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Abstract: The increasing use of deep learning techniques to manipulate images and videos, commonly
referred to as “deepfakes”, is making it more challenging to differentiate between real and fake
content, while various deepfake detection systems have been developed, they often struggle to
detect deepfakes in real-world situations. In particular, these methods are often unable to effectively
distinguish images or videos when these are modified using novel techniques which have not been
used in the training set. In this study, we carry out an analysis of different deep learning architectures
in an attempt to understand which is more capable of better generalizing the concept of deepfake.
According to our results, it appears that Convolutional Neural Networks (CNNs) seem to be more
capable of storing specific anomalies and thus excel in cases of datasets with a limited number of
elements and manipulation methodologies. The Vision Transformer, conversely, is more effective
when trained with more varied datasets, achieving more outstanding generalization capabilities than
the other methods analysed. Finally, the Swin Transformer appears to be a good alternative for using
an attention-based method in a more limited data regime and performs very well in cross-dataset
scenarios. All the analysed architectures seem to have a different way to look at deepfakes, but
since in a real-world environment the generalization capability is essential, based on the experiments
carried out, the attention-based architectures seem to provide superior performances.

Keywords: deepfake detection; deep learning; computer vision; generalization

1. Introduction

Deep Learning has greatly impacted society, leading to impressive advancements in
various fields. However, its use can also have negative consequences, for example, the
creation of deepfakes. Deepfakes are manipulated images or videos that depict subjects in
ways they never actually were, which can harm reputations or manipulate reality. Indeed,
although deepfakes have numerous potential applications in the fields of entertainment,
art, and education, they also pose significant security and ethical risks. For this reason, it is
crucial to continue the development of robust deepfake detection methods to counteract
such a threat. To tackle this problem, researchers have developed deepfake detection
techniques, which are usually based on deep learning as well. These methods try to
identify any traces introduced during the manipulation process, but they require large
amounts of data for training. Furthermore, deepfakes are generated by resorting to different
typologies of techniques and/or procedures (often even unknown) that emerge almost
daily, so it is not possible to follow each methodology and consequently to re-adapt the
training phase. On this basis, to have more effective deepfake detectors, researchers aim
for a system that can generalize the concept of deepfakes and identify them regardless
of the manipulation technique used, even if it is novel and not present in the training
data. During training, a huge amount of heterogeneous data are needed to provide to
the models in order for them to see enough forms of deepfakes to stimulate them to
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abstract and generalize. In this research, a comparison was made among different deep
learning architectures in order to validate their generalization capabilities, specifically
against deepfake videos. It is worth saying that techniques used to manipulate videos do
not necessarily introduce the same anomalies and features that can be embedded when
tampering with still images. It is therefore interesting to show how different models behave
in this context and how they look at the video to understand if it has been manipulated.
In particular, we compared three different kinds of network architectures: a convolutional
network, such as EfficientNet V2, a standard Vision Transformer, and also a Swin Transformer
which is a specific type of transformer inspired to use Convolutional Neural Networks’
hierarchical approach. Our experiments indicate that the Vision Transformer outperforms
other models in terms of generalization ability when evaluated in a cross-forgery context,
while the Swin Transformer seems to be better in the cross-dataset experiments. This
probably stems from the attention mechanism which enables the model to abstract better
the concept of deepfake, but only with the constraint of availability of a large quantity and
diversity of data used during training. On the other hand, the Vision Transformer struggles
to learn when data are limited, unlike the EfficientNet-V2 and Swin Transformer, which
perform satisfactorily even under such constraints.

