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A B S T R A C T   

In light of the little understanding of the hydrodynamics of multicomponent particle beds involving biomass, a 
detailed investigation has been performed, which combines well-known experimental and theoretical ap-
proaches, relying, respectively, on conventional pressure drop methods and artificial neural network (ANN) 
techniques. Specific research tasks related to this research includes: i. to experimentally investigate by means of 
visual observation the mixing and segregation behavior of selected binary mixtures by varying the biomass size 
and shape as well as the properties (size and density) of the granular solids in cold flow experiments; ii. to carry 
out a systematic experimental investigation on the effect of the biomass weight and volume fractions on the 
characteristic velocities (i.e., complete fluidization velocities and minimum slugging velocity) of the investigated 
binary mixtures in order to select the critical weight fraction of biomass in the mixtures beyond which the 
fluidization properties deteriorate (e.g., channelling, segregation, slugging); iii. to analyze the results obtained in 
about 80 cold flow experiments by means of ANN techniques in order to scrutinize the key factors that influence 
the behavior and the characteristic properties of binary mixtures. Experimental results suggest that the bed 
components’ density difference prevails over the size difference in determining the mixing/segregation behavior 
of binary fluidized bed, whereas the velocities of minimum and complete fluidization increased with the increase 
of the biomass weight fraction in the bed. The training of ANNs demonstrated good performances for both 
outputs (Umf and Ucf), in particular, best predictions have been obtained for Umf with a MAPE < 4% (R2 = 0.98), 
while for Ucf the best ANN returned a MAPE of about 7% (R2 = 0.93). The analysis on the importance of single 
input on ANN predictions confirms the importance of particle density of the bed components. However, unex-
pected results showed that morphological features of biomass have a limited importance on Ucf.   

1. Introduction 

Several unique operational advantages, like fuel flexibility, uniform 
temperatures, intense solids mixing and efficient heat transfer, have 
made the fluidized beds the most efficient and widely applied reactors 
for the conversion of biomass into useful forms of bioenergy and/or 
biofuels. 

Gas fluidized beds with poly-dispersed particles of different sizes, 
densities, and shapes are encountered in many industrial processes 
aiming at the production of energy, material and resources for green-
house emissions mitigation and renewable resources utilization [1]. 

Design and operation of such systems deeply rely on the estimate of the 
minimum fluidization velocity (Umf) of the mixture in order to maximize 
particle mixing and avoid undesired channeling and segregation. Many 
correlations have been developed so far in the pertinent literature to 
predict the Umf of poly-dispersed binary mixtures containing biomass 
particles, [2–4], but these still exhibit considerable limitations in terms 
of accuracy and/or applicability, turning out system-specific, as high-
lighted in more recent literature reviews on the topic [5,6]. 

The development of experimental models based on physicochemical 
relations are, however, expensive in terms of time and money. 

In this framework, artificial intelligence, and in particular machine 
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learning (ML) techniques, has the potential to overcome the limitations 
of first principles models, as it can learn complex behaviors from dataset 
with a low-cost development of the model. 

The main advantage related to the application of ML techniques is 
that definition of a prior model is not required because it is possible to 
build predictive models – also with limited cognition of the problem – 
mining data’s inherent related information. 

Among several ML techniques, artificial neural networks (ANNs) are 
extensively used in different fields such as machine diagnostics, pattern 
recognition, quality control as well as fitting experimental data, gaining 
in the years a relevant role also in chemical engineering [7]. 

Also in the field of multiphase systems, the scientific community 
implemented different ML techniques to solve problems related to the 
prediction of specific parameters and how the material properties, the 
operating conditions and the equipment features influence these latter 
[8–17]. In this regards, Chew & Cocco [8,9] tried to use ML techniques 
(random forest (RF) and ANN) to understand and predict the hitherto 
not fully understood fluidization phenomena in circulating fluidized bed 
(CFB) systems. They used RF to investigate the relative influence of the 
process variables (material type and operating conditions) on the local 
mass flux, concentration, segregation, and cluster characteristics. The 
results revealed how some variables are mainly influenced by geometric 
characteristics of the CFB systems, others strongly depend on operating 
conditions while still others, which are more or less equally influenced 
by all process variables. Conversely, the ANN was trained to predict the 
output variables giving back good prediction for some output with a 
mean NRMSE value of about 0.04 and R2 values above 0.9; for other 
output variables the ANN gave poor prediction, probably due to the lack 
of accounting of some reactor characteristics. Despite this missing in-
formation, the authors improved the poor prediction trainings with a 
more accurate choice/elimination of the input variables based on the 
ranking of importance by the RF method. ANN was also used by Fu et al. 
[10] to predict the macroscopic flow characteristics of particles in a 
bubbling fluidized bed, as function of particle properties, gas velocity, 
gas distributor, axial position and radial position. The ANN training 
shows that the flow characteristics are affected by several factors with 
the following importance rank Axial position > Radial position > Gas 
properties > Gas distributor. Moreover, the results obtained from ANN 
were compared with theoretical calculations based on constitutive 
equations, which have been less accurate than ML technique. Instead, 
Perazzini et al. [17] tested the ability of ANN to estimate drying kinetics 
in fixed, fluidized and vibro-fluidized bed dryers under different oper-
ating conditions. The results show that the model is able to estimate new 
patterns just for the cases in which the database refers to a single type of 
dryer. Conversely, the developed networks showed difficulty to learn 
multiple patterns from different type of dryers, resulting in predictions 
with low accuracy, because information in the dataset about the 
different gas–solid contact were not present. This demonstrates the 
importance to choose proper input variables in the dataset for an effi-
cient prediction. As concern the prediction of the minimum fluidization 
velocity (Umf), several authors used different ML techniques with a 
preponderance of ANNs. Targino and coworkers [14] trained ANN to 
evaluate the key factors that influence the condition of minimum 
fluidization of acai berry residues. The performances of trained ANN 
have been encouraging, because able to predict in a quite fairly good 
way the minimum fluidization velocity for conditions not present in the 
original dataset, demonstrating the potentialities of the ANN. It is worth 
to cite the work of Zhou and colleagues [15], because they combine the 
application of ANNs for Umf with a text mining approach for the auto-
matic creation of the dataset. The text mining analyzed about 40,000 
papers and the result was a dataset formed by more than 1400 obser-
vations, which include particle and fluid characteristics and operating 
conditions. The predictions of the ANN offer a better capability to esti-
mate Umf with respect to Ergun and Wen − Yu correlation. Other authors 
focused their attention on the evaluation of the Umf in spouting beds 
[12,13] concluding that the ANNs provide reliable predictions, better 

