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A B S T R A C T

Regular physical exercise and appropriate nutrition affect metabolic and hormonal responses and may reduce
the risk of developing chronic non-communicable diseases such as high blood pressure, ischemic stroke,
coronary heart disease, some types of cancer, and type 2 diabetes mellitus. Computational models describing
the metabolic and hormonal changes due to the synergistic action of exercise and meal intake are, to date,
scarce and mostly focussed on glucose absorption, ignoring the contribution of the other macronutrients.
We here describe a model of nutrient intake, stomach emptying, and absorption of macronutrients in the
gastrointestinal tract during and after the ingestion of a mixed meal, including the contribution of proteins
and fats. We integrated this effort to our previous work in which we modeled the effects of a bout of
physical exercise on metabolic homeostasis. We validated the computational model with reliable data from
the literature. The simulations are overall physiologically consistent and helpful in describing the metabolic
changes due to everyday life stimuli such as multiple mixed meals and variable periods of physical exercise
over prolonged periods of time. This computational model may be used to design virtual cohorts of subjects
differing in sex, age, height, weight, and fitness status, for specialized in silico challenge studies aimed at
designing exercise and nutrition schemes to support health.
1. Introduction

Unhealthy diets and physical inactivity contribute to the onset
and/or progression of major non-communicable diseases, including
diabetes, cardiovascular disorders, and certain types of cancer. Such
behaviours substantially contribute to the global burden of disease,
death, and disability [1].

In particular, diabetes mellitus was the sixth leading cause of dis-
ability in 2015 [2] and directly caused 1.5 million deaths worldwide
in 2019 [3], as stated by the World Health Organization. The 10th
edition of IDF Diabetes Atlas [4,5] estimates that in 2021, 537 million
people are living with diabetes worldwide. For 2045, they predict that
783.2 million people will have diabetes. More than 90% of patients
with diabetes have type 2 diabetes (T2D) [6]. T2D is a chronic con-
dition characterized by insulin deficiency caused by pancreatic 𝛽-cell
dysfunction and insulin resistance in target organs [6]. If intensive
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lifestyle modifications, like diet and exercise, are not sufficient enough
to properly manage the glycemia, pharmacotherapy may be necessary.

The wide intra- and inter-individual variability in response to treat-
ments, drugs, and stimuli, leads the scientific research community to
elaborate computational models to obtain cohorts of virtual diabetic
patients in the view of personalized medicine approaches [7]. To
date, mathematical/computational modeling efforts able to describe
metabolic homeostasis in normal life conditions, which account for
both nutritional regime and exercise, are quite limited. Adamu and
coworkers [8] improved the model from Topp et al. [9] (who developed
a model consisting in three nonlinear ordinary differential equations
describing the dynamics of beta-cell mass, insulin, and glucose) tak-
ing into account the number of calories ingested after a meal or
burnt through exercise, a not obvious quantity to measure. Svitra and
colleagues presented a model consisting of a predator–prey ordinary
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differential equations system with a delay, representing normal and
diabetic subjects by means of two periodic functions defining both
nutrition and exercise [10]. Breton et al. proposed a ‘‘parsimonious’’

odel of the effects of exercise on glucose homeostasis that links the
hange in insulin action and glucose effectiveness to the heart rate [11].
his last work was used in a large-scale simulation model of glucose
etabolism in type 1 diabetes by Dalla Man and coworkers to simulate
aily life conditions including both nutrition and physical activity [12].
alakrishnan and colleagues developed a hybrid model for type 1
iabetes (T1D) patients [13] in which they modeled the exercise in-
ensity using a variable that defines the level of physical exertion an
ndividual feels during exercise. In this work, the body weight is the
nly customizable factor as regards the subjects’ characteristics. Resalat
t al. and Islam et al. proposed mathematical models to represent
ifferent kinds of in-silico virtual patient populations for T1D [14]
nd T2D [15]. Resalat and coworkers [14] introduced two single
nd dual hormone mathematical models that represent an in-silico
irtual patient population. The single hormone comprises differential
quations describing insulin dynamics and carbohydrate absorption.
he dual hormone virtual patient population incorporates additional
quations representing glucagon dynamics. The study by Islam [15]
imed to build a constraint-based comprehensive model of glucose
ynamics to describe insulin-independent (type-2) diabetes and also
lasma glucose variation over carbohydrate ingestion, insulin injec-
ion, and exercise sessions. The model consists of seven compartments,
onnected by a ‘‘plasma’’ compartment. Deichmann et al. proposed a
odel for T1D patients in which the physical activity was considered

ia accelerometer count and the meal ingested consists of a dose of
lucose [16]. Sarkar et al. realized a multi-scale model, spanning from
ellular processes, distinct organs and whole-body features, including
he effects of meal consumption and physical exercise [17]. The meals
re represented by their caloric content, and the effects of physical ac-
ivities are incorporated into the model, without explicitly modeling it.
ore recently Kurata [18] has proposed a multi-organ and multi-scale

irtual metabolic human dynamic model that captures key features
f whole-body metabolism and simulates the dynamics of essential
etabolites after a meal composed of glucose and triglycerides. The
odel was validated under healthy and disease condition, however it

s not designed to describe the effects of physical exercise and does not
xplicitly model the metabolic control by the key hormone epinephrine.
ther parsimonious models have been developed to describe the contri-
ution of non-esterified fatty acids or amino acids on insulin secretion
ollowing a meal [19,20].

In a previous work, we have proposed a multi-scale computational
odel for whole body fuel homeostasis [21] during exercise. Notably,

uch a model is inspired by the work by Kim et al. [22] and includes
the description of the metabolic and hormonal changes due to a bout
of exercise by using the definition of ‘‘relative’’ (rather than absolute,
thus fixed) exercise intensity as well as the estimation of functional
capacity about age, gender, anthropometric characteristics, and current
fitness status, to achieve greater generalization and user-customization.
Moreover, we modeled the oxygen consumption and the dynamics of
epinephrine as directly dependent on the relative exercise intensity
to modulate the hormones and the glucose responses. Here we aim
to extend our previous computational model [21] to account for the
description of the metabolic and hormonal status by also considering
the effects of meal consumption to realize a tool able to represent
the fuel homeostasis in real life condition, depending on the lifestyle
and daily habits. The main novelty here introduced is the modeling
of the food intake, stomach emptying and gut absorption of all three
2

macronutrients (proteins, carbohydrates, fats).
Table 1
List of model input parameters.

Parameter Meaning

𝐺𝑒𝑛𝑑𝑒𝑟 male/female
𝐴𝑔𝑒 age (years)
𝐵𝑊 body weight (kg)
Tv target value of exercise intensity (%VO2max)
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑠𝑡𝑎𝑡𝑢𝑠 cardio-respiratory fitness level (from ‘‘poor’’ to

‘‘superior’’) [23]
𝑡𝑠𝑡𝑎𝑟𝑡𝑒𝑥 , 𝑡𝑒𝑛𝑑𝑒𝑥 start/end of the exercise session (min)
𝑡𝑠𝑡𝑎𝑟𝑡𝑚𝑒𝑎𝑙 meal start (min)
Dglu dose of glucose from ingested grams of carbohydrates
Dala dose of alanine from ingested grams of proteins
Dtg dose of triglycerides from ingested grams of fats

2. Methods

The whole body model is composed of seven tissue compartments,
namely heart, skeletal muscle, liver, gastrointestinal tract, adipose tissue,
brain and other tissues. Each compartment is described by dynamic
mass balances and major cellular metabolic reactions, as in the original
model by Kim et al. [22].

In Section 2.1 we introduced a model of nutrient intake, stomach
emptying and absorption of macronutrient monomers in the gastroin-
testinal (GI) tract. The glucagon–insulin model is incorporated into
the whole-body model to predict hormonal changes during a meal
in addition to those taking place during exercise, which was already
described in the previous implementation [21]. After meal ingestion,
blood glucose concentration changes and, consequently, the plasma
concentrations of insulin and glucagon are subject to physiological
modifications, leading to the maintenance of the glucose homeostasis,
as described in Section 2.2. The implementation of the nutrition intake
and processing model leads to a multi-regime dynamic model for the
simulation of the whole-body fuel homeostasis, as depicted in Fig. 1.

The input parameters of this model are listed in Table 1.
The model has been coded in ANSI C computer language to achieve

maximal performance and portability. The differential equations are
solved numerically with the CVODE library, a solver for stiff and
nonstiff ordinary differential equation systems [24,25].

