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A B S T R A C T

Apache Kafka is a widely-used event streaming platform for reliable high-volume real-time data exchange
following a producer–consumer pattern. Despite its popularity, Apache Kafka requires expertise and attention
to detail, and there are no default guidelines that can be applied to all use cases without careful consideration.
In this paper, we propose a novel approach to optimise the number of partitions and brokers in Apache Kafka,
which are two key configuration parameters, under the given characteristics and constraints of the target
applications. In particular, we consider the distribution of data-intensive real-time flows exchanged between a
set of producers and consumers, which is representative of fog computing environments for ML/AI analytics.
We introduce a methodology for modelling the topic partitioning process in Apache Kafka and formulate an
optimisation problem to determine the optimal number of partitions to satisfy the application requirements
and constraints. We propose two efficient heuristics to solve the optimisation problem, considering the trade-
off between resource utilisation and application performance. We evaluate the performance of our approach
through numerical simulations, and we demonstrate its practicality by implementing a prototype on an
Apache Kafka cluster and conducting experiments in three different scenarios focused on mass consumption
vs. production and real-time data streaming. To carry out repeatable experiments in controlled conditions,
we developed a reusable framework that fully automatises cluster setup and performance assessment, and we
make it available to the community as open-source software.
1. Introduction

Fog computing has been adopted in many verticals [1] for process-
ing and analysing data in real-time, especially for applications that
require low latency and high bandwidth. It allows for faster processing
of data and reduces the need to transfer large amounts of data to a
centralised cloud, thereby improving the overall system performance.
However, managing resources in such high-volume, real-time fog envi-
ronments can be challenging. Fog nodes have limited processing power,
memory, and storage, which means that resource allocation must be
carefully managed to meet the applications’ expectations under per-
formance trade-offs. Moreover, the dynamic and heterogeneous nature
of fog environments poses additional challenges in terms of resource
allocation [2].

To effectively allocate resources in fog environments, several factors
need to be considered, including the characteristics of the application,
the available resources, and the network conditions [3]. The challenge
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is to allocate resources in such a way that the application can meet
its performance requirements while utilising the available resources
efficiently [4]. In this respect, resource allocation is not a one-size-fits-
all problem, and different applications may have different requirements
and constraints. For instance, some applications may require more
processing power, while others may need more memory or storage [5].
Therefore, it is essential to have a flexible and adaptable resource
allocation mechanism that can be customised for specific applications
and their requirements.

Apache Kafka1 is an event streaming platform known for its ability
to reliably handle high-volume real-time data exchange [6]. It follows a
producer–consumer (pub-sub) pattern, where producers generate data
and consumers consume it for various purposes. While there are several
mature technologies that can fulfil this role, e.g., in [7] the authors have
investigated two serverless data pipeline approaches designed with
vailable online 8 January 2024
167-739X/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2023.12.028
Received 19 September 2023; Received in revised form 16 November 2023; Accept
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ed 23 December 2023

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:t.raptis@iit.cnr.it
mailto:c.cicconetti@iit.cnr.it
mailto:a.passarella@iit.cnr.it
https://kafka.apache.org/
https://doi.org/10.1016/j.future.2023.12.028
https://doi.org/10.1016/j.future.2023.12.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.12.028&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Future Generation Computer Systems 154 (2024) 173–188T.P. Raptis et al.

s
a
a
a
c
c
o
w
a
w
e
t

Message Queuing Telemetry Transport (MQTT) and Apache NiFi,
Apache Kafka is extremely popular due to its ability to handle massive
amounts of data in real time, making it an ideal platform for use in fog
computing environments [8]. For example, Apache Kafka was used as
the core technology for streaming concurrent audio/video flows from
sensors deployed in smart cities to ML/AI processors in the edge-fog-
cloud continuum, in the project MARVEL2 funded by under the H2020
programme of the European Commission.

One of the key features of Apache Kafka is its ability to partition
data across multiple servers, which is not fixed and can be configured
by the application provider [9]. This allows for data to be distributed
across multiple nodes in an Apache Kafka cluster, which provides
fault tolerance and ensures that data can be processed quickly and
efficiently [10]. Additionally, Apache Kafka allows for data replication,
which ensures that data are not lost in the event of a node failure.
However, all this flexibility, while advantageous, also requires careful
optimisation to achieve efficient data distribution: failure to properly
configure Apache Kafka can result in degraded performance and even
system failures, as the default configuration does not work optimally
for all use cases. Therefore, it is essential to optimise the number of
partitions and brokers in Apache Kafka based on the unique character-
istics and constraints of the target application. In many cases, experts
need to identify for each specific use case a suitable methodology to de-
termine the best number of partitions/brokers to meet the application
requirements and constraints [11].