than empirical correlations. Rushd et al. [11] compared different ML 
techniques used singularly or in combinations for the estimation of the 
terminal settling velocity of spherical and non-spherical particles in 
Newtonian and non-Newtonian fluid. In particular, the results high-
lighted that the RF regression model provided the best performance 
compared the other models used singularly, while the combination of 
different ML techniques performed very similar to the RF model but 
showed a more elevated computational complexity. 

In an attempt to develop more accurate and generic correlations and 
to provide additional insight on predicting the fluidization behavior of 
biomass-based binary mixtures, an experimental investigation aiming at 
analyzing the fluidization behavior of highly poly-disperse binary mix-
tures consisting of small and dense inert particles mixed with less dense 
and coarse pieces of biomass fuels has been performed by using a bo-
rosilicate glass fluidization column (0.10 m ID) equipped with a 4-mm- 
thick sintered-glass gas distributor and the results are presented in this 
paper. Specifically, peels of fresh oranges, which mimic the solid by- 
products of orange fruit processing, and tomato peels, which are the 
by-product of the peeling of tomatoes used for canning, were used as the 
biomass component due to the increasingly interest they are gaining as a 
potential feedstock for bioenergy and biofuels productions [18,19]. Four 
different kinds of granular solids, consisting in both inert materials (i.e., 
Ticino sand and quartz sand) and catalysts (i.e., alumina powder and 
alumina spheres), were used as the main bed component in order to test 
the influence of either size or density on the mixing/segregation 
behavior as well as on the characteristic velocities of the investigated 
binary systems. Fluidization tests were performed at ambient tempera-
ture to prevent that the formation of endogenous bubbles from devola-
tilizing fuel particles could come into play, which also affects mixing and 
segregation phenomena in real fluidized bed reactors [20]. Experi-
mental runs at different weight fraction of the biomass in the bed were 
carried out to investigate the impact of the bed composition on the 
characteristic velocities (i.e., the minimum fluidization velocities, Umf, 
and the complete fluidization velocities, Ucf) of the considered binary 
systems as well as determine the critical value of the biomass weight 
fraction beyond which the quality of fluidization deteriorate (e.g., 
channelling, irreversible segregation, slugging). To complement this 
study, an ANN was developed in MatLab environment, using the 
experimental data, in order to create a predictive tool for Umf and Ucf for 
binary mixtures composed by biomass and inert material. The set-up of 
ANN was optimized in terms of type of neural network, number of 
neutrons and training functions. The prediction performance of ANN 
was compared to the outcome of a model developed by the adoption of a 
multivariate statistical analysis named Canonical Correlation Analysis 
(CCA). Finally, for the best performing ANN, a specific analysis was 
carried out to discriminate the factors playing the greatest influence on 
the estimation of Umf and Ucf. 