2.1. Modeling food intake, stomach emptying and gut absorption

Meal consumption comprises the following two processes: (i) nu-
trients intake (i.e., orally ingested food) and stomach emptying; (ii)
absorption of macronutrients carbohydrates (represented as glucose in
the model), proteins (represented as amino acids), and fats (as triglyc-
erides). To translate such processes into the model, we implemented
three main steps: nutrient quantities conversion, gastric emptying, and
appearance in the GI tract, as shown in Fig. 2.

Output values from the GI then feed the liver compartment, as
shown in Fig. 1. The model inputs consist of grams of carbohydrates
(CHO), proteins, and fats. The processes and calculations describing the
phases of food intake, from the oral ingestion to the gastrointestinal
absorption of macronutrient monomers, are detailed as follows.

As a first step, we converted the grams of macronutrients (carbohy-
drates, proteins, and fats) into their millimole equivalents of the respec-
tive macronutrient monomers (glucose, alanine, and triglycerides). For
convenience, in the model CHO are reduced to the equivalent number
of glucose monomers. Considering that proteins represent a minor con-
tribution to energy metabolism compared to carbohydrates and lipids,
amino acids are represented solely by alanine, as also done in [22].
Likewise, all proteins are reduced to the equivalent number of alanine
monomers; and trioleate (a triglyceride derived from glycerol and three
units of the unsaturated fatty acid oleic acid) is the representative
dietary triglyceride (or triacylglycerol), because oleic acid is the most

abundant fatty acid in most vegetable oils [26].
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Fig. 1. Whole body system diagram. Exercise stimulates epinephrine release which influences the pancreatic secretion of insulin and glucagon and acts as a neuroendocrine
signal for the heart and skeletal muscle (gray lines). Meal intake and macronutrient absorption modify the metabolic flux rates of glucose, alanine, and triglycerides in the GI
compartment (orange line). The arterial/venous circulation (red/purple lines) connects each organ. Arterial glucose concentration (dotted line) signals the pancreas to set the levels
of insulin and glucagon, whose ratio influences metabolic reaction rates in the liver, GI tract, and adipose tissue (green lines). Three ordinary differential equations are added to
the previous model [21] to describe the food intake leading to a total of 139 ordinary differential equations in the multi-scale computational model.
Source: Adapted from [22].
Fig. 2. Main processes and calculations involved in modeling food intake, stomach emptying, and gut absorption. Quantities (grams) of carbohydrates (CHO), proteins
(Prot), and fats (Fat) ingested are converted into their millimole equivalent of glucose (Dglu), alanine (Dala), and triglycerides (Dtg). Then, the gastric emptying model provides the
rates of appearance Raglu, Raala, Ratg of glucose, alanine, and triglycerides, which enter the GI compartment.
As for the conversion factors, we used molar weights (MW) of
monomer glucose (180 g/mol), of trioleate (884 g/mol) and of alanine
(71 g/mol). As an example, for glucose (‘‘glu’’) the conversion is

Dglu =
CHO

𝑀𝑊𝑔𝑙𝑢 ⋅ 1000
.

To formulate the equations introducing stomach emptying and gut
nutrient absorption into the model, we followed the studies by Dalla
3

Man et al. [27] and Elashoff et al. [28]: the amount of nutrient 𝑛 (𝑛
stands for glucose from CHO, alanine from proteins, and triglycerides
from fats) emptied in the duodenum, increases following a power
exponential function given by

qduo(𝑡, 𝑛) = 𝐷𝑛 ⋅ (1 − 𝑒(−(𝐾𝑒,𝑛⋅𝑡)
𝛽𝑛 )) (1)

with Dn being the nutrient dose in mmol given into the stomach, Ke,n a
kinetic constant, and 𝛽 a shape factor depending on the meal type in
n
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Table 2
Parameters used to model the meal intake. List of model parameters
for stomach emptying and absorption of glucose (glu), alanine (ala) and
triglycerides (tg).

Parameter Value for OGTT Value for
mixed meal

Units

𝛽glu 1.23 [27] 1.05
𝛽ala 1.6
𝛽tg 2.2

Ke,glu 0.011 [27] 0.0164 min−1

Ke,ala 0.0086 min−1

Ke,tg 0.0042 min−1

Kabs,glu 0.231 [27] 0.021 min−1

Kabs,ala 0.013 min−1

Kabs,tg 0.017 min−1

Fabs,glu 0.9 [27] 0.9
Fabs,ala 0.95
Fabs,tg 0.95

which the nutrient is present. For liquid meals 𝛽n=1, whereas for solid
eals it may range up to 2 or even beyond. Ke,n (expressed in min−1)

s related to the stomach emptying half-time t1/2 as follows:

e,n = 𝑒𝑥𝑝
(

𝑙𝑛(𝑙𝑛(2))∕𝛽𝑛 − 𝑙𝑛(𝑡1∕2)
)

. (2)

Taking the derivative of Eq. (1), the gastric emptying rate Gemp,n(t) for
nutrient 𝑛 is

Gemp,n(𝑡) = 𝐷𝑛 ⋅ 𝛽𝑛 ⋅𝐾
𝛽𝑛
𝑒,𝑛 ⋅ 𝑡(𝛽𝑛−1) ⋅ 𝑒−(𝐾𝑒,𝑛⋅𝑡)

𝛽𝑛

The equations describing first-order kinetics of glucose absorption and
rate of appearance are given below:
{

dyn(t)∕𝑑𝑡 = −𝐾𝑎𝑏𝑠,𝑛 ⋅ 𝑦𝑛(𝑡) + 𝐺𝑒𝑚𝑝,𝑛(𝑡)
Ran(𝑡) = 𝐹𝑎𝑏𝑠,𝑛 ⋅𝐾𝑎𝑏𝑠,𝑛 ⋅ 𝑦𝑛(𝑡)

(3)

in which yn(t) is the amount of nutrient 𝑛 in the gut (expressed in
mmol), Kabs,n (in min−1) represents the rate constant of intestinal
absorption, Ran (in mmol/min) is the rate of appearance of the nutrient
in the gut and Fabs,n describes the fraction of intestinal absorption
which actually appears in plasma. Finally, we added a quantity equal
to Ran/Veff,n,GI to the concentration of the nutrient in the model of the
GI, in which Veff,n,GI (in l) describes the effective distribution volume
of the nutrient in the gut compartment, according to the original model
by Kim [22]. Since the model in [21] works with perfectly mixed
lumped tissue-capillary compartments (as per the assumptions made
by Kim in [22]), it will automatically generate the correct sign for
metabolite transfer from the GI into the portal plasma compartment.
The implementation of the model describing the dynamics of alanine
(‘‘ala’’) and triglycerides (‘‘tg’’) during meals, needs proper parameters
(i.e., 𝛽ala, 𝛽tg, Ke,ala, Ke,tg, Kabs,ala, Kabs,tg, Fabs,ala and Fabs,tg) listed in
Table 2, whose setting is described in the following Section.

Parameter setting for stomach emptying and macronutrient absorption
The procedure to find the model parameters in Table 2 comprises

the following steps for the three different nutrients:

1. determine values for the shape factor 𝛽n in Eqs. (1) and (2);
2. determine values for stomach half-emptying time t1/2;
3. calculate Ke,n values by substituting the results of step 1 and 2

in Eq. (2);
4. determine Kabs,n values for the different nutrients using Eq. (3)

with reported nutrient absorption data Ran(t);
5. estimate absorption fractions Fabs,n.

Shape factor 𝛽n. Non-liquid meals will come with an Elashoff shape
factor 𝛽 > 1 [28]. For carbohydrate (glucose) meals, literature values
of on average 1.05 are reported in [27,28]. For mixed meals, 𝛽 values
between 1.3 and 2.2 are reported [28–31]. We took a value of 2.2 (i.e.,
4

0

the higher extreme) as a likely representative value for nutrient fat
(triglycerides). Low fat-containing meals show lower values for 𝛽 [30]
so we took the lower reported value i.e., 𝛽 = 1.6 as probably being
representative for the nutrient protein (alanine).

