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Abstract – Recent research suggests that when a system has a “false time-reversal violation” the
Onsager reciprocity relations hold despite the presence of a magnetic field. The purpose of this
work is to clarify that the Onsager relations may well be violated in the presence of a “false time-
reversal violation”: that rather guarantees the validity of distinct relations, which we dub “false
Onsager relations”. We also point out that for quantum systems “false time-reversal violation” is
omnipresent and comment that, per se, this has in general no consequence in regard to the validity
of Onsager relations, or the more general non-equilibrium fluctuation relations, in the presence
of a magnetic field. Our arguments are illustrated with the Heisenberg model of a magnet in an
external magnetic field.
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Introduction. – One open question in current ther-
modyamic research is whether a heat engine may achieve
Carnot efficiency while delivering finite power [1–6]. In a
seminal paper [1], Benenti et al. have established that,
within the framework of linear response theory, Carnot
efficiency could be achieved by a thermoelectric device im-
mersed in a magneic field B provided the Seebeck coeffi-
cient is not even under the reversal of B:

S(B) �= S(−B), (1)

that is, if the thermopower displays the so-called
“Umkehreffekt”. While the latter has been experimen-
tally validated in bismuth crystals [7], still the theoret-
ical understanding of the conditions under which such
effect is expected to appear is the subject of active re-
search [8,9]. Generally, the origin of its absence should be
researched in the presence of symmetries that prevent its
appearance [10–12]. In particular, it has been suggested
[9,13,14] that the presence of “false time-reversal viola-
tions” results in the Onsager reciprocity relations to be
satisfied notwithstanding the presence of a magnetic field,
which would forbid the “Umkehreffekt”.

Following Robnik and Berry [15], with the expres-
sion “false time-reversal violation” we denote the case
where the standard textbook “time reversal” (namely

(a)E-mail: michele.campisi@nano.cnr.it (corresponding author)

the transformation that flips velocities and angular mo-
menta, including spins, see eq. (4) below) is violated while
some other anticanonical (for classical system) or antiu-
nitary (for quantum system) symmetry is obeyed. All
such transformations, which we dub here “unconventional
time reversals” have the property of inverting time, just
like the standard time reversal does, despite the possi-
ble presence of a magnetic field1. As has been pointed
out in recent years, in a broad class of cases “unconven-
tional time-reversal” symmetries exist, and it has been
suggested that Onsager relations would not break in those
cases [9,13,14,17–19].

Here we show that i) for any generic quantum system,
one could always find at least one “unconventional time-
reversal” symmetry independent of the specific form of
the Hamiltonian, ii) the presence of “unconventional time-
reversal” symmetries does not generally imply the validity
of Onsager relations. We illustrate that with an example
of a quantum system featuring several “unconventional
time-reversal” symmetries where the standard Onsager re-
lations are in fact violated.

We shall also remark that the omnipresence of “uncon-
ventional time reversals” does not imply the validity of the
non-equilibrium fluctuation relations [20] in a magnetic
field. We shall shed light onto the fact that, nonethelss,

1Interested readers may find a pedagogical introduction to generic
time-reversal transformations in classical and quantum systems in
the textbook of Strasberg [16], see appendix C.
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that happens provided the “unconventional time-reversal”
symmetry is one and the same at all times, which often
occurs in standard models studied in the literature.

Onsager, Onsager-Casimir, and false Onsager re-
lations. – One of the cornerstones of non-equilibrium
thermodynamics are the Onsager relations (ORs) [21–23].
They dictate that the matrix of phenomenological linear
response coefficients is composed of symmetric and an-
tisymmetric blocks, depending on the time-reversal par-
ity of the thermodynamic forces and fluxes they connect.
Within Kubo’s linear response theory [24], such relations
are expressed as

LAB(t) = ϑAϑBLBA(t), (2)

where LAB is the relaxation function of the quantity A,
caused by a perturbation of the quantity B. The quanti-
ties A and B in eq. (2) have definite parity ϑA(B) under
time reversal, namely