2. Materials and methods 

2.1. Feedstock sampling and preparation 

Peels of fresh oranges, which mimic the solid by-product of orange 
fruit processing, and tomato peels, which are the residues arising from 
the peeling of tomatoes used for canning, have been used as the biomass 
components in this study. In more details, the peels of fresh oranges 
were separated from the pulp by hand, whereas the tomato skins were 
collected from a tomato processing industry in Salerno (40◦47′24.5′′N, 
14◦46′15.8′′E), in the Campania region of Italy (IT). Both the raw 
biomass samples were subjected to preliminary operations of drying and 
size-reduction. In more details, raw peels of orange (74.7 %wt. moisture 
content) and tomato (80.5 %wt. moisture content) were conditioned 
down to a moisture content of about 6–8 %wt., which represents the 
equilibrium values that the materials reached when left in a laboratory 
fume hood at room temperature for about 48 h. After drying, both the 
feedstocks were ground in a batch knife mill GM 300 by Retsch for 10 s 
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at a speed of about 3000 rpm and the 1–2 mm sieve fraction was retained 
for the subsequent fluidization tests (hereafter referred to as fine tomato 
peels (FTP) and fine orange peels (FOP). Fig. 1 shows the images of both 
the samples so as they were fed to the fluidized bed reactor. Five types of 
granular solids were selected in this work as the bed material to assist 
the biomass fluidization, namely: 1. fine quartz sand in the size range of 
100–250 µm (FS); 2. coarse silica (Ticino) sand in the size range of 
150–400 µm (CS); 3. fine commercial γ-alumina powder (PURALOX 
SCCA-150/200, SASOL) in the size range of 50–250 µm (FA); 4. ultra- 
fine commercial γ-alumina powder (obtained as a sieving fraction of 
PURALOX SCCA-150/200, SASOL) in the size range of 63–180 µm 
(UFA); and 5. coarse commercial γ-alumina spheres (PURALOX alumina 
spheres 0.3/180, SASOL) in the size range of 200–400 µm (CA). Binary 
mixtures under study will be coded below as follows: X/Y-Z where “X” 
stands for the inorganic bed component, “Y” is the abbreviation of the 
biomass feedstock name and “Z” stands for the weight fraction of the 
biomass in the bed. 

2.2. Particle characterization 

The particle-size distribution of the investigated materials was 
determined by using a laser diffraction analyzer (Mastersizer 2000, 
Malvern Instrument Inc.), with an analytical size range of 0.2–2000 μm. 
Granular solids were characterized by means of the Sauter mean diam-
eter D[3,2], which represents the quantity typically adopted to describe 
mean size of a given particle distribution in the case of interphase pro-
cesses (such as drag forces or heat exchange), in which the specific 
surface area plays a major role. Five replicate measurements were per-
formed for each sample and the obtained D[3,2] values are shown in 
Table 1 as the mean value of the data provided by the Malvern Mas-
tersizer 2000 software. A helium gas pycnometer (Quantachrome 
Ultrapycnometer 1000) was used to determine the skeletal density (ρS) 
or the true density of both biomass and inorganic compounds. Experi-
mental runs were carried out on samples oven dried at 105 ± 5 ◦C for 24 
h. Five replicate measurements were performed for each sample and the 
ρS-values are shown in Table 1 as the mean value of the obtained data. 

Nitrogen adsorption and desorption tests were also carried out at 
− 196 ◦C using a Quantachrome Autosorb 1-C instrument, which 
allowed determining the total pore volume (PV, cc/g) of the samples 
under study. Both the obtained skeletal density and pore volume data 
were then adopted to estimate the envelope particle density (ρP), which 
is typically determined for porous materials when pore spaces within 
material are included in the volume measurement of samples, by means 

of the following Eq. (1): 

ρP =
ρS

1 + PV • ρS
(1)  

where ρS and PV are respectively expressed in g/cm3 and cm3/g. Loose 
(ρlb) and packed (ρtb) bulk densities of bed components were finally 
determined through standard techniques, i.e., by using sample weight 
and volume, with the latter also including the contribution of the inter- 
particle void volume. In more detail, the bulk density was determined as 
the mass to the volume ratio of a sample poured into a graduated cyl-
inder without compacting. When measuring the packed density, instead, 
a step of material compaction was included. Table 1 also summarizes the 
properties of bed compounds used in a previous study of the Authors 
[21], whose obtained data have also been included in the statistical and 
neutral network analyses performed in this work. 

2.3. Experimental setup and cold fluidization test procedures 

Fluidization tests at ambient temperature were carried out using a 
cylindrical column (100 mm inner diameter and 750 mm height) made 
up of clear borosilicate glass, which allows the visual observation of the 
fluidization pattern and movement of particles in the bed during the 
experimental runs. A 6-mm-thick sintered-glass gas distributor disk 
(nominal pore size of 16 – 40 μm) located at the bottom of the column 
supported the bed materials and ensured a uniform distribution of the 
fluidizing gas. The pressure acquisition system was composed of two 
piezoresistive pressure sensors (GE Druck PTX 7200 Series Pressure 
Transmitter with a working pressure range from 0 to 250 mbar) con-
nected to a USB data acquisition device (Pico USB TC-08) and located 
the first one just a few centimeters above the distributor plate, the sec-
ond one in the freeboard. Fluidization experiments were performed at 
room temperature in order to prevent that the formation of endogenous 
bubbles from devolatizing fuel particles could come into play, which 
also impacts mixing and segregation phenomena in real fluidized bed 
reactors [21]. A schematic sketch of the adopted lab-scale fluidized bed 
reactor is shown in Fig. 2. Fluidization tests were carried out on beds 
consisting of either only inorganic (inert or catalytic) particles or binary 
mixtures obtained mixing pre-set amounts of biomass and dense gran-
ular solids, while keeping the bed aspect ratio nearly constant (i.e., H/D 
≈ 2.2 ± 0.2). 