Stomach half-emptying time t1/2. The prediction of the stomach half-
emptying time t1/2 for a given mixed meal is a challenging task simply
because there are so many factors that influence gastric emptying. In
a pragmatic approach we made use of caloric density values to fix
the stomach half-emptying time. This choice is based on the paper by
Calbet and MacLean [32], where the following relation for t1/2 was
observed for liquid meals:

t1∕2 = 9 + 27.5 ⋅ 𝑑 (4)

where 𝑑 is the caloric density of the meal expressed in kcal/ml. This
implies that the amount of liquid taken with a meal can strongly
influence t1/2.

A difficulty arises if 𝛽 > 1, because the meal cannot be considered
a liquid meal anymore and the Calbet proportionality of Eq. (4) may
not hold. Since a systematic study similar to Calbet’s for solid meals
of different compositions is lacking, we estimated the nutrient-specific
t1/2 values for carbohydrates, proteins, and fats by assuming that the
gastric emptying of each nutrient in the meal still behaves according
to Eq. (4), governed by the nutrient-specific caloric density. Since the
caloric density 𝑑 is modulated by the liquid components of the meal,
we reasoned to which extent the different nutrients are expected to
dissolve in the stomach. Meal carbohydrates are often present as rapidly
dissolving sugars, i.e., the carbohydrate caloric density is reduced by
any drink taken with the meal. We pragmatically assumed a factor
of 5 caloric density reduction for carbohydrates. Meal protein will be
diluted mainly by acid gastric juices and to a lesser extent by the drinks.
We therefore assumed a protein caloric density reduction by a factor
of 2 in meals. Meal fat will form an emulsion by the action of gastric
juices, resulting in only a slight reduction of caloric density which we
assumed to be 1.25.

We computed the nutrient caloric densities 𝑑 (kcal/ml) required
in Eq. (4) by dividing the reported caloric contents of the solid (or
pure) nutrient by our mentioned above reduction factors, e.g., 5 for
carbohydrates, 2 for proteins and 1.25 for fats. The caloric density
is given by the product of the caloric content and the density of the
nutrient, thus giving

d =
𝑐𝑎𝑙𝑜𝑟𝑖𝑐 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ⋅ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
.

e used reference values for caloric content and density of carbohy-
rates, proteins and fats available from the internet [33] obtaining the
ollowing values:

• carbohydrates (sucrose): 4.1 kcal/g (caloric content), 1.5 g/ml
(density);

• proteins: 4.1 kcal/g (caloric content), 1.4 g/ml (density);
• fats (tripalmitin, triolein, olive oil): 9.3 kcal/g (caloric content),

0.9 g/ml (density).

fter applying the pragmatic reduction factors, the Calbet propor-
ionality in Eq. (4) yields t1/2 values of 43, 88, and 193 min for
arbohydrates, proteins, and fat, respectively.

Stomach emptying of mixed meals is a complex process whose
ccurate description is beyond the scope of this work. Very briefly,
iquid components will empty first, then semi-liquids, and finally the
at, which float on top of the other nutrient mixtures in the stomach.
he obtained t1/2 values match well with this description.

tomach emptying rate constants Ke,n Substituting the 𝛽 and t1/2 val-
ues reported above in Eq. (2), yields Ke,glu = 0.0164 min−1, Ke,ala =
.0086 min−1 and K = 0.0042 min−1.
e,tg
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Table 3
Estimation of gut absorption kinetic constants for proteins and fats versus CHO using Eq. (5), based on gut
perfusion data from Table 3 and 4 in Weber et al. [34].

Absorptive Perfusion rate at Perfusion Perfusion
capacity half max absorption rate rate constant

Vmax Km S Kperf
(kcal min−1 m−1) (kcal min−1) (kcal min−1) (m−1)

meal C
CHO 0.62 0.67 0.74 0.44
protein 0.2 0.18 0.32 0.4
fat 0.5 0.79 0.32 0.45

meal P
CHO 0.52 0.57 0.24 0.64
protein 0.27 0.04 0.89 0.29
fat 0.27 0.42 0.24 0.41

meal E
CHO 0.48 0.49 0.42 0.53
protein 0.18 0.01 0.55 0.32
fat 0.33 0.34 0.41 0.44

Average
Kperf
CHO 0.53
protein 0.33
fat 0.43
Table 4
Experimental datasets used for model validation.

Study Population Observables

n Age BMI Hormone Metabolites fluxes
(yrs) (kg m-2) and concentrations

van Schalkwijk [35] (M) 5 ubo 48 28.7 INS GLU, FFA, GLR, TG
7 lbo 52 28.4 INS GLU, FFA, GLR, TG

Dalla Man [36] (M) 100 55 26.6 INS GLU, Raglu
Short [37] (M+E) 11 26 26.4 INS GLU, FFA
Reaven [38] (M) 9 52 26.8 INS GLU, FFA, LAC
Vors [39] (M) 9 ob 30 31.7 INS FFA, Ratg

9 nw 28 22.3
Groen [40] (M) 20 23 22.6 Raala

BMI: body mass index; M: meal test; M+E: meal test + exercise; lbo: lower body obese subjects; ubo: upper body obese
subjects; ob: obese subjects; nw: normal weight subjects; INS: insulin; GLU: glucose; Raglu: glucose rate of appearance;
FFA: free fatty acids; GLR: glycerol; TG: triglycerides; Ratg: triglycerides rate of appearance; Raala: alanine rate of
appearance.
t

K

w
h
m
8

a
a
0
o

ate constants of intestinal absorption Kabs,n. In human food-absorption
studies, absorption is often mistaken for gastric emptying kinetics and
metabolism. For this reason, we have struggled to derive values for
intestinal absorption rate constants from published human study data,
except for glucose studied in more detail. However, a very instructive
work by Weber and Ehrlein [34] describes the study of macronutrient
absorption in situ in mini pigs, often used as a model for humans in
nutrition kinetics studies. That paper analyzed the nutrient absorption
of a gut segment using Michaelis–Menten kinetics. It shows that the
nutrient absorption Vmax and Km values were dynamically changed
y the gut depending on the overall macronutrient composition of
meal. The authors took into consideration the caloric contents of

ood, which fits well with our approach in which stomach emptying
1/2 is also based on caloric content. The authors also specified the
ength, but not the surface area of the gut segment they used, which
ould otherwise have allowed us to translate Vmax more easily to

he human case: in fact, since area estimates for human duodenum,
ejunum, and ileum gut sections are known, we could have directly
btained the parameter Vmax for our setting. Another difficulty is that
eber and colleagues used a different type of kinetics, i.e., Michaelis–
enten instead of first-order exponential. Moreover, the dimensions

sed are not the usual molar flux and concentration units, but instead
erfusion rates. To overcome this problem, we resorted to the following
ragmatic approach to derive the absorption rate constant Kabs,n values

from the data in Weber et al. [34]: information in Tables 3 and 4 of
the above mentioned paper are used to derive perfusion-based first-
order reaction rate constants K values of carbohydrates, proteins,
5

perf,n w
and fats, which are then calibrated to nutrient absorption rate constants
values using literature Kabs,glu values for glucose as a reference. The first
step consists of simply equating the Michaelis–Menten flux reported by
Weber et al. to the product of Kperf,n and the nutrient perfusion rate
𝑆 (effectively treating the perfusion as exponential kinetics) for each
nutrient separately:

Vmax ⋅
𝑆

𝑆 +𝐾𝑚
= 𝐾𝑝𝑒𝑟𝑓 ,𝑛 ⋅ 𝑆

hus resulting in:

perf ,n =
𝑉𝑚𝑎𝑥
𝑆 +𝐾𝑚

. (5)

The resulting Kperf,n values for three different meal perfusions are
shown in Table 3.

The average Kperf,n values obtained from Table 3 are 0.53 m−1 for
carbohydrates, 0.33 m−1 for proteins and 0.43 m−1 for fats. From this,

e inferred that kinetic constants for nutrient absorption Kabs,n will
ave the same relative magnitudes, i.e., Kabs,ala for protein approxi-
ately 63% that of carbohydrates, and Kabs,tg for fat approximately
1% of that for carbohydrates (all in terms of calories).