Θ†AΘ = ϑAA, Θ†BΘ = ϑBB, (3)

where ϑA, ϑB = ±1 and Θ is the anti-unitary time-reversal
operator that reverses momenta pi and spins σi while leav-
ing coordinates, qi unaltered [25]:

ΘσiΘ† = −σi, ΘpiΘ† = −pi, ΘqiΘ† = qi. (4)

In Kubo’s theory, the relaxation function reads, for a
quantum system

LAB(t) =
∫ β

0

dsTr ρAH(−is)BH(t) − Tr ρAB, (5)

where ρ = e−βH/Z is the thermal state, and OH(t) de-
notes the Heisenberg representation of operator O at time
t, that is

OH(t) = U †
t OUt, (6)

where Ut = e−iHt/� is the unitary time evolution operator
and H the system Hamiltonian. Under the assumption of
time-reversal invariance, i.e.,

HΘ = ΘH, (7)

we have

U−t = ΘUtΘ†, (8)

which follows directly from the anti-unitary character of
the operator Θ. The latter equation says that the ap-
plication of Θ causes the inversion of the time evolu-
tion. This fact is often refreed to as the principle of
microreversibility [25]. Microreversibility combined with
the standard rules of quantum mechanics directly implies
the validity of the ORs, eq. (2).

Notably, in presence of a magnetic field B, the time-
reversal symmetry generally breaks, meaning that gener-
ally the ORs, eq. (2) are not valid in the presence of a

magnetic field. However, generally, the less stringent “ex-
tended time-reversal symmetry” survives

H(B)Θ = ΘH(−B), (9)

where we explicitly expressed the dependence of H on
B. The latter implies the following “extended” microre-
versibility principle:

U−t(B) = Θ†Ut(−B)Θ, (10)

where Ut(B) = e−iH(B)t/�. It means that in order
to reverse the dynamics one needs to reverse not only
the momenta and spins, but also the external mag-
netic field. The extended microreversibility then ensures
the validity of the celebrated Onsager-Casimir relations
(OCRs) [23,24,26–29],

LAB(t, B) = ϑAϑBLBA(t, −B), (11)

that link relaxation functions taken at opposite values of
B. Here the argument B is added to the function LAB to
denote that it refers to the time evolution, Ut(B), relative
to H(B).

Recent research has highlighted the interesting fact that
the dynamical evolution of a system (classical or quan-
tum) can be reversed in a number of different ways that
differ from the application of Θ, or, in the case there is a
magnetic field, the joint reversal of B and the application
of Θ [9,13,14,17–19]. Most notably, such transformations
may well not involve the reversal of the magnetic field.

For quantum systems, it is in fact straightforward to
note that if the Hamiltonian, H(B), is invariant under the
action of a generic anti-unitary operator K, i.e., if there
exists an antiunitary K, such that

H(B)K = KH(B), (12)

then

U−t(B) = KUt(B)K†, (13)

meaning that any anti-unitary symmetry of the Hamilto-
nian realises an inversion of the time evolution. We shall
refer to this as an “unconventional time reversal”. A direct
aftermath of an “unconventional time-reversal” symmetry
is a set of “false Onsager relations” (FORs)

LAB(t, B) = κAκBLBA(t, B), (14)

where A, B are operators with well-defined parity under
K, that is

K†AK = κAA, K†BK = κBB. (15)

The proof follows exactly the same standard proof of the
OR’s, eq. (2) with Θ being replaced by K. The relations
in eq. (14) were first discoverd in ref. [13] for certain clas-
sical systems, and then reported in refs. [14,17] for special
classes of quantum systems.
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At first sight one might confuse the FORs, eq. (14),
with the ORs, eq. (2), in magnetic field. A closer scrutiny
however reveals that the two sets of relations substantially
differ one from the other in that they refer to quantities
A, B that have different symmetries, a fact that was typ-
ically overlooked so far in the literature. Generally, given
two quantities A and B that have definite parity under Θ
they might not have definite parity under K, or vice versa.
In those cases the validity of the FORs, eq. (14), does say
nothing about the validity of the ORs, eq. (2). Vice versa,
if the Hamiltonian has the K symmetry, eq. (12), two ob-
servables A and B have definite parity under both Θ and
K, and ϑAϑB = κAκB, then we have

LAB(t, B) = κAκBLBA(t, B) = ϑAϑBLBA(t, B), (16)

namely, the ORs, eq. (2), would be valid despite the
Hamiltonian does not have the Θ symmetry. However,
that occurrence would only be accidental as the ORs,
eq. (2), would generally be violated if only one looks at
different quantities A, B: hence our expression “false On-
sager relations”.

