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We investigate the effective Landé factor in semiconductor nanowires with strong Rashba spin-
orbit coupling. Using the k · p theory and the envelope function approach we derive a conduction
band Hamiltonian where g∗ is explicitly related to the spin-orbit coupling contants αR. Our model
includes orbital effects from the Rashba spin-orbit term, leading to a significant enhancement of the
effective Landé factor which is naturally anisotropic. For nanowires based on the low-gap, high spin-
orbit coupled material InSb, we investigate the anisotropy of the effective Landé factor with respect
to the magnetic field direction, exposing a twofold symmetry for the bottom gate architecture. The
anisotropy results from the competition between the localization of the envelope function and the
spin polarization of the electronic state, both determined by the magnetic field direction.

I. INTRODUCTION

Semiconductor nanowires (NWs) continue to at-
tract significant interest due to the abundance of
physical phenomena observed in such nanostructures,
as well as the wealth of potential applications, in-
cluding optoelectronics,1–4 quantum computing,5–7 or
spintronics.8–11 Applications in spintronics are largely
driven by the spin-orbit (SO) interaction, which – in low
energy gap semiconductors, such as InAs or InSb – is suf-
ficiently strong to enable electrical control of the electron
spin. In general, the SO interaction originates from the
lack of the inversion symmetry, which could be an intrin-
sic feature of the crystallographic structure (Dresselhaus
SO coupling12) or induced by the asymmetry of the con-
finement potential (Rashba SO coupling13). The latter
has the essential advantage of being tunable by external
fields, e.g., using gates attached to the nanostructures, as
predicted theoretically14–21 and demonstrated in recent
experiments.22–26

The significant progress in heteroepitaxy, which has
been made over the last decade, enables the growth
of a thin superconducting layer on the surface of
semiconductor.27–30 In this respect hybrid NWs with a
large SO interaction are recently intensively studied as
the basic building blocks for topological quantum com-
puting based on Majorana zero modes.31–35 These exotic
states are formed at the ends of NWs when the system
becomes spinless, which is achieved in experiments by ap-
plying a magnetic field and the corresponding spin Zee-
man effect.31 The induced topological gap strongly de-
pends on the strength of the SO coupling and the energy
of the Zeeman splitting,36–38 usually expressed in terms
of a linear response to the magnetic field with a pro-
portionality constant g∗ – the effective Landé factor. In
other words, g∗ determines the strength of the magnetic
field required to trigger the system into the topological
phase. For this reason, it is desirable to make it as large

as possible, as the magnetic field needed for the topo-
logical transition is required to be lower than the critical
magnetic field of the superconducting shell.33

In semiconducting materials g∗ is significantly differ-
ent from the free-electron Landé factor g0, due to cou-
pling between the valence and the conduction band. In
the second-order perturbation k ·p theory it leads to the
Roth-Lax-Zwerdling (RLZ) formula,39 which for low gap
semiconductors gives g∗ ≪ g0, e.g. g∗ ≈ −49 for InSb.
In particular, for semiconductor nanostructures the RLZ
formula predicts a reduction of the effective Landé fac-
tor with respect to the bulk value,40–42 as the subband
confinement increases the energy gap, which is inversely
proportional to g∗.39 However, unexpectedly, recent ex-
periments in NWs based on InAs and InSb exhibit op-
posite behaviour - the extracted g∗ is up to three times
larger than the bulk value.7,43,44 Furthermore, in Ref. 44
a step like evolution of g∗ has been reported as a func-
tion of the gate voltage. It has been recently proposed
that this surprising behaviour arises from the L · S cou-
pling, which for higher subbands (characterized by the
large orbital momentum) leads to the enhancement of g∗
by about one order of magnitude.45

In this paper we develop a full 8× 8 k ·p theory of the
effective Landé factor in semiconductor NWs which takes
into account the orbital effects in the SO coupling terms
induced by an external magnetic field of arbitrary direc-
tion. For a nanowire based on the low-gap, strongly SO
coupled material InSb, we performed fully self-consistent
calculations taking into account on equal footing orbital
and Zeeman effects of the applied magnetic field, SO cou-
pling and the electrostatic environment. We demonstrate
that the orbital contribution to g∗ ensuing from the SO
interaction may overcome the bulk contribution, leading
to the enhancement of the effective Landé factor by an
order of magnitude, even for the lowest subband, the one
usually considered in Majorana experiments. Finally, we
also evaluate the anisotropy of the SO-induced Landé
factor with respect to the magnetic field rotated in dif-
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ferent planes. Our results qualitatively agree with re-
cent experiments7,43,44 reproducing the enhancement of
g∗ and its anisotropy.

The paper is organized as follows. In Sec. II A, the
Landé factor is derived from the 8× 8 k ·p model within
the envelope function approximation. Details on the nu-
merical method are given in Sec. II B. Sec. III contains
results of our calculations for homogeneous InSb NWs
and their discussion with respect to recent experiments.
Sec. IV summarizes our results.

II. THEORETICAL MODEL

Below we shall derive a k · p formulation of the Landé
factor in semicondutor NWs. We shall specifically con-
sider a homogeneous InSb, with hexagonal cross section,
grown in the zincblede crystallographic structure along
the [111] direction. This particular orientation preserves
the crystal inversion symmetry, resulting in the reduction
of the Dresselhaus SO coupling term.12,22

The system is subjected to a uniform external mag-
netic field with intensity B. The direction of the applied
magnetic field with respect to the NW axis is determined
by the angles θ, between the field and the NW axis (z),
and φ, between the x axis (oriented along the corner-
corner direction) and the projection of the field on the
xy plane – see Fig. 1. Hence,

B = [Bx, By, Bz]
T

= B [sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)]
T
.

