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ABSTRACT The purpose of this paper is to analyze how detected objects affect the noise distribution of
terahertz (THz) security images. Noise in THz image caused by hardware deteriorates the image quality
seriously, limiting the application. In addition, there are a few papers on the noise analysis of THz screenings.
Due to the special attributes of the THz image comparedwith the natural image, an alpha-stable distribution is
used to fit the noise of THz image instead of the commonly-used Gaussian distribution. The database used in
this paper is composed of 181 THz image cubes with a test object as well as two empty image cubes. After
analyzing the four parameters of alpha-stable distribution, we can observe that the noise patterns of THz
images are indeed different from those of natural image obtained by RGB camera. The possible reasons are
given based on the principles of the THz imaging device. The analysis of the distribution of four parameters
of alpha-stable model demonstrates that there exists a nonlinear effect due to the change of reflected wave’s
pattern caused by the body structure. This paper provides an efficient and flexiblemodel for THz images and a
useful guidance for the design of THz image denoising algorithms and the development of imaging hardware.

INDEX TERMS THz image, noise pattern, noise estimation, statistical analysis, alpha-stable distribution.

I. INTRODUCTION
THz radiation generally refers to the frequency band between
the microwave and infrared regions of the electromagnetic
spectrum [1]. This spectral region was not fully explored for
a long time in scientific history. With the development of
terahertz (THz) source generator and detector, the ‘‘THz gap’’
has been bridged and THz imaging technique has aroused
more and more concerns in various applications [2] such
asbiological diagnosis [3], security inspection [4], authen-
tication of electronic components [5], counterfeit detection
and quality inspection [6], [7]. Due to the two prominent
advantages of THz imaging technique, compared to the other
imaging methods, viz. low photon energy and high trans-
parency, THz imaging technique has been extensively used
for both military and civilian purposes. With respect to secu-
rity application scenarios, the use of THz imaging device
stands out for the reason that the THz waves can penetrate
throughmost uncharged substances, which allows us to detect
the concealed illegal materials [8].

To date, most current THz imaging devices are equipped
with low-stability sources at insufficient power levels and
conduct one scan with several seconds. Hence, the quality
of ultimate THz data is highly affected by the changes of
environmental factors and the operation conditions of equip-
ment [9]. This will further deteriorate the detection per-
formance (because of loss of detected structures) and even
hamper the extension of THz imaging technique to the large
scale applications. After observing the THz images, we can
find that the main distortion type for THz images is their high
noise level [10]. Some research work is dedicated to develop
de-noising algorithms to attenuate the noise brought by the
factors mentioned above [11]. Yue et al., leveraged Wiener
filter, gray stretch algorithm and genetic algorithm to smooth
the THz security images [12]. They did not point out why they
chose Wiener filter. Trofimov and Trofimov [13] selected
the image characteristics from the reference image to create
the correlation function for suppress noise in THz image.
Ahi and Anwar [14] introduced a novel reconstruction
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approach for enhancing the resolution of the THz images,
including the scene that the signal drops exponentially to the
noise floor with respect to the thickness of the object and fre-
quency of the THz beam. Reference image is the image con-
taining no or little noise, which is difficult to find or define.
Liu and Li [15] used the adaptive threshold de-noising algo-
rithm derived from the Bayesian approach to reduce noise
in THz image. This adaptive threshold de-noising algorithm
is unsuitable for removing background noise. To the best
of our knowledge, there is no publication on analyzing the
noise pattern in THz images. The first step into designing
noise elimination methods is to understand the statistical
characteristics of the noise on THz images.

Therefore, understanding of noise pattern will also provide
useful guidance for the design of terahertz imaging hardware.
Currently, analysis of noise characteristics is commonly stud-
ied for natural image obtained by RGB camera [16], [17].
In respect to noise estimation of specific image modalities,
Goodall et al., concluded that noise in thermal images is an
additive fixed-pattern, and they stated that this stripe noise
profile is specific to thermal images [18]. This inspires us to
explore the noise statistical characteristic of THz image. For
noise estimation of THz signal, some investigations had been
carried out on THz spectral signal [19]. The random noise
had been considered as the major error source of THz spec-
tra, which is approximately 1% of the signal intensity [20].
Naftaly used the Fourier transform for original THz spectrum
to acquire the noise signal [21]. No related work has been
conducted on the statistical analysis of THz image noise.

