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Abstract

We present o hardware-algorithm for sorting N ele-
ments using etther a p-sorter or o sorting network of fized
1/0 size p, while strictly enforcing conflict-free memory ac~
cesses. To the best of our knowledge, this i3 the first realis-
tic design that achieves optimal time performance, running
in @ (NT:"EE?N) time for all ranges of N. Our result shows
that in order to achieve optimal time performance all that
i3 needed i3 a sorting network of depth Oflog® p) such as,
for ezample, Baicher’s classic bitonic sort network.

Key Words: Special-purpose architectures, hardware-
algorithms, sorting networks, bitonic sort, VLSI

1 Inftroduction

Recent advances in VLS have made it possible to im-
plement algorithm-structured chips as building blocks for
high-performance cowrputing systems. Since sorting is one
of the most fundamental computing problems, it makes
sense to endow general-purpose computer systems with a
special-purpose parallel sorting device, invoked whenever
its services are needed.

In this article, we address the problem of sorting N el-
ements using a sorting device of 1/0 size p, where NV is
arbitrary and p is fixed. The sorting device used is either
a p-sorter or 2 sorting network of fixed I/O size p. We
assume that the input as well as the partial results reside
in several constant-port memory modules. In additien to
achieving time-optimality, it is erucial that we sort with-
out memory access conflicts. In real-life applications, the
number IV of elements tc be sorted is much larger than the
fixed size p that a sorting device can accommodate. In such
a situation, the sorting device must be used repeatedly in
order to sort the input.

A p-sorter is a sorting device capable af sorticg p ele-
ments in constant time. Computing models for a p-sorter
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do exist. For example, it is known that p elements can
be sorted in O(1) time on a p x p reconfigurable mesh
[3, 5, 6, 7]. Beigel and Gill [2] showed that the task of
sorticg IV elements, N > p, requires (—“;r{%g?‘v) calls to
& p-sorter and presented an algorithm that achieves this
bound. However, their algorithm assumes that the pin-
puts to the p-sorter can be fetched in unit time, irrespective
of their location in memory. Since, in general, the address
patterns of the operands of p-sorter operations are irregu-
lar, it appears that the algorithm of {2] cannot realistically
achieve the time complexity of © ( %gf-) , uniess one can
solve in constant time the addressing problem inkerent in
accessing the p inputs to the p-sorter and in scattering the
output back into memory.

The major contribution of this article is to present the
first realistic hardware-algorithm design for sorting an ar-
bitrary number of input elements using a fixed-size sorting
device in optimal time, while strictly enforcing conflict-
free memory accesses. We introduce a parallel sorting ar-
chitecture specially designed for implementing a carefully
designed algorithm. The components of this architecture
include 2 parallel sorting device, a set of random-access
memory modules, a set of conventional registers, and a
control unit. This architecture is very simple and feasible
for VLSI realization. We show that in our architectural
model & elements can be sorted in & (-’-;—;%5%"-) time using
either a p-sorter or a sorting network of fﬁced I/0 size p
and depth Olog?p). In conjunction with the theoretical
work of [2], our result completely resolves the problem of
designing an implementable, time optimal, algorithm for
sorting IV elements using a p-sorter. More importantly,
however, our result shows that in order to achieve optimal
sorting performance a p-sorter is not really necessary: all
that is needed is a sorting network of depth O(log? p) such
as, for example, Batcher’s classic bitonic sort network. As
we see it, this is exceedingly important since any known
implementation of a p-sorter requires powerful processing
elements, whereas Batcher’s bitonic sort network uses sim-
ple comparators.

Due to space constraint, the details of our algorithm
implementation and proofs of all our claims are omitted.
Interested readers may refer to [8] for more details.
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Figure 1: The proposed architecture for p=9.