(1)

FIG. 1. Schematic illustration of a NW with a bottom gate
together with a coordinate system with the magnetic field
direction determined by two angles θ and φ.

We adopt the symmetric vector potential

A(r) =
[
−yBz

2
,
xBz

2
, yBx − xBy

]T
, (2)

and assume that the back gate is attached directly to the
bottom facet of NW, generating an electric field in the
xy plane. Although in real experiments a dielectric layer

separating the NW from the gate is usually used, it plays
a role of screening for the electric field. Hence, the value
of the Landé factor obtained for a particular gate voltage
Vg can be considered as the maximum achievable value
at that specific Vg.

A. k · p theory of the Landé factor

Our model is based on the 8 × 8 k · p approximation
described by

Ĥ8×8 =

[
Ĥc Ĥcv

Ĥ†
cv Ĥv

]
, (3)

where Ĥc is the Hamiltonian of the conduction band elec-
trons corresponding to the Γ6c band. In the presence of
the magnetic field Ĥc can be written as

Ĥc = HΓ6c
I2×2 +

1

2
µBg0σ ·B, (4)

where the second term corresponds to the Zeeman spin
effect, µB is the Bohr magneton, g0 is the Landé factor
of the free electron and σ = (σx, σy, σz) is the vector of
Pauli matrices, while

ĤΓ6c
=

P̂
2

2m0
+ Ec + V (r), (5)

where P̂ = p̂ − eA, e is the electron charge, m0 is the
free electron mass and Ec is the conduction band min-
ima. The potential V (r) in (5) contains the interaction
of electrons with the electric field generated by the ex-
ternal gates Vg(r) and the electron-electron interaction
included in our model at the mean field level (Hartree
potential) VH(r), V (r) = Vg(r) + VH(r).

Below we shall use a folding procedure of Ĥ8×8 to the
conduction band sector, where in the Hamiltonian Ĥv,
related to valance bands Γ8v and Γ7v, all off-diagonal
elements are neglected. Then, Ĥv can be written as

Ĥv = HΓ8vI4×4 ⊕HΓ7vI2×2, (6)

with

HΓ7v = Ev′ = Ec + V (r)− E0 −∆0 ,

HΓ8v = Ev = Ec + V (r)− E0 ,
(7)

where E0 is the energy gap and ∆0 is the energy of SO
splitting in the valence band. Note that Eq. (6) neglects
the kinetic term and Zeeman splitting in the valance band
as the corresponding energies are much smaller than E0

and ∆0.
The coupling between the conduction band and the

valence band is described by the off-diagonal matrix Ĥcv,

Ĥcv =
P0

ℏ


P̂+√
6

0 P̂−√
2

−
√
2P̂z√
3

− P̂z√
3

P̂+√
3

−
√
2P̂z√
3

− P̂+√
2

0 − P̂−√
6

P̂−√
3

P̂z√
3

 , (8)
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where P̂± = P̂x ± iP̂y and the parameter P0 =
−iℏ
m0

⟨S|p̂x|X⟩ accounts for the coupling between conduc-
tion and valence bands at the Γ point of the Brillouin
zone.

Using the standard folding-down transformation, we
can reduce the 8 × 8 k · p model (3) into the effective
2× 2 Hamiltonian for conduction electrons

Ĥeff = Ĥc − Ĥcv(Ĥv − E)−1Ĥ†
cv = Ĥc + H̃c. (9)

In the above formula, H̃c can be written in terms of Pauli
matrices

H̃c = λ0I2×2 + λ · σ, (10)

where

λ0 =
P 2
0

3ℏ2

[
P̂x

(
2

Ev − E
+

1

Ev′ − E

)
P̂x

+ P̂y

(
2

Ev − E
+

1

Ev′ − E

)
P̂y

]
, (11a)

λx =
iP 2

0

3ℏ2

[
P̂z

(
1

Ev − E
− 1

Ev′ − E

)
P̂y

− P̂y

(
1

Ev − E
− 1

Ev′ − E

)
P̂z

]
, (11b)

λy =
iP 2

0

3ℏ2

[
P̂x

(
1

Ev − E
− 1

Ev′ − E

)
P̂z

− P̂z

(
1

Ev − E
− 1

Ev′ − E

)
P̂x

]
, (11c)

λz =
iP 2

0

3ℏ2

[
P̂y

(
1

Ev − E
− 1

Ev′ − E

)
P̂x

− P̂x

(
1

Ev − E
− 1

Ev′ − E

)
P̂y

]
. (11d)

The first term in Eq. (10) leads to the standard formula
for the effective mass

1

m∗ =
1

m0
+

2P 2
0

3ℏ2

(
2

Ev
+

1

Ev′

)
, (12)

while the second term corresponds to the Rashba SO cou-
pling. If we assume that E0 and ∆0 are the largest ener-
gies in the system we can expand Ev(v′) in Eqs. (11b-11d)
to the second order in energy. Then, Eqs. (11b)-(11d) can
be rewritten as

λx = −αy
R

(
kz −

e

ℏ
Az

)
− eP 2

0

3ℏ

(
1

E0
− 1

E0 +∆0

)
Bx,

(13a)

λy = αx
R

(
kz −

e

ℏ
Az

)
− eP 2

0

3ℏ

(
1

E0
− 1

E0 +∆0

)
By,

(13b)