Despite the popularity and extensive use of Apache Kafka in produc-
tion, the research on data topic partitioning remains limited. Although
a considerable amount of work has been presented on optimising
other aspects of Apache Kafka, such as data stream processing, the
topic partitioning problem has not been extensively researched. This
is mainly due to the fact that topic partitioning is highly dependent on
the application-specific requirements, and there is no one-size-fits-all
solution [12]. On the one hand, most use case owners tend to focus on
significantly fine-grained optimisations that cater to their specific re-
quirements, rather than considering a more generalised approach [13].
As a result, the literature lacks research on how to optimise the number
of partitions and brokers, which are two key configuration parameters
that significantly affect Apache Kafka’s performance. On the other
hand, although industrial corporate companies offer some recommen-
dations for Apache Kafka configuration, these recommendations may
not always lead to optimal performance. This is because the recom-
mendations are typically derived from a general set of assumptions,
and do not consider the specific characteristics and requirements of
individual applications [14]. Consequently, a well-designed approach
that is tailored to the characteristics of the target application may have
the potential to outperform these recommendations significantly.

This work addresses the aforementioned limitations of the state-of-
the-art by proposing a novel approach to configure efficient Apache
Kafka topic partitioning for applications with real-time data streaming
with high-reliability requirements. Our contribution is two-fold.3 On
the one hand, we formulate an optimisation problem to determine the

2 https://www.marvel-project.eu/
3 The current version of our paper expands on a previous conference ver-

ion [15] in several ways. First, we have introduced a new methodology for the
utomated performance evaluation of Apache Kafka clusters. This methodology
llowed us to run experiments in a testbed prototype to compare BroMax
nd BroMin with different message sizes, replication factors, and numbers of
onsumers. By doing so, we have been able to obtain real-life data and cross-
heck our numerical simulation results. Second, we have included the results
f these experiments, which have highlighted some qualitative differences
ith respect to the conclusions obtained with the numerical simulations
lone. These differences emphasise the importance of cross-checking analysis
ith real-life data before production deployment. Lastly, we have made our

valuation framework available to the community so that others can use it for
heir own performance evaluations.
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optimal number of partitions to satisfy the application requirements
and constraints, for which we propose two heuristic algorithms that
are representative of the trade-off between resource utilisation and
application performance. The problem formulation takes into account
inherent application requirements, and therefore, the algorithms, which
receive the values of those requirements as input, lead to application-
driven solutions. Indeed, our approach is based on the idea of achieving
a balanced allocation of resources while avoiding under- or over-
utilisation of Apache Kafka resources. The heuristics are evaluated
through numerical analysis in scenarios with a large number of produc-
ers/consumers and a broad set of configurations. On the other hand,
we demonstrate the practicality of our approach by implementing a
prototype on an Apache Kafka cluster and conducting real experiments,
using a reusable framework that fully automates cluster setup and
performance assessment and allows the evaluation of throughput or
end-to-end latency metrics.

The structure of the paper is as follows. In Section 2 we illustrate
the Apache Kafka fundamentals and review the state of the art. The
effective design of Apache Kafka topic partitioning for reliable data
streaming applications is elaborated in Section 3, which describes the
system model and provides a mathematical formulation of the re-
lated optimisation problem, for which two heuristics are proposed and
evaluated through numerical simulations. Furthermore, in Section 4
we present a reusable framework for the fully automated execution
of prototype experiments under controlled and repeatable conditions,
which is then used to verify the effectiveness of the topic partitioning
model and techniques in a realistic setting. Section 5 concludes the
paper.

2. Background

In this section, we provide the reader with the background necessary
to fully appreciate and position our work. In Section 2.1 we illustrate
the key design principles of Apache Kafka, while the more relevant
works in the literature are reviewed in Section 2.2. Further to this mate-
rial, for a deeper understanding of the Apache Kafka inner mechanisms,
the reader can refer to [16].