2 Architectural Assumptions

In this section we describe the architectural framework
within which we specify our optimal sorting algorithm us-
ing a fixed-size sorting device. A noteworthy feature of our
design is that the total additional VLSI area for hardware,
other than the data memory, the sorting device, and the
control unit does not exceed the arez of any VISI imple-
mentation of a sorting device of I/O size p. We consider
that a sequential sorting algorithm is adequate for the case
N < p®. Consequently, from now on, we assume that

N >p 1
This assumption implies that just for addressing purposes
we need at least 2log p bits." For the reader’s convenience,
Figure 1 depicts our design for p = 9. To keep the figure
simaple, control signal lives are not shown. The basic ar-
chitectural assumptions of our sorting model include:

(i) A dote memory orgamized into p independent,
constant-port, memory modules M, Ms,..., M,.
Each word is assumed to have a length of w bits,
with w > 2logp. We assume that the N input ele-
ments are distributed evenly, but arbitrarily, among
the p memory modules. The words having the same
address in all memory modules are referred to as a
memory row, Each memory module M; is randomly
addressed by an address register AR;, associated with
an adder. Register AR; can be loaded with a word
read from memory module M; or by a row address
broadeast from the CU (see below).

(ii) A set of data registers, R;, (1 < i < p), each capable
of storing a (w + 1.5 log p)-bit word. We refer to the
word stored in register B; as a composed word, since
it consists of three fields:

® an element field of w bits for storing an element,

e a long guriliary field of log p bits, and
® a short auziliary field of 0.5log p bits.

In the remainder of this article all logarithms are assumed
to be base 2.
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These fields are arranged such that the element field
is to the left of the long auxiliary field, which is to the
left of the short zuxiliary field. Each field of register
R; can be loaded independently from memory module
M;, from the #-th output of tke sorting device, or by
a broadeast from the CU. The output of register R;
is connected to the i-th input of the sorting device,
to the CU, and to memory module M;. We assume
that:

¢ In constant time, the p elements in the data reg-
isters can be loaded into the address registers or
can be stored into the p modules addressed by
the address registers.

¢ The bits of any field of register Ry, (1 < < p),
can be set/reset to all 0’s in constant time.

¢ All the fields of data register R:, (1 < ¢ < p), can
be compared with a particular value, and each of
the individual fields can be set to a special value
depending on the outcome of the comparison.
Meoreover, this parallel compare-and-set opera-
tion takes constant time.

(iii) A sorting device of fixed I/O size p, in the form of a p-
sorter or of a sorting network of depth O(log® p). We
assume that the sorting device provides data paths
of width w + 1.5logp bits from its input to its out-
put. The sorting device can be used to sort composed
words on any combination of their element or auxil-
iary fields. In case a sorting network is used as the
sorting device, it is assumed that the sorting network
can operate in pipelined fashion.

{iv) A control unit (CU, for short), consisting of a control
processor capable of performing simple arithmetic and
logic operations and of a control memory used to store
the centrol program as well as the control data. The
CU generates control signals for the sorting device,
for the registers, and for memory accesses. The CU
can broadcast an address or an element to all memory
modules and/or to the data registers, and can read an
element from any data register. We assume that these
operations take constant time.

Described above are minimum hardware requirements
for our architectural model. In case a sorting network is
used as the sorting device, one can use a “half-pipelining”
scheme: the input to the network is provided in groups of
D rows. The next group is supplied only after the cutput
of the previous group is obtained. D is the depth of the
sorting network.

3 The Basic Algorithm — An Extension
of Columnsort

The main goal of this section is to provide an extension
of the well known Columnsort algorithm [4]. This extended
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Figure 2: Step by step application of the extended
Columnsort algorithm. The first eight steps corre-
spond to the classic 8-step Columnsort.

Columnsort algorithm will be implemented in our architec-
tural model and will be invoked repeatedly when sorting a
large number of elements.

Columnsort was designed to sort, in column-major or-
der, a matrix of 7 rows and s columns, The “classic”
Columnsort containg 8 steps. . The odd-numbered steps
involve sorting each of the columns of the matrix indepen-
dently. The even-numbered steps permute the elements
of the matrix in various ways. The permutation of Step 2
picks up the elements in column-major order and lays them
down in row-major order. The permutation of Step 4 is
Just the reverse of that in Step 2. The permutation of Step
5 amounts to a [L] shift of the elements in each columa.
The permutation of Step 8 is the reverse of the permuta-
tion in Step 6. The &step Columnsort works under the
assumption that r > 2(s — 1)2. In [4], Leighton poses as
an open problem to extend the range of applicability of
Columnsort without changing the algorithm “drastically”,
We provide such an extension, More precisely, we show
that one additional sorting step is necessary and sufficient
to complete the sorting in case » 2 s(s —~1}. Our exten-
sion can be seen as trading one additional sorting step for
a larger range of applicability of the algorithm.