λz = αy
R

(
k̂x − e

ℏ
Ax

)
− αx

R

(
k̂y −

e

ℏ
Ay

)
− eP 2

0

3ℏ

(
1

E0
− 1

E0 +∆0

)
Bz, (13c)

where

αR = (αx
R, α

y
R, α

z
R)

=
P 2
0

3

(
1

E2
0

− 1

(E0 +∆0)
2

)
∇V (x, y)

(14)

is the Rashba SO coupling constant and we assume
p̂ = ℏ(k̂x, k̂y, kz) = ℏ(−i∂/∂x,−i∂/∂y, kz). Note that in
Eqs. (13a, 13b) we have already omitted αz

R terms since
the magnetic field does not break translational invariance
along the wire axis, i.e.,

Ψn,kz (x, y, z) = ψn,kz (x, y)e
ikzz

= [ψ↑
n,kz

(x, y), ψ↓
n,kz

(x, y)]T eikzz .
(15)

From Ĥeff we determine the spin-split energy sub-
bands En,kz

(B), and from these the effective g∗ factor
of the lowest state as

g∗ =
(E2,kz(B)− E2,kz(0))− (E1,kz(B)− E1,kz(0))

µbℏB
.

(16)
Note that the above definion of g∗ excludes the spin split-
ting which is due to the SO coupling solely, and may be
present also at B = 0 (at which g∗ = 0). However, the
total SO term involves the magnetic field by the kinetic
momentum, and it also contributes to the effective Landé
factor. To show that, let us decompose the SO term into
the part depending on the canonical momentum k and
the vector potential, A. Then, the effective Hamiltonian
for conduction electrons can be written as

Ĥeff =

(
P̂

2

2m∗ + Ec + V (r)

)
I2×2 + (αx

Rσy − αy
Rσx)kz

+ (αy
Rk̂x − αx

Rk̂y)σz +
1

2
µBBg∗σ (17)

where g∗ is a tensor given by

g∗ = gRLZI3×3 + gSO , (18)

and

gRLZ = g0 −
2Ep

3

(
1

E0
− 1

E0 +∆0

)
, (19)

which corresponds to the well-know RLZ formula,39
(Ep = 2m0P

2
0 /ℏ2), while the tensor gSO results from

the orbital effects of the magnetic field in the SO Hamil-
tonian,

gSO =

gxxSO gxySO 0
gyxSO gyySO 0
0 0 gzzSO

 . (20)

Using the vector potential (2), the elements of this ten-
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sor can be expressed as

gxxSO =
2e

µBℏ
αy
Ry, (21a)

gyySO =
2e

µBℏ
αx
Rx, (21b)

gzzSO =
e

µBℏ
(αy

Ry − αx
Rx) , (21c)

gxySO = − 2e

µBℏ
αx
Ry, (21d)

gyxSO = − 2e

µBℏ
αy
Rx. (21e)

which shows that g∗ depends linearly on the vector of
Rashba SO coupling constants αR.

Note that gSO is not an observable and it is gauge de-
pendent (while of course λx(y, z) in Eqs. (13a-13c), hence
g∗, are gauge invariant, as they involve the kinetic mo-
mentum P ). However, since it explicitly demonstrates
the contribution to the effective Landé factor from the
SO coupling, it is useful to use gSO for analysing g∗.

Since the Rashba coefficients and the SO induced
Landé factor are functions of space [see Eqs. (14, 21)],
we discuss the matrix elements of the Rashba SO cou-
pling constants

⟨αx(y)
R (kz)⟩n = ⟨ψn,kz

|αx(y)
R σy(x)|ψn,kz

⟩ (22)

and the individual diagonal and off-diagonal matrix ele-
ments of gSO, respectively defined as

⟨gxx(yy,zz)SO (kz)⟩n = ⟨ψn,kz
|gxx(yy,zz)SO σx(y,z)|ψn,kz

⟩,
(23a)

⟨gxy(yx)SO (kz)⟩n = ⟨ψn,kz
|gxy(yx)SO σy(x)|ψn,kz

⟩, (23b)

where |ψn,kz ⟩ is the in-plane part of the n-th envelope
functions of NW, to be calculated as described in the
following section.

It is useful to compare our derivation with Lassnig’s
for the two dimensional gas, reported in Ref. 46. There,
g∗ has been defined in such a way that its first deriva-
tive determines the SO coupling constant, hence it con-
tains information about the total spin splitting of the
energy levels, ensuing both from the linear Zeeman term
and the SO coupling, whose dependence on the magnetic
field is more complex. Here, instead, we define the ef-
fective Landé factor as the coefficient of proportionality
between the spin splitting of the energy levels induced
by the external magnetic field and the magnitude of the
field. This procedure allows to distinguish between two
effects among which the one which changes with B de-
fines the effective Landé factor. Note that such a defini-
tion is usually used in experiments to determine g∗.7,43,44

B. Numerical calculations

To understand the physics behind the behaviour of
the Landé factor in NWs with strong SO coupling, we

use a numerical approach taking into account impor-
tant key ingredients, namely the orbital and Zeeman
effect, SO coupling and electrostatic environment. For
this purpose, we employ a standard Shrödinger-Poisson
approach.17,18,47–51 Assuming the translational invari-
ance along the growth axis z, the envelope functions
ψn,kz

(x, y) = [ψ↑
n,kz

(x, y), ψ↓
n,kz

(x, y)] can be determined
from the Schrödinger equation[ (

P̂
2

2D

2m∗ +
1

2
m∗ω2

c [(y cos θ − x sin θ) sinφ− kzl
2
B ]

2 + Ec

+ V (r)