To obtain absolute values, we used data from Dalla Man [27], who
nalyzed plasma glucose appearance curves with four different models
nd report Kabs,glu values for glucose from meals in the range of 0.011 to
.198 min−1. A weighted average considering the reported coefficients
f variation for the parameters of the four models reported in the

−1
ork by Dalla Man [27] yields Kabs,glu = 0.021 min . From that,
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Fig. 3. Dynamics of suprabasal insulin and glucagon levels. Model fit (solid line) vs experimental data (circles), expressed as mean ± SE from the study by Knop [41]. The
OGTT is administered at time 0. A: Insulin. B: Glucagon.
for protein (alanine) we estimated Kabs,ala as 0.013 min−1 and for fat
triglycerides), Kabs,tg, is estimated as 0.017 min−1.

bsorption fractions Fabs,n. The GI tissue actively uses the glucose.
ence Fabs,glu is estimated to be 0.9. We postulated a value of 0.95 for
abs,ala and Fabs,tg consistent with a less active GI tissue metabolism of
roteins and fats. We assumed the removed fractions totally oxidized
o carbon dioxide, that is, the metabolic products are not further
onsidered.

.2. Improvements to the hormonal glucagon/insulin model

The dynamics of glucagon and insulin during the meal period is
iven by the following differential equations:
dCI

dt
= 𝐶𝐼 (𝑡)⋅

[

𝜓 ⋅[ℎ−𝑘3⋅(𝐶𝐺(𝑡)−𝐶𝐺,0)−𝑘4⋅(𝐶𝐼 (𝑡)−𝐶𝐼,0)−𝑘5⋅(𝐶𝐸 (𝑡)−𝐶𝐸,0)]−𝐷
]

(6)
dCG

dt
= 𝐶𝐺(𝑡)⋅

[

𝜙⋅[ℎ−𝑘1⋅(𝐶𝐺(𝑡)−𝐶𝐺,0)−𝑘2⋅(𝐶𝐼 (𝑡)−𝐶𝐼,0)]−𝐷
]

(7)

in which CI(t), CG(t) and CE(t) are the insulin, glucagon and epinephrine
blood concentrations. Their basal values (CI,0, CG,0 and CE,0 respec-
tively), as well as ℎ and parameters 𝜙 and 𝜓 , are taken from the original
model [22]

𝜙 =

⎧

⎪

⎨

⎪

⎩

1 𝐶𝑎,𝑔𝑙𝑐 < 2.5
1 − (𝐶𝑎,𝑔𝑙𝑐 − 2.5)2∕25 2.5 ≤ 𝐶𝑎,𝑔𝑙𝑐 ≤ 7.5
0 𝐶𝑎,𝑔𝑙𝑐 > 7.5

(8)

𝜓 =

⎧

⎪

⎨

⎪

⎩

0 𝐶𝑎,𝑔𝑙𝑐 < 2.5
1 − (𝐶𝑎,𝑔𝑙𝑐 − 7.5)2∕25 2.5 ≤ 𝐶𝑎,𝑔𝑙𝑐 ≤ 7.5
1 𝐶𝑎,𝑔𝑙𝑐 > 7.5.

(9)

The value for the parameter k5 in Eq. (7), accounting for the contri-
bution of the exercise, can be found in [21] (k5 = 3.6⋅10−5pM−1 min−1).

Since in this work we introduced the new operation regime of food
digestion that is different from the one represented by the physical
exercise (and described in [21]), a new set of parameters (k1, k2, k3,
k4, D) for the glucagon/insulin model different from those used for
the exercise regime is estimated. As a consequence, the time periods
of the exercise sessions and the prandial period cannot overlap. We
found the conditions corresponding to out-of-meal and out-of-exercise
by setting the Ran and yn equal to zero (Eq. (3)) and using the same
parameters (k1, k2, k3, k4, D) as in the meal period. We assumed
the duration of the meal absorption limited to 180 min. Since this
duration cannot account for the absorption of large meals, we added
correction factors to consider the absorption of macronutrients beyond
the 180 min interval. In other words, meal calories are absorbed in
180 min, and after that period, Ran=0. We used correction factors to
6

rescale the area under the curve (AUC) of the three Ran computed at
180 min to equate them to the respective total AUC computed when
the total absorption is achieved and the curves return to zero.

For the estimation procedure, we used experimental data of glucose,
glucagon, and insulin plasma concentrations from a 50 g oral glucose
tolerance test (OGTT) study conducted by Knop and colleagues in [41]
in which blood samples are drawn from 10 healthy control subjects
before, during, and 4 h after the test. This study provides a large set
of experimental data for the hormones and glucose concentrations,
allowing to estimate the five unknown parameters.

The Eqs. (6)–(7) describing the glucagon/insulin model depend
on the glucose arterial concentration via 𝜙 and 𝜓 , as illustrated in
Eqs. (8)–(9). As a consequence, the first necessary step to the estimation
procedure is to find a function describing the glucose kinetics by fitting
the glucose experimental data during the test meal (see Appendix Mod-
eling glucose dynamics during an OGTT study for further details).
Afterward, we used the function describing the glucose kinetics as input
of the glucagon/insulin model to estimate the parameters k1, k2, k3, k4,
D, to retrieve the dynamics of glucagon and insulin during the meal
period.

We performed parameter estimation using a weighted non-linear
least squares approach, based on the Levenberg–Marquardt algorithm
for the minimization procedure implemented in the ‘‘lsqnonlin’’
MATLAB®(The MathWorks, Natick, MA, USA) function. The differential
equations of the model are solved using the ‘‘ode15s’’ MATLAB func-
tion, an implicit integration algorithm for stiff systems of equations.
The precision of the estimate of each parameter is expressed using the
percent coefficient of variation, 𝐶𝑉 % = (𝑆𝐷𝑒∕𝑒), where the standard
deviation 𝑆𝐷𝑒 is derived from the inverse of the Fisher information
matrix and 𝑒 is the corresponding parameter estimate [42]. The errors
in the glucagon and insulin measurements are assumed to be normally
distributed random variables, with zero mean and a constant percent
coefficient of variation equal to 4%.

2.3. Data for model validation

The refined model of the combined effect of food digestion and
exercise on human metabolism is validated against experimental data
(regarding hormones and metabolites fluxes and concentrations) from
independent studies on healthy individuals in fasted conditions [35–
40,43]. Details for each study are reported in Table 4 and in the
Appendix ‘‘Data regarding the experimental studies used for valida-
tion’’.

3. Results

In Section 3.1, we reported the results of the parameter estimation

procedure (described in Section 2.2). In Section 3.2 we reported the
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Fig. 4. Dynamics of metabolites in response to the meal test. Model fit vs experimental data, from the study by van Schalkwijk [35] during and after the trial for LBO (red
line) and UBO (blue line) patients. The gray area represents the range of variability of the mean experimental data (black line). A: Glucose. B: Insulin. C: Free Fatty Acids (FFA).
D: Glycerol (GLR). E: Triglycerides (TG).
results of the validation of our model by comparing simulated dynamics
to experimental reference data on hormones and metabolites obtained
from independent studies (see Section 2.3).

3.1. Estimated parameters

Table 5 summarizes the estimated parameters k1, k2, k3, k4, D of the
glucagon/insulin model, along with their CV%, obtained by applying
the procedure in Section 2.2. The 𝑅2 (and the related p-values) are,
respectively, 0.69 (0.0002) for insulin and 0.50 (0.0097) for glucagon.

The dynamics of the hormones resulting by using the estimated
parameters on the mean of the experimental data are reported in Fig. 3.
7

3.2. Model validation

Results of the validation for the experimental datasets described in
Table 4 are reported in Figs. 4–8.

For what concerns the simulated concentrations of glucose (Panels
A in Figs. 4, 6, 7, Panel B in Fig. 5) and insulin (Panels A in Figs. 5, 8,
Panels B in Figs. 4, 7 and Panel C in Fig. 6), the trends, the amplitudes
and the timing of the peaks are, in general, coherent with the range
of variability of the measured values in the case of both single and
multiple meal tests. However, our model tends to underestimate the
levels of glucose after the overnight fast and the peak amplitude of
insulin. The decrease of FFA (Panel B in Fig. 8, Panel C in Figs. 4, 7
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Fig. 5. Dynamics of metabolites in response to the meal test. Model fit vs experimental data from the study by Dalla Man et al. [36] during and after the meal test. The red
line indicates the simulated concentration; the gray area represents the range of variability of the data, the black line represents the average concentrations. A: Glucose. B: Insulin.
Table 5
Estimated parameters of the glucagon/insulin model,
along with their CV%.
Parameter Value (CV%) Units

k1 0.01569 (5.4) pM−1 min−1

k2 0.00014 (0.1) pM−1 min−1

k3 3.08666 (15.6) pM−1 min−1

k4 0.07095 (16.8) pM−1 min−1

D 0.00650 (9.1) min−1

and Panel E in Fig. 6,) and the increase of lactate (Panel D in Fig. 7)
are generally slightly more pronounced for the model, and appear to
produce an accumulation of these metabolites, because the return to the
steady-state, although it is fast, appears with a certain delay compared
to experimental data. In fact, the peak of the simulation at 300 min in
Fig. 8 corresponds to the small peak at 180 min of the experimental
data; the increasing trend at the end of the simulation corresponds to
the peak at 300 min of the experimental value. Panel D in Fig. 4 reports
the dynamics of simulated GLR, showing a delayed response of the
decrease after the meal test and also an overestimation in the concen-
tration values. The model-predicted increase for triglycerides appears
underestimated in panel E in Fig. 4; although one must consider that
experimental values have a very high standard deviation. Experimental
data on triglycerides shows a return to the basal value that is slower
than the one predicted by our model.