Figure 2 shows a matrix of r rows and ¢ columns with
T = 8(3 — 1) for which the condition r > 2{s —1)% is not
satisfied. The first eight steps of this example correspond
to the 8-step Columnsort algorithm which does not pro-
duce a sorted matrix. By adding one more step, Step 9, in
which the elements in each column are sorted, we obtain
an extended Columnsort algorithm.

Theorem 1 The erfended 9-step Columnsort algorithm,
correctly sorts an r x 8 matriz such that » > s(s — 1),

The extended 9-step Columnsort algorithm can be im-
plemented using our architectural model to sort m, (1<

1
™ £ pf), memory rows in row-major order. Interested

readers may refer to [8] for the implementation of the ex-
tended Columnsort on our architectnre. We call the re-
sulting hardware-algorithm the bggie algorithm.

Theorem 2 Using the basic algorithm, the task of sorting,
in row-major order, a set of mp elements stored in m,
1<m¢< pif), Memory rows can be performed, without
memory-access conflicts, in at most Tm calls o a sorting
device of I/Q size p and in O(m) time for datg movement
operations not dnvolving sorting.

We present an important application of the basic algo-
rthm. Let MERGE_ TWO_GROUPSbea procedure which
receives two sorted sequences 4 = g, a2 2" < an,
and B =86 < b & --- = bmyp, stored each in m consecu-
tive memory rows, with 1 <m< pi’, and merge these two
sequences into a sorted sequence. :

Theorem 3
Procedure MERGE_TWO_GROUPS performs the task of
merging two sorted sequences of mp, (1 <m< p%], ele-
ments each, stored in 2m memory rows, in three calls fo
the basic algorithm and O(m) time Jor date movement op-
erations not involuing sorting.

Based on Theorem 2 and Theorem 3, we have the fol-
lowing claim:

Theorem 4 The task of sorting 2mp, (1<m< pi'), ele-
tients stored in 2m memory rows can be performed in fiye
calls to the basic algorithm and O(m) time for dotg move-
ment operations not involving serling.

4 An Efficient Multiway Merge Algo-
rithm

Consider a collection A =< A;,Az,...,Am > of m,
2<m< pllf), sorted sequences, each of size »7, for some
1 > 3. We assume that‘ 4 is stored, top-down, in the order
Ay, Asy oo A in 'mp,“z"2 consecutive memory rows. The
multiway merge problem is to sort these sequences in row-
major order. In outline, our multiway merge algorithm
proceeds as follows. We begin by selecting a sample S of
size mp"a3 from A by retaining every p-th element in each
sorted sequence A4;, (1 < j < m). Next, having sorted $
recursively (using multiway merge), we set up a collection
of buckets, iz a way reminiscent of the bucketing scheme
of Olariu and Schwing [7). As it turns out, the result-
ing buckets are surprisicgly well balanced, each of them
contalning at most 2mp elements. Finally, each bucket is
sorted using procedure MERGE.TWO_GROUPS and the
sorted buckets are then coalesced into the desired sorted
sequence. The details are spelled out as follows.

procedure MULTIWAY_MERGE(A, m,1);
{Toput: m, (2 < m < p’i’),_sorted sequences 4 =<

A, Az, ..., Am > each of size pT, for ¢ =3
Qutput: the resulting sorted sequence stored in row-major

i=2 .
order in mp 7" contiguous memory rows, }




Select a sample 5 of size mp"z’z from 4 by
i retaining every p-th element in each sequence Aj,
" i—4
(1 < § < m}, and move S to its own [mp™™ ] memory
rows® as discussed below:

Step 2.
if i = 3 then _
sort 5 by one call to the sorting device
else if 1 = 4 then
sort S by one call to the basic algorithm
else {recursively multiway merge 5}
MULTIWAY_MERGE(S,m,i — 2);
endif
let 5 S92< -0 € I mpti-z)r2 be the sorted
version of S

Step 3. Partition 4 into p'T buckets By, By, ...,
B (i—2)/2, each containing at most 2mp elements, and
move the elements of A to their buckets without mem-
ory access corflicts;

Step 4. Sort all the buckets individually using the basic
algorithm and procedure MERGE-TWO.CRO UpPs,

Step 5. Coalesce the sorted buckets into the desired
sorted sequence.

For convenience, we view A4 as a matrix of size m):v:'g_2 b
P, with the t-th element of memory row j being denoted by
Alj,t]. The element A[f, p] is termed the leader of memory
row j.

The goal of Step 1 is to extract a sample S of 4 by re-
taining the leader s of every memory row in 4. The sam-
pling process continues, recursively, until a level is reached
where procedure MULTIWAY_MERGE is invoked with ei-
ther 1 = 3, iz which case the corresponding sample set, is
stored in one memory row and will be sorted in one call to
the sorting device, or with § = 4, in which case the sample
set is stored in m memory rows, and will be sorted in one
call to the basic algorithm. At the end of Step 2 of proce-
dure MULTIWAY_MERGE the sample set S is sorted in
row-major order. Let the sorted version of S be

S=s<m<-- g (2)
Equation (2) will be used in Step 3 to partition the ele-
ments of 4 into buckets.

In Step 3, elements in A are partitioned into buckets.
Our objective is to use 81, 82,00, 8 (i-2y/2 as delimiters
to comstruct a collection By, B, ... y Byti—2)/2 of buckets
such that the following conditions are satisfed:

Smp(;-vz)/z-

{bl) every element of 4 belongs to exactly one bucket;

(b2} no bucket contains more than 2mp elements;

(b3) for every i and j, (1 <i < j < p°T°), no element in
B; is strictly larger than any element in B;.

2Notice that if i = 3, the sample 5 will be stored in one
MEmory row. :
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Using our architectural model and some special tech-
nigues, this task can be accomplished so that 21 memory
rows are allocated to each Bj, and furthermore, in case
that B; has less than 2mp elements, dummy elements of
value —co are included into Bj.

In Step 4, the buckets are sorted independently. If a
bucket bas no more than p’i’ memory rows, it can be sorted
in ome call to the basic algorithm. Otherwise, the bucket
is partitioned in two halves, each sorted in one call to the
basic algorithm. Finally, the two sorted halves are merged
using procedure MERGE_TWO_GROUPS.

To motivate the need for the processing specific to Step
5, we note that after sorting each bucket individually in
Step 4, there may be a number of —oa’s preceding the ele-
ments in each bucket. We refer to such elements as empty,
memery rows consisting entirely of empty elements will be
termed empéy rows. A memory row is termed impure if
it is partly empty. It is clear that each bucket may have
at most one impure row. A memory row that contains no
empty elements is referred to as pure. _

The task of coalescing the buckets into Trz,‘zr""s2 con-
secutive memory rows will be referred to as eompaction,
In cutline, the compaction proceeds in the following four
phases. In Phase 1, we perform a preliminary compaction
by removing all the empty rows; in Phase 2, we remove all
empty elements from impure rows. It is the case that in
Phase 2 new empty rows may be created. Ir other words,
at the end of Phase 2 all the memory rows are either pure
or empty. The task of Phase 3 is to finish the compaction
by removing the empty rows created in Phase 2. Finally,
in Phase 4 the rows are sorted individually to ensure that
the entire sequence is sorted. For details of these phases,
refer to [8].

Let J(mp¥) stand for the time spent on data moverment
tasks that do not involve the use of the sorting device. If
i =3, Step 2 takes O(1) time. In case i = 4, Step 2 takes
O(m) time (refer to Theorem 2). Finally, if ¢ > 4, our
previous discussion shows that each of Step 1, Step 3, Step
4, and Step 5 require at most_O(mp"}?") time, while Step
2 requives, recursively, J (mp‘_}z') time. Thus, we obtain
the following recurrence system:

ifi=3or4

J(mp*) € O(mp'T")
ifi> 4.

