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Rz = {EeSym; 2(1 +Q)ey + des + €€ < 0, (2+3)e3 - ae®- (1+ et <0,

(2+3es +&° 2 0},

R4 = {EcSym; (2 + 3ct)es +¢° < 0},

®Rs={EcSym; 2es + arE - &t > 0, 21 +ojep +0ey - €8 < 0,

41+ ey + 20e3 + et + (2 + Q)b > 0},

Re={Ee Sym; 2(1 + ot)ey + cteg - €F > 0, (2+3x)e; - £ 0,

(2 +30)ey +ae' + (1 + a)e® 2 0},

R7=(EeSym; 2+ 3a)e; - et > 0},

Rg = {EeSym; 2(2 + 3o)e; - 0eC - 2+ =0,

(2 +3a)e; + ot + (1 + e < 0},

Ro = (EeSym; 2(2 + 3, + ot + 2+met <0,

(2+3w)e3 - 0e°- (1 + a)et 2 0},

Rio = {EeSym; 4(1 + ceq + 20ey + et + (2 +oe® < 0,
4(1 + aes + 20ep - e - (2 + a)et >0, 22 +30)e; - e - (2 + et <0,
22 +3aex + o' + (2 + )e° 2 0},

where we have put o = A/u 1), &¢ = oo/ and ¢ = GY/L. Moreover, we suppose that the
eigenvalues €1, e; and e are ordered in such a way thate; <ej <es. It is easy to prove that in the

11n the following we assume A 2 0, so that we have o > 0.



regions Ry, Rg and Rg we have €1 <€z =<e3 and that in R3, Rs and Ry,
in Ry the eigenvalues of E are distinct.

Solving system (2.5), we obtain the principal components of Et, E¢ and T

(2.6)1 if Ee R then b2 =0,

1 = U2 + ey + afey +e3)],
t2= U2+ aer + ale; +e3)],
3= {2 + ajes + aler +ey)] ;

alx(),
a2=0,
az={(,
bi=er + % (e74+e3)+ f_ca,
(2.6), if Ee R, then by =0,
b3 =0,
tlz—GCs
— (4 . gC
tz—jl{.?eg-!— I+ a [2(e; + e3) E]};
— 104 -]l
= {2es + 5o [2(e; 4 e3) - )

€1 < €3 <es; finally



(2.6)3

(2.6)4

(2.6)5

if Ee ®R3 then

if Ee R4 then

if Ee ®5 then

a1=0,
az=0,
=0,

= o S &%
by el+2(1+@|c) 33+2(1+oc)’
= o N
by 2T v B v
b3 =0,
p=-0°%,
t2=_'o-cs

__H  yec].
t3 o [2 + 30)es - 0e°];
a; =0,
a2=0,
az =10,

C
bi=e + &
154 2+ 3

C

243ax’

2+ 3’

_ o gt
az=e3 + e1+ep)- ,
S 2+a (© 2) 2+

1 2 t

o [4( + e + oce2+oca],
LL
2+

t3 = of;

[4(1 + ey + 20ey + ocet} ,
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(1 +oet

bl

aet

2(2 +3a)’
aet

2(2 + 30)

a; =0,
a3 =0,
=a, . _O€°
=8 2+ 3a. 2+3x
N (o0 + 2)ec
b=t
. g (o + 2)e
b3 = 01
ty = --¢F,
t2 =- Gc:
t3 =o'
a; =0,
az =0,
- o
B3=e3+ 2(1 + o) ©2

(2.6)19 if Ee @,10 then by, =0,

tz

3
Therefore, given a symmetric tensor E = 2 e 4;¥q;

i=1

which E belongs, the solution to the constitutive equation (2.1)-(2.2)-(2.4) is

3

O+ 2 £ Q c
W+ © Hitw C

e+ L+ oo

+ & gt
41+ o) 4(1 + o)

__n e
= ey 22+ 3+ aget-e9)],

I3 = o',

and having determined the region ®y to

3 3
E'= Z 3 qi®q;, E°= 2 big®q;, T= Z ti i®q; ,
i:l 1=1

i=1

with a;, b; and t; given in (2.6)y.
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We shall denote by T the function T: Sym — Sym which associates to every tensor E =
3 3

Z €i q;®q; the stress T = T(E) = Z t; 4i®q;. T is a continuous non-linear, non-injective

i=1 i=1

function, positively homogeneous of degree one [1],

TeE)=aTE) va>o0 v E € Sym
and isotropic,
TQEQH=QT®Q"  VQe Ont®,vEe sym:

moreover, we shall prove that T is differentiable in the internal part of every region ®;,

Now we analyse the plane strain and the plane stress separately.
If E is a plane strain and, in particular, e3 = q3+F q3 = 0, then a3 = by = 0 and

3= & (1 + t2). Let us designate E, Et, E€ and T as the restrictions of E, Et E¢ and T to
2(1+ o)

the two-dimensional subspace of 17, orthogonal to the vector q3. Calculation of ay, az, by, b2, 4y
and tp which satisfy system (2.5) requires definition of the following sets:

21 ={EeSym; cer+ (2+oey-¢ef €0, Z+a)er+oes+ef 2 0},

t

_ . £
2= {EeSym;e; > TR 1,

(2 + a)e’ + aet

}’