4. Discussion

The present study proposes a dynamic model of human energy
metabolism, reflecting the integrated regulation of metabolism in the
fasted and postprandial state, as well as during physical activity. We
started from a multi-scale computational model able to describe fuel
homeostasis in response to a bout of physical exercise previously pro-
posed by our group [21]. We added a new working regime for the
glucagon/insulin model to describe hormonal and metabolic changes
due to ingestion of meals, expressed in terms of grams of carbohydrates,
proteins, and fats, consumed by healthy subjects differing in gender,
age, and anthropometric characteristics.

Eqs. (6) and (7) describe the mechanism of glucose regulation, and
the return to the equilibrium, both in the case of diminution due to
exercise or rising due to food intake. Thus, we decided to keep the same
model. For the seek of simplicity, ease of use and code stability, the
most convenient choice is to use the same model as the one proposed
in our previous study, with different parameters. Summarizing, the
introduction of this new working regime requires new estimates for the
parameters (k1, k2, k3, k4, D) of the glucagon/insulin model in Eqs. (6)
and (7), different from the ones used to only describe physical activity.
They are obtained by fitting glucagon and insulin concentrations data
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obtained from the study by Knop et al. [41], leading to the values
reported in Table 5. The model simulation fits well the set of measured
glucagon and insulin concentrations during the test study, also con-
sidering that five parameters are estimated using fifteen experimental
data points, as evident in Fig. 3 and the good level of precision of the
estimate is reflected by the low values for the CV%.

Our model slightly underestimates the plasma glucagon level, as
reported in Fig. 3. The spanned range of glucagon concentration during
glucose tolerance tests is part of the physiological inter-individual
variability and is quite debated in the literature. As an example, in
the studies by Gar and Manell [44,45], the values of the glucagon
concentrations for healthy individuals are very similar to the one
obtained by our estimation, with a suppression (with respect to the
basal) of almost 5 pmol/l. Thus, we can state that our estimation is in
line with other experimental observations of glucagon during glucose
tolerance tests and is physiologically consistent and acceptable.

After the meal test, both insulin and glucagon concentrations return
to their steady-state values CI,0 and CG,0, respectively. The correctly
predicted return to the steady-state after meal periods (see Figs. 4, 5, 6)
indicates that the model provides reliable results for this physiological
condition. We chose to model the condition in between meals and
exercise by using the same parameters as for the meal intake, but
setting the food quantities to zero, as explained in Section 2.2.

The main novelty of this work lies in the modeling effort to inte-
grate the description of the intake, stomach emptying, and absorption
in the gastrointestinal tract of a complete mixed meal in the multi-
scale model, thus allowing a better description of everyday real-life
situations. The implementation of the model describing the dynamics of
alanine (from proteins) and triglycerides (from fats) during meals needs
the setting of proper parameters, described in section ‘‘Modeling food
intake, stomach emptying and gut absorption’’ and listed in Table 2.
One relevant question is, how sensitive the model is to these and
other parameters. We considered that at the present first iteration of
the model, it was not yet meaningful to perform an analysis of the
sensitivity of the model to the choices made for the following reasons:
(i) in the whole of the model, the parameters for the stomach emptying
and absorption represent only a small subset of the overall parameter
set; (ii) although we consider the model to be conceptually valid, the
process of stomach emptying of mixed meals is a very complex one
for which this work cannot provide a truly accurate description; any
choice of parameter subsets to be varied for sensitivity analysis can
be questioned for its physiological relevance; (iii) stomach emptying
and nutrient absorption kinetics for identical meals vary widely be-
tween individuals and between different meals in the same individual,
e.g., evidenced by the analysis of postprandial glucose responses [46].
Therefore, the current model can only describe an average behavior

across a population and a wide range of meals.
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Fig. 6. Dynamics of metabolites in response to the meal test. Simulations and experimental data for the three trials from the study by Short et al. [37] during and after the
meal test. In the trial indicated as ‘‘prior day ex’’, the subject performs a bout of aerobic exercise 17 h before consuming the mixed meal test. In the trial indicated as ‘‘same day
ex’’, the subject performs a bout of aerobic exercise 1 h before consuming the mixed meal test. In the trial indicated as ‘‘no ex’’, the subject does not exercise before consuming
the mixed meal test. Left panels: Model fits. The red lines represent the ‘‘no ex’’ trial, the green line reproduces the ‘‘prior day ex’’ trial, the blue line refers to the ‘‘same day ex’’
trial. Right panels: Experimental data. The filled circles represent the ‘‘same day ex’’ trial, the gray triangles indicate the ‘‘prior day ex’’ trial, the open circles correspond to the
‘‘no ex’’ trial. Panels A and B: Glucose. Panels C and D: Insulin. Panels E and F: Free Fatty Acids (FFA).
Due to a lack of experimental data in vivo, it was not feasible
to validate that choices made for the parameterization of detailed
aspects of the involved processes were realistic. It was however duly
validated that the choices made led to realistic outcomes, using rate
of appearance (Ra) data for the different macronutrients, as follows:
the Ra of glucose, alanine, and triglycerides in the gut compartment,
as explained in Eq. (3), compared to the experimental data, is shown
in Fig. 9.

As evident from Fig. 9, the glucose Ra is properly modeled (Panel
A): the peak of the simulated dynamics almost coincides both in time
and amplitude with the data, being only slightly delayed in time. The
model well describes the return to the basal state, even if the fall is
less sharp. As previously stated in Section 2.1, we used alanine as a
9

representative for all amino acids derived from meal proteins. Since
experimental data on alanine Ra are, to our knowledge, lacking, we
used the venous blood Ra profile of phenylalanine, reported in the
study by Groen and colleagues (see Panel B in Fig. 9) as a reference
for amino acids Ra. Due to the fact that we compared two different
amino acids, we introduced two different y-axes scales to account for
the expected differences in the quantities; however, by comparing the
two trends in Panel B, it is evident that the two Ra curves are similar
in shape and timing. Note that the rate of appearance in our model is
the flux of macronutrient metabolites into the gut compartment (see
Eq. (3)) i.e., before entering the mesenteric circulation and first-pass
hepatic extraction, whereas the experimental data report the rate of
appearance in the venous plasma. Regarding the validation of the Ra
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Fig. 7. Dynamics of metabolites in response to the meal test. Model fit (solid line) vs experimental data expressed as mean ± SE (circles with bars) during the one-day
experiment from the study by Reaven et al. [38]. Panel A: glucose. Panel B: insulin. Panel C: Free Fatty Acids (FFA). Panel D: Lactate.
Fig. 8. Dynamics of metabolites in response to the meal test. Model fit (solid line) vs experimental data expressed as mean ± SE (circles with bars) from the study by Vors
et al. [39] during and after the meal test for normal subjects. Panel A: Insulin. Panel B: Free Fatty Acids (FFA).
of triglycerides, we recall that we took oleic acid as representative of
dietary triacylglycerol, as stated in Section 2.1. Vors and coworkers
showed that the rate of influx of [13C]-labeled oleic acid from a meal
with emulsified fat into plasma total fatty acids peaked at 180 min or
later (see Fig. 2, Panel C in [39]). We obtained the same peak timing
when simulating the test breakfast according to the paper by Vors, as
evident in Fig. 9, Panel C. The use of different y-axes is dictated by
necessity to indicate two different quantities: as already stated, the
outcome of our model consists of a flux into the gut compartment,
whereas the one showed by Vors is a venous plasma concentration
profile. However, as in the case of alanine, we are interested in the
correct timing and shapes of the curves even though the quantities are
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different. Summarizing, based on the kinetics of the resultant overall
appearance of the three individual macronutrients (glucose, amino
acids, and fat) in plasma upon mixed meal tests described above, we
consider that the choices made for the parameterization of stomach
emptying and macronutrient absorption processes leads to realistic
outcomes.