Jmp?) < J(mp™T) + O(mp' )

It is easy to confirm that, for i > 4, the solution of

i i
the above recurrence satisfies J(mp?) € O(mp T ). A
similar analysis, that is not repeated, shows that the total
number of calls to a sorting device of 1/O size p performed
by procedure MULTIWAY MERGE for merging m, (2 <

m < ptf), sorted sequences, each of size p?, is bounded
by O(mp"}g). To summarize our discussion we state the
following important result.

Theorem 5 Procedure MULTIWA'&I’.MERGE performs
the task of merging m, (2 < m < p¥), sorted sequences,




each of size pi', in our architecture, using O(mp“iz) calls
i

to the sorting device of I/0 sizep, and O(mp T} time for

dota movement not involving sorting.

5 The Sorting Algorithm

With the basic algorithm and the multiway merge at
our disposal, we are in a position to present our sorting
algorithm that uses a sorting device of fixed I/O size p.
The input is a set T of N items stored, as evenly as possi-
ble, in p memory modules. Dummy elements of value 400
are added, if necessary, to ensure that all memory mod-
ules contain [’%‘f elements: these dummy elements will
be removed after sorting. Our goal is to show that us-
ing our architecture-algorithm combination the input can
be sorted in O (ﬁp»}gg?”) time and O(N) data space. We
assume that p > 16, which along with (1) implies that

(3)

Equatior: (3) will be important in the analysis of this sec-
tion, as our discussion will focus on the case where a sorting
network of I/O size p and depth O{log?p) is used as the
sorting device®. A natural candidate for such a network
is Batcher’s classic bitonic sort network {1] that we shall
tacitly assume.

Recall that by virtue of (1) we have, for some t, t >4,

log’p<pg g-

Pt <N <pF (4)

In turn, equation (4) guarantees that
[ log ¥ J
t= = | .
log p¥

At this point we note that (4) and {5), combined, guarantee
that

(3)

iogngm"f:—forallkgth. {6)
pf
Write
N
9= (—:] {7}
pI
and observe that by (4),
1<g<ph. (8)

Fer reasons that will become clear later, we pad © with an
appropriate number of +co elements in such & way that,
with N’ standing for the length of the resulting sequence
%', we have

(9)

It is important to note that (4), (7), and (9}, combined,
guarantee that

N’ =q*p5.

N < N' <2N, (10)

#As it turns out, the same complexity claim holds if the
sorting device used s, instead, a p-sorter.
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suggesting that the number of memory rows used by the
sorting algorithm is bounded by O(%). Later, we will show
that this is, indeed, the case.

The sorting algorithm consists of a number of iterations.
In the first iteration, we partition the Ep’- memory rows into

7] . . 1 .
il oups, each involving p? consecutive memory rows.
? ] Ty

r

The basic algorithm is applied to each group and, as a re-

sult, we obtain ﬁé— sorted sequences, each of size p¥. From
r

this point on, each iteration corresponds, conceptually, to
the task of using procedure MULTIWAY_MERGE to cre-
ate longer and longer sorted sequences. This process is
continued until the entire sequence is sorted. Since in each
such tteration the number of sorted sequence decreases by
a factor of pi', (4) implies that, with ¢ specified in (5), the
input sequence is sorted at the end of ¢ — 2 iterations if
N =;:viT and at the end of ¢ — 1 iterations if N > pi’.

We discuss our algorithm under the assumption that
the sorting device used in our architecture is a sorting net-
work of I/O size p and depth O(log® p). In order to guar-
antee an overall running time of O(%ﬁi), we ensure that
each iteration of our sorting algorithm can be performed
in O(%) time. The sorting network will be used in the
following three contexts:

(i) to sort, individually,  memory rows;

(1) to sort, individually, M groups, each consisting of m
consecutive memory rows, where m < p'i’;

(iif} to sort, individually, M groups, each consisting of 2m
consecutive memory rows, where m < pé.