)
I2×2 + (αx

Rσy − αy
Rσx)kz + (αy

Rk̂x − αx
Rk̂y)σz

+
1

2
µBBg∗σ

]
ψn,kz (x, y) = En,kzψn,kz (x, y), (24)

where αx(y)
R and g∗ are functions of the position (x, y),

ωc = eB/m∗ is the cyclotron frequence, lB =
√
ℏ/eB is

the magnetic length and

P̂
2

2D =
(
p̂x + eB

y cosφ

2

)2
+
(
p̂y − eB

x cosφ

2

)2
. (25)

Note that in the presence of magnetic field and SO cou-
pling the Hamiltonian (24) depends on the kz vector.
The calculations are carried out on a uniform grid in
the range [−kmax

z , kmax
z ] where kmax

z is chosen to be
much larger than the Fermi wave vector. The term
(αy

Rk̂x−αx
Rk̂y)σz in Hamilonian (24) needs an additional

comment as it may suggest the violation of time rever-
sal symmetry. As we checked, this is not the case and
[(αy

Rk̂x − αx
Rk̂y)σz, T ] = 0, where T = K(−yσy) and

K is the complex conjugate operator. As a result, at
B = 0 the Kramers degeneracy is preserved, resulting in
the crossing of states at kz = 0.

The self-consistent potential V (r) in Eq. (24) is deter-
mined at the mean field level by solving of the Poisson
equation

∇2
2DV (x, y) = −ne(x, y)

ϵ0ϵ
(26)

where ϵ is a dielectric constant and the electron density
ne can be calculated based on the formula

ne(x, y) =
∑
n

∫ kmax
z

−kmax
z

1

2π
|ψn,kz (x, y)|2f(En,kz −µ, T )dkz

(27)
where µ is the chemical potential, T is the temperature
and f(E, T ) is the Fermi-Dirac distribution.

In the applied Shrödinger-Poisson approach, equations
(24) and (26) are solved alternatively until the self-
consistency is reached, which we consider to occur when
the relative variation of the charge density between two
consecutive iterations is lower than 0.001. In each it-
eration a spatial distribution of αx(y)

R and gabSO, where
a, b = {x, y, z}, are determined based on Eqs. (14) and
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(21). Numerical calculations are carried on the triangu-
lar grid, which preserves the hexagonal symmetry of the
Hamiltonian at zero field, avoiding artifacts such as spu-
rious level splittings which may appear when using rect-
angular grid symmetry.47 We assume Dirichlet bound-
ary condition for all the facets with a specified condition
for the bottom one, defined by the voltage applied to
the gate. Finally, the energy spectrum En,kz , the self-
consistent potential V (x, y) and the corresponding wave
functions ψn,kz

(x, y) are used to determine g∗, ⟨αx,(y)
R ⟩n

as well as ⟨gxx(yy,zz)SO ⟩n and ⟨gxy(yx)SO ⟩n tensor elements ac-
cording to Eqs. (16, 22, 23).

Calculations have been carried out for the material
parameters corresponding to InSb: E0 = 0.235 eV,
∆0 = 0.81 eV, m∗ = 0.014, EP = 2m0P

2 = 23.3 eV,
T = 4.2 K, and for the nanowire width W = 100 nm
(corner-to-corner). We keep the constant linear electron
density at the low level ne = 8 × 107 cm−1 which guar-
antees that only the lowest subband is occupied in the
range of the considered magnetic field B = [0, 4] T.

III. RESULTS

We shall now discuss the effective Landé factor as a
function of the magnetic field intensity and direction. As
gRLZ evaluated from the RLZ formula (gRLZ = −49 for
the present material) does not depend on the magnetic
field, we put particular emphasis on the role of the SO-
induced component gSO in terms of the tensor elements,
Eqs. (21). As shown in the previous section, corrections
to the Landé factor coming from the SO interaction are
indirectly dependent on the wave-vector via ψn,kz

, which
results from the orbital effects of the magnetic field. For
this reason, we shall study both g∗ and gSO as a function
of both the wave vector and the magnetic field. We limit
our study to the lowest subband assuming the electrical
potential is applied to the bottom gate to induce SO cou-
pling. For simplicity, in the rest of the paper we omit the
subband index in Eqs. (22), (23), i.e. ⟨. . . ⟩n=1 = ⟨. . . ⟩.

A. Enhancement of the Landé factor due to SO
coupling

First, we show that a magnetic field oriented along the
x axis, i.e., perpendicular to the NW axis and to the
direction of ⟨αR⟩, results in a substantial enhancement
of the effective Landé factor. For this purpose, we assume
that Vg = 0.2 V is applied to the bottom gate, generating
an electric field that mantains reflection symmetry with
respect to the y axis; hence ⟨αR⟩ is directed along y by
symmetry.