Consequently, our objective in this paper is to analyze how
detected objects affect the noise distribution of THz security
images. We propose the use of alpha-stable distributions for
modelling pixel distribution of terahertz images and provide
experimental results verifying our hypothesis.

II. THz IMAGING EQUIPMENT AND DATA
STRUCTURE OF THz IMAGE
A. IMAGING EQUIPMENT AND ITS
OPERATING PRINCIPLE
Before analyzing the noise distribution of the THz image,
the operating principle of imaging device must be figured out.

Fig. 1 shows the operating principle of active THz
reflectance imaging device. THz wave is generated by a THz
wave generator, and THz reflectance signals are recorded by
a THz wave detector. The THz wave generator and detector
are integrated into a plate on the same side of testing person.
Such active THz imaging device is configured to separate the
detection space into 200 subsections, and the THz reflectance
signals of each subsection are captured by the THz detector.
In terms of every scan, one three-dimensional (3-D) data can
be obtained, which is called image cube in this research. The
structure of this 3-D THz cube will be elaborated in the
following text.

The effective measurement height of the device ranges
from 0.15 m to 2.00 m. Scanning time is less than 3 seconds.

FIGURE 1. The operating principle of active THz reflectance imaging
device. The imaging device in this research was configured to separate
the detection space into 200 subsections.

The imaging device is a custom-made Transmit/Receive (T/R)
module which operates in active reflection imaging mode,
offering line resolution of less than 2 mm, and spatial resolu-
tion of less than 6 mm.

B. THz IMAGE DATABASE
In the previous study, we have constructed the THz security
image database (THSID) [10]. Four volunteers were invited
to generate THSID. Each time they were imaged in the
device with various illegal materials such as hammer and
knife, or with some legal materials such as belt and soap.
THSID contains 181 sets of THz security images.

In order to describe the noise distribution of THz image
without object, we also collected two image cube with no
testing person in.

C. THz IMAGE STRUCTURE
Fig. 2 shows an example of THz security image cube
in THSID. The raw THz security image cube is three-
dimensional with X-, Y- and Z-axes. We split each 3-D image
cube to 200 two-dimensional images with resolution of
127× 380 and call such 2-D image as ‘‘slice’’ in this work.
We can realize that the background is black while the noise

and body structure is white through the above description.
Pixel values are from 0 to 255 in grayscale.

III. NOISE STATISTICAL ANALYSIS OF THz IMAGE
When we understand the noise pattern in THz image, the bet-
ter de-noising algorithms can be developed for improvement
of THz image quality. We tried to fit the histograms of slices
are skewed (lacking left tail in particular) and are heavy tailed
using Gaussian distribution, but the histogram lacks a left tail,
since the THz beam is not a monochromatic beam. Each
frequency component of the beam has different attenuation
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FIGURE 2. Data structure of a THz security image cube, containing
200 two-dimensional vertical image slices.

factors in the object [22]. Thus, the noise distribution of a THz
image is different from that of a natural image obtained by
RGB camera.We then considered amore general distribution,
namely the alpha-stable distribution.

A. NOISE STATISTICAL ANALYSIS OF DIFFERENT KINDS
OF 2D THz IMAGE SLICES
Motivated by the popularity of alpha stable distributions
in modelling impulsive and skewed phenomenon [23],
we attempted to fit the histogram of each slice by an alpha-
stable distribution. The characteristic function of alpha-stable
distribution is defined as:

ϕ(t;α, β, γ, δ) = eitδ−|γ t|
α(1−iβsgn(t)8) (1)

where

8 =

tan(
πα

2
) α 6= 1

−
2
π
log |γ t| α = 1

(2)

α, β, γ and δ are four parameters of the alpha-stable dis-
tribution, representing stability, skewness, scale and location,
respectively.