23 = {EeSym: e +(2+aey-et>0,e) < e e = -

201+ )’ 41+ )
— . C - -H—a—ac
Be={EeSym; 2 + e + aep +° < 0,¢p > 20+’

e’ + (2 + a)et

<
2= Tiivey b

= S ) - EC )
25 = {EeSym € < 2(1_._&)}

2 Orth denotes the set of all tensors Q such that QT = QL
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oEe® + (2 + aet et + (2 + o)es }

R = (EeSym; ¢, > Ad+a) S T iy

We still suppose that the eigenvalues ¢1 and e; of E are ordered in such a way that e; < ey, We
observe thatin 83, &4 and 8¢ the eigenvalues e; and e, are distinct.
Regions 81, . .., 8¢ in the ¢;-¢, plane are illustrated in Figure 1.
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Figure 1. Subdivision of the half-plane e, < e, into the regions B i=1, ...,6.

The principal components of Et, E¢ and T can be calculated from the relations




(2.

(2.7)2

(2.7)3

2.7)4

(2.7)s

if Ee &1, then

if Ee 2,, then

if Ec 33, then

if Ee 34, then

if Ee 35, then

ey - — &
1=H 21 +a)’
b; =0,

t; =ot,

a; =0,

by =0,
Al + o)

T 2+a Tt
a; =0,

b1=61+ 04 ey +
t; =-C°¢,

a; =0,

= EC
b1=¢; 2t F o)’

13

2+ao

—ey. &
SR T
by =0,
ty = oY
_ o __ ¢t
a2 6:2+2 ocel 2+0
by =0,
b =04
as =0,
ba =0,
_Ap(l + oy o
2= 270 2 Tig
ap=0,
EC
=ey+ —E
bz =e 21+ o)’
th =- @%;
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4 =0 4 = o, . YE+ (24
1=0, 2=€3 TAiro)
(2 + a)e® + oet

41 + o) ’

(2.7 if Ee 3g,then by=¢e; +

t; =- g%, ty = ol,

From the relation t3 = m%?) (t1 + t2) and from the non-negativeness of «, it follows that the

eigenvalue t3 of T satisfies the inequalities - 6° < t; < &' as well.
Now let us consider a plane stress and suppose t3 = q3+T q3 = 0. Then a3 can be set equal to zero
and b3, by virtue of the positiveness of o°, must be equal to zero, so that we have

€3 = 7 foc (a1 +a2+ by + by -eq-e3). Let us still designate E, E!, Ec and T as the restrictions

of E, Et, E¢ and T to the two-dimensional subspace of V', orthogonal to the vector ¢3. In order to
calculate the values of aj, a3, by, bz, t; and t; which satisfy system (2.5) we define the following
sets:

T1={EeSym; 20e; + 4(1 + w)es - 2 + @) < 0,

4(1 + aey + 20 + €52 + o) = 0},

(2 + o)et

T ={EeSym; ¢; > 20+ 30)

1

2 + a)et
= ) T t S (__w—_
T3 ={EeSym; 20e; + 4(1 + a)es - 2+ et > 0,¢; < 22730
c t
el >- 2(1 + o) + o ],
2(2 + 3)
(2 + o)t

sz {Eesym; 4(1 .;_05)31 +20’,€:7_+(2 + Qe < 0, €y - ma

< e’ + 2(1 + et
2(2+3w)

b
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- ey . (ZFODET
Ts={EeSym; e; < 202 30) },
e + 2(1 + a)et et +2(1 + ox)es
Te= : - .
6= (BeSymie;> = g o1 < 20130 )

We observe that in T3, 74 and T the eigenvalues e; and €2 are distinct. The principal
components of E!, E°¢and T can be calculated from the relations

a; =0, az=0,
(2.8)4 if Ee Ty,then by =0, by =10,
ty =2p{e; + “2*% (e1 +e2)}, ty =2u{e; + 2—%(;(31 +ex};
ce, L 2FO) ce, . CFa)
M= 20 3, & 2= 2273w &
(2.8), if Ee Ty, then by =0, by =0,
t; = ct, ty =0
81=0, a = ez + 4 (2+0(.) t

2+ V20 O
2.8)s  if Ec Ty then by =0, by =0,

LRG3 VA

t —h
! va T 30iay O

tp = G
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31 =0, 32=0:
‘ 2 + o)E
: T = & ( » b2=0,
(2.8)s  if Ee Ty then by=e; + Aoy 2 dieey 270
U@+ 30) o .
t; = - OF, =Ty e2'2(1+0c) o
a; =0, az= 0,
_ ~ (2 + a)e _ (2 + e’
(2.8)5 if Ee Ts,then by=¢; + 22+ 3a)’ by=ez + 2(2 +3a)’
t1 =- ©°, f2=-0%
o e o+ 2(1 + et
1=0, 2= 22 +3a)
, _ 2(1 + o)e® + oet _
@8 if Be Tothen br=e+ S I by =0,
1] = - ©F, ty = ot

III. THE BOUNDARY-VALUE PROBLEM

The equilibrium problem for masonry-like solids (infinitely resistant to compression and with ¢t
= 0) has been studied in recent years and the existence of a solution has been proven solely for a
rather restricted class of load conditions [6], [7]. On the other hand, the uniqueness of the
solution is guaranteed only in terms of stress, in the sense that different displacement and strain
fields can correspond to the same stress field.