Our model predicts glucose concentration in the arterial blood
compartment, whereas in the experimental setting, glucose is generally
measured in the venous plasma. However, the difference between
the two concentrations is reported to be negligible (approximately 3–
5 mg/dl) [47]. With this consideration, the model properly captures the
dynamics of the experimental glucose concentration data (see Panels A
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Fig. 9. Rates of appearance in response to the meal stimulus. Model fit (solid line) vs experimental data expressed as mean ± SE (circles with errorbars) during and after
the meal tests for normal subjects. Further information concerning the studies are available in Data regarding the experimental studies used for validation. Panel A: Glucose.
Experimental data from the study by Dalla Man [36]. Green line: reduced protocol; red line: full protocol. Panel B: Alanine. The 𝑦-axis on the left refers to the simulation; the
y-axis on the right refers to the experimental measures from the study by Groen [40]. Panel C: Triglycerides. The 𝑦-axis on the left refers to the simulation; the y-axis on the right
refers to the experimental measures from the study by Vors [39].
in Figs. 4, 6, 7, Panel B in Fig. 5): the peaks are correctly located in
time and also the amplitudes are quite well reproduced. In the post-
absorptive state, the predicted glucose sometimes tends to fall lower
than the experimental values before rising due to the meal test. In
some cases the decrease after the test is less sharp than the ones of the
measured values, but the steady state is well predicted in the case of
a single meal. When considering the whole-day simulation with three
meal as in Fig. 7, a drop in the glucose concentration at the end of the
simulation is evident. However, the last peak is at 720 min, but the
last experimental value is at 1440 min, thus meaning that the subject
is fasted for more than 12 h. This could be an issue for the long-term
simulations but, despite may happen, it is not a common scenario in
the normal lifestyle, which is the case of interest of our study.

For what concerns the insulin dynamics, some simulations show
a good agreement with the experimental tests: Panel A in Fig. 5 and
Panels B in Fig. 4, 7 show a good fitting, with the simulated values in
the range of variation of the experimental measures. However, lower
values are predicted by the simulator in some cases as e.g., in Panel C
in Fig. 6, in which the peak is also delayed in time. In all the cases, the
predicted values of insulin properly return to the steady-state after the
meal tests.

When comparing the modeled FFA dynamics with the test values,
the presence of a delay is evident; notwithstanding the model is able to
provide outcomes in the same range of variability (see Panel C of Fig. 4
and Panel B of Fig. 8).

Panel D in Fig. 4 shows that the predicted concentrations of glycerol
are quite overestimated, taking into consideration that the basal level of
glycerol in adults is usually between 0.05 and 0.1mM [48]. As stated by
Lin in [48], the kidney accounts for up to one fifth of the total glycerol
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utilizing capacity of the body. Glycerol at a serum concentration of
1 mM can be completely cleared by the kidneys [49–52]. Since our
computational model does not explicitly account for such a kidney
contribution, this possibly explains our overestimation.

The simulations properly capture the trend of the lactate (Panel D
in Fig. 7), even if the return to the steady-state is delayed.

The rise in the simulated arterial concentration of triglycerides in
Panel E in Fig. 4 is underestimated during the meal test, and the
immediate return to the steady-state predicted for the end of the
meal period is at variance with experimental measures, which return
to the state of equilibrium even later than the simulation window.
We consider it a consequence of the fact that blood-tissue transport
of TG is currently modeled as if it was a plasma soluble metabolite
(e.g., rapid tissue-plasma convergence to equilibrium), whereas actually
triglyceride transport is effected by lipoproteins. This allows for much
higher plasma concentrations of TG, and shows slower dynamics.

It is interesting to discuss the behaviour of the simulator when
considering also the exercise session as in Fig. 6. Of note, for what
concerns the glucose (Panels A, B), the model is able to reproduce
a lower initial concentration for the trial in which the exercise is
performed in the same day of the meal test. Even if the model generally
overestimates the trends of FFA in all the three trials (Panels E, F), it
properly captures the higher FFA concentration for the trial in which
the exercise is performed in the same day of the meal test, as for the
glucose.

We have previously shown that our model can reproduce the
metabolic responses within a single day, in which different kinds of
stimuli (e.g., single meal or a single exercise session) are accounted for.

This computational model can simulate even longer periods, such as
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Fig. 10. Dynamics of metabolites in response to a one-week simulation. A: Glucose. B: Insulin.
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weeks, owing to good numerical stability. As an example, in Fig. 10 a
simulation of a full week period is provided for plasma glucose and in-
sulin. Data regarding the physical characteristics of the virtual subject,
the meals and the exercise scenarios are available in the supplemental
files S1.txt and S2.txt. The meals scenarios are designed according
to [53] and we hypothesized a fitness class ‘‘average’’ according to [23].
The exercise bouts are easily detectable in Fig. 10 and correspond to
the three periods of moderate hypoglycemia and hypoinsulinemia. It
is well-known that during exercise, subjects can experience periods of
hypoglycemia; however, this drop in glucose concentration is limited
and physiological [54].

Although some variations are evident in the fittings here shown,
these differences may not have a significant impact from a clinical point
of view. The most important result for us is to have realistic outcomes
in the physiological ranges of acceptability, even if sometimes they are
slightly delayed, over or underestimated. Our goal is to realize a model
that permits to obtain realistic outcomes in order to generate virtual
patients’ populations, not to realize an artificial pancreas simulating
the single individual’s response.

5. Conclusions

Despite the mentioned shortcomings, the simulations are overall
physiologically consistent and useful to describe the metabolic changes
due to everyday life stimuli such as multiple mixed meals and variable
periods of physical exercise, for different categories of subjects. Because
of the large inter- and intra-individual variability of the physiological
responses to these stimuli, a faithfully description of every person’s
situation cannot be reproduced. However, the modeling effort here
presented provides a good compromise between detailing the involved
processes and a system-level approach.

The model can represent a valid support to provide a cohort of
virtual patients for clinical trial simulations, valuable tools for decision-
making during the process of drug development, since it can represent
realistic simulation scenarios, in which the patients must represent the
target populations. The ability to perform long-term simulations with
the possibility to input different quantities of food intake and exercise
intensity and duration, allows representing the effects of various kinds
of lifestyles on a set of virtual subjects differing in sex, age, height,
weight, and fitness status. To our knowledge, this is the first attempt
to describe the effects of macronutrients absorption, comprising also
proteins and fats, in addition to glucose. Moreover, this is the first com-
putational model that can achieve such a good level of detailing and
customization so far released. Indeed, its use can span a broad spectrum
of personalized medicine applications in the view of healthcare more
based on the individual needs of the persons and can represent a useful
12

tool for the generation of in-silico virtual patient populations.
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Appendix A. Modeling glucose dynamics during an OGTT study

We estimated the parameters k1, k2, k3, k4 and D for the meal
regime to fit the glucagon and insulin experimental data during the
OGTT study by Knop in [41] (see Section 2.2). This procedure needs to
know in advance the dynamics of glucose concentration, since glucose
represents the input for the estimation procedure. Thus, we found a
function fitting the glucose experimental data in the study by Knop, and
representing the plasma glucose dynamics. We performed the fitting by
using ‘‘cftool’’, a tool provided by MATLAB®(The MathWorks, Natick,
MA, USA) to fit curves and surfaces to data and view plots. We used a
Gaussian model was, namely

Cg(𝑡) = 𝑎1 ⋅ 𝑒
−( 𝑡−𝑏1𝑐1

)2
+ 𝑎2 ⋅ 𝑒

−( 𝑡−𝑏2𝑐2
)2
+ 𝑎3 ⋅ 𝑒

−( 𝑡−𝑏3𝑐3
)2
+ 𝑎4.

he coefficients a1, a2, a3, a4, b1, b2, b3, c1, c2, c3 are computed with
95% confidence bounds and are summarized in Table A.1.