Even though most studies in the literature focus primarily on beds 
with aspect ratios equal to or less than unity, typically described as 

Fig. 1. Pictures of the orange (left side) and tomato (right side) peels samples used in the cold fluidization tests. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

V. Del Duca et al.                                                                                                                                                                                                                               



Fuel 346 (2023) 128314

4

shallow beds, the industrial application of bubbling fluidized bed re-
actors covers a wide range of aspect ratios. Deep bubble fluidized beds (i. 
e., bed with aspect ratio greater than 2), in particular, have certain ad-
vantages, including the more vigorous solids circulation and the 
increased reactant contact time, while ensuring uniform temperature 
and material distribution that make them very attractive for industrial 
applications [22]. Among these, in particular, it is believed that the 
more vigorous solid circulation that characterizes the deep fluidized 
beds compared to the shallow ones, could make the former particularly 
suitable for the treatment of poly-dispersed binary mixture including 
irregular particles of biomass, which have a marked tendency to segre-
gate upon fluidization [21]. An aspect ratio in the order of 2.2 was, 
therefore, adopted in the present study, as it was assumed that such a 
value could be sufficiently high to ensure a more vigorous solid circu-
lation, so as to minimize the onset of segregation phenomena, but at 
same time not so high to favor the occurrence of undesired slug phe-
nomena that are very common in deep beds on a laboratory scale. 

The evaluation of the characteristic velocity of binary mixtures has 
been a controversial subject in recent years [23]. Although, the fluid-
ization of binary beds was traditionally analyzed by defining a minimum 
fluidization velocity, Umf, to be determined (as done with any “mono-
solid” systems) at the intersection between the (extrapolated) pressure 
drop line of fixed bed and the (extrapolated) horizontal line representing 

the suspended state, there is currently no a general agreement on its 
exact definition [23,24]. This is essentially a consequence of the fact 
that, as suggested by the actual phenomenology of the process, analysed 
in detail elsewhere [23–25], the onset of fluidization in a binary bed is a 
rather gradual process. Specifically, it occurs within a quite wide ve-
locity range where the transient and partial fluidization of the bed is 
commonly accompanied by a complex sequence of mixing and segre-
gation phenomena whose specific pattern depend on the properties of 
the binary mixture (i.e., the composition as well as difference in the size, 
the density and the shape of the bed components) as well as the initial 
arrangement of the fixed bed [26,27]. 

The peculiarities of this mechanism are fully reflected by the 
experimental pressure drop diagram of binary mixtures where two 
characteristic velocity thresholds can be typically recognized, just as 
shown in Fig. 3.A) for the specific case of a binary mixture obtained by 
the complete mixing of spheres differing only in diameter. These are the 
“initial fluidization velocity”, Uif, at which ΔP first deviates from the 
fixed bed curve, and the “complete fluidization velocity”, Ucf, at which 
the ultimate value of ΔP is first attained. Accordingly, some authors 
[23,28] have recently proposed the replacement of the conventional 
concept of minimum fluidization velocity, Umf, as discussed above, with 
the new concept of complete fluidization state, whose corresponding 
velocity, Ucf, was defined as the superficial gas velocity where the bed 
pressure drop begins to deviate from the constant bed pressure line 
during defluidization. In line with the abovementioned arguments, 
during each experimental run the pressure drop across the bed was 
continuously recorded and the fluidization curves drawn in order to 
define the onset of both the conditions of incipient (Umf) and complete 
fluidization (Ucf) by means of the conventional graphical methods. 
Specifically, Umf was identified with the superficial gas velocity at the 
intersection of the pressure drop line corresponding to the state of fixed 
bed with the constant pressure drop line corresponding to the fluidiza-
tion state [29], whereas Ucf was instead identified with the minimum 
value of the superficial gas velocity where a pressure drop equal to the 
weight of the bed per unit cross-sectional area is detected in the fluid-
ization curve [21]. Finally, visual observation was used to identify the 
onset of the undesired slugging and segregation phenomena. The values 
of the Umf and the Ucf were measured upon decreasing the fluidization 
gas flow rate to avoid dependence on the initial bed configuration. 
Hence, during each experiment, starting from the above-mentioned 
well-mixed regime, the airflow rate was gradually decreased to zero 
and the pressure drop across the bed continuously recorded. For each of 
the investigated binary mixtures (e.g., UFA/FOP, FA/FOP, FS/FTP and 
CS/FTP) several fluidization tests were performed by increasing the 
biomass weight fraction (XB) into the bed; this approach made possible 
to both study the effect of the bed content on the characteristic velocities 
of the binary systems under study (i.e., minimum and complete fluid-
ization velocities) and determine the critical value of XB (i.e., the so 
called maximum biomass batch loading) beyond which the fluidization 
pattern deteriorates (e.g., channeling, segregation, slugging). As for 
fluidization tests relating to binary mixtures, the initial arrangement of 

Table 1 
Properties of biomass and inert particles used in this study.   