Similar considerations can be made for a BCS masonry-like material; in this section we prove
that the stress field which satisfies the equilibrium problem for a BCS masonry-like material is
unique. To this end, let (3 be a solid made up of a BCS material and let .3, and 3¢ be two subsets
of the boundary d@3 of (3, such that their union covers 933 and their interiors are disjointed.

A load (b, sp) defined in (3 x &; with values in V' x UV is admissible if the corresponding
boundary-value problem has a solution, i. e. if there exists a triple [u, E, T], constituted by a
stress field T, a strain field E and a displacement field u defined on R , piecewise C2, such that
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3.1y E- %(Vu +vu'),

(3.1); T =T(E) = C[E - E'- E°],
(3.1) u=0 on 2,

(3.1)4 Tn =5y on &

(3.1)s divT+b=0 on@,

where n is the outward unit normal to 3;, € = 2u 1 + A I ® I is the elasticity tensor and Et and

Ec satisfy with T the constitutive equation (2.1)-(2.4).

It is easy to prove that if (b, sg) is an admissible load and [uy, Eq, T11 and [uy, Eq, T3] are two
solutions to (3.1), then T (x) = Ta(x) for every xe (3.

In fact, the triple [iI, E, T] with W=u; -uz, E=E;-E; and T =T, - T, satisfies (3.1); and

(3.1)3; moreover it satisfies (3.1)4 and (3.1)5 with sp=0 and b = 0. Thus, in agreement with the
hypothesis on the smoothness of the solutions, a simple application of the principle of virtual

work proves that

(3.2) f T-EdV =0.
03

On the other hand,
(3.3) E=E°+E| +E{ - E} - ES,

where E° = Ef - ES, and ES, E}, ES, ES, E} and ES are the elastic part, the fracture strain and the
crushing strain corresponding to E and E,, respectively. From (3.2), by using (3.3) we obtain

(3.4) fT-fedef (T1-Ty) - (E$ +ES -E! - ES) dV;
® ®

the first member in (3.4) is equal to f T.C 1[T—] dV and then it is non-negative because C is
03
positive definite. By using (2.4)3, the second member of (3.4) results equal to

] (T -0T) - E} + (T2 - 6T) - Ei + (Ti+0) - E7 + (T2 + o°I) - Ef] dV,
@
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which is non-positive by virtue of (2.1}, (2.1)3, (2.4); and (2.4);. From the equality (3.4) we
obtain T - C [T} =0 everywhere in 3 and thus T = 0, which is the desired result.

In order to solve the equilibrium problems for BCS masonry-like solids by using the finite
element method, we are often obliged for numerical reasons, to assign the load incrementally. To
this end, although the material being considered is elastic, we must also consider the load
processes and incremental equilibrium problem associated with them.,

We then intend to prove that the numerical solution obtained by using an incremental procedure
is independent of the particular load process chosen; instead, it depends solely on the final
assigned load, provided that the load process considered is admissible in the sense specified as
follows.

A load process ¥(1) , 1[0, 7], is a function pair (b(x, T), So(x, T)) with b and sy defined on (3 x
[0, T] and 8, x [0, 7], respectively, differentiable with respect to T and such that ¥(0) = 0.

Given a process v, let us suppose that for every T, Y1) = (b(x, 1), so(x, 1)) is an admissible foad
and let {u(t), E(1), T(1)] be a solution to (3.1) with b = b(t) and Sp = 5o(T). A curve [u(1), E(1),
T(7)] of solutions to (3.1) 1s said to be regular if it is differentiable with respect to T.

A load process yon [0, 1] is admissible if, for every T e [0, T1], Y(t) is an admissible load and if
there exists at least one regular curve [u(t), E(1), T(7)] of solutions to (3.1).

Lety be a load process on [0, T 1; a regular curve [u(t), E(1), T(T)] is an incremental solution to
the boundary-value problem if for each t < [0, T] we have

E= (Vl’l + Vli[),

b2 =

T = De T(E(@)[E],
(3.5) u=0 on 2,
Tn=s, on g

divT+b=0 on®,

and

(3.6) u(x, 0)= 0, Ex,00=0, Tx 0=0 on,

where the dot - denotes the derivatives with respect to .

It is immediately verifiable that, if v is an admissible process, then every regular curve of
solutions to (3.1) is a solution to (3.5). Moreover, each incremental solution to the boundary-
value problem is a regular curve of solutions to (3.1).

In fact, if [u(t), E(z), T(t)] is a regular curve of solutions to (3.1), differentiating (3.1) with
respect to T, we can immediately verify that [u, E, T] satisfies (3.5). On the other hand, if [u(T),
E(1), T(t)]} is an incremental solution, integrating (3.5) on [0, 7] and taking into account (3.6), we
deduce that [u(z), E(1), T(1)] satisfies (3.1) for each 1 e [0, t].
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From this result it follows that:

a) if v is an admissible process, there exists at least one incremental solution to the
boundary-value problem;

b) the solution to the incremental problem, if it exists, is unique in terms of stress, i. e. if
[u1(7), E1(7), T1(v)] and [up(1), E2(1), T2(1)] are two solutions to (3.5) then

(3.7 Tix,D=Tax. 1), 0e® x[0, 7]

c) if 'y and ¢ are two admissible processes on [0, T ], such that Y(T ) =¢(T) and [u;(1),
E1 (1), T1(1)] and [uy(t), Ea(1), T2(1)] are two incremental solutions corresponding to 7y and @
respectively, then

(3.8) Ti(x, T) =Ta(x, T) for each xe 3.