In order to find out whether the object in the THz imaging
device affects the noise distribution, we contrasted models
fit to the histograms of slices at different positions. Slices
were grouped into four types, namely slices in the empty
cube, slices with body structure, slices near the edge of
the body structure (within 10 slices from the edge of body
structure) and slices far away from the body structure (more
than 10 slices from the edge of body structure). Description
about the last three kinds of slices are presented in Fig. 3.

For the sake of analyzing the noise space distribution,
we tried to identify the range of projections of body structure
on the Z-axis. Contrast stretch transformation [24], an image
enhancement method using nonlinear grayscale transforma-
tion, is applied to enhance the difference between slices with
and without body structure. After analyzing the histogram of
each slice, we pick out continuous slices that the number of
pixels whose value under 20 account for 90% or higher as the
range of the body structure along Z-axis [25].

Fig. 4 shows the probability distribution function (PDF)
and cumulative distribution function (CDF) of all the slices
in the empty image cube and slices with body structure.

FIGURE 3. Description about slices in the image cube with a
person: (a) slices with body structure; (b) slices near the edge of the
body structure; (c) slices far away from the body structure.

FIGURE 4. Average PDF and CDF of all the slices in image cube without
person and slices with body structure.

The PDF in Fig. 4 (a) demonstrates a great difference
between the two curves. Theoretically, slices in image cube
without object is all black, that is, pixel value should all
be 0. However, due to the influence of environmental factors
(e.g. temperature and humidity) and the unstable perfor-
mance of imaging device, there exist some pixels not equal
to 0 in THz image. As shown in Fig. 4 (a), the distribution of
the intensity of these pixels follows the alpha-stable distribu-
tion. Slices in image cube with body structure are also subject
to alpha-stable distribution with different fitting parameters.
Thus, the object in the THz imaging device does affect
the noise distribution. Due to the attenuating affect of the
terahertz imaging device and imaging conditions, the pixel
values are limited to below 25.

It is worth discussing the distribution of the body structure
as well as the way the body structure affects the noise distri-
bution. Therefore, we will analyze the remaining two kinds of
slices, namely slices near the edge of the body structure and
slices far away from the body structure, to explore whether
the testing objects influence the noise pattern or not.
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FIGURE 5. (a) In an image cube with body structure, PDF of all the slices.
(b) In an image cube with body structure, PDF of slices with different
distances away from the testing body edge, with horizontal scale as pixel
value in the range of 0 to 100. (c) In an image cube without body
structure, PDF of all the slices. (d) In an image cube without body
structure, PDF of slices with same position in (b), with horizontal
scale as pixel value in the range of 0 to 100.

Fig. 5 shows the difference of PDF curves among the
various distances away from the edge of body structure.
In the example of Fig. 5 (a) and (b), the body structure exists
from slice 1 to slice 44. PDF of image slices with differ-
ent distances away from the testing body edge are shown
in Fig. 5 (b) and (d). The fitting values of image cube with
body structure are more concentrated around smaller values
than the image cube without an object. The object in the
imaging device acts as a filter and suppresses the background
noise to some extent. This provides an idea for us to design a
noise filter specific to THz image. In addition, the THz waves
are able to pass through the detected object, which can be seen
in Fig. 5, Therefore, the analysis of surviving THz waves in
the slices behind the body are important in some application
scenarios.

B. POSSIBLE REASONS BEHIND NOISE
PATTERNS OF THz IMAGE
After analyzing noise patterns of different kinds of in THz
image cube, we wondered the reasons behind these noise pat-
terns. Hence, in this section, we explore the possible reasons
via the analysis of the parameters of alpha-stable model and
the principle of THz imaging.

