starting alignment of the second test case is obtained after a rigid ICP on the input of the first case.

ing in the model while computing the deformation
that registers the rest of the scene in a consistent
way, like for the panel, the person and the scaffold-
ing appearing in the Cathedral, shown in the first
three columns of Figure 11. Similarly, in the Exca-
vation dataset the changed regions in the middle
due to the excavation process are well preserved
(Figure 8). Secondly, it integrates the changes due
to low-frequency deformation with small and locally
rigid consistent movements like the bollard in the
Square shown in the fourth column of Figure 11.
This robustness is extremely important for the con-
sistent monitoring of changes in 3D structure by
3D acquisition, an emerging field where MVS tech-
niques offer a practical cost-effective solution.

4.2. Implementation

One of the main strengths of our algorithm is
the use of a local ICP procedure to align each
super-patch independently to the reference model.
This naturally sets several components of the al-
gorithm for parallel execution on a multicore ar-
chitecture. In particular, our implementation uses

mm
10 2

Figure 10: Comparison of the result obtained with our
method (bottom) with Li et al. [6] (top) on the Torso
dataset. The color mapping shows the distance from the
reference mesh.
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Cathedral Square

Figure 11: Examples of temporal changes that the registra-
tion can preserve (left) and can integrate (right). (Top) Ini-
tial registration. (Bottom) Final registration with the high-
light of the change regions.

OpenMP to parallelize the Voronoi clustering (par-
allel flooding from the seed), the ICP procedure
(one thread for each super-patch), the propagation
of the valid transformation on the invalid patches
(all the patches at the same distance in parallel) and
the final interpolation (one thread for each vertex).
Figure 12 shows the speedup and parallel efficiency
obtained by changing the number of CPU cores for
three different datasets (Dancer2, CathedralL1
and Arena1). We can observe in all the experi-
ments that the parallel efficiency is above the 80%
with the exception of the test with 4 cores with
hyper-threading (8 virtual threads) where, due to
the hyper-threading overhead, the efficiency is re-
duced to about 55%. Overall, linear scalability is
mostly limited by the sequential overhead of the
data structure creation required at the different
steps of our algorithm. Note that for the all the
experiments in the paper, we always report perfor-
mance with 4 cores with hyper-threading.

4.3. Vononoi Metric Influence

In order to evaluate the best Voronoi Metric to
use in the patch decomposition of the deformable
mesh described in Section 3.1, we tested the reg-
istration performance of the algorithm using seven
different metrics L varying the number of Lloyd it-
erations. The metrics are: the number of edges
from the seed (Hop); the Euclidean geodesic dis-
tance (Euclid); the three metrics proposed in [49]
(L2, L21, Sobolev); a metric based on the amount
of displacement computed by the previous itera-
tion of the algorithm using the scalar field com-
puted with Equation 8 (Displace); a metric based
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Figure 12: Speedup of the our algorithm by changing the
number of CPU core (1, 2, 4 and 4 with hyper-threading).
In parenthesis the parallel efficiency. The test has been done
on three different datasets. (Dancer2, Cathedral1 and
Arena1)

on the amount of local flexibility of the deforma-
tion computed by the previous iteration of the al-
gorithm using the scalar field computed with Equa-
tion 9 (Rigid). The metric Hop creates an adap-
tive partition to the local density of vertices of the
mesh with patches with a similar number of trian-
gles. On the contrary, the metric Euclid permits
to create partitions with patches of similar area.
The three metrics L2, L21, Sobolev allow the cre-
ation of patches as planar as possible with differ-
ent degrees of anisotropy. Finally, the idea of the
last two metrics is to guide the Voronoi clustering
with the scalar field computed with Equation 8 and
9 (see Figure 5). This permits to create patches
with points that underwent a similar transforma-
tion (Displace) or an as rigid as possible relative
transformation (Rigid) in the previous iteration of
the algorithm. In the first iteration of both metrics,
we use the simple Hop measure. Table 2 shows the
RMS value for the final alignment obtained on three
different datasets testing the seven metrics increas-
ing the number of Lloyd iterations. The values are
very similar with a slight preference for the met-
rics Hop and Euclid. The only exceptions are the
Variation style metrics (L2, L21, SOBOLEV) that
work worse. This behavior comes from the very ir-
regular dual graph generated by the three metrics
and composed of patches of very different shape and
size. This kind of graph is less effective when com-
bined with the transformation blending described
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in Section 3.4, which prefers a more regular decom-
position. Considering that we only seek a partition
of the deformable mesh which is adaptive to the
local density and with patches of the same size in
term of triangles, for the other tests in the paper,
we chose the very simple Hop metric iterated only
two times to retain a fast computation. To note
that the additional error introduced by this metric
with respect to the best one in the three tests in
Table 2 is very limited.