This last result guarantees that the incremental solution does not depend on the load process at
least regarding the stress. In fact, the common value of T; and T at the end of the two processes
is the solution to the boundary-value problem (3.1) corresponding to the load y(t ) = ¢(T).

IV.SOME EXPLICIT SOLUTIONS

In this Section we analyse a circular ring and a spherical container made up of a BCS material
subjected to uniform radial pressures p. and p; acting, respectively, on the outer and inner
boundary and we explicitly calculate the stress field at equilibrium with these loads and the
corresponding strain and displacement fields that, in this case, are unique. The explicit solutions
thus obtained will be compared in section VI with the corresponding numerical results.

In the following, v and E are respectively the Poisson ratio and the Young modulus of the
material. Moreover, we suppose 6'=0, 6° > 0 to be fixed, and that Pe and p; satisfy the
compatibility conditions p, < ¢ and p; < o°.

A stress field in equilibrium with loads p. and p;, satisfying (2.4}; and (2.4), will be said to be
statically admissible.

The circular ring.

The circular ring Q shown in Figure 2, having inner radius a and outer radius b, is subjected to a
plane strain as a consequence of the action of two uniform radial pressures p. and p; acting,
respectively, on the outer and inner boundary. Let us choose a cylindrical reference system {O,
P, 6, z} in which the origin coincides with the centre of the ring and the z axis is orthogonal to its
plane.
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Figure 2. The circular ring.

2
It is known [8] that if %—e > 322L2b~ , then the stress field T corresponding to a linear elastic
1 b

material, having principal components

3

G(e)(p) — 32b2(pe - pi) 1 + Pia-2 - Peb2
p

b?-a2 p? b? - a2
(4 1) O.{e)(p) = azbz(pe - pl) __1_ + pia2 - Pebz
’ 8 b2 - gl p2 b2 - a2 ’

2v (p;a2 - peb?)
b2-a2

o®(p) =v [6&p) + 0L7(p)] =

is negative semi-definite.
Let us begin by supposing

then, for the circumferential stress, which is a monotonic function of p, the inequalities
oy (2) S G4 (b) < - p, hold.
If, in particular pe and p; are such that the condition
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O-C_pe = 3.2+b2
C°- pj 212

2 2
is also satisfied, or, equivalently, if pe < a;;; pi + b2 ‘bgz of, then the stress field T(®) is

statically admissible. On the other hand, if p. and p; are such that the inequality

O-C_pe < 3,2+b2
G°-pi 2 b2

holds, then Gg')(a) <- 6% and T does not satisfy condition (2.4),. A statically admissible stress

field T can be obtained by starting from T¢) and using a procedure similar to that in [8] for a
circular ring made up of an elastic non-linear material with bounded tensile strength.

In the attempt to find the solution, we may suppose that oy(p) is equal to - ¢¢ in a circular ring
Q1 = {(p, 9); pela, pc]}, where pce[a, b] is unknown. In this region, for equilibrium reasons, Op
has the expression

Gp(P) = ‘g (c°-p;)- 0%

Consequently, the circular ring Q2 = {(p, 0); pe[p., b]} is subjected to both external pressure p.

and an internal pressure whose value is p; = ¢° - -& (¢° - p;). Moreover, for continuity reasons,
C

Gg(pd) = - 6% On the other hand, in € the solution coincides with the linear elastic one; thus,

pc(b2 + pcz) - 2peb2
b? - p2

Cp(pd) =
and p, is a solution to the algebraic equation
a(c® - PPz - 2b%(0° - pepe + abi(o® - pp) =0,

which, if 9P > & thatisif p. € &p;+ b-2 ¢ has in [a, b] the sole root
o° - Pi b b b

(4.2) P = % b{0®- pe) - ’\/bz(GC—pe)Z_ a2(0-0_pi)2 .
G° - pi

- 2 .
It can be seen that when the ratio % decreases from 32;; to a/b, p. correspondingly
" -Pi 2h

varies from a to b. Finally, the stress T having principal components



% (UC'PI) - Gca pe [as pc},
(4.3) Op(p) =

Aee_ny (Po 11 i

2.(of - ) (p2 ; pc) o, pepe, bl

- ©%, pe [a, pcls
(43)2 Ue(p)=

A(ac.ny | Pe o 1| _

2((50 pi) ( p2 + Pc) o, pe[pe, bl.

is statically admissible.
In agreement with the constitutive equation (2.1)-(2.2)-(2.4), in 2 the fracture strain and the

crushing strain are nil; the total deformation has components

=14V [ oy A _ oy 2Pe
(44 eplp) = 1 {(1 2 (- p) 3 - 207+ (0P 3 ) pepc, bl,

= 14V g oA 269 - (ot - py e :
44y eo(p) = L {(1 2)(0°-pi) - - 207 (0 p) = } pe [pe b;
the radial displacement is