For an efficient implementation of (i) we use simple
pipelining: the M memory rows to sort are input to the
sorting network, one after the other. After an initial over-
kead of Olog?® p) time, each subsequernt time unit produces
a sorted memery row. Clearly, the total sorting time is
bounded by O(log? p -+ M).

Our efficient implementation of (i) uses interleaved
pipelining. Let G, Ge,- -, G be the groups we wish to
sort. In the interleaved pipelining we begin by running
Step 1 of the basic algorithm ir pipelined fashion on group
G, then on group Gz, and on so. In other words, Step 1 of
the basic algorithm is performed on all groups using sim-
ple pipelining. Then, in a perfectly similar fashion, simple
pipelining is used to carry out Step 2 of the basic algorithm
on all the groups G'1, Gy, ++,Gar. The same strategy is
used with all the remaining steps of the basic algorithm
that require the use of the sorting device. Consequently,
the total amount of time needed to sort all the groups using
interleaves pipelining is bounded by O(log? p + Mm).

An efficient implementation of (iii) relies on ertended
interleaved pipelining. Let G, G2, -, Gy be the groups
we want to sort. Recall that Theorem 4 states that sorting
a group of 2m coasecutive memory rows requires five calls
to the basic algorithm: two calls for sorting the two halves,
and three additional calls for merging the two halves us-
ing procedure MERGE.TWO_GROUPS. The mctended 'in-
terleaved pipelining consists of five interleaved pipelining




corresponding to one of tke five calls to the ba-
ritbm. Thus, the task of sorting all groups can be
ed in OQlog®p+ Mim) time. We now discuss each
Phe iterations of our sorting algorithm in more detail.

artition the input into —“—;i groups, each involving p%
memory rows. By using interleaved pipelining with m =
p?, each such group is sorted individually. As discussed
above, the running time of Iteration 1 is bounded by
O(log”p + 5-) = O( &),

Iteration k,2 < k <t —2

Let 4 = k+ 1. The input to Heration k is a collection

1 . i . i —2
of "f—k sorted sequences each of size pF, stored in Pz
o

consecutive memory rows. The output of iteration k is a
A : . i +1
collection of 2o+ sorted sequences, each of size pT,

P z
i —1
stored in p7 T consecutive Memory rows.

Having partitioned these sorted sequences into fN;;—,—
P z

groups Gk, 1),G(k,2),...,G{k, _Lk%i_r') of p’}f cousecutive
P

sequences each, we proceed o sort each group G{k,7)
by the call MULTIWAY_MERGE(S:(k,j),p?,it), where
Si(k,5) = G(k,j). We refer to the call MULTI.
WAY_MERGE(S:\(k, 7),p¥,ix) as a MULTIWAY MERGE
Cal;{r of the first ievei.. Observe that, sinﬁe there are
TnFT groups, there will be altogether T MULTT-

;I:VAY_MERGE calls of the first level, one ’tior each group.
In Step 1 of a MULTIWAY . MERGE call of the first level
we extract a sample Sy(k, 5) of 51(k, §) consisting of p%

iy, —4

ip—2
sorted sequences, each of size p""!_" , Stored in p~ 7 con-
secutive memory rows. In turn, for every j, 1<i<
—e), the sample Sy(k, 7) is sorted by invoking M UL-
p 2

TIWAY MERGE(S:(k, 5}, p% 4 — 2), which is referred to
as a MULTIWAY MERGE call of the second level, Step
1 of a MULTIWAY MERGE call of the second level ex-
tracts a sample S3(k, 7) of 83(k, ), and so on. For every
w, (1 Su< [%72]), a MULTIWAY _MERGE call of level
u, is of the form of MULTIWAY_MERGE(S, (k, ), p* , ix~
2(u—1)). The recursive calls to MULTTWA Y_MERGE end
at level | %52}, the last call being of the form MULTI-
WAY _MERGE(S iy (K, 5),p% i ~ 2(} 27L] — 1)). To
3

clarify this point, note that i — 2([1-‘12'—1J -1) =3 or
i — 2(|_5*2L1J — 1} = 4 depending on whether or not i
is odd. Let ri, denote the total number of rows in all
samples 5y (k, 7) of level  in Iteration k. Clearly, we have
Thou = ;;"—“r. By (3}, 7%, = gp, and 7, = gp only when ¢ is
even and k =t — 2.