In Fig. 2(a) we show the effective Landé factor g∗ [see
Eq. (16)] vs kz and B. In this configuration |g∗| reaches
values up to 100, twice as large as predicted from the RLZ
formula (gRLZ = −49). The maximum of |g∗| is deter-
mined by the gate voltage, as shown in Fig. 2(b) where

FIG. 2. (a) Map of g∗ [Eq. (16)] as a function of wave vector kz
and magnetic field oriented along the x-axis, Bx. (b) g∗(Bx)
calculated at kz = 0 at selected Vg. (c) Map of ⟨gxxSO⟩ as a
function of wave vector kz and magnetic field, Bx. (b) Disper-
sion relations without magnetic field (blue) and at Bx = 0.5 T
(red). The shift of the crossing point on the panel (d) corre-
sponds to the sign change of ⟨gxxSO⟩ in panel (c).

we report the calculated g∗(Bx) at kz = 0 for selected
values of Vg. Note that at Vg = 0, when the SO coupling
is absent, g∗ = gRLZ which strongly suggests that the
observed enhancement of the Landé factor is related to
the orbital effects in the SO term. In order to show that,
in Fig. 2(c), we present the map of the diagonal element
⟨gxxSO⟩(kz, Bx). Note that with this field configuration
the off-diagonal elements vanish by symmetry. Indeed,
the reflection symmetry of the electric field with respect
to the y axis leads to ⟨αx

R⟩ = 0, hence ⟨gxySO⟩ = 0 [see
Eq. (21d)]. Moreover, the even symmetry of the enve-
lope function is unaffected by the magnetic field directed
along x, hence ⟨gyxSO⟩ = 0 [see Eqs. (21e)]. Fig. 2(c)
clearly demonstrates that the correction to the effective
Landé factor arising from the orbital effects in the SO
coupling term reaches a value similar to that obtained
from the RLZ formula. Under certain conditions, this en-
hancement can lead to a significant increase of g∗, almost
doubling it, as observed in recent experiments.7,43,44

In Fig. 2(c) we distinguish three regions, with positive
(yellow), negative (purple) and vanishing (black) ⟨gxxSO⟩.
The abrupt change of sign between positive and negative
regions is simply understood as the crossing of subbands
of opposite spin, since only the value for the lowest sub-
band is shown here. Indeed, as shown in Fig. 2(d), the
subband of opposite spin cross at kz = 0 at vanishing
field. When the field is switched on, both subband shift
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to negative kz and shift in energy due to Zeeman term.
Hence, the crossing shifts linearly with the field to more
negative wavevectors, as shown in Fig. 2(c).

FIG. 3. (a) Map of the SO Rashba coefficients αx
R, α

y
R. (b)

Squared envelope functions of the lowest subband with the
magnetic field oriented along x, at selected magnetic field in-
tensity Bx and the wave vectors kz.

For sufficiently large kz > 0 and field intensity, ⟨gxxSO⟩
almost vanishes, as shown in Fig. 2(c) - black region.
This can be explained by the analysis of the position-
dependent SO coupling constants α

x(y)
R [see Eq. (14)]

presented in the Fig. 3(a) at B = 0. Note that their
spatial distribution is primarily influenced by the elec-
tric field generated by the bottom gate and do not un-
dergo significant changes as the magnetic field increases.
Since the value of gSO matrix elements depends on the
Rashba SO coupling constant, the SO-induced modifica-
tion of the Landé factor for a specific subband is most
significant when its envelope function is localized in the
regions of strong Rashba SO coupling. With this respect,
the vanishing of ⟨gxxSO⟩ in Fig. 2(c) is due to the change of
the wave function localization, determined by the orbital
coupling to the magnetic field.

In Fig. 3(b), we report the squared envelope functions
of the lowest subbands at kz = 0 and kz = 0.4 nm−1 at
increasing magnetic fields. At kz = 0 there is no kinetic
coupling to the magnetic field and the localization of the
envelope function is only determined by the electric field;
hence, it concentrates near the bottom gate, where the
SO coupling is strong. For a positive wave vectors kz, in-
stead, the orbital effects shift the wave function towards
the opposite facet of the NW, where the SO coupling
is weak, leading to vanishing ⟨gxxSO⟩, which explains the
black region in Fig. 2(c). As shown in Fig. 2(c), the
stronger the magnetic field, the lower kz is required to

FIG. 4. (a) Map of g∗ [Eq. (16)] as a function of wave vector kz
and magnetic field oriented along the y-axis, By. (b) g∗(By)
calculated at kz = 0. (c,d) Diagonal ⟨gyySO⟩ and off-diagonal
⟨gyxSO⟩ elements of gSO with the field oriented along y, as a
function of wave vector kz and field intensity By. (e) Squared
envelope functions of the lowest energy state at selected dif-
ferent magnetic field intensity By and the wave vectors kz.

push the wave function away from the region with large
SO coupling, near the bottom facet. Naively, one might
expect that the state kz = 0 would not be affected by
this phenomenon as there is not orbital coupling to the
magnetic field for this state. However, it should be noted
that for high magnetic fields, diamagnetic effects become
dominant, causing the wave functions to localize in the
middle of NW along the field direction, resembling dis-
persionless Landau levels, as shown in Fig. 3(b). As the
position of this wave function is associated with low SO
coupling regions, ⟨gxxSO⟩ gradually decreases towards zero,
even for kz = 0, as illustrated in Fig. 2(c). Thus, regard-
less of the gate voltage, g∗ tends to approach gRLZ when
the magnetic field increases - see Fig. 2(b) .

We next discuss the behavior of the effective Landé
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FIG. 5. Effective Landé factor g∗ as a function of wave vector
kz and magnetic field magnitude oriented in the z-direction,
Bz.

factor with the magnetic field directed either parallel to
αR (along the y axis) or to the NW axis (along the z
axis). When the magnetic field is applied parallel to αR,
⟨gyy(yx)SO ⟩ ≥ 0, resulting in the increase of g∗. This is
shown in Fig. 4(a,b). In this case, the deviation from
gRLZ is not as large as for the perpendicular orientation
of B – compare with Fig. 2(a). In this configuration the
off-diagonal element ⟨gyxSO⟩ is non-negligible, in contrast
to ⟨gxySO⟩ which is nearly zero, as the avarege value of αx

R is
vanishing due to the gate symmetry. Again, the evolution
of both ⟨gyySO⟩ and ⟨gyxSO⟩ as a function of the magnetic
field, shown in Fig. 4(c) and Fig. 4(d), respectively, is
determined by the localization and symmetry of the wave
function, whereas we assume the rule that we display
only these tensor elements which contribute to the spin
splitting for a particular field direction.