Fine Quarz 
Sand 

Coarse Silica 
Sand 

Ultrafine Al2O3 

Powder 
Fine Al2O3 

Powder 
Coarse Al2O3 

Spheres 
Fine Orange 
Peels 

Coarse orange 
peels 

Fine 
TomatoPeels  

FS CS UFA FA CA FOP COP FTP 

Size range, 
μm 

100–250 150–400 63–180 50–250 200–400 1000–2000 5000x5000 (OP 
slabs) 

1000–2000 

D[3,2], μm 139.8 209.9 92.4 123.7 286.1 – – – 
ρs, kg/m3 2813.5 2650.6 3986.9 3986.9 3986.9 671.7 671.7 1049.9 
ρp, kg/m3 2813.5 2650.6 1250.3 1250.3 1479.7 469.4 421.1 745.8 
ρlb, kg/m3 1444.7 1367.1 758.0 761.1 823.2 380.5 230.2 70.8 
ρpb, kg/m3 1575.0 1537.1 809.3 824.1 870.1 387.1 273.9 104.7 
PV, cc/g 0 0 0.549 0.549 0.425 0.642 0.886 0.388 
Geldart class B B A A B D D D  

Fig. 2. Schematic of the lab-scale fluidized bed reactor used to perform cold 
fluidization tests of polydispersed binary mixtures including biomass particles. 
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the bed was that with the bed components completely segregated and 
the biomass particles on the top (see Fig. 3. B). Starting from this fixed 
bed configuration, first the airflow rate was quickly set at 1500 Nl/h 
(corresponding to a superficial gas velocity of about 5 cm/s) and then 
gradually increased until a slugging or turbulent regime was observed. 
In most of the performed experimental runs, an air flow rate in the order 
of 1500 Nl/h proved to be sufficient to ensure a gradual transition (in<2 
min) from the initial fully segregated fixed bed configuration (Fig. 3. B) 
to a well-mixed regime (Fig. 3. C) characterized by a uniform distribu-
tion of particles in the bed, as showed by the snapshots in Fig. 3, which 
refers to CA/FOP-22 binary mixture. However, in general, both the 
critical air flow rate and time required to reach a well-mixed regime 
slightly increased by increasing the biomass weight fraction in the bed 
for each of the investigated binary mixtures [21]. It is worth noting that 
if a too high initial air flow rate was adopted, the system exhibited an 
almost plug-flow behavior, which means that all particles were trans-
ported out of the bed with little back-mixing. In more details, in this 
work, the maximum biomass batch loading for the investigated binary 
mixtures was assumed equal to the biomass weight fraction value (XB) 
beyond which, starting from a fully segregate fixed bed configuration, 
the further increase of the air flow rate above 1500 Nl/h did not result in 
a well-mixed regime but rather in a partially segregated bed with either 
residual biomass particles floating at the bed surface (flotsam) and 
exhibiting slugging regime or biomass particles sinking to the bottom of 
the bed (jetsam) as shown in detail in the Fig. 4, borrowed from a pre-
vious study of the authors [21]. 

To ensure the reliability of the experimental data, but without 
making the experimental campaign excessively time-consuming, only 
some tests (UFA/FOP-18; FA/COP-18; UFA/FOP-6; UFA/FOP-16; FA/ 
FOP-16; FA/FOP-20; CA/FOP-18; CA/FOP-22) were randomly per-
formed in duplicate, returning a relative error in the order of 3 and 2% 
on the determination of the minimum and complete fluidization veloc-
ity, respectively. 

2.4. Canonical Correlation analysis and artificial neural networks 

In a first phase, the parameters used as inputs were: inert material 
density ρparticle (kg/m3), inert Sauter diameter dSauter, biomass volume 
fraction in the bed (%vol.), biomass characteristic size (i.e., prevailing 
length Lb, mm), biomass particle density ρparticle (kg/m3), biomass 
sphericity factor Φb. In a subsequent phase, CCA inputs were linearly 
combined and incremented with the following ones: inert material bulk 
density ρbulk (kg/m3), biomass bulk density ρbulk (kg/m3), biomass 
weight fraction in the bed (%wt.). On the other side, the outputs 

parameters were: the minimum fluidization velocity Umf and the com-
plete fluidization velocity Ucf. As for the calculation of Φb, fine orange 
peels present a pseudo-spheroidal shape with relative proportions of 
1:1:2 [30], so a value of 0.93 was set; for coarse orange peels and fine 
tomato peels the shapes resembled rectangular parallelepipeds with 
relative proportions of 1:4:4 and 1:2:4, so the values of Φb were set 0.64 
and 0.68, respectively. Lb was defined as the average maximum 
dimension of the biomass particle; so, for fine orange peels, coarse or-
ange peels and fine tomato peels Lb was 1.41, 5.00 and 1.04 mm, 
respectively. 

These features were chosen on the base of the fact that from a 
practical point of view are simple to obtain for a biomass, and because 
are the typical features governing the Ergun’s equation. In particular, Lb 
is considered as the characteristic size for the biomass, while bulk and 
particle densities are chosen as parameters which are correlated with 
void fraction ε. The feature related to fluidizing gas are not considered in 
the dataset because the air was used for all tests. The complete dataset – 
no missing data are present - has made available in the supplementary 
material. 

The performance indicators are MAE, MSE, SAE, MAPE and R2 

calculated in the evaluation of the fluidization velocity but for simpli-
fication, only MAPE and R2 have been reported here. Canonical Corre-
lation Analysis (CCA) is widely used to extract the correlated patterns 
between two sets of variables. CCA looks at two sets of variables for 
modes of maximum correlation between the two sets. Thus, CCA sits at 
the top of a hierarchy of regression models where it is able to manage 
multiple predictors (inputs) and multiple predictands (outputs). If × is 
the set of predictors and y the predictands, then CCA can be used to 
predict y when new observations of × become available [31]. In this 
study, CCA is used as a starting and comparative statistical advanced 
analysis to the ANNs, in terms of performance (MAPE, R2), relative to 
the minimum and complete fluidization velocity, Umf and Ucf. In this 
study, ANNs were used to predict the minimum fluidization velocity Umf 
and the complete fluidization velocity Ucf. Input and output parameters 
used are the same used for CCA analysis. Specifically, an algorithm, 
called “netoptim”, was conceived within the present research and 
implemented in Matlab to develop a large number of ANNs, with the 
goal of evaluating different choices such as: i.) the network type (fitnet, 
feedforwardnet and cascadeforwardnet); ii.) the number of neurons in 
the hidden layer (set, initially, equal to the number of inputs ± 3); iii.) 
the training function. In this work, the Authors decided to set up the 
transfer function as an hyperbolic tangent sigmoid, in order to avoid a 
further parameter to investigate. 