We want to demonstrate that for 2 < k £ t-2, Iteration
k takes O(re,1) time. We will do this by showing that

the total time required by each of the five steps of the
MULTIWAY_MERGE calls of each level « is bounded by
Ofre,.).

Consider a particular level u. Step 1 of all MULTYL
WAY_MERGE calls of level v is performed on the samples
Su(k, j), in increasing order of j, so that all the samples
Sut1(k, 7) are extracted one after the other. Clearly, the
total time for these operations is Ofri ). We defer the
assessment of the running time of Step 2 until we evalu-
ate the combined runring times of Step 3 to Step 5 of all
MULTIWAY_MERGE calls of level w.

We perform Step 3 of all the MULTIWAY_MERGE
calls of level u, in increasing order of J, to partition
into buckets eack of the samples Sy (k, ) using the cor-
responding Su11(k, jj. Without using the sorting device,
the total time for partitioning the samples Su{k, 7) in all
the MULTIWAY_MERGE calls of level u is bounded by

' I o Dufl :
O 2™ 7 ) = 0(&) = O(re,u).
-

gtep 4 of a MULTIWAY_MERGE call of level u sorts

the buckets {involving the elements of §, (k,7)) obtained

in Step 3. We perform Step 4 of all MULTTWA Y_MERGE

calls of level u in increasing order of §, and use extended

interleaved pipelining with m = p% to sort all buckets of

each 8y (k, 7). There are, altogether, Zf-%’f‘ buckets in all
b4

the Su{k,7)’s. Thus, the total time for sorting all buckets
is bounded by O(log®p +p;' . —%—} = Olog®p + ri0).

By (3), the total time for sorti;g the buckets in all MUL-
TIWAY_MERGE calls of level u is Q).

The four phases of Step 5 of a MULTIWAY _MERGE
call of level v ,as proved in [8], require Oflog? p + r4.4) =
O(rs,u) time. Thus far, Steps 1, 3, 4, and 5 of all the
MULTIWAY MERGE calls of level 4 can be carried out
i O(rz,.) time, We now evaluate the time needed to
perform Step 2 of all the MULTIWAY MERGE calls of
tevel %. First, consider the call of level |_1£;—]_|, MULTI.

WAY MERGE(S 51 (k,5),p%, i — 2(| 271} — 1)). The
—7

sample SL.',,_Z (k. ) extracted in Step 1 of this call has

“rl+t .
p elements if 4 is odd, and p7 elements if iz is even. I -
1 is odd, we use simple pipelinir’xg to sort all the samples
Sli§2—11+1 {k,7) in O(log® p+ -—,—‘:;_3-} time; if i is even, we
P
use interleaved pipelining with m = pé' to sort all the'sam-
; i}i 2 MY i
ples SL'! —1j+1(k,_7} in Oflog p-i-P:&_ ) time. In either case,

. . n N . .
the time required is bounded by O(})—L;J-;_:TJ:}, which is

10 more than O(;L_’—z_'—fj—) = O(rk,l_ib,z:lj}' Thus, the total
time for Steps 1 through 5 of all the MULTIWAY MERGE
calls of level | %=1} is no more than Ofr, sx=1 ). Thus,
the total time required for all the MULTIWAY_MERGE
calls of level u is bounded by O{ri,.). We conclude that
the total time to perform Iteration k is O(re,1) which is
O(£). To summarize our findings we state the following
important result.




e

Theorem & The output of Heration E,(2<i<t-2), is
’ k
¢ collection of I'—_‘%c_,-] sorted sequences each of size p"}z‘
P

stored in p’f‘ consecutive memory rows. Furthermore, Her-
ation i runs in time bounded by O{-f—)-

Note that if ¥ = p':T the N input elements are sorted
at the end of ¢ — 2 iterations.