2. Related Works
2.1. Deepfake Generation

Deepfake generation techniques refer to the methods used to manipulate a human face,
changing its appearance or identity in a realistic manner. There are two main categories
of approaches: those based on Variational AutoEncoders (VAEs) [1] and those based on
Generative Adversarial Networks (GANs) [2]. VAE-based methods use encoder–decoder
pairs to decompose and recompose two distinct faces. By swapping the decoders, it is
possible to transform one face into the other, resulting in a credible output. GAN-based
methods, on the other hand, use two different networks: a discriminator, trained to classify
whether an image is fake or real, and a generator that generates a fake face to fool the
discriminator. This results in a feedback loop, where the generator is trained to improve its
performance based on the output of the discriminator. GANs are typically more powerful
than VAEs, but also more challenging to train. Some of the most popular GAN-based
deepfake generation methods include Face2Face [3] and FaceSwap [4]. Recently, a number
of other deepfake generation approaches have been proposed, leveraging the advancements
in computer vision and deep learning. For example, reference [5] presents a method for
synthesizing realistic talking heads from a single source video. Reference [6] proposes
StyleGAN, a highly-customizable deepfake generation method that allows for fine-grained
control over the generated images.

2.2. Deepfake Detection

As deepfake generation methods become increasingly sophisticated, there is a growing
need for systems that can distinguish between real and manipulated images. This is a
problem not just in the field of images, but also in text, where recent work such as [7] has
analysed deepfakes in tweets to identify fake content on social networks. To tackle the
challenge of deepfake detection in videos, many video-based deepfake detectors have been
developed. Even if some approaches propose solutions which also analyse the tempo-
ral information of manipulated videos [8–11], the majority of methods are frame-based,
classifying each video frame individually. Furthermore, several competitions have been
organized to stimulate the resolution of this task including [12,13]. To train effective deep
learning models for deepfake detection, numerous datasets have been created over the
years, including DF-TIMIT [14], UADFC [15], FaceForensics++ [16], Celeb-DF [17], Google
Deepfake Detection Dataset [18], DFDC [12], Deepforensics [19], and ForgeryNet [20]. The
latter dataset, which is the most complete, large, and diverse, has recently emerged as a
popular choice for deepfake detection research. One type of Convolutional Neural Net-
work, EfficientNet, has emerged as particularly effective in solving the task, and is the basis
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of many state-of-the-art solutions, such as the winning solution of the deepfake detection
challenge [21]. More recently, with the rise of Vision Transformers in Computer Vision,
new deepfake detection solutions have been developed, such as the method in [22] which
combines Transformers with convolutional networks to extract patches from faces, and
the approach in [23], which uses a pretrained EfficientNet B7 with a Vision Transformer,
trained through distillation. An innovative work on combining different types of Vision
Transformers, such as the Cross Vision Transformer [24] and EfficientNet B0, is presented in
[25]. EfficientNet has been further improved with the introduction of EfficientNetV2 [26],
a version that is optimized for smaller models, faster training, and better ImageNet per-
formance. An evolution of this approach which combines together a TimeSformer and
a Convolutional Neural Network is presented in [8], where various deepfake detection
problems such as multi-identity and face size variation are also treated.

3. The Followed Approach and the Tested Network Architectures

To validate the neural network’s ability to detect deepfakes generated by methods not
used in its training set, a dataset containing a variety of deepfake generation methods and
labels is needed. The chosen dataset for this purpose is ForgeryNet [20], which is one of
the most comprehensive deepfake datasets available, containing 2.9 million images and
220,000 video clips. The fake images are manipulated using 15 different manipulations
while the videos are manipulated using only 8 of them [27–36]. To each image and video,
more than 36 mix-perturbations are randomly applied on more than 4300 distinct subjects.
Examples of applied perturbations are optical distortion, multiplicative noise, random
compression, blur, and many others shown in more detail in the ForgeryNet paper [20].
Furthermore, the different manipulations applied can be grouped into two macro-categories,
ID-Remained and ID-Replaced. The first category involves manipulations of the subject’s
face without changing their identity, while the second category involves replacing the
subject’s face with a different one. These two categories are further divided into four
sub-categories: all the videos falling under the ID-Remained category are manipulated with
Face Reenactment methods, while the ID-Replaced class is divided into Face Transfer, Face
Swap, and Face Stacked Manipulation (FSM). These sub-categories collectively make up a
significant portion of the deepfake generation techniques currently known. The ForgeryNet
dataset includes people in various settings and situations.