= L+v e R T (¢ -y 2Pe

u(p) = 2E (1 2V)[(C’-C Py Pe 200]9 (c°-po) D }s pe[pmb]-

In Q, the fracture strain is nil and the total deformation has components
(4.5) ep(@) =25(p) = LY [(1-vies-p) & - (1- 200} pefa. pel
(4.5) eg(p) = £(P) + £5(p) = 1LV ‘-V(Gc—pi)g -(1 -2v)c°}+ P, pela, pel.

where the circumferential crushing strain € is a non-positive function of p which needs to be
determined. The radial displacement, obtained by integrating € is

up)= LEY (1 v)(e*-palnp - (1-W)o'p)+k,  pela pel,
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where k =- —I—Ei (C°-plafv+(l- V)Inp.] is a constant whose valye is determined by

imposing the continuity of the radial displacement at p = Pe. By virtue of (4.5), we have

(4.6) g5(p) = 1

<

;E,Vz g (6°-p;i ) In {ﬂ) pe[a, pcl,

therefore the crushing strain is negative in ) and zero when P = P It 1s interesting to remark

- 2
that if bé < %CCJE < a; zzb . besides the stress field, the strain and displacement fields are also
- Pi

unique, whereas if 20; Pe _ bi’ the displacement and thys the circumferential crushing strain are
- pi .

not unique and depend upon the constant k. If the ratio

O° - pe
ac- p;

is less than the critical value a/b,

there are no statically admissible stress fields.
Now, let us suppose

MSEESI.
2p2 Db

In this case we have Gge) (b) < cée) (@) <-p;, and moreover, by virtue of the inequalities

f."_Pewg pigiz_‘f‘bi > _2a%
OC-pi Pi ogp2 T o7

the condition O'ée) (b) =2-c°ig always satisfied, so T() isa statically admissible stress field.
Finally, we need to consider the case

Pe < aZ 4 h?
Pt = gp2

If p. and p; also satisfy the inequality —gﬁ 2 ?, then the semi-definite negative stress field T
calculated in [8§], having principal components:

- ‘%1 pela, p,l,

(4.7 Op(p) =
_ EP_i(& . _L), pepr, bJ;
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0, pe [a, pd,
(4.7 Co(p) =

ap] pt L bl
(p2 pt )! pe [pts ]:

is statically admissible, since 0g(a) 2 Gy(b) = - p.. The transition radius from the region in which
E! # 0 to the one in which Et = 0. {s

b bpe- Vb?p?- a2p?

“8  p =D =

in particular, if I;_e = %, Py = b and if g—e = -"‘22+T2b then p, = a. The crushing and radial fracture
i B
strains are both nil and the circumferential fracture strain is

Lﬁﬂ%ﬂ% pe [a, pil,

E p/J
(4.9) gg(p) =
0, pE [pt! b].

Finally, for values of g—e less than % no statically admissible stress field exists.
1
Now we increase the external pressure p, from Ba—p; to %pi + Qé_a o, while maintaining the

internal pressure p; constant. Figure 3 shows the evolution of the inelastic strain for different
values of p,. When p, = t—i‘« pi (Figure 3 a), the crushing strain is nil and the fracture strain is non-

2
zero throughout the circular ring; for Pe € {l—i‘—pi, 322"' 2b pi} (Figure 3 b), the crushing strain is
b

still nil and the region in which the fracture strain is non-zero diminishes progressively and

2 2 2
a2+ b is a2+ b ,+ - 'azcc.lnfact for these
2b? 2b?
values of p. (Flgurc 3 ¢) the crushing and the fracture strain are zero. For Pe increasing from

disappears when p, falls within the interval

2

a2 +b pi + b% - a2 o¢ to &p, +b-a e (Figure 3 d), the fracture strain remains equal to zero
2b2 2b2 b b

and the region in which the crushing strain is non-zero progressively extends and covers the

whole of the circular ring when p, reaches the value bﬁ pi + % o° (Figure 3 e). For values of p,

less than bipi and greater than %p; + —Qf;@— 0° there are no statically admissible stress fields.



Figure3 b.

Figure 3 a

Figure 3 d.

Figure 3 c.
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Figure 3 e,

The spherical container.

Let us consider a spherical container Q; made up of a BCS material with inner radius a and outer
radius b, subjected to two uniform radial pressures: a pressure Pe acting on the external boundary
and a pressure p; acting on the internal boundary. Let (O, p, 6, ¢} be a spherical reference
system, with origin O coinciding with the centre of the container.

. . 3 . . .
Bennati ez al. [8] have shown that If% 2 ;i%, the stress field T() corresponding to a linear
1

elastic material and having the principal components

3

ol®) = a3b3(Pe P 1oy pia’ - Peb3
p

(4.10)
0_(3) —c®= . a3b3(Pe - p) 1, pia’ - peb3 ,

8 @ 2(b3 -a%) p3 b3 - a3

is negative semi-definite. First of all, let us suppose

so the circumferential stress satisfies the boundary inequalities Gée)(a)SGg)(b)S-pe.
Furthermore, if

G°-Pe . 2a3 +b3
o° - pi 3b°
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then the elastic solution (4.10) satisfies condition (2.4), and T®) is statically admissible. On the
contrary, if

O°-Pe _ 243 +b°
o° - pi 3b3

then cf:)(a) <-0° and T is not statically admissible. Using a procedure similar to that used for
the circular ring, we may suppose that the spherical region £ = {p; pe(a, Pel}, where p, has to
be determined, is subjected to the equilibrated stress field

op(p) = & (0°-py) - o,
P

oo(p) = Tolp) = - o°.