Fig. 6 shows the four parameters’ distributions of alpha-
stable model for all slices in THz image cube without body

FIGURE 6. Four parameters’ distributions of alpha-stable model, where
α0, β0, γ0, δ0 are parameters of image cube without body structure, and
α1, β1, γ1, δ1 are parameters of image cube with body structure.
In (b), since β ∈ [−1, 1], only (mean - SD) are plotted. The p-values of
t-test of α, β, γ and δ are 2.48e-19, 1.02e-15, 1.23e-81 and 1.40e-112,
respectively.

structure (with subscript 0) and with body structure (with
subscript 1). In the image cubes with person, the edge of
body structure is at slice 33 to slice 105. We can infer that:
(1) A sudden jump of γ and δ occurs from slice 70 to slice
90 in image cubes both without and with body structure, due
to the ground noise. For α, in the same slice position for both
two kinds of image cubes, there is a slight drop. Due to the sta-
bility property, the output of a linear system to an alpha-stable
process is an alpha stable process with the same α while β
and γ can change. A linear interaction between the noise and
the object such as addition would not have changed the value
of the parameter α. The fact that we see change in the value
of α when there is an object tells us that the system looses
its linearity and there are nonlinear interactions between the
body and the measurement wave. This might be caused by
the fact that the noise is multiplicative rather than additive.
The effect of the device inner geometry is also evident with
the appearance of a region where the α value changes in the
presence of the object in the device although this region is not
the interval where the body is placed. (2) Parameter γ and δ of
image cube without body structure is larger than that of with
one, demonstrating that the body structure reduces the noise
caused by reflection in some extent. Such conclusion also can
be demonstrated in Fig. 4. (3) Extra peaks of γ and δ arise of
the image cube with a person, caused by the existence of body
structure. The position of the peaks agrees with the position of
the body structure. The sudden jump of these two parameters
means that the original distribution is disturbed if the testing
person enters into the THz imaging chamber. According to
the previous statement of the THz imaging principle, such
change can be attributed to the reflection of thewaves on body
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FIGURE 7. Signal-noise ratio of an image cube with testing person and
one without testing person. Testing person is in slices 20 to slice 50, while
ground noise exists in slice 70 to slice 90.

structure, which is a nonlinear effect. (4) Parameter β remains
at 1, which means skewness of different slices is stable.
(5) T-test is performed on each set of parameters. The hypoth-
esis test results are all 1, which means the test rejects the
null hypothesis at the 5% significance level. The p-values
of t-test of α, β, γ and δ are 2.48e-19, 1.02e-15, 1.23e-81
and 1.40e-112, respectively, suggesting that the object in the
imaging chamber will affect the noise distribution.

Same rule was found when we checked parameters’ distri-
butions of alpha-stable model of all the image cubes.

Fig. 7 shows the signal-noise ratio (SNR) of an image cube
with testing person and an image cube without testing person.
Testing person is in slices 20 to slice 50, while ground noise
exists in slice 70 to slice 90. SNR of slices without body
structure is higher than SNR of slices with body structure,
which may due to the noise being non-additive.

In future study, we may take the attenuation factor and the
thickness of the object into consideration (as it is described
in [22]). To do that, we believe that the noise can be fitted into
a new equation, which derives from the Gaussian distribution,
to give the better THz noise model.

IV. CONCLUSION
In this study, we analyzed how detected objects affect the
noise distribution of Terahertz security images. The operat-
ing principle of active THz reflectance imaging device and
the THz image database are introduced first. Unlike the natu-
ral image obtained byRGB camera, the pixel value of the THz
image does not follow the Gaussian distribution since THz
beam is not a monochromatic beam.We consider a more gen-
eral model, namely alpha-stable distribution. The probability
distribution function curves of the slices with and without
body structure show that the object in the THz imaging device
does affect the noise distribution. After analyzing the distri-
bution of four parameters of alpha-stable model, we know
that there exists a nonlinear effect due to the change of
reflected wave’s pattern caused by body structure. This study

provides a new statistical model for the noise in THz images
and demonstrates how the model parameters are affected
by the object, indicating nonlinear interactions between the
object and the THz waves. Method of noise reduction for
three-dimensional THz image still remains to be explored.
More advanced denoising algorithms could be particularly
applicable to THz-TDS (THz-Time Domain Spectrometer)
systems, since these systems provide the time-domain version
and hence the spectrum of the THz beam. This could be
considered an additional privilege of THz-TDS over RGB
visible-light cameras. Based on the noise distribution char-
acteristic of THz image presented in this study, a custom
designed denoising filter can be added to the process in the
future work, so that our research could be expanded to more
advanced applications.
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