The extracted frames are pre-processed, similar to many other deepfake detection
methods [8–10,22,25] by introducing a face extraction step using the state-of-the-art face
detector, MTCNN [37]. The models are trained and evaluated on a per-face basis and
data augmentation was performed, similar to [8,21,25]. However, we extracted the faces
to be squared and with an additional 30% padding in order to also catch a portion of
the background behind the person. We exploited the Albumentations library [38] and
applied common transformations randomly during training. Whenever an image is an
input to the network during training, it is randomly resized using three types of isotropic
resize with different interpolation methods (area, cubic, or linear). Afterwards, random
transformations such as image compression, gaussian noise, horizontal flip, brightness or
saturation distortion, grayscale conversion, shift, rotation, or scaling, are applied.

The present paper is derived from another work [39] where we already conducted a
similar cross-forgery analysis on the part of the dataset consisting of still images. In this
case, we performed our analysis on videos and, in particular, we have made a specific
comparison among different kinds of architectures. It is important to carry out this analysis
on videos because the anomalies that are introduced in videos can also differ greatly from
those that may result from the manipulation of a single image. Therefore, the behaviour
of the various deep learning methods can also change greatly. In the ForgeryNet dataset,
there is a label assigned to each video indicating whether it has been manipulated or not.
Additionally, the label specifies the method employed to perform the manipulation. Among
the methods used, FaceShifter and ATVG-Net manipulate all frames of the video, while
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the other methods partially manipulate the video frames, providing information on which
frames have been manipulated and which ones are left unaltered.

To perform this comparative analysis on cross-forgery generalization capability we
have considered three kinds of network architectures. Convolutional Neural Networks
(CNNs), a widely used type of neural network in computer vision, and two Vision Trans-
formers (ViTs) [40], a newer, highly competitive deep learning model. As the representative
of the CNN category, we have taken an EfficientNetV2-M [26], which is a newer and more
advanced version of the well-known EfficientNet. EfficientNets are widely used in deepfake
detection and remain a cornerstone of many state-of-the-art methods on leading datasets.
In contrast, for one of the Vision Transformers, we have used the ViT-Base, a ViT of similar
dimensions to the CNN, which was one of the first versions introduced. Additionally, a
third architecture, a Swin Transformer [41], has been taken into account; this has been
included because this type of Transformer is particularly interesting for our analysis in that
although it is attention-based, the computation of attention takes place in a hierarchical
manner emulating the convolutional layers of CNNs. The Swin Transformer is an architec-
ture for image classification that improves the traditional transformer approach by using
hierarchical feature representations and a window-based attention mechanism. It divides
the input image into patches and transforms them into low-dimensional feature vectors
using a learnable projection. These vectors are then passed through a series of transformer
blocks, and organized into stages to capture spatial and channel-wise dependencies. Finally,
the output is passed through a classification head to produce the class probabilities. The
Swin Transformer achieves state-of-the-art performance while being computationally effi-
cient and scalable to larger image sizes. The Swin Transformer selected for our experiments
is the Swin-Small. All the models were pretrained on ImageNet-21k and fine-tuned on
sub-datasets from ForgeryNet, which were constructed with a nearly equal balance of fake
and real images as explained in the next section. To reduce false detections, only faces
with a confidence level above 95% were included. All networks were trained by freezing a
number of layers such that the trained parameters correspond to approximately 45 M. In
particular, only the last layers of the models considered were made trainable so that the
number of parameters was always comparable between the various experiments, while the
other layers’ weights remained at the values based on the pretraining.

4. Experiments
4.1. General Setup

The experiments conducted in our research are divided into two parts. In the first part,
we used frames from pristine videos and manipulated frames from fake videos generated
with one deepfake generation method at a time to compose a training set. Each obtained
model is then tested against frames extracted from videos manipulated with the same
generation methodology used at training time but also against other methods not seen
during the training phase in order to investigate the generalization capacity of the different
architectures. The classification task is always conducted frame-by-frame. In the second
part, we used multiple deepfake generation methods grouped by category (ID-Replaced
or ID-Remained) to construct the training set. Since the labels of the ForgeryNet test set
were not available at the time of the experiments, we used the validation set, which we will
refer to as the test set, for all evaluations. During training, a 10% portion, consistent for all
models, was randomly selected from the training set and referred to as the validation set.
The models were trained for up to 50 epochs with a patience of 5 epochs on the validation
set, using the Binary Cross Entropy Loss (BCE) and an SGD optimizer with a learning rate
of 0.1 that decreases with a step size of 15 and a gamma of 0.1.