In Fig. 4(e), one can observe that at zero magnetic
field, the wave function sets itself at the center-bottom of
the NW. In this region, αx

R is antisymmetric with respect
to the x axis, resulting in the ⟨gyySO⟩ = ⟨gyxSO⟩ = 0. The
symmetry of the wave function is broken by the magnetic
field, as depicted in Fig. 4(e). For kz = 0.4 nm−1, for
increasing magnetic fields, the wave function is first lo-
calized at the bottom-left corner, where the contribution
from negative αx

R leads to non-zero values of ⟨gyy(yx)SO ⟩,
and eventually in the left corner, where αx

R is signifi-
cantly lower, resulting in a decrease in ⟨gyy(yx)SO ⟩. This
field-induced evolution leads to the maximum of ⟨gyy(yx)SO ⟩
at a certain kz value, as illustrated in Fig. 4(c,d).

We next consider a magnetic field applied in z-
direction, i.e., along the NW axis. Decrease of |g∗|, shown
in Fig. 5, has a different nature, since the orbital effects of
magnetic field are highly reduced by the confinement. In
this case the localization of the wavefunction is not mea-
surably changed with the magnetic field, regardless of kz,
and thus it does not determine the evolution of g∗ with
kz and Bz. In this configuration g∗ is rather governed by
the interplay between the Zeeman effect, which favors in-
wire z polarization, and the SO interaction, which favors
orthogonal polarization along y. Note that both the ten-

sor element ⟨gzzSO⟩ [see Eqs. (23)] and the total g∗ factor,
are defined by the energy splitting which depends on σz
and thus to the relative distribution of spin up and down
component in the spinor. Since the SO coupling depends
on the wave vector, for a small kz the ordinary Zeeman
effect is dominant, aligning the electron spin along the
magnetic field direction and - in the limit of kz = 0 -
makes the system spin polarized along the z axis. The
expectation value of σz in this case is the largest in the
sense of absolute value, resulting in the large value of g∗.
In other words, the value of g∗ for small kz results from
the finite Rashba couplings near the bottom gate, where
the wave function is localized and the almost complete
z-spin polarization of electrons induced by the magnetic
field. As a consequence, g∗ is independent of the mag-
netic field magnitude at kz = 0 (not shown here).

FIG. 6. (a) g∗ as a function of wavevector kz and bottom gate
voltage Vg and (b) g∗(Vg) at kz = 0. Results for magnetic field
directed along the x axis with Bx = 1T.

On the other hand, for a large value of kz and low
magnetic field, the SO coupling plays a major role, forc-
ing the electron spin to align along the effective Rashba
field directed in the x axis. In this scenario, the spin-up
and spin-down components of the spinor become almost
equal, resulting in a decrease in g∗. It is worth not-
ing that even for a large kz and strong SO coupling, an
increasing magnetic field can deviate the electron spin
direction from the x towards the z axis, leading to an
overall increase in g∗ with the magnetic field, as depicted
in Fig. 5.

Finally, note that results presented in Fig. 5 for the
magnetic field directed along the z-axis at kz = 0 corre-
sponds to the physical situation considered theoretically
in Ref. 45, where the enhancement of the effective Landé
factor has been recently predicted in semiconductor NWs.
The predicted effect was however restricted to the higher
subbands characterized by the nonzero orbital momen-
tum where the orbital effects are relevant. Here, we show
that the enhancement of g∗ for the lowest band is possi-
ble only when the magnetic field is applied perpendicular
to αR - in our setup along the x-axis.

To summarize this section, in Fig. 6 we show the gate
voltage dependence of g∗, calculated for a magnetic field
directed along the x axis with Bx = 1 T. It can be ob-
served that the inclusion of the SO effects may lead to
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a substantial increase of the effective Landé factor g∗,
reaching up to four times the value obtained from the
RLZ formula.

B. Spin-orbital induced Landé factor anisotropy

We next analyze the anisotropy of g∗ with respect to
the field direction. For this purpose we consider a mag-
netic field with intensity B = 1T rotated in (i) the xz
plane (φ = 0), (ii) the xy plane (θ = π/2) and (iii) the
yz plane (φ = π/2). To induce Rashba SO coupling we
apply a gate voltage Vg = 0.2 V.

FIG. 7. Maps of g∗ [Eq. (16)] as a function of wave vector kz
and magnetic field orientation when it is rotated (a), (b) in
the xz plane; (c), (d) in the xy plane; (e), (f) in the yz plane.
Right polar plots present g∗ evaluated at kz = 0. Results for
B = 1 T and Vg = 0.2 V.

Figure 7 shows maps of g∗ as a function of the wave
vector kz and the rotation angle for three considered ro-
tation plane of the magnetic field. The effective Landé
factor g∗ determined at kz = 0 - see right polar plots
in Fig. 7 - exhibits the two fold anisotropy when the
magnetic field is rotated in the xz and xy plane with

the maximal value twice larger than gRLZ for the mag-
netic field aligned along the x axis. The rotation in yz
plane does not significantly change g∗ exhibiting nearly
isotropic behaviour. Similarly, as in the previous section,
the observed anisotropy can be explained as a combina-
tion of two phonomena: (i) the orbital effects coming
from the SO term and (ii) the polarization of the spin
state being a resultant of the Rashba SO coupling and
the magnetic field.