Consequently, the remaining spherical region Qg = {p; pe[pe, b]} is subjected to the external

pressure pe and to the internal pressure p, = ¢° - a—i (0° - p). On the other hand, for continuity
pe
reasons, equalities Gg(ps) = Gp(pd) = - 6° must hold. Finally, by virtue of (4.6), we determine

that if the ratio —~—P¢ satisfies the inequalities
-bi

a2 <9 Pe _ 223 +1]
b2 O°-pi 3b3

a statically admissible stress field will have components:

& (c%-pi)- o, pe 2, pel,
(4.11) Oplp) =

a2 N (2P 1) )

g"(UC‘Px) (p3 + 2) Gca pE[pCs b];

pé

- 0%, pe [a, pcl,
(4.11), Og(p) = Op(p) =

a2 ey [P LY

3 (0°-pi) ( 03 + pg) o°, pe [pe, b].

The radius p, which separates the zone where E¢ # 0 from the zone in which E¢ = 0, is the sole
real root belonging to [a, b] of the third degree polynomial
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2 .
N a_"iPi’ PE [a, pl]a
p
(4.14), Op(p) =
2N,
- a_%)i(?.% + %)’ pe[p.. bl;
P Pi
0: PG [as Pt],
(4.14), co(p) =
2 n.
anl‘(p_; - —12'), pe [py, b
p Pe

where p, is the sole real root belonging to [a, b] of the cubic equation
2ap;p3 - 3b%p.p? + aZbp; = 0

and separates the region in which the circumferential traction strain is non-zero from the region

in which it is zero. When %‘1 varies from 2@3—+3b— to i%, radius p, correspondingly varies from
1 3b b
a to b. The crushing strain is nil, the radial displacement is

a%pi 11 1
= R 1 -V) - 3 IS ] 3
A pela, pl
415  u(p)=
pi a2 p?
2t oas - £t
P p
and the circumferential fracture strain is
1-v a2 i(L ] _1_) cla ol
E p p p pt » p [ pt]
(4.16)  Ey(p)=
0: pe [p[s b]'

For values of & less than —@23 , there are no statically admissible stress fields.
1 b
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Y. THE NUMERICAL METHOD

In this section we calculate the derivative DEf of T = f(E) with respect to E. Knowing this
derivative allows calculation of the tangent matrix and determination of the displacements by
solving a non-linear system obtained by discretisation into finite elements via the Newton-
Raphson method.

The algorithm used for the numerical solution of the equilibrium problem in the presence of
incremental loads has already been described in [4] and is thus omitted here.

Differentiating T with respect to E requires some preliminary results.

Let Sym* stand for the subset of Sym of all symmetric tensors having distinct eigenvalues.
Given A € Sym*, let &, Ay, A3 with & < Ay < A3 and g, g3, g3 be the eigenvalues and the
eigenvectors of A, respectively. '

Putting, for convenience,

Gy =L (g,:®g +2®g) , Gy =L (g:®g; + g:®g)) ,
1555 (£:1®g2 + g2.®g)) 2= (g19g3 + g3®g))
Gy =-L (5,08 +2:0g) |
3ﬂ(g2g3 £1®g7)

we propose to prove the following (3

(5.1 Da M = gi®g; ,
(5.1), Da2y= g:%g; .,
(5.1)3 Da X3 = g3®gs;
(5.4 Dag:i®g = —L— Gi®G; +—1— G,8G,,
1- Az M- A3
(5.1)s DA 22®g = —1— G1®G; +—1— G38G;,
2- Al Az - Az
(5.1)s Da g3®g3 = l Go®Gy + 1 G3®Gs .
Az - Ay Az-Ag

It is sufficient to prove (5.1); and (5.1)4, because the other relations can be proven in a similar
way. Let us consider A € Sym*, H € Sym to be fixed and ae R; let Ai(c) and g1(c) be the
smallest eigenvalue and the corresponding eigenvector of A + oH, respectively:

3 Here DA, is the derivative with respect to A of the function Ai:Sym* > R, A |5 A(A); analogously Dag; ® g;
is the derivative with respect to A of the function g; ® g; . This last function is well defined since, by virtue of the
fact that the eigenvalues of A are distinct, the eigenvectors g; are uniquely determined from the relations

Agi=Ag ,i=12.13
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(5.2) (A + oH) gi(0) = Ay (@) gi{or) |

Since we are interested in the behaviour of A;(a) and g;(a) for o near zero, within an error of

order o(ot) we can put

53) Ma(@) =Ay + A1(0), and gy(o) = g1 + £1(0),

where A1 = A1(0), g1 = g1(0) and the superimposed dot - denotes differentiation with respect to
ot By substituting (5.3) in (5.2) we obtain