2.1. Apache Kafka fundamentals

A pub-sub data streaming service is offered by Apache Kafka, in
which data are sent by 𝑝 producers to a topic (a logical category of data)
𝜏 stored in a collection of 𝑏 data brokers (the Apache Kafka cluster),
and read by 𝑐 consumers. In the Apache Kafka cluster, the topic is
physically stored in 𝑃 ≥ 1 partitions, and all of the partitions of the
same topic are spread across the brokers. For producers to publish data
in parallel across several brokers and for consumers to read data in
parallel, Apache Kafka employs partitions. With a replication factor of
𝑟, each partition may be duplicated across Apache Kafka brokers for
fault tolerance. If one of the brokers fails and cannot fulfil requests,
the replication aids in ensuring high availability. Multiple clones of a
partition may be created, each of which is kept on a distinct broker. The
remaining replicas are designated as followers, and one of the replicas
is chosen to be the leader. All of the replicas are automatically main-
tained and kept in sync using Apache Kafka. The leader replica fulfils
the demands made of a partition by both a producer and a consumer.
Only the leader partition controls all of the interested producers’ and
consumers’ FIFO data reads and writes. Fig. 1 displays an illustration
of an Apache Kafka configuration.

Each consumer instance in a group of subscribers to a topic con-
sumes data concurrently from a separate subset of the topic’s partitions.
While one partition must be read by only one consumer instance within
the same consumer group, a consumer instance can read data from
many partitions. The same data may be used independently by various
consumer groups, and no coordination is required. As a result, the
quantity of partitions determines the degree of parallelism that may be

https://www.marvel-project.eu/
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Fig. 1. An indicative illustration of an Apache Kafka cluster for a topic 𝜏, with
𝑝 = 2, 𝑐 = 4, 𝑏 = 4, 𝑃 = 4, 𝑟 = 3. Leader partitions are coloured in orange, and replicas
coloured in white.

used by a consumer group. We observe that the number of instances of
consumers in the group should not exceed the number of partitions in
the subscribed topic, otherwise, there will be idle consumers. In our
analysis, we will consider that all the available consumer instances
belong to a single consumer group.4

High-volume data producers and consumers might reserve broker
resources, cause network saturation, and degrade the QoS of other
consumers and brokers by generating requests at a very high rate.
Although Apache Kafka clusters can impose artificial quotas on requests
to manage the broker resources used by producers and consumers, the
quota capability cannot be used in specific application domains that
need a significant amount of network bandwidth or a very high request
rate. The degree of parallelism in Apache Kafka is reflected in the
data topic partitioning [17]. Tuning the operational logic is necessary
to reduce latency since it heavily depends on how an application
is designed to handle data. However, because the throughput of the
cluster is dependent on the cluster characteristics, broker and partition
optimisations may boost efficiency. The number of partitions often
has to grow up as the amount of data produced increases to avoid
bottlenecks. Significant lags on the consumer side can be caused by
high pipeline latency. Timeouts on the requests from producers to
brokers and related data loss might result from not having enough
partitions to handle the entire throughput.

2.2. Related works and novelty of the current study

The combinatorial aspects of Apache Kafka form a significant part
of its algorithmic foundations, providing powerful approaches for opti-
mising large-scale data processing and streaming. Combinatorial opti-
misation is concerned with finding the best solutions from a finite set of
possibilities. In the context of Apache Kafka, this involves maximising
the throughput of data streams, reducing latency, and minimising
resource usage. The literature offers only a few rigorous works on op-
timisation techniques used in Apache Kafka, such as batch processing,
compression, and data transfer.

In [16], the communication in Apache Kafka between producers
and consumers is modelled using formal methods. Selected system
characteristics are verified using the model testing tools. The ver-
ification findings demonstrate that the Apache Kafka data transfer

4 Assuming a single consumer group for all instances simplifies the analysis
but has limitations. It may not accurately model load balancing, isolation,
and different commit strategies found in real-world scenarios with multiple
consumer groups. These simplifications can impact the precision of the model
in reflecting complex Apache Kafka consumer behaviours.
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model adheres to its specifications, which leads to the conclusion that
the system is trustworthy. In [18], in order to forecast performance
measures of Apache Kafka cloud services, the authors analyse the
structure and workflow of Apache Kafka and suggest a queuing-based
data transfer model. A second important category of previous works is
on how to solve issues to partition-consumer assignments. The authors
of [19] use bin packing problem variation to abstract the challenge of
finding the necessary number of consumers and the partition-consumer
assignments. They suggest indicative metrics that take the rebalancing
expenses into consideration and introduce and evaluate a variety of
methods in comparison to known strategies for the bin packing problem
in this context. In [20], the authors look into an adaptive tuning method
to calibrate the parameters related to an Apache Kafka consensus
algorithm based on feedback control theory for blockchain-specific use
case applications. According to the authors of [21], data starvation may
occur if Apache Kafka’s data production rate outpaces its consumption
rate. A load-shedding method is introduced to restrict the incoming
data and keep the efficiency high when the system is under stress
to address the starvation issue. In [22], a simulation platform that
allows assessments of potential future mobility use cases is described
by the authors. To support all of these needs and the coupling of
various simulation tools into a co-simulation, Apache Kafka is used as
a communication building block.