We shall illustrate all this below with explicit examples
of interacting spin systems in the magnetic field.

Omnipresence of false Onsager relations. – For
quantum systems, the relations in eq. (14) were first re-
ported in ref. [17] for interacting spin-less particles in ho-
mogeneous magnetic field, while ref. [14] reported them
for non-interacting particles with spin. Here we remark
a crucial fact, namely that at least one “unconventional
time-reversal symmetry” can always be found in any quan-
tum system. To see that, recall that any anti-unitary op-
erator can be expressed as the product of the complex
conjugation operator KR relative to some representation
R, and a generic unitary V [25]. Thus, if there exists a
representation R in which the Hamiltonian is real, then
the FORs, eq. (14), would hold for operators having def-
inite parity under the complex conjugation, KR, relative
to that representation. Note that the Hamiltonian is a
quantum observable, namely a Hermitian operator with
real eigenvalues. Accordingly, in the representation where
H(B) is diagonal, the Hamiltonian is trivially real. That
is, irrespective of the specific form of the Hamiltonian, the
following always holds:

H(B) = K†
H(B)H(B)KH(B), (17)

where KH(B) is the complex conjugation relative to the
representation where H(B) is diagonal. It follows that
for any couple of operators A and B that are either purely
real or purely imaginary in that representation, the FORs,
eq. (14), hold. For a sufficiently complex Hamiltonian this
may well have no consequence whatsoever in regard to the
validity of the ORs, eq. (2), which refers to quantities A, B
with definite parity under Θ. This is further illustrated
below.

Examples. – Consider an Heisenberg magnet in a pos-
sibly non-homogeneous field Bi = (Bx

i , By
i , Bz

i ),

H(B) = J
∑
i,j

σi · σj −
∑

i

Bi · σi, (18)

where σi = (σx
i , σy

i , σz
i ), with σα

i denoting Pauli operators.
Since, by definition, all spin operators σα

i are odd under
time reversal Θ, eq. (4), the Hamiltonian is not invariant
under time reversal Θ, while it is invariant under the joint
action of Θ, and the reversal of B, i.e., it obeys eq. (9).
Accordingly the OCRs, eq. (14) are obeyed.

Let us consider first the homogeneous case Bi = B. Let
us fix the axes so that z is the direction of the applied field
B, B = Bzẑ, then

H(B) = J
∑
i,j

σi · σj − Bz

∑
i

σz
i . (19)

In the representation where the tensor product ⊗iσ
z
i is

diagonal, the Hamiltonian is real. That is if K⊗σz
i

is the
complex conjugation relative to that representation, it is

H(B) = K†
⊗σz

i
H(B)K⊗σz

i
. (20)

In fact, in said representation, the Pauli matrices σz
i and

σx
i are real while the σy

i are imaginary. Thus the term
that couples to the applied magnetic field is real. The
interaction term is also real because it is the sum of terms
of the type σα

i σα
j , which are real regardless of whether α

is z, x, or y.
Consider now the case when the external field is not

homogeneous in space Bi �= Bj for i �= j. If it only changes
in modulo, but it has a fixed direction, then the previous
argument will continue to apply unaltered. If its direction
also changes, but remains confined onto one fixed plane,
the argument still applies, with minimal changes. To see
that fix the axes so that the field has only components
along x and z, so that the Hamiltonian reads

H(B) = J
∑
i,j

σi · σj −
∑

i

(Bx
i σx

i + Bz
i σz

i ). (21)

Since in the representation of the basis spanned by the
eigenvectors of ⊗σz

i both the σx
i and the σz

i are all real,
and, as discussed above, the interaction term is also real,
then the Hamiltonian is real as well in said representa-
tion, that is, the unconventional time-reversal symmetry
of eq. (20) holds.