4.2. Single Method Training

In this section, we outline the process used to examine a model’s ability to recognize
images manipulated by various deepfake generation methods, despite being trained on
real images and images manipulated with only one deepfake method. In the first com-
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parison, the three models under consideration, namely EfficientNetV2-M, ViT-Base, and
Swin-Small, were fine-tuned on each of the eight sub-datasets as illustrated in Figure 1.
These sub-datasets consisted of both unaltered frames and frames manipulated using
specific techniques, specifically FaceShifter(1), FS-GAN(2), DeepFakes(3), BlendFace(4),
MMReplacement(5), DeepFakes-StarGAN-Stack(6), Talking-Head Video(7), and ATVG-
Net(8). As displayed in Table 1, the sizes of the datasets vary quite largely. Pristine frames
are most common within the dataset so, to ensure a good balance without sacrificing too
many of them, a subset equal to the number of fake frames of the method under training is
randomly selected at each epoch. In this experiment, the models will only encounter, during
the training, anomalies generated by one specific deepfake method at a time. This may cause a
tendency in the models to learn that a video is manipulated only when some specific artifacts
occur, causing a lack of generalization. To validate this and discover architectures’ limitations,
the models trained on the sub-datasets were then tested on frames in the test set, including
those manipulated by methods not used during training.

Figure 1. The Single Method Training setup: eight different training sets are constructed, each consists
of frames manipulated with a deepfake generation method and pristine frames.

Table 1. Number of frames for Single Methods Training and Test setup.

Video Manipulation Methods Training Frames Test Frames

0 (Pristine) 118,255 47,369
1 (FaceShifter) 13,337 1889
2 (FS-GAN) 48,122 8732
3 (DeepFakes) 8550 1157
4 (BlendFace) 9827 1335
5 (MMReplacement) 270 115
6 (DeepFakes-StarGAN-Stack) 3610 509
7 (Talking-Head Video) 26,338 2199
8 (ATVG-Net) 37,449 5383

4.3. Multiple Methods Training

A second experiment has been conducted by training the models on real frames and
frames manipulated using a group of methods belonging to the same category (ID-Replaced
or ID-Remained), as shown in Figure 2. This was examined to determine if the networks
can better generalize in the presence of diverse categories of manipulation methods, which
may introduce a greater variety of artifacts. Hopefully, the models trained in this setup
will need to abstract the concept of deepfake to a level which is not highly related to the
seen artifacts.

In Table 2, the sizes, in terms of available frames, of the two different categories can
be seen. As depicted in Figure 2, two models (for each network architecture) have been
trained: the first one (ID-Replaced) is based on frames crafted by using methods belonging
to the ID-Replaced category (methods from 1 to 6), while the second one (ID-Remained) is
based on those ones coming from the ID-Remained category (methods 7 and 8). In both of
them, also pristine images from unaltered videos are added to the training dataset.
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Figure 2. The Multiple Method Training setup: two different training sets are constructed, each consists
of frames manipulated with deepfake generation methods related to the same category (blue lines for
ID-Replaced and red lines for ID-Remained) and pristine frames.

Table 2. Number of frames for Multiple Methods Training and Test.

Video Manipulation Categories Training Frames Test Frames

0 (Pristine) 118,255 47,369
ID-Replaced 83,716 13,737
ID-Remained 63,787 7582

5. Results
5.1. Single Method Training

Figure 3 shows the accuracies achieved by the three considered models trained in the
Single Method Training setup, presented in the previous section, with respect to each of the
methods comprised within the test set. Looking at the accuracies of the three models, it can
be pointed out that the EfficientNetV2-M and the Swin-Small maintain results often above
80% in correspondence of test frames manipulated with the same methods used in the
training set (as expected) and, at the same time, obtain a certain degree of generalization. In
fact, the same models sometimes succeed in detecting frames manipulated with methods
unseen during training, although only reaching values of accuracy that are quite limited.
The case of method number 5 (MMReplacement) is rather anomalous, though the detection
percentage is often very high indeed; this behaviour is probably induced by the low number
of available examples (see Table 1).