Our proposed contribution makes a novel addition to the research
on resource allocation and optimisation in fog environments with
Apache Kafka. Specifically, our approach addresses the optimisation of
the number of Apache Kafka topic partitions and brokers, which are key
configuration parameters that impact the performance of the system.
To the best of our knowledge, this is the first work that proposes a
modelling and simulation perspective to evaluate the effectiveness of
related resource allocation and scheduling in Apache Kafka. Moreover,
our approach proposes two efficient heuristics to solve the optimisation
problem, which is formulated to determine the optimal number of
partitions to satisfy the application requirements and constraints. This
trade-off between resource utilisation and application performance is
carefully considered in our approach, and we demonstrate its prac-
ticality through numerical simulations and a real implementation on
an Apache Kafka cluster. Our proposed approach has the potential to
significantly improve the performance of Apache Kafka-based systems,
especially in high-volume, real-time fog environments.

3. Effective design of Apache Kafka topic partitioning

In this section, we tackle the effective design of topic partitioning
in Apache Kafka when used for real-time data streaming applications,
which requires careful design and evaluation.

3.1. System model

We now introduce a modelling approach that provides a more
practical and scalable alternative to the traditional methods for op-
timising Apache Kafka topic partitioning. Our approach is based on
the use of combinatorial modelling, which allows us to test different
configurations of the system and evaluate their performance under
various conditions. This approach enables us to effectively abstract the
dynamic and complex nature of the Apache Kafka topic partitioning
process and consider the inherent uncertainties in the system. Our
approach offers an efficient way to design efficient heuristic algorithms
which are application-driven (as they take as input the values of the
application requirements) and optimise Apache Kafka topic partitioning
while providing more accurate performance predictions. In the follow-
ing, we describe the main components of our approach and explain how
they work together to optimise Apache Kafka topic partitioning for a
specific application.
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Data throughput
In principle, as the number of partitions in an Apache Kafka cluster

increases, so does also the throughput one can achieve. Therefore, a
viable objective would be to maximise the number of partitions within
the cluster:

max𝑃 (1)

Writes to different partitions can be performed completely in parallel
on both the producer and the broker side. As mentioned beforehand,
on the consumer side, within a consumer group, Apache Kafka always
maps the data of a single partition to a single consumer. Consumers can
select both the topic and partition from which they want to read data.
If consumers do not specify any partition, Apache Kafka automatically
chooses more than one for them, based on the number of available
partitions. Anyway, a topic cannot support more consumers than par-
titions. Consequently, the extent of parallelism on the consumer side is
bounded by the number of partitions able to be consumed:

𝑃 ≥ 𝑐 (2)

We denote the target Apache Kafka cluster throughput as 𝑇 . If the
throughput that can be achieved on a single partition for production
and consumption (𝑇𝑝 and 𝑇𝑐 respectively) is known (through mea-
urements), then we need to have at least the following number of
artitions:

≥ max
(

𝑇
𝑇𝑝

, 𝑇
𝑇𝑐

)

(3)

Except for throughput, there are a few other factors that have to be
considered when optimising the number of partitions. In some cases,
having too many partitions may also have a negative impact [23],
which we highlight in the following sections.

OS load
Each partition corresponds to a directory in the broker’s file system.

In this directory, there are typically two files, one for the index and
another for the data per log entry. Each broker maintains a single
file handle for both the index and the data file of every log segment.
Therefore, as the number of partitions increases, the open file handle
limit in the OS must increase as well. Based on the above, if 𝐻max
denotes the maximum number of open file handles that a broker can
tolerate, and 𝑏 the number of brokers, then the number of partitions in
the Apache Kafka cluster is bounded by

𝑃 ⋅ 𝑟 ≤ 𝑏 ⋅𝐻max (4)

Replication latency
We define end-to-end latency as the time between when the data are

published by the producer and when they are read by the consumer.
Apache Kafka provides access to data to a consumer after the point
in time when they have been replicated to all the in-sync replicas.
Therefore, the time to commit data consists of a significant portion of
the end-to-end latency. Typically, an Apache Kafka broker uses a single
thread to replicate data from another broker for all the partitions that
they mutually share. Assuming a given replication factor 𝑟, we denote
the replication latency as 𝑙𝑟.