5. Conclusion

We proposed a new non-rigid registration method
to align a 3D model obtained by MVS methods
to a reference mesh by removing the low deforma-
tions introduced by the MVS reconstruction pro-
cess. Our algorithm uses an iterative hierarchical
approach that segments the model in patches with
a Voronoi clustering and runs for each of them an
ICP procedure. During the ICP, we use the ge-
ometry of the surrounding patches in order to con-
strain the local stiffness of the deformation. Then,
we recompute the transformation of the patches
that underwent a sliding with respect to the ref-
erence surface. Finally, the algorithm blends the
computed affine transformations using a global de-
formation function derived from the dual graph of
the Voronoi clustering taking account of the graph
topology. The algorithm is iterated until conver-
gence by increasing the number of patches of the
Voronoi clustering to capture smaller-scale defor-
mations. Our method is designed for multi-core ex-
ecution and scales with the number of CPU cores.
This allows, for the first time, the alignment of large
MVS meshes, made by tens of millions of poly-
gons, in a couple of minutes. The final output is
the relative alignment of the MVS mesh over the
reference 3D model, also of different quality. The
obtained registration can be useful in the context
of the 3D model completion and temporal environ-
ment monitoring, where the use of acquisition tech-
nology based on cheap hardware, like a simple cam-
era, is a practical cost-effective solution, allowing
the integration of multimodal data and the detec-
tion of changed regions in a robust way.

Our experiments on MVS and dynamic datasets
show that our approach succeeds in correcting sig-
nificant deformations, while being robust to out-
liers, and it is fast enough to be practical for
meshes of several millions of triangles. Addition-
ally, our method turns out to perform at a similar

level of quality with state-of-art, less scalable algo-
rithms in the different application context of dy-
namic datasets. Our method is robust against the
quality of the mesh when it is degraded by noise,
missing geometry, irregular triangulation, and when
it contains multi-scale input with a very different
level of details. Finally, our approach is able to
preserve geometric differences due to the presence
of new geometry by integrating the low-frequency
deformations with the locally rigid and consistent
changes (Figure 11).

5.1. Limitations and Future Work

The robustness of our approach is related to the
initial rough alignment between the two meshes and
to the amount of their overlap. As for all local
patch transform methods, if the starting position is
very far from the optimal one, the method can con-
verge to a wrong local minimum. However, the use
of robust solutions for the rough global alignment
before our method, such as [39] and [4], can re-
duce this problem significantly. In future work, we
plan to investigate the introduction of a per-patch
rough global alignment step. A challenging feature
for the algorithm is the amount of overlap between
the models. While the algorithm can manage a
partial overlap, like for example the Excavation
dataset where the changed regions in the middle
due to the excavation process are well preserved, a
problem would occur if the overlapping has too few
triangles and high geometric dissimilarity. In this
case, a solution based on L1 minimization could
solve the problem by reducing the contribution of
the outliers. A further future research direction is
the extension of the algorithm to the case of more
than two meshes allowing the robust comparison
of multi-temporal datasets. In this case, the inde-
pendent alignment of each mesh with respect to a
common reference model cannot guarantee a good
registration among the other time steps. In future,
it would be interesting to investigate how to obtain
a good registration controlling the deformation con-
sistency among all the input models with explicit
change detection.
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Reference Input # nodes # iteration time Start RMS Final RMS
Mesh A Mesh B deformation graph (sec) (mm) (mm)