Accordingly, the FORs, eq. (14), hold for any couple of
observables A, B that have definite parity under the trans-
formation K⊗σz

i
. The spin operators σα

i all have definite
parities under K⊗σz

i
: the σα

i are even for α = x, z, and
are odd for α = y. Considering that all the operators
σα

i are, by definition, odd under the time reversal Θ, it
follows, for example, that the ORs, eq. (2), would hold
despite the presence of the magnetic field, for couples of
operators A = σα

i , B = σβ
j , with α and β being both y, or
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both either x or z. However for couples of the type α = y,
β = x, z, the FOR, eq. (14), reads

L
σy

i ,σ
z(x)
j

(t, B) = −L
σ

z(x)
j ,σy

i ,
(t, B), (22)

thus violating the ORs, eq. (2), which would predict a
plus sign on the r.h.s. instead of a minus sign. This is
illustrateed in fig. 1, top panel. Based on eq. (22) it is
not hard to get convinced that the ORs, eq. (2), would
not hold for A and B being spin operators (which are
odd under Θ) pointing in generic directions, i.e., for A =
ai · σi, B = bi · σi, where ai,bi denote real unit vectors.

Consider now the general case where Bi is not confined
to a plane but explores all spatial directions as the spatial
index i is varied over all sites of the spin network. We
note that, at variance with the case above, in this case it
is generally not even possible to find an “unconventional
time-reversal” symmetry besides the trivial invariance un-
der KH( B). So while in the previous case the ORs, eq. (2),
remain valid for certain couples of observables, now we
expect them to be generally violated. Figure 1, bottom
panel, shows an example of such violations.

Fixed field fluctuation relations. – The presence of
an “unconventional time-reversal” symmetry may as well
result in the validity of the non-equilibrium flutuation re-
lations [20] despite the presence of a magnetic field. At
variance with linear response relations, those relations ap-
ply arbitrarily far from equilibrium and refer to situations
where the Hamiltonian has an explicit time dependence,
H = H(t, B). Under the provision that there exists an
“unconventional time-reversal” transformation, K, that
commutes with the Hamiltonian at all times during the
driving protocol, i.e.,

KH(t, B) = H(t, B)K, ∀t ∈ [0, τ ], (23)

one would have, e.g., for a system prepared in an equi-
librium thermal state that evolves unitarily, the following
“fixed field fluctuation relation” for work:

p(w, B)
p̃(−w, B)

= e−β(w−ΔF ), (24)

featuring the same B in both the forward work statis-
tics, p(w, B) (obtained from the evolution generated by
H(t, B)), and the backward work statistics, p̃(w, B) (ob-
tained from the evolution generated by H(τ − t, B), with
τ the duration of the time-dependent driving). This
is at variance with the case customarily discussed in
the literature whereby eq. (9) is assumed to hold at all
times [20,29,30] and the backward probability p̃ is taken
at reversed field −B .

The proof of eq. (24) follows exactly the standard proof
(see appendices B, and C of ref. [20]) with Θ being re-
placed by K. Note that at variance with the Onsager
relations, that are possibly only apparently obeyed in the
case of “false time-reversal violation”, the fluctuation re-
lation p(w)/p(−w) = e−β(w−ΔF ) is simply obeyed in its

Fig. 1: Breakdown of Onsager relations, eq. (2). Top: relax-
ation functions LAB and LBA for A = σz

1 , B = σz
3 for a 3 sites

Heisenberg magnet, eq. (18), with Bα
i = 0 except Bz

1 , Bx
2 = −2.

According to eq. (22) it is LAB = −LBA, whereas the ORs
predict LAB = LBA. Bottom: the same as top except for By

3 ,
which now has the value By

3 = −2. The ORs, eq. (18), pre-
dicting LAB = LBA are not obeyed. In both plots it is J = 1,
β = 2, and � = 1.

standard form, despite the magnetic field, when eq. (23)
holds.