To get into details of the orbital contribution coming
from SO coupling in Figs. 8(a,b) we show maps of ⟨gxxSO⟩
and ⟨gzzSO⟩ as a function of the wave vector kz and θ when
the magnetic field is rotated in the xz plane. The black
region on the right sides of both panels originates from
the localization of the wave function far away from the
bottom gate, in the region where the SO coupling is weak.
This is apparent in Fig. 9, which shows the squared wave
function for kz = 0.4 nm−1 under different magnetic field
orientations.

Interestingly, we observe unusual behavior in the re-
gion where ⟨gxxSO⟩ changes sign. As discussed earlier,
when the magnetic field is directed along the x-axis, this
sign change is due to subband crossing. However, here
the finite z-component of the magnetic field, perpendic-
ular to the effective Rashba field, causes anticrossing of
the subbands. The magnitude and position of the an-
ticrossing in wave vector space depend on the orienta-
tion of B. The behavior of ⟨gxxSO⟩ damping to zero at
the sign change region, accompanied by a maximum in
|⟨gzzSO⟩|, can be explained by considering the evolution
of electron spin at the anticrossing. Figure 10 presents
the z-spin polarization of the lowest subbands, defined as
P =

∫
(|ψ↑

kz
(x, y)|2 − |ψ↓

kz
(x, y)|2)dxdy, as a function of

kz for different angles, θ. We observe that at the anti-
crossing, the states become completely z-spin polarized,
which maximizes |⟨gzzSO⟩|. Simultaneously, the average
value of σx, which determines |⟨gxxSO⟩| [see Eq. (23a)], be-
comes zero, which explains its vanishing for a specific kz
vector.

The evolution of the SO-induced Landé factor in the
xy rotation planes, the second for which we observe two
fold anisotropy and depicted in Figs. 8(c-f), is in general
a result of the interplay between the wavefunction local-
ization, which is determined by orbital effects, and the
electron spin direction, which is defined by both the SO
interaction and the external magnetic field. It is worth
noting that when the magnetic field has a component
along the y axis, the off-diagonal elements of the gSO

tensor may also contribute significantly to the effective
Landé factor - the magnitudes of ⟨gxy(yx)SO ⟩ in Figs. 8(d,e)
are comparable to those of the diagonal elements.

Although the maps of the gSO tensor elements pre-
sented so far provide valuable information and offer a
precise representation of the physical phenomena under-
lying the anisotropy of g∗, it becomes challenging to di-
rectly compare them with results of recent experimen-
tal evidence. In experiments, the kz vector is often not
well-defined, and what is typically obtained is an aver-
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FIG. 8. Maps of tensor elements ⟨gabSO⟩ (a, b = {x, y, z}) as a function of wave vector kz and magnetic field orientation when it
is rotated (a), (b) in the xz plane and (c), (d), (e), (f) in the xy plane. Results for B = 1 T and Vg = 0.2 V.

FIG. 9. Squared envelope functions of the lowest subband for
kz = 0.4 nm−1 as a function of θ at φ = 0 - rotation in the xz
plane. Note that the change of the wave function localization
from the bottom to the top facet is quite abrupt and happens
over an interval of ∼ 4◦.

age value of g∗ over all electronic states involved in the
transport. For this reason we define the mean value of
gSO tensor elements averaged over all occupied states

gabSO =

∑
kz

|⟨gabSO(kz)⟩|f(En=1,kz
− µ, T )∑

kz
f(En=1,kz − µ, T )

, (28)

where a, b = {x, y, z}. Such an approach has been re-
cently used for analyzing the SO coupling in NWs and
good agreement with experiments has been obtained.19

In Fig. 11 we show the mean value of the tensor el-
ements gabSO and the Rashba SO constant αy

R (defined
in the same manner) for the rotation planes xz and xy
characterizing by the two-fold anisotropy of g∗. We ob-

FIG. 10. Spin polarization P as a function of wave vector kz
for the lowest subbands as a magnetic field B = 1 T is rotated
in the xz plane, at selected angles (see legend).

serve that irrespective of the rotation plane, all elements
gabSO exhibit strong anisotropy with a two-fold symmetry,
closely corresponding to the evolution of the SO coupling,
shown in Fig. 11(c-d) (with a bottom gate αx

R = 0 due to
the symmetry along the y axis and it is not shown). A
similar two-fold symmetry with respect to the magnetic
field direction has been recently observed in the Rashba
SO coupling measured for suspended InAs NW.52 In both
cases, the symmetry arises from the bottom gate architec-
ture, which induces a large SO coupling near the bottom
facet, while the rotating magnetic field alters localization
of the wave function, due to the orbital effects.

It is noteworthy that gxxSO remains the most robust
against the rotation in the xy plane [see Fig. 11(b)], and it
dominates over other terms for the considered gate setup.
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FIG. 11. Averaged Landé tensor elements gabSO and the Rasha
SO constant αy

R for the magnetic field rotated in three rota-
tion planes (a,c) xz and (b,d) xy. Results for the bottom gate
potential Vg = 0.2 V and magnetic field B = 1 T.

This can be attributed to the large coupling constant αy
R

induced by the bottom gate voltage and the broken sym-
metry with respect to the x-axis – see Eq. (21a). Fi-
nally, it should be emphasized that the off-diagonal ten-
sor components are one order of magnitude smaller than
the diagonal ones. This observation holds true for the
considered bottom gate configuration, which preserves
symmetry around the y axis, but it may differ for more
sophisticated gate configurations as presented in the next
subsection.