Fig. 3. A) Pressure drop diagram of a two component mixture obtained by the complete mixing of spheres differing only in diameter (adapted from [26]); B.) 
snapshot of the initial arrangement of the bed during the cold flow fluidization test performed on the CA/FOP-22 binary mixture: C.) snapshot of the CA/FOP-22 
binary mixture frozen in a perfectly mixed condition by instantly bringing the fluidization gas flow to zero. 
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3. Results and discussion 

3.1. Experimental results - dataset 

Table 2 lists the values of the velocities of minimum and complete 
fluidization obtained for the investigated binary mixtures as borrowed 
from a previous study of the Authors [21]. 

3.2. Modelling results 

Table 3 reports the results of the CCA analysis carried out for Umf and 
Ucf, in terms of MAPE for different attempts (tests 1–5) considering 
different combinations of input variables. 

Some inputs are fixed in all tests, such as the particle density of inert 
and biomass (ρI

part and ρB
part), the Sauter diameter of the inert (dI

Sauter), the 
max average length (LB) and the sphericity (ΦB) of the biomass. Instead, 
the bulk density of inert and biomass (ρI

bulk and ρB
bulk) was considered 

only for tests 3 and 4, while the biomass fraction in the bed was reported 

Fig. 4. Segregation and slug phenomena in: A) FS/COP-6 (XB = 6.1 %wt.; 26.8 %vol.); B) CS/COP-7 (XB = 7.1 %wt.; 24.6 %vol.); C) CA/COP-18 (XB = 18.4 %wt.; 
43.6 %vol.); and D) FA/COP-21 (XB = 20.7 %wt.; 45.3 %vol.) binary mixtures at high fluidization number (Ug/Umf) (Reproduced by permission from Brachi 
et al. [21]). 

Table 2 
Experimental operating variables and binary mixture characteristic velocities.  