The validity of eq. (24) was often observed in the lit-
erature, see, e.g., [31–33], although the issue related to
the presence of a magnetic field and the according lack of
microreversibility (which would have ensured its validity)
typically passed unnoticed. Needless to say, all those pre-
vious works considered situations where the Hamiltonian
was real in some representation, at all times, which en-
sured the validity of eq. (24), a fact that instead was only
acknowledged and discussed in ref. [33].

In this regard it is also worth remarking that eq. (13)
would instantaneously hold at each time, t, with an “un-
conventional time reversal” KH(t,B), that possibly changes
in time. Accordingly, its ubiquitous validity does not en-
sure the validity of eq. (24) featuring a fixed K, eq. (23).
It is a simple exercise to show that, even for a single spin
in a time-dependent magnetic field H(t, B) = −B(t) · σ,
eq. (24) does not hold when B(t) explores all three spatial
dimensions [34].
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Discussion. – We have established two main facts.
First, for quantum systems a trivial “unconventional time
reversal” always exists, and that is the symmetry un-
der complex conjugation in the representation where the
Hamiltonian is diagonal. This very same fact was already
noticed by Robnik and Berry [15] in the context of level
statistics in quantum billiards. Second, in contrast with
what previous research suggested, the presence of one or
more “unconventional time reversals” does not by itself
guarantee the validity of the Onsager relations, eq. (2),
when a magnetic field is present. As illustrated by ex-
amples, they indeed can be violated, however if couples
of observables exist that have definite parities under both
time reversal and an “unconventional time reversal” which
is a symmetry of the problem, the ORs will be obeyed for
them, provided the products of their parities under time
reversal is the same as that under the “unconventional
time reversal”.

Roughly speaking, the more “unconventional time-
reversal symmetries” a system has, the larger the set of
couples of observables that obey the ORs, eq. (2), despite a
magnetic field. On the contrary when the only “unconven-
tional time reversal” is the trivial one, eq. (17) one should
generally expect the ORs, eq. (2), to be violated. The sit-
uation is somewhat similar to dynamical system theory,
where we have two extremes: full integrability (as many
conserved quantities as are the degrees of freedom), and
full ergodicity (the Hamiltonian is the only first integral
of motion). Between these two extremes lie complex sys-
tems displaying both regular and irregular motion. Here,
similarly, we have the case where there are as many “un-
conventional time-reversal symmetries” as are the degrees
of freedom2, the case when only the trivial one exists, and
the complex situation in between featuring both violation
and obedience of the ORs, eq. (2).

Since, as illustrated by our examples, the Onsager rela-
tions may be violated despite the presence of “false time-
reversal violations”, our results leave the possibility of the
“Umkehreffekt” open, which in fact, as mentioned above,
has been experimentally observed. Thus the present study
does not provide any fundamental reason to exclude the
possibility of achieving Carnot efficiency at finite power,
in the way discussed in ref. [1].

We further have commented that the omnipresence of
“false time-reversal violations” does not, per se, imply the
ubiquitous validity of quantum fluctuation relations, e.g.,
the work fluctuation relation, in the presence of a mag-
netic field. The latter would hold provided the “uncon-
ventional time-reversal symmetry” is one and the same
during the whole driving protocol. While many models
of many-body systems that are customarily studied in the
literature (e.g., the driven Ising model in transverse field)
satisfy that requirement that is generally not the case.

2This would occur, for example, in the case of a set of non-
interacting spins with local magnetic field. In that case all relaxation
functions are null and the ORs are trivially obeyed for any couple of
observables.

A question that remains to be answered is whether
“false time-reversal violation” is omnipresent as well in
the classical case, and how one can construct the accord-
ing “unconventional time-reversal” transformation. While
this issue was easily addressed in the quantum case, the
question does not seem to admit a simple answer for clas-
sical systems. Addressing that might reveal a new discor-
dance between classical and quantum realms3.
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