C. Different gate configuration

In order to analyze in detail the magnitude of the
off-diagonal elements of the gSO tensor let us now con-
sider an asymmetric gate configuration with two gates
attached to the top and left-top facet. In this case the
voltage applied to the gates generate both the x and y
component of the Rashba SO coupling - see Fig. 12(g-i).
In particular, the negative voltage generates the effective
band bending near the gates similar to that observed in
the Majorana NWs at the superconductor/semiconductor
interface.44

The g∗ factor at kz = 0 is presented in Fig. 12(a-c).
We see an enhancement of g∗ with respect to gRLZ when
the magnetic field is rotated in the xz and xy plane,
with strong anisotropy determined by the gate config-
uration. As shown in Fig. 12(d), in this configuration,

FIG. 12. g∗ [Eq.16], Landé tensor elements gabSO and the Rasha
SO constant α

x(y)
R for the magnetic field rotated in three ro-

tation planes (a,d,g) xz (b,e,h) xy (c,f,i) yz. Results for the
gate configuration with the attached top and left-top gate and
Vg = 0.2 V and magnetic field B = 1 T.

the off-diagonal elements of gSO are of the same order
of magnitude as the diagonal elements. This additional
contribution plays a role in enhancing the overall effective
Landé factor. While the general principle that the largest
SO-induced Landé factor occurs when the magnetic field
is perpendicular to αR is observed also for the this gate
configuration. Consequently, we believe that our model,
when applied to higher gate voltages, can account for
the observed twofold enhancement of the effective Landé
factor, as recently observed in Majorana NWs.7,43,44

IV. SUMMARY

Based on the k · p theory within the envelope func-
tion approximation, we have analyzed the effective Landé
factor induced by the SO coupling in homogeneous semi-
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conductor NWs under different magnetic field and gate
configurations. By considering the orbital effects in the
kinetic and SO terms, we have obtained the gSO tensor
which is treated as an auxiliary quantity to analyze the
magnetic field dependence of g∗. In the paper, we have
studied the Landé factor as well as the matrix elements
of g∗

SO with respect to the magnetic field magnitude and
orientation.

We show that individual elements of the effective
Landé tensor induced by SO interaction are proportional
to the Rashba coupling constant, which arises from the
electric field generated by the adjacent gates. Hence,
we have found that g∗ is determined by two factors: 1)
position and symmetry of the electron’s wave function,
which can be tuned by the orbital effects, 2) the spin
polarization of the electronic state. Specifically, when
we apply the magnetic field perpendicular to NW, the
inversion symmetry of the envelope functions is broken
and the wave function is squeezed to the NW surface by
a kz-dependent effective potential. This effect results in
an enhancement of g∗ in a situation when the envelope
function is squeezed to the facet near the gate where the
electric field and consequently the Rashba SO coupling is
larger. The opposite magnetic field (or kz) results in the
squeezing of wave function to the opposite facet where
electric field from the gate and the corresponding SO
coupling is weak, which results in nearly zero gSO and
g∗ = gRLZ . On the other hand, for B directed along
the NW axis the orbital effects are strongly reduced by
the confinement and g∗ as well as gSO depends on the
z component of spin polarization, which is a resultant
of the magnetic and effective Rashba field. Our results
explains the recently demonstrated enhancement of the
effective Landé factor observed in semiconductor NWs as
well as its anisotropy.7,43,44

Note that although our simulations have been limited
to the regime where only the lowest subband is occupied,
from our previous papers we expect that the electron-
electron interaction, here introduced at the mean-field
level, could be essential in estimating Landé factor, via
charge localization. At the high concentration regime to-
tal energy is minimized by reducing repulsive Coulomb
energy, moving electrons outwards, and charge localizes
at the six quasi-1D channels at the edges. As we dis-
cussed in Ref. 53, this strong localization is almost in-
sensitive to the gate potential and the magnetic field di-

rection.
Finally, we would like to underline that our model

does not include the hole bands coupling expressed in
the k · p model by the Lüttinger parameters.48 Note
however, that as recently shown in Ref. 19 the applied
conduction band approximation underestimates the SO
coupling constant for the considered zinc-blende crystal
structure. As the considered SO induced Landé factor
depends on the Rashba SO constants, we expect that the
renormalization of the effective g∗ observed in the ex-
periments should be even greater than predicted by our
results.
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Appendix: Dispersion relations

In the paper we have presented mainly g∗, defined as
the proportionality factor of the linear response of elec-
tronic states to the magnetic field. For completeness, the
full dispersion relations E(kz) of the nanowire, including
the interaction with magnetic field as well as the Rashba
SO coupling, are presented in Fig. 13, for chosen mag-
netic field magnitudes and directions. The corresponding
maps presenting the energy difference between the first
excited and ground state ∆E are presented in Fig. 14.

Appendix: Size dependence

Calculations presented in the paper have been car-
ried out for the NW width W = 100 nm for two rea-
sons. First, it is a typical diameter of NWs fabricated
by the commonly used fabrication methods and second,
for this range of NW width, orbital effects considered
here become significant. For completeness, in Fig. 15 we
present g∗(kz = 0) and gxxSO calculated with a magnetic
field along the x directions for which we observe the en-
hancement of the effective Landé factor. As expected,
for a small diameter, when the orbital effect are highly
reduced, the SO induced Landé factor approaches zero,
which shows that the predicted enhancement of g∗ is ob-
servable only for NWs of moderate or large width.
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