We can improve replication latency by building larger Apache Kafka
lusters. For example, suppose that 𝑥 partition leaders reside on a

broker and that the replication process necessitates in this case 𝑦 ms of
ime. If we add 𝑧 brokers in the same Apache Kafka cluster (𝑥 > 𝑧), each
f the 𝑧 brokers needs to fetch only 𝑥∕𝑧 partitions on average from the
nitial broker. Therefore, the added latency of committing data will be
n the order of just 𝑦∕𝑧 ms in this case, instead of 𝑦 ms. Depending on the
pplication area, the application owner might enforce a requirement of
replication latency threshold, which we denote as 𝐿. Therefore, this

hreshold bounds the related system configurations as follows:
𝑃 ⋅ 𝑟

⋅ 𝑙 ≤ 𝐿 (5)
176

𝑏 𝑟
Table 1
Notation used in the paper.

Symbol Description

𝑃 Number of partitions
𝑐 Number of consumers
𝑇 Target throughput
𝑇𝑝 Production throughput
𝑇𝑐 Consumption throughput
𝐻max Maximum number of open file handles per broker
𝑏 Number of brokers
𝐵 Number of brokers available
𝑟 Replication factor
𝑙𝑟 Replication latency
𝐿 Replication latency threshold
𝑢 Observed unavailability time
𝑈 Unavailability threshold

Unavailability
The intra-cluster replication of Apache Kafka leads to higher avail-

ability and durability. However, when a broker fails, the partitions
with a leader on that broker become temporarily unavailable. Apache
Kafka then automatically assigns the leader role of those unavailable
partitions to other replicas that continue serving the consumers. This
is performed by one of the Apache Kafka brokers designated as the
controller, typically in a serial fashion.

In specific cases, the observed unavailability can be proportional to
the number of partitions. Indicatively, for the case of a broker that has
a total of 𝑥 partitions, each with 𝑦 replicas: roughly, this broker will be
the leader for about 𝑥∕𝑦 partitions. If this broker fails, the 𝑥∕𝑦 partitions
become unavailable at the same time. If 𝑧 ms time is required to elect a
new leader for one partition, then it will require up to 𝑧𝑥∕𝑦 ms to elect a
new leader for all 𝑥∕𝑦 partitions. Therefore, for several partitions, the
observed unavailability can be 𝑧𝑥∕𝑦 ms plus the time taken to detect
the failure. Therefore, given an observed unavailability time 𝑢 during a
broker failure, the application unavailability requirement threshold 𝑈
provides the following upper bound:
𝑃
𝑏
⋅ 𝑢 ≤ 𝑈 (6)

3.2. Problem formulation

We now formally define the partition/broker assignment problem,
using the notation defined in Section 3.1, which is summarised in
Table 1.

The number of partitions 𝑃 to be employed is determined by
onflicting forces according to the description of components in Sec-
ion 3.1, therefore it is application driven, and selecting the ‘‘right’’
umber of partitions for each topic necessitates knowledge of a variety
f variables. An additional burden for metadata operations and re-
uest/response between the partition leader and its followers is added
hen the partition density, i.e., the number of partitions per broker,

ncreases. Increasing the number of partitions in a cluster will result
n more concurrent data consumption, which in turn enhances the
hroughput of an Apache Kafka cluster, but it will also increase the
mount of time needed to replicate data between replica sets [24].
ven though Apache Kafka comes with certain built-in optimisations,
he well-defined fine-tuning required to boost cluster performance is
till an unsolved research issue. We construct the issue as the following
rogramme (the programme variables are denoted by bold font) based
n the equations and inequalities (1)–(6).

bjective:

ax 𝑃 (7)

Constraints:

𝑃 − max
(

𝑇 , 𝑇 , 𝑐
)

≥ 0 (throughput) (8)

𝑇𝑝 𝑇𝑐
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𝑃 ⋅ 𝑟 − 𝑏 ⋅𝐻max ≤ 0 (OS load) (9)