Cathedral1 51.2M 10.9M 168/420/1382 4 320 748.8 46.1
Cathedral2 51.2M 17.6M 154/388/1218 6 465 487.5 39.9
Cathedral3 51.2M 15.4M 217/368/1692 4 397 66.3 34.6
Cathedral4 51.2M 20.9M 170/428/1612 7 587 352.3 27.8
Cathedral5 51.2M 15.5M 148/342/1241 3 381 40.3 27.7
Square1 4M 11.9M 119/247/1020 3 144 203.6 78.7
Square2 4M 8.7M 152/455/1222 3 221 78.4 64.1
Square3 4M 18.5M 91/247/836 8 1152 797.1 70.1
Arena1 24.2M 7M 336/607/1795 3 241 72.7 37.2
Arena2 24.2M 29.8M 326/604/1970 3 672 160.1 49.4
Excavation1 23M 12.5M 130/319/1134 4 498 96.7 21.4
Excavation2 23M 25.7M 121/249/1363 5 786 369.4 27.7
Dancer1 40k 40k 43/117/401 4 2.9 29.4 0.85
Dancer2 40k 40k 52/92/371 6 3.6 87.8 2.497
Face1 1M 1M (46) 144/320/1103 (4) 4 (40) 51 3.72 0.174
Face2 1M 1M (78) 158/352/1164 (12) 8 (91) 66 2.18 0.179
Torso1 287k 267k (18) 127/215/673 (8) 7 (34) 43 31.6 0.501
Torso2 287k 267k 102/229/859 5 30 8.83 0.497

Table 1: Test Data. For each test, the table contains the number of triangles of each mesh, the number of nodes of the
deformation graph at the different steps of the algorithm (first iteration/loop/final wrap), the number of iterations of the
algorithm, the computation time, the RMS before and after our algorithm. For the dynamic dataset, the numbers in parenthesis
are relative to the preprocessing step.
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Dancer2
Lloyd Iteration

2 4 8 16 32 128
Hop 2.497 2.338 2.476 2.595 2.647 2.635

Euclid 2.458 2.292 2.338 2.397 2.472 2.467
L2 3.203 3.318 3.169 3.097 3.130 2.910
L21 3.571 3.381 3.511 3.565 3.370 3.186

Sobolev 3.501 3.231 3.206 3.095 3.078 2.901
Displace 2.670 2.559 2.748 2.861 2.765 2.834
Rigid 2.622 2.422 2.415 2.530 2.616 2.843

Cathedral1
Lloyd Iteration

2 4 8 16 32 128
Hop 46.08 45.76 45.96 45.85 46.41 46.42

Euclid 46.99 46.26 46.47 46.16 46.46 46.74
L2 47.77 51.26 49.30 49.01 50.85 48.55
L21 47.47 50.64 48.14 47.96 49.77 49.30

Sobolev 47.59 47.79 49.14 47.77 47.68 48.13
Displace 46.88 46.64 46.68 46.75 47.00 47.26
Rigid 46.21 46.27 45.96 46.21 46.60 46.45

Arena1
Lloyd Iteration

2 4 8 16 32 128
Hop 37.34 37.34 37.32 37.35 37.05 37.15

Euclid 37.12 37.32 37.41 37.60 37.28 38.05
L2 41.13 42.26 38.84 41.61 41.81 41.51
L21 37.39 37.41 37.60 38.64 39.16 38.31

Sobolev 37.40 37.67 38.00 38.35 37.84 39.16
Displace 37.27 37.26 37.18 37.01 37.18 37.48
Rigid 37.49 37.05 37.30 37.38 37.40 37.35

Table 2: Evaluation of the alignment quality by computing
the final RMS value of the three datasets Dancer2, Cathe-
dral1 and Arena1 testing seven different metrics to min-
imize in the Voronoi segmentation. Each metric has been
tested with a different number of Lloyd iterations. The bold
values highlight the best results for the test with the same
number of Lloyd iteration while the green values highlight
the best absolute combination for each dataset.
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Figure 13: Closeups of some details for the dataset Cathedral with the color mapping of the distance from the reference mesh
after and before our algorithm. The renderings use the same color map of Figure 6.
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Figure 14: Closeups of some details for the dataset Square with the color mapping of the distance from the reference mesh
after and before our algorithm. The rendering use the same color map of Figure 7.
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Figure 15: Closeups of some details for the dataset Arena and Excavation with the color mapping of the distance from the
reference mesh after and before our algorithm. The rendering use the same color map of Figure 8.
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