On the contrary, it can be easily noticed that, in all the cases, the ViT-Base is substan-
tially unable to learn in the presence of relatively few training images. In fact, for instance,
by training the model on methods 3, 4, 5, and 6 and then testing it on the test set, it is
evident that the model is substantially underfitting and practically unusable compared to
the two others taken into consideration. Interestingly, the Swin Transformer, although also
based on the attention mechanism, is not particularly affected by this phenomenon and
instead succeeds in obtaining competitive results in all contexts. This probably lies in the
hierarchical nature that emulates the convolutional layers of traditional CNNs and thus
allows it to exploit implicit inductive biases better. Good performances are preserved, in
any case, with respect to pristine frame detection. In this setup, the architecture based on
a convolutional network seems to prove more capable of generalization. The accuracies
obtained from the three models are also shown in the confusion matrices in Figure 4 where
all previously commented trends are reconfirmed again.
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Figure 3. The performance in terms of accuracy achieved by each of the three considered models with
respect to the eight different training sets following the Single Method Training setup: EfficientNetV2-M
(red), Swin-Small (black), and ViT-Base (blue).

Figure 4. Confusion matrices of the frame-level accuracy values for the three models under consid-
eration trained in the Single Method Training setup and tested on frames manipulated with all the
available methods, respectively.

5.2. Multiple Methods Training

The behaviour of the three networks is now analysed in the second considered setup,
namely Multiple Methods Training, and corresponding results are shown in Figure 5. In
this case, the datasets are composed of frames extracted from videos manipulated by not
only one method, so the models will have more difficulty focussing on specific artifacts
and be forced to generalize. In this setup, the situation is significantly different from the
previous one. Surprisingly, the classic Vision Transformer, which previously struggled to
train effectively, is now the only model capable of generalizing well to frames that have
been manipulated using techniques that were not present in the training data. This result
probably stems from the fact that the training set consists of significantly more images than
in the previous setup and it is strongly in line with what is presented in [39]. This particular
architecture shows in many contexts a major need for data and resources which, when
available, enable it to achieve very competitive results. In this case, the confusion matrices
(see Figure 6) clearly show the greater generalization capacity of the Vision Transformer
although at the expense of more false positives. In fact, the “pristine” class is less accurately
classified by this latter. This may be a problem since in a real-world context we may want
to reduce as much as possible the number of false alarms, in particular, if the system is
fully automated.
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Figure 5. Accuracy performances achieved by each of the models considered in the two different
training sets constructed following the Multiple Methods Training setup: EfficientNetV2-M (red),
Swin-Small (black), and ViT-Base (blue). ID-Replaced methods (1–6), ID-Remained methods (7–8), and
Pristine (0).

Figure 6. Confusion matrices of the frame-level accuracy of the three models trained in the Multiple
Method Training setup and tested on frames manipulated with all available methods.

5.3. Cross-Dataset Evaluation

To further evaluate the generalization capability of the trained models we also tested
them in a cross-dataset context. In particular, we considered the three architectures trained
on videos manipulated with ID-Remained or with ID-Replaced methods (ForgeryNet
dataset) and tested on the well-known DFDC Preview test set. In Table 3, we report the
AUC values of the trained models compared with previous works in the literature. This
is probably the most challenging scenario since both the contexts and the manipulation
methods are significantly different, and indeed the performances of the models are pretty
low. In particular, the EfficientNets are totally incapable of detecting these deepfakes
with a very low AUC value. On the other hand, attention-based methods manifest better
performances even if, as expected, they are worse than other, more complicated and
articulated, methods in the literature. The Swin-Small trained on the videos manipulated
with ID-Replaced methods perform pretty well with an AUC of 71.2%, demonstrating a
good level of generalization. Again, also in this context, it seems that attention may be the
key to achieve better generalization performances while the considered CNN is in any case
too tied with the methods seen during training. Furthermore, the trained models which
achieve better performances are the ones trained on a more complete and heterogeneous
dataset, namely the videos manipulated with ID-Replaced methods, highlighting again the
need for these architectures for a huge amount of data.