Iteration t — 1

Assume that the algorithm does not terminate in £ — 2 it-

erations. Then, hy {4) and Theorem 6, we know that the

imput to Tteration £ — 1 is a collection of ¢ = %— sorted se-
P

quences, where 2 < g < pi’. Eack such sequence is of size
p’f’, stored in p153 consecutive rows. To complete the sort-
ing, we need to merge these g sequences into the desired
sorted sequence. This task is performed by the call M-
TiwA Y_MERGE(Y, g, t). The detailed intplementation of
MULTIWAY MERGE(S, q, t) using a sorting network as
the sorting device and the analysis involved are almost the
same as tkat of Iteration 2 to Tteration # — 2, except that
different parameters are used. If the interleaved pipelining
with m = p¥ is used in a step of MULTIWAY _MERGE
for iterations 2 to £ — 2, then the corresponding step of
MULTIWAY_MERGE for iteration t — 1 uses the inter-
leaved pipelining with m = g. Similarly, if the extended
interleaved pipelining with m = p‘z’ is used in a step of
MULTIWAY _MERGE for iterations 2 4o £ — 2, then the
corresponding step of MULTIWAY MERCE for iteration
t — 1 uses the extended interieaved pipelining with m = ¢,

Let r+_1. be the total vumber of memory rows in
Se-1{u}. Clearly, Teoly = qp't:ﬁ’z—u. We want t0 show that
MULTIWAY MEEGE call at level u for Iteration ¢ — 1
takes no more than O(r,_; ,) time if 4 < [55E]. First, we
estimate the running time of the MULTIWAY MERGE
call of level [(52]. In its Step 2, the sample elements are
sorted. If ¢ is odd, ‘S’L‘—E—lH—l(t — 1) is sorted by ome call

to the sorting device in O(log® p) time, and if ¢ is even,
SL‘—ElJH {(t—1} is sorted by one call to the basic algorithm

in Oflog®p + q) time (refer to Theorem 2). However, the
runaing time of MULTTWA YJJERGE(SLL_;J {t—1),q, ¢~

252~ 1) is dominated by the total time for Steps 1,
3, 4, and 5 of MULTIWAY MERGE(S co1 (¢ ~ 1),q,1 -

2(155] - 1)), which is Oflog?p + gp?) if ¢ is odd, or
Oflog? p+4gp) = Olgp) if t is even. Now, consider the MUL-
TIWAY_MERGE call of level Lt;—lj —1. It is easy to verify
that the total time for Steps 1, 3, 4 and 5 is no more than

ioaep b1,
Olog®p + qp*m%‘l—)) = O(gp®). As we just showed
that Step 2 in this level is the MULTIWAY_MERGE call of
level l_t—;—lj, and it takes no more than Ofgp) time. Thus,
MULTIWAY MERGE call of level L4 ] — 1 takes no more
than O(gp?) = O(rtml,[’—;lj—l) time. By a simple induc-
tion, we conclude that the MULTIWAY MERGE call of

level %, (1 £ u < [£51]), takes no more than O(re_y )
time. The running time of Iteration # — 1 is the running
time of the MULTIWAY_MERGE call of the first level,
and it takes O(re_1,1) = O(gp'T*) = O(&).

We have shown that each of the ¢~ 1 iterations of MUL.-
TIWAY MERGE can be implemented with time O(Z),
By (5), we conclude that the running time of our sorting
algorithm is O (%;%ETN)‘ Since a p-sorter can be consid-
ered as a sorting network of 1/0 size p and depth 0(1),
this time complexity stands if the sorting device used ig
a p-sorter. It is not difficult to see that the working data
memary for each iteration is O(N). Since the working
data memory of one iteration can be reused by another
iteration, the total data memory required by our sorting
algorithm remains to be O(N). Summarizing all our pre-
vious discussions, we have proved the main result of this
WOrk.

Theorem 7 Using our stmple architecture, q get of N
itemns stored in —‘;i memory rows can be sorted in Tow-major
order, without eny memory access conflicts, in O (%f%g-pﬁ)
time and O(N) date space, by using either a p-sorter or 4
sorting network of I/0 size p and depth Olog® p) as the
sarting device.
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