(5.4) A @O +Hg =0 +A1 §00).
Since g1-g; = 1, then ;(0)-g; = 0 ; thus if we multiply (5.4) by g; we have
(5.5) M) = g1 He, = g,®g H .
Because, for every H in Sym we can write
MO =L 21(& +0H) Iy-0= Dak-H,
by virtue of (5.5) we obtain (5.1);.
In order to calculate the derivative of g;®g;, we have to calculate the derivative of g1. To this
end, by substituting (5.5) into (5.4), we obtain
(5.6) Agi(O+Hg =@®g-H) g1+ £1(0).
Since g; and g;(0) are orthogonal, we can write
(5.7 g0 =xgm+8e,
where ¥ and § are scalars which depend on A. By substituting (5.7) into (5.6) the relation
(5.8) X R2-Ag+ & a-hpgs = (2:®g-H)g, - Hg,

follows. Multiplying (5.8) by g» and by g3, we obtain respectively,

o 1
xX= 21®g - H,
Ay - Ao
(5.9)
£= ! 2:®g3 - H .
A -3
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Thus, from (5.7) and (5.9), by virtue of the symmetry of H, we have®

(5.10) g:1(0)= 4 o BiA+aH) log-o = Dagy[H] =

= —1 (5,00, + g,®,®g,)[H] +
200 -0

+ —L (2,0g,®g; + 23®8:®g))H]
201 - A3)

The desired result follows from the relation
Dag1®g:1[H} =Dagi[H]®g; + g,®Dag [H]

Now we are in a position to calculate the derivative of the stress with respect to the total
deformation in the ten regions ®;. Let us consider the orthonormal basis of Sym

0,=q®q;,
0, = q2®q2,
03 =q3®qs,

(5.11)
Os=-L (q;®q;+q:®q) ,
4=z (1®q; + 42®q)

Os =%— (@1®q3 + (3®q3) |,
0 =-L (,®q; + :@q) |
6% 7 (@2®q3 + 3@qy)

and the spectral representation of T

3
(5.12) T=) 0
i=1

where t;, t2 and t3 are given in (2.6). From (2.6)1, (2.6)4 and (2.6)7 it follows that the expressmn
of DET(E) for E belonging to ®, R4 and ®7 can be easily calculated; the calculation of DET(E)
when E belongs to the seven other regions is slightly more complex and requires differentiating
(5.12). In order to differentiate (5.12) with respect to E we must use the previously calculated
derivatives of the eigenvalues of E and the tensors 01, Oz and O3 with respect to E.

4 Here, given u, v, w € 1, u ®v@®w denotes the third-order tensor defined by u®v@w H = (v@w-H) u, He Lin.
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As a single example, we shall calculate DET(E) when E € R, where e; < e; < e3. Let us begin
by supposing e; < e; < e3; from (5.12), (2.6), and (5.1), using the relation

DeT(E) = Dgt;®0; + ;®Dg0 + Dpt;®0; + 5,@Dg0, + Dgt3®03 + t380Dg03,

we obtain

£°+ 2(1 + a)esg + Oes
€2-€1

~ _ 21
(5.13) DeT(E) = Tt o 0:4® 04 +

20 &+ 2(1 + oes + oes

2+ e3 - € 05 ® Os + f(ez, e3) O ® Og +

N w2 + 3a)

57 ©2+09® 01+ 09+ j (02-09)® (02-0y)

where f(ej, e3) = 21 gi—:g-zz-. When e3 - e; goes to zero, f(e, e3) converges on 2y and then (5.13),

with f(ez, e3) = 2|1, holds also when e = e,.
Finally, we summarise the expression of DET(E) in the ten regions ®;:

(514, DETE)=2p1+A21@1 , Ee ®,,

€° 4+ 2(1 + o)eq + Ole3
€-¢1

~ _ Zu
(5.14); DET(E) = 3t o 04 ® 04+

20 €S+ 2(1 + aes + oes

05®05+2u 06®06+

2+0 €3-¢1
243
* _—“(ziaa) (02+03)® (02+03) + 1 (02- 03) ® (0-03), Ee R,

S B EC+(2+ 30)es B e+ (2 +3a)e,
(5.14)5 DET(E)—1+a o 05®05+1+a -5 Og ® O¢ +

+E O03®03, Ee R3,
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(5.14)y DET(E)=0, Ee Ry,

S 2L g'-2(1 + ey - oen
(5.14)s DgT(E)= 2 04 ® 04 + 7o - e O;® 05 +

20 - 2(1 + oy - oy

2+ c3-¢2 O ® O +
2+ 3
P ECY (01+0)8(0,+09+ 1 (01-000(01-0p,  Eeky
Ao M g-(2 4+ 3a)e;
(514)6 DET(E) = T+ o & - e 04 & 04 +
Looeh- 2+ 3me;
T+ a &3¢ Os®0s+F 0,®0,;, Ee Rg,
(5.14y; DeI(E)=0, Ee R,
(514 DET(E)= THE 0,004+ T+ 05905,  Ee Ry,
~ t £
(514 DFT(E) = g;gf 05 ® Os + gg*_'g; 06 ® O , Ee Rq,