The toolbox provides some methods to assess goodness of fit: con-
fidence bounds, residual analysis, and goodness-of-fit statistics. The
goodness of fit was evaluated in terms of Sum of Squares Due to
Error (SSE), R-square, degrees of freedom adjusted R-square and Root

https://ec.europa.eu/research/fp7


Computers in Biology and Medicine 163 (2023) 107158M.C. Palumbo et al.

s

M
T

A
v

d
s

V

w

V

c
o

Table A.1
Estimated parameters. List of the values of
the estimated parameters for the dynamics
of arterial glucose concentration during an
OGTT study [41].
Parameter Value Units

a1 3.178 mmol
a2 3.665 mmol
a3 −1.774 mmol
a4 5 mmol
b1 34.3 min
b2 61.24 min
b3 57.07 min
c1 24.67 min
c2 49.3 min
c3 144.8 min

Table A.2
Goodness-of-fit statistics.
Statistics Value

𝑆𝑆𝐸 0.5725
𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒 0.9916
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒 0.9848
𝑅𝑀𝑆𝐸 0.2393

Fig. A.1. Glucose dynamics. Fit of the plasma glucose dynamics during an OGTT
tudy [41].

ean Squared Error (RMSE). Goodness-of-fit statistics is reported in
able A.2.

The resulting profile of glucose concentration is shown in Fig. A.1.

ppendix B. Data regarding the experimental studies used for
alidation

1. van Schalkwijk et al. [35]. Twelve male subjects were selected
based on the waist-hip ratio (WHR). Patients with WHR < 1
were considered lower body obese (LBO), whereas subjects with
WHR > 1 were considered as upper body obese (UBO). They
were supplemented with 60g/day MCFA or linoleic acid for three
weeks during which on average the subjects consumed about
105 g of fat daily. On day 20 (day before test day) subjects ate
a standardized evening dinner which contained 548 kCal (50 g
of CHO, 30 g of fat, 20 g of protein, and 5 g dietary fiber). On
day 21, a test meal containing 40% of the total energy intake
(1068 kcal) was provided. The macronutrient composition of the
test meal was: 57 energy% from CHO; 32 energy% from fats; 12
energy% from proteins. Experimental data provided (courtesy of
the authors) refers to this test meal. Blood samples were drawn
at 0, 30, 60, 90 min and 2, 3, 4, and 6 h during and after the
test meal.
13

t

2. Dalla Man et al. [36]. Plasma of 100 nondiabetic subjects were
collected at 0, 5, 10, 15, 20, 30, 40, 50, 60, 75, 90, 120, 150,
180, 210, 240, 260, 280, 300, 360 and 420 min. The mixed
meal consisted of 10 kcal/kg divided in 45% carbohydrate, 15%
protein, and 40% fat. Two protocols sampling schedules were
implemented, consisting in a different number of blood sam-
ples: full protocol consisting in 7 hours-21 samples and reduced
protocol consisting in 2 hours-7 samples.

3. Short et al. [37] Eleven untrained young adults completed 3 tri-
als. Two trials consisted of performing a 45-min aerobic exercise
bout either 17-hours (Prior Day Ex) or 1-hour (Same Day Ex)
before consuming the mixed meal test. The third trial consisted
only in consuming the test meal (No Ex) without performing
physical activity.

4. Reaven et al. [38]. Nine patients with normal glucose tolerance
were fed an isocaloric (35 cal/kg) diet containing (as percentage
of total calories) 17% protein, 40% fat, and 43% carbohydrate.
Each meal, which was eaten at 8am, noon, and 6pm, contained
20, 40, and 40%, respectively, of the total daily calorie intake.

5. Frayn et al. [43]. Eight subject, after an overnight fast, received
a meal containing 3.1 MJ, with 41% of calories from fat and 47%
from carbohydrate.

6. Vors et al. [39]. Nine obese (OB) and nine normal weigh (NW)
healthy subjects received a test breakfast consisting of 35.5 g of
carbohydrates, 9.3 g of proteins and 41.4 of fats. A second meal
was served 5 h after breakfast (91.5 g of carbohydrates, 35.7 g
of proteins and 22.7 g of fats). For what concerns our study, we
took into consideration the experimental data dealing with the
spread fats.

7. Groen et al. [40]. Twenty healthy young adults received 20 g
intrinsically [1-13C]-phenylalanine labeled protein.

Appendix C. Equations

An online version of the simulator, is available at https://kraken.
iac.rm.cnr.it/T2DM.

C.1. Equations detailing the model of physical exercise

VO2max is determined based on age, sex, and fitness status as
escribed by Heyward in [23] (in place of the work rate WR) and the
teady-state value for the oxygen consumption VO2 is computed as

O2 =
𝑇𝑣 ⋅ VO2𝑚𝑎𝑥

100
.

The original model by Kim [22] specifies the WR in Watts, thus we
needed to express WR as a function of VO2. To simulate different
exercise modalities, we resorted to the metabolic equations provided
by the American College of Sports Medicine (ACSM) [55] to estimate
the oxygen consumption for five different exercise modalities.

WR(W) =

{

𝐵𝑊 ⋅ (VO2 − 2 ⋅ VO2,𝑟𝑒𝑠𝑡)∕10.8 for leg cycling
𝐵𝑊 ⋅ (VO2 − VO2,𝑟𝑒𝑠𝑡)∕18 for arm cycling

here BW is the body weight, VO2,rest is the O2 uptake at rest.

O2 =

⎧

⎪

⎨

⎪

⎩

VO2,𝑟𝑒𝑠𝑡 + 0.1 ⋅ 𝑣 + 1.8 ⋅ 𝑣 ⋅ 𝐺 for walking
VO2,𝑟𝑒𝑠𝑡 + 0.2 ⋅ 𝑣 + 0.9 ⋅ 𝑣 ⋅ 𝐺 for running
VO2,𝑟𝑒𝑠𝑡 + 0.2 ⋅ 𝐹 + 1.33 ⋅ 1.8 ⋅𝐻 ⋅ 𝐹 for stepping

in which 𝑣 is speed expressed in m/min, 𝐺 is the percent of slope
expressed as a ratio, 𝐹 is the stepping frequency expressed in steps/min
and 𝐻 is step height in meters. To obtain the WR for the last three
ategories of exercise, assuming a caloric equivalent for 1 liter of
xygen approximately 5 kcal [56,57], the following relationship is used

o determine the Watt consumed per minutes for walking, running, and

https://kraken.iac.rm.cnr.it/T2DM
https://kraken.iac.rm.cnr.it/T2DM
https://kraken.iac.rm.cnr.it/T2DM
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WR(W) = VO2 ⋅ 𝐵𝑊 ⋅ (𝑡𝑒𝑛𝑑𝑒𝑥 − 𝑡𝑠𝑡𝑎𝑟𝑡𝑒𝑥 ) ⋅ 5 ⋅ 10−3 ⋅ 1.163

for walking, running, stepping

n which 𝑡𝑠𝑡𝑎𝑟𝑡𝑒𝑥 and 𝑡𝑒𝑛𝑑𝑒𝑥 are the beginning and the end of the exercise
ession expressed in minutes.

The kinetic of oxygen consumption is derived from Lenart, Roy and
arker [58,59]. Changes in oxygen consumption and the subsequent
ecovery phase are described in terms of %VO2max by means of the

following linear first-order differential equation:
dPVO2max(t)

dt
= −0.8 ⋅ 𝑃𝑉 𝑂2𝑚𝑎𝑥(𝑡) + 0.8 ⋅ 𝑢(𝑡)

in which 𝑃𝑉 𝑂2𝑚𝑎𝑥(𝑡) is the suprabasal oxygen consumption, expressed
as a percentage of the maximum value (%VO2max) and 𝑢(𝑡) describes
the input as a step function assuming value Tv for the entire duration
of the exercise, that is

u(t) =

⎧

⎪

⎨

⎪

⎩

0 0 ≤ 𝑡 < 𝑡𝑠𝑡𝑎𝑟𝑡𝑒𝑥

𝑇𝑣 𝑡𝑠𝑡𝑎𝑟𝑡𝑒𝑥 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑𝑒𝑥
0 𝑡 > 𝑡𝑒𝑛𝑑𝑒𝑥 .

he model of epinephrine secretion and elimination (based on the
VO2max proposed by Kildegaard and colleagues in [60]) is adapted

s follows
dCE(t)

dt
= 1
𝑉𝑑

⋅ (𝑓1 + 𝑓2 + 𝑓3) ⋅ 𝐵𝑊 − 𝑘 ⋅ 𝐶𝐸 (𝑡). (10)

𝐶𝐸 (𝑡) is the epinephrine concentration, 𝑉𝑑 is the volume of distribution,
𝑓1 is a constant representing a basal epinephrine secretion, 𝑘 is the
epinephrine elimination constant.

f2 = 𝑓2(𝐶𝑎,𝑔(𝑡)) = 𝑒1∕
(

1 + 𝑒𝑒2⋅(𝐶𝑎,𝑔(𝑡)−𝑒3)
)

f3 = 𝑓3(𝑃𝑉 𝑂2𝑚𝑎𝑥(𝑡)) = 𝑑1∕
(

1 + 𝑒𝑑2⋅(𝑑3−𝑃𝑉 𝑂2𝑚𝑎𝑥(𝑡))
)

.