Binary mixtures % wt. 
Biomass 

%vol 
Biomass 

Umf, 
cm/s 

Ucf, 
cm/s 

Binary mixtures % wt. 
Biomass 

%vol Biomass Umf, 
cm/s 

Ucf, 
cm/s 

FS/COP-0 0  0.00 1.99  2.85 UFA/FOP-18 18.03  31.50  0.32  4.92 
FS/COP-1 1.03  5.65 2.27  5.08 FA/FOP-0 0  0.00  0.68  2.04 
FS/COP-2 2.04  10.69 2.35  5.62 FA/FOP-2 2.17  4.51  0.8  5.33 
FS/COP-3 2.97  14.97 2.62  6.19 FA/FOP-4 4.1  8.34  0.73  5.33 
FS/COP-4 4.18  20.05 3.17  6.63 FA/FOP-6 6.03  12.02  0.74  4.92 
CS/COP-0 0  0.00 3.75  6.43 FA/FOP-8 8.03  15.67  0.74  4.92 
CS/COP-1 1.04  5.57 4  5.24 FA/FOP-10 10.06  19.23  0.73  4.79 
CS/COP-3 2.96  14.62 3.79  5.10 FA/FOP12 12.34  23.06  0.6  4.92 
CS/COP-5 4.85  22.24 4.23  5.66 FA/FOP-14 14.16  25.99  0.66  4.92 
FA/COP-0 0  0.00 0.68  2.04 FA/FOP-16 16.3  29.31  0.61  4.91 
FA/COP-1 0.99  2.92 0.79  1.21 FA/FOP-18 18.18  32.11  0.55  5.31 
FA/COP-3 2.91  8.27 0.76  1.72 FA/FOP-20 20.56  35.53  0.59  5.43 
FA/COP-5 4.82  13.22 0.79  1.71 FA/FOP-22 22.07  37.61  0.57  5.68 
FA/COP-7 6.61  17.56 0.77  2.04 FA/FOP-24 24.07  40.29  0.59  5.81 
FA/COP-9 9.17  23.30 0.78  2.69 FA/FOP-26 26.27  43.13  0.6  6.60 
FA/COP-11 10.77  26.64 0.76  2.99 FA/FOP-28 28.25  45.60  0.81  6.96 
FA/COP-12 12.31  29.70 0.77  3.00 CA/FOP-0 0  0.00  3.05  5.94 
FA/COP-14 13.86  32.62 0.84  3.01 CA/FOP-2 2.17  4.75  3.21  5.19 
FA/COP-15 15.31  35.23 0.93  3.31 CA/FOP-4 4.06  8.69  3.21  4.92 
FA/COP-17 16.73  37.68 0.86  3.94 CA/FOP-6 6.01  12.57  3.24  5.18 
FA/COP-18 18.1  39.94 0.95  4.23 CA/FOP-8 8.05  16.44  3.55  5.94 
CA/COP-0 0  0.00 2.96  5.94 CA/FOP12 11.5  22.61  4.15  4.92 
CA/COP-2 2.01  6.12 3.07  4.53 CA/FOP-14 14.29  27.26  5.63  5.19 
CA/COP-4 4.09  11.93 3.09  4.53 CA/FOP-18 18.8  34.23  5.23  6.17 
CA/COP-6 6.08  17.06 3.1  4.82 CA/FOP-22 22.36  39.30  6.37  6.52 
CA/OP-8 8.05  21.76 3.24  5.53 CA/FOP-24 24.05  41.58  7.38  7.70 
CA/COP-10 10.15  26.41 3.29  5.38 FSS/TP-0 0  0.00  1.99  2.85 
CA/COP-12 12.24  30.70 3.38  5.58 FSS/TP-1 1  13.20  2.14  6.43 
FA/COP-14 14.31  34.66 3.49  5.58 FSS/TP-2 2  23.50  3.65  6.45 
CA/COP-16 16.36  38.33 3.42  6.10 FSS/TP-3 3.5  35.31  8.22  9.84 
UFA/FOP-0 0  0.00 0.35  1.04 FSS/TP-5 5.2  45.22  8.48  10.69 
UFA/FOP-2 2.17  4.43 0.34  4.12 FSS/TP-9 9  59.81  12.33  12.74 
UFA/FOP-4 4.13  8.26 0.34  4.28 CSS/TP-0 0  0.00  3.75  6.43 
UFA/FOP-6 6.06  11.88 0.35  3.84 CSS/TP-1 1  12.92  6.1  8.00 
UFA/FOP-8 8.05  15.47 0.36  4.13 CSS/TP-2 2  23.06  8.3  9.50 
UFA/FOP-10 10.16  19.12 0.38  4.27 CSS/TP-3 3.5  34.75  10.7  11.30 
UFA/FOP-12 12.04  22.25 0.28  4.41 FA/TP-1 1  7.37  0.87  2.69 
UFA/FOP-14 14.06  25.49 0.38  5.67 FA/TP-2 2  13.84  0.92  2.69 
UFA/FOP-16 16.26  28.87 0.37  5.33 FA/TP-3 3  19.58  1.15  3.01  
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in mass for tests 1 and 3, and in volume for tests 2 and 4, in order to 
evaluate which of the 2 variables has a positive effect on the perfor-
mance of the statistical analysis. Finally, for the test 5 the effect of the 
biomass fraction in the bed was considered both by weight and by 
volume. 

In general, the CCA shows poor performance for Umf: a positive effect 
occurs when the biomass fraction (%wt.) in the bed is present among the 
inputs (tests 1 and 3), on the contrary the biomass fraction in the bed by 
volume tends to have a negative effect (test 2 and 4). However, a sub-
stantial improvement, even if the MAPE remains very high (greater than 
40%), occurs when both biomass fractions are used as inputs. The main 
difficulty of the CCA is found for low Umf values (<1cm/s), which mainly 
concerns mixtures where the inert is alumina below 150 μm. Probably 
this is related to the fact that the inert belongs to Geldart A particle 
classification, which includes particles exhibiting a non-uniform fluid-
ization regime. 

Conversely, the performances on Ucf were much better, even if the 
effect of the biomass fraction is opposite with respect to that found for 
Umf. Actually, the best results were obtained when the volume value was 
used (tests 2 and 4), obtaining MAPEs of approximately 18%; instead, 
the utilization of the weight fraction triggers an increase in the error of 
about 2 % points (tests 1 and 3). The presence of both fractions improves 
performance slightly (test 5). In conclusion, the best performance of CCA 
were MAPE values of 40.72% for Umf and 17.52% for Ucf. 

The set of inputs used for the training of the ANNs, the same for Umf 
and Ucf, are those referred to the test 2 of the CCA. This choice was made 
because it gives the best combination between the number of inputs used 
and the value of the MAPE on Ucf, which is the variable of greatest in-
terest here. Fig. 5 shows the MAPE values resulting from the training of 
the three different networks with different architecture as a function of 
the number of neurons.1 The training function was also varied for each 
type of network and number of neurons, thus testing 12 different types, 
for a total of 216 + 216 neural networks trained for Umf and Ucf. 
However, for the sake of clarity, only the best network obtained from the 
12 different types of training functions is reported for each value of the 
number of neurons. 

Unlike the CCA, the ANNs perform better on Umf than on Ucf, even if 
in general it occurs that the ANNs have much better performances than 
the statistical analysis. For Umf the best network was the fitnet with 7 
neurons (training function based on Bayesian Regularization algorithm) 
with a MAPE value of about 4%. 