Despite the limited amount of data and variety available in the setup presented in
Section 4.2, we conducted a cross-dataset test with the models trained in this manner too.
The results illustrated in Table 4 confirm the previous findings, and thus show the difficulty
on the part of all models to generalize in cross-dataset contexts, with a slight superiority of
the Swin Transformer.
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Table 3. Cross-dataset comparison of video-level AUC on the DFDC Preview test set.

Model Train Set AUC

Face X-ray [42] FF++ 65.5
Patch-based [43] FF++ 65.6
DSP-FWA [44] FF++ 67.3
CSN [45] FF++ 68.1
Multi-Task [46] FF++ 68.1
CNN-GRU [47] FF++ 68.9
Xception [48] FF++ 70.9
CNN-aug [49] FF++ 72.1
LipForensics [50] FF++ 73.5
FTCN [10] FF++ 74.0
RealForensics [45] FF++ 75.9
RealForensics [45] FF++ 75.9
iCaps-Dfake [51] FF++ 76.8
MINTIME-XC [8] ForgeryNet (All) 77.9

EfficientNet-V2-M ForgeryNet (ID-Remained) 50.0
ForgeryNet (ID-Replaced) 50.1

ViT-Base ForgeryNet (ID-Remained) 51.0
ForgeryNet (ID-Replaced) 57.2

Swin-Small ForgeryNet (ID-Remained) 58.7
ForgeryNet (ID-Replaced) 71.2

Table 4. Cross-dataset in depth analysis: the architectures are trained on each of the 8 kinds of ForgeryNet
deepfake manipulations and then tested on the DFDC Preview test set. AUC is given accordingly.

Model Train Set (ForgeryNet) AUC

EfficientNet-V2-M

Method 1 51.0
Method 2 50.3
Method 3 47.0
Method 4 49.7
Method 5 50.3
Method 6 47.0
Method 7 52.5
Method 8 50.0

ViT-Base

Method 1 53.3
Method 2 52.5
Method 3 43.0
Method 4 52.0
Method 5 52.3
Method 6 51.3
Method 7 50.5
Method 8 49.8

Swin-Small

Method 1 53.0
Method 2 65.3
Method 3 58.0
Method 4 59.5
Method 5 58.0
Method 6 55.3
Method 7 59.3
Method 8 56.7
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6. Conclusions

In this study, we investigated the generalization capabilities for detecting deepfake
videos of various deep learning architectures by using two different setups. The first
setup involved a limited training set constructed from both pristine and manipulated
video frames adopting a specific method at a time and then testing versus all the different
methods. In this setup, the EfficientNet-V2 convolutional network outperformed the
Vision Transformer in learning from the less diverse and limited training data, while the
Swin Transformer showed promising results. In the second setup, we considered a larger
and more variegated training dataset that included frames coming from deepfake videos
on which have been applied different manipulation methods, but these are belonging
to the same category (ID-Replaced or ID-Remained), and then performing cross-testing.
Interestingly, the Vision Transformer demonstrated superior generalization capabilities and
outperformed the convolutional network in detecting frames from videos manipulated
with novel methods. This result is tied to higher resource availability, both in data and
computational terms, which is not always possible to achieve.

Our findings suggest that in real-world scenarios where large, diverse deepfake
detection datasets are available and generalization is critical, the Vision Transformer may
be the optimal choice for detecting deepfakes. However, in cases where the training
data are limited, a convolutional network such as EfficientNet-V2 may be more suitable
and be considered a good enough alternative. The Swin Transformer provides a good
balance between the two in terms of generalization and performance demonstrating a
good generalization capability in all the considered contexts and a pretty low false-positive
rate. It also results in being significantly more capable of generalizing the concept of
deepfake when tested in a cross-dataset scenario. This suggests that probably the attention
mechanisms may enable the models to better generalize the concept of deepfakes but only
when enough data are provided.

Overall, our study highlights the significance of considering the specific characteristics
of the dataset and deep learning architecture when detecting deepfakes to be able to create
a detector which may be applied in the real world.
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