The epinephrine elimination constant 𝑘 is computed by imposing the
steady-state condition in Eq (10), (i.e., 𝑇𝑣 = 0, 𝑃 𝑉 𝑂2𝑚𝑎𝑥(𝑡) = 0, 𝐶∗

𝑎,𝑔 = 5
mmol/l)

f2∗ = 𝑓2(𝐶∗
𝑎,𝑔) = 𝑒1∕

(

1 + 𝑒𝑒2⋅(𝐶𝑎,𝑔
∗−𝑒3)

)

f3∗ = 𝑓3(0) = 𝑑1∕
(

1 + 𝑒𝑑2⋅𝑑3
)

.

k = 𝐵𝑊
𝑉𝑑 ⋅ 𝐶𝐸,0

⋅ (𝑓1 + 𝑓 ∗
2 + 𝑓 ∗

3 ).

C.2. Equations detailing the glucagon/insulin model

The dynamics of glucagon and insulin during the meal period is
given by the following differential equations:
dCI

dt
= 𝐶𝐼 (𝑡)⋅

[

𝜓 ⋅[ℎ−𝑘3⋅(𝐶𝐺(𝑡)−𝐶𝐺,0)−𝑘4⋅(𝐶𝐼 (𝑡)−𝐶𝐼,0)−𝑘5⋅(𝐶𝐸 (𝑡)−𝐶𝐸,0)]−𝐷
]

dCG

dt
= 𝐶𝐺(𝑡)⋅

[

𝜙⋅[ℎ−𝑘1⋅(𝐶𝐺(𝑡)−𝐶𝐺,0)−𝑘2⋅(𝐶𝐼 (𝑡)−𝐶𝐼,0)]−𝐷
]

𝜙 =

⎧

⎪

⎨

⎪

⎩

1 𝐶𝑎,𝑔𝑙𝑐 < 2.5
1 − (𝐶𝑎,𝑔𝑙𝑐 − 2.5)2∕25 2.5 ≤ 𝐶𝑎,𝑔𝑙𝑐 ≤ 7.5
0 𝐶𝑎,𝑔𝑙𝑐 > 7.5

𝜓 =

⎧

⎪

⎨

⎪

⎩

0 𝐶𝑎,𝑔𝑙𝑐 < 2.5
1 − (𝐶𝑎,𝑔𝑙𝑐 − 7.5)2∕25 2.5 ≤ 𝐶𝑎,𝑔𝑙𝑐 ≤ 7.5
1 𝐶𝑎,𝑔𝑙𝑐 > 7.5

C.3. Equations detailing the model of the food digestion

The gastric emptying rates for nutrient glucose (𝑔𝑙𝑢), alanine (𝑎𝑙𝑎)
and trigycerides (𝑡𝑔) are:

𝛽𝑔𝑙𝑢 (𝛽𝑔𝑙𝑢−1) −(𝐾𝑒,𝑔𝑙𝑢⋅𝑡)
𝛽𝑔𝑙𝑢
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Gemp,glu(𝑡) = 𝐷𝑔𝑙𝑢 ⋅ 𝛽𝑔𝑙𝑢 ⋅𝐾𝑒,𝑔𝑙𝑢 ⋅ 𝑡 ⋅ 𝑒 a
Table C.1
Parameters for the model of the epinephrine dynamics.

Parameter Value Units

Vd 15 l
k 0.2746 pM−1 min−1

d1 0.47 nmol−1 min−1 kg−1

d2 0.1
d3 82 %𝑉 𝑂2
e1 0.360 nmol kg−1 min−1

e2 5 nmol of
ADR kg−1 min−1 mmol−1
of glucose l−1

e3 2.94 mmol l−1

Table C.2
Estimated parameters of the glucagon/insulin model.

Parameter Value for meal Value for
exercise

Units

k1 0.01569 0.2707 pM−1 min−1

k2 0.00014 0.0535 pM−1 min−1

k3 3.08666 0.1507 pM−1 min−1

k4 0.07095 0.0309 pM−1 min−1

k5 1 3.6⋅10−5 pM−1 min−1

D 0.00650 0.1 min−1

h D/0.75 D/0.75 min−1

Table C.3
Parameters used to model the meal intake. List of model parameters
for stomach emptying and absorption of glucose (glu), alanine (ala) and
triglycerides (tg).

Parameter Value for OGTT Value for
mixed meal

Units

𝛽glu 1.23 [27] 1.05
𝛽ala 1.6
𝛽tg 2.2

Ke,glu 0.011 [27] 0.0164 min−1

Ke,ala 0.0086 min−1

Ke,tg 0.0042 min−1

Kabs,glu 0.231 [27] 0.021 min−1

Kabs,ala 0.013 min−1

Kabs,tg 0.017 min−1

Fabs,glu 0.9 [27] 0.9
Fabs,ala 0.95
Fabs,tg 0.95

Gemp,ala(𝑡) = 𝐷𝑎𝑙𝑎 ⋅ 𝛽𝑎𝑙𝑎 ⋅𝐾
𝛽𝑎𝑙𝑎
𝑒,𝑎𝑙𝑎 ⋅ 𝑡

(𝛽𝑎𝑙𝑎−1) ⋅ 𝑒−(𝐾𝑒,𝑎𝑙𝑎⋅𝑡)
𝛽𝑎𝑙𝑎

emp,tg(𝑡) = 𝐷𝑡𝑔 ⋅ 𝛽𝑡𝑔 ⋅𝐾
𝛽𝑡𝑔
𝑒,𝑡𝑔 ⋅ 𝑡

(𝛽𝑡𝑔−1) ⋅ 𝑒−(𝐾𝑒,𝑡𝑔 ⋅𝑡)
𝛽𝑡𝑔

The equations describing first-order kinetics of glucose absorption
nd rate of appearance are given below (see Tables C.1–C.3):

yglu(𝑡)∕𝑑𝑡 = −𝐾𝑎𝑏𝑠,𝑔𝑙𝑢 ⋅ 𝑦𝑔𝑙𝑢(𝑡) + 𝐺𝑒𝑚𝑝,𝑔𝑙𝑢(𝑡)

yala(𝑡)∕𝑑𝑡 = −𝐾𝑎𝑏𝑠,𝑎𝑙𝑎 ⋅ 𝑦𝑎𝑙𝑎(𝑡) + 𝐺𝑒𝑚𝑝,𝑎𝑙𝑎(𝑡)

ytg(𝑡)∕𝑑𝑡 = −𝐾𝑎𝑏𝑠,𝑡𝑔 ⋅ 𝑦𝑡𝑔(𝑡) + 𝐺𝑒𝑚𝑝,𝑡𝑔(𝑡)

aglu(𝑡) = 𝐹𝑎𝑏𝑠,𝑔𝑙𝑢 ⋅𝐾𝑎𝑏𝑠,𝑔𝑙𝑢 ⋅ 𝑦𝑔𝑙𝑢(𝑡)

aala(𝑡) = 𝐹𝑎𝑏𝑠,𝑎𝑙𝑎 ⋅𝐾𝑎𝑏𝑠,𝑎𝑙𝑎 ⋅ 𝑦𝑎𝑙𝑎(𝑡)

atg(𝑡) = 𝐹𝑎𝑏𝑠,𝑡𝑔 ⋅𝐾𝑎𝑏𝑠,𝑡𝑔 ⋅ 𝑦𝑡𝑔(𝑡)

ppendix D. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.compbiomed.2023.107158.

https://doi.org/10.1016/j.compbiomed.2023.107158
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