Both the fitnet and the feedforward have a very similar trend unlike 
the cascadeforwardnet, which instead differs greatly from the other two, 
in particular, for intermediate values of the number of neurons (Fig. 5 on 
the left). The differences among the type on ANN becomes less evident 
for Ucf (Fig. 5 on the right). For Ucf the best ANN was the feedforward net 
with 6 neurons and, as in this case of Umf, the best training function was 
the Bayesian Regularization algorithm. The MAPE obtained was about 
6.71%. The best ANNs for the two outputs were further explored in 

detail in order to assess the impact of individual inputs on individual 
outputs.2 Fig. 6 compares the real values of Umf and Ucf with those ex-
pected (U*

mf and U*
cf ) from the respective ANN networks. For Umf it is 

possible to note that, also for low values, a satisfactory prediction is 
granted by the model, unlike the CCA, with a R2 of 0.98. This demon-
strates the great ability of ANN to manage complex relationships among 
physical properties. Also, for Ucf the accordance with U*

cf was very good, 
presenting a R2 = 0.93. The application of the connection weight 
method [32–34] has permitted to evaluate the impact of individual in-
puts on the machine learning process (Table 4). For Umf, the particle 
density of the inert has the greatest impact of approximately 46%, fol-
lowed by the sphericity (23.8%) and the characteristic size of the 
biomass (11.8%). The strong impact of the particle density of the inert is 
almost certainly due to the fact that, when the minimum fluidization 
condition is reached, only the inert material begins to fluidize, while the 
biomass remains static in segregated conditions. Ucf is strongly depen-
dent both on the particle density of the inert (31.4%) and on the volu-
metric fraction of the biomass in the bed (31.9%), as expected, and on 
the particle density of the biomass itself (13.6%), albeit to a lesser 
extent. Vice versa, the characteristic size and sphericity of the biomass 
seem to play a marginal role; this result was certainly not predictable 
and would deserve further investigation. 

4. Conclusions 

Evidence from literature shows that currently available correlations 
to predict the minimum fluidization velocity of binary mixtures 
including biomass exhibit significant limitations in terms of accuracy 
and/or applicability, being appropriate only for specific binary mixture 
types. Further work is, therefore, needed to develop more accurate and 
generic correlations as well as to provide additional insight on predict-
ing the fluidization behavior of biomass-based binary mixtures, which 
are encountered in many industrial processes spanning the manufacture 
of energy, material and resources to greenhouse emissions mitigation 
and renewable resources utilization. 

In this context, the present work investigated the fluidization and 
segregation behaviour of poly-disperse binary mixtures of biomass and 
inert particles. In particular, air-dried orange and tomato peels were 
used as biomass feedstock while several granular solids with the same 
density but different size or with the same size but different density were 
tested as inert bed component in order to determine the prevalence of 
the effect of either size or density on the fluidization and segregation 
behavior of the investigated binary systems. Tests at different weight 
fraction of the biomass in the bed were also performed for each of the 
investigated binary systems. Results suggest that the bed components’ 
density difference prevails over the size difference in determining the 
mixing/segregation behavior of binary fluidized bed, whereas the ve-
locities of minimum and complete fluidization increased with the in-
crease of the biomass weight fraction in the bed. The results from the 
experimental campaign have been used to create the dataset for the 

Table 3 
MAPE of Umf and Ucf obtained by CCA as function of different set of inputs.   

Inert Biomass %Biomass MAPE, % 

# of test ρI
bulk ρI

part dI
Sauter ρB

bulk ρB
part LB ΦB %w %vol Umf Ucf 

1 – × × – × × × × –  65.54  20.31 
2 – × × – × × × – × 76.02  17.98 
3 × × × × × × × × –  65.53  20.24 
4 × × × × × × × – × 75.98  18.18 
5 – × × – × × × × × 40.72  17.52  

1 The comparison of MAPE behaviour with the number of neurons with MAE, 
MSA and SAE is included in the supplementary material. 

2 Weights and bias matrices for the best ANNs are reported in the supple-
mentary materials. 
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training of ANNs in MATLAB environment for predictions of Umf and Ucf 
of binary mixtures. Before the developing of ANNs, also a multivariate 
statistical analysis has been developed by the implementation of Ca-
nonical Correlation Analysis (CCA). The results from CCA showed poor 
performance in terms of prediction for Umf, where main fails have been 
observed for fine inert materials belonging to Geldart A group. 
Conversely, ANNs demonstrated good performances for both outputs 
(Umf and Ucf), moreover, in opposite to CCA, best predictions have been 
obtained for Umf with a MAPE < 4% (R2 = 0.98), while for Ucf the best 
ANN returned a MAPE of about 7% (R2 = 0.93). The analysis on the 
relative importance of the different outputs showed interesting results, 
which deserve a deeper investigation. Indeed, Umf depends strongly, as 
expected, on particle density of the inert and on the sphericity of the 
biomass, but the volumetric percentage of the biomass in the mixture 
and its characteristic length have had a lower impact on the results. This 

may be due to the fact, that at minimum fluidization conditions only the 
inert fluidizes, while the biomass remains static and segregated, and 
probably its presence in the bed represents, in a certain way, an obstacle 
to the movement of the inert. Conversely, the volumetric fraction of the 
biomass in the mixture becomes relevant for the prediction of Ucf, while 
the sphericity and the characteristic length of the biomass have a mar-
ginal role, as if the morphological characteristics of biomass become less 
important in conditions of complete fluidization of the bed. However, 
this work represents only a first attempt for applying machine learning 
techniques for such problems, and more in-depth analysis will be faced 
in the future including the use of other techniques such as Regression 
tree, Random Forest, or Support Vector Machine method. 
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