K ot + (2 + et + 2(2 + 3a)e; 0,00, +

(51450 DET®) = 57— oy

€’ + (2 + o)e' - 2(2 + 3a)e,

ot +o° H
+ e—re 05®OS+2(I+OL) o O ® Qg +
L HE+30) 0,® 0, Ee Rqg,

1+«
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where 1 and O are the fourth-order identity tensor and the fourth-order null tensor, respectively.
Iti 1s note-worthy that the expressions given in (5.14)5-(5.14)1 are the spectral representations of
DET(E) in the nine regions R- R1o. Moreover, it can be easily verified that the eigenvalues of

DET(E) are non-negative and so the strain-energy density W(E) = %T(E)-E is a convex

function. The same result has been proven in [1] for materials not supporting tension and

infinitely resistant to compression.
We conclude this section by listing the expression for the derivative of the stress for plane strain

and plane stress.
For the plane case, let e; < €3 be the eigenvalues of E and q; and q; be the corresponding

eigenvectors, putting

we have

O01=q1®q,
0, = q:®q;,

03 =-L (q;®q+ :®q)) ,
3 1lj(m q2 + 42®q;)

Dge; =04, Dgey=0,,

Dg 01 = g1 05905,

For plane strain, the derivatives of T in the six regions 21, 2;, 23, 84, 85 and 8¢ are

(5.15);

(5.15)2

(5.15)3

DelT(E)=2p 1 +AI ® I, Ee &y,

DeT(E) = O, Ee 8,

e - 2(1 + o)eg

DET(E) 2+(1 e 05 ®O3 +
4
LHLYD G g0, Ee 8,

2+
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P 2 e+ 2{1 + a)e
(5.15)4 Def(E) = 51 e:f — 2 0,00, +
4u(1 + o)
+ —2+a 0, ® 0, Ee 24,
(5.15)5 DeT(E) = O, Ee 25,
(5.15)s DeT(E) = o= jfg‘ 03 ® 03, Ee 2.

For plane stress we have

2uo

(5.16) DeT(E)= 21 + oo 18l Ee 74,
(5.16), DT(E)= O, Ec 7.,
N 1} (2 + o)et - 2(2 + 3aw)ey
(5.16) DET(E) = 5 Tr e oS 0;®0; +
+E 01@01, Ee ?3,
g i) (2 + e’ + 2(2 + 3a)er
(.16 DeT(E)= 5o e, 0;®0; +
+F 02®02, Ee 74,
(5.16)s DET(E) = O, Ee 7Ts,
(5.16)s DET(E) = £+9° 0, ® 05, Ee T

€2-€1
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VL. NUMERICAL EXAMPLES

The circular ring

In this section we numerically solve the problem of the circular ring considered in Section IV.
The finite element analysis is performed using the calculus scheme described in [3], by means of
the tangent stiffness matrix calculated with the help of the fourth-order tensor DE?(E) deduced in
the previous section. For the numerical calculation of the solution, the following values of the
constants have been used

a=1m,
b=15m,

pi = 0.1 MPa,
Pe =0.23 MPa,
o= 0.5 MPa,
v=0.1

E = 5000 MPa.

. 2
In this case the ratio O -pe _ 0.673 lies within the interval [ a az+b?|_ [0.667, 0.722] and

o - pi b’ ap2
the transition radius is approximately p. = 1.28 m. For symmetry reasons, only a guarter of the

circular ring was studied, and this was discretised into four hundred eight-node elements;
convergence was reached in three iterations. Figures 4, 5, and 6 show the behaviour of the radial
stress, circumferential stress and circumferential crushing strain. The continuous line represents
the exact solution, the bold points, the numerical solution.

The circular ring was successively subjected to a load process with p; = 0.1 MPa and p,
increasing from pep = 0.0667 MPa to per = 0.2333 MPa. In Figure 7 the behaviour of radius p*,
which separates the region in which the inelastic deformation E* + E¢ is non-zero from the region
in which E'+ E¢ = 0, is shown. In accordance with (4.8) and (4.2), the expression of p* is

' 2
L5 (1.5 %’; -a/ 225 pi2 -1 ) pe/pie [0.667,0.722),
! 35

’ po/pic [0.722, 21117,

p—

P*(pe/pi)=

0.375 [1.5 (5 '%?) -\/2.25 (5 -%}2- 16J, pe/pie [2.111,2.333].
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the extrados in the springing and has the value of 7.6 MPa. The region characterized by the
openings is illustrated in Figure 10, where the isostatic lines are also drawn.

Figure 9. The line of thrust for Mosca's bridge.

Figure 10. The isostatic lines near the springing.
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The three-dimensional arch

Let us consider the reduced circular arch whose springings are fixed show=eq in Figure 11
arch is subjected to its own weight and a load P, constant per unit Span, < istributed alon
extrados. For Symmeltry reasons, only a quarter of the structure was Studied and this
discretized into 300 isoparametric three-dimensional elements with 20 2 odes and 27 G—
points. We suppose that the materia] constituting the arch is not resistant to Traction (6! = 0 e

has a maximum compressive strength ¢ = 8.82 MPa. The distributed load is PrOgress] m—

increased until the value Pe, beyond which the convergence cannot be reacs hed; p,, interpre==—=
here as ‘collapse load, resulted equal to 0.405 MPa.

distance equal to d from it is called the neutral axis.

~ “‘\ P -
EToy AR NI S

B S

Figure 11. The reduced circujar arch,
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