𝑃 ⋅ 𝑟 ⋅ 𝑙𝑟 − 𝑏 ⋅ 𝐿 ≤ 0 (replication latency) (10)

𝑃 ⋅ 𝑢 − 𝑏 ⋅ 𝑈 ≤ 0 (unavailability) (11)

𝑟 ≤ 𝑏 ≤ 𝐵 (12)

𝑃 , 𝑏 ∈ Z+ (13)

The objective function (7) maximises the number of partitions in the
luster. Constraint (8) guarantees that the selected number of partitions
enders the resulting throughput viable. Constraint (9) guarantees that
he OS load in terms of open file handles can be supported by the
ystem in place. Constraint (10) guarantees that the replication latency
oes not exceed the maximum latency threshold provided by the opera-
or. Constraint (11) guarantees that the potential broker unavailability
oes not exceed the maximum unavailability threshold provided by
he operator. Constraint (12) guarantees that the number of selected
rokers does not exceed the actual number 𝐵 of available brokers in
he cluster. The problem formulation is considered computationally
ntractable since it is an integer programme. The precise number of
artitions required to fulfil all of the system requirements for any
articular instance of the issue cannot, therefore, be ideally maximised
n polynomial time.

The choice of the ‘‘maximising the number of partitions’’ as an ob-
ective function in our study may seem unconventional at first glance.
owever, while objectives such as minimising unavailability or max-

mising throughput are indeed critical considerations in system design,
he number of partitions plays a pivotal role in achieving these broader
bjectives in Apache Kafka [25]. The number of partitions directly
nfluences the parallelism and distribution of data processing within

Kafka cluster. A higher number of partitions may allow for finer
ranularity in workload distribution among brokers, leading to opti-
ised resource utilisation and reduced contention. By maximising the
umber of partitions, we aim to strike a balance between efficient re-
ource utilisation and achieving effective throughput, which indirectly
ontributes to minimising unavailability by preventing bottlenecks and
educing processing latency. Thus, the ‘‘number of partitions’’ objective
s intricately linked to the broader goals of enhancing system efficiency,
erves as a key lever in achieving these objectives and is, therefore, a
alid consideration in our study.

.3. Two heuristics for solving the problem

The easiest manner to address the problem is: taking away the
onstraint regarding 𝑃 ’s and 𝑏’s integer status, i.e., modifying (13) so
hat 𝑏, 𝑃 ∈ R; providing a solution to the resulting linear relaxation of
he integer programme; and, finally rounding the values of the solution.
owever, this way, there is a high chance that in many problem

nstances, the solution will not be optimal, or even feasible, due to the
act that it might violate any of the given constraints.

Therefore, we provide Algorithms 1 and 2 that target to define the
artitioning of a given topic while maintaining the necessary through-
ut, low OS load, efficient replication latency and high availability. The
oals of the two algorithms are to maximise (Algorithm 2 - BroMax)
r minimise (Algorithm 1 - BroMin) the number of brokers employed
hile fully using the capabilities of each individual broker. Although

he two strategies appear to pursue different paths, they both aim
o maximise the number of partitions required in the Apache Kafka
luster to meet the constraints, though with different side objectives:
se the fewest amount of HW resources possible in the first strategy
nd utilise all hardware resources available in the second strategy.
ventually, both algorithms provide a (potentially different) solution
o the problem.

Both algorithms are given a set of measured inputs (𝑇𝑝, 𝑇𝑐 , 𝑙𝑟, 𝑢) and
a set of parameter values (𝑇 , 𝑐, 𝑟,𝐻max, 𝐿, 𝑈, 𝐵). With the lowest number
equal to the replication factor 𝑟 and the highest number equal to the
177

umber of available brokers 𝐵, each algorithm begins by progressively
Algorithm 1: BroMin
Parametrical input: 𝑇 , 𝑐, 𝑟, 𝐿, 𝑈, 𝐵
Measured input: 𝑇𝑝, 𝑇𝑐 ,𝐻max, 𝑙𝑟, 𝑢
Output: 𝑃 , 𝑏

1 for 𝑏 = 𝑟; 𝑏 ≤ 𝐵; 𝑏++ do

2 for 𝑃 =
⌊

𝑏⋅𝐻max
𝑟

⌋

; 𝑃 ≥ max
(

𝑇
𝑇𝑝
, 𝑇
𝑇𝑐
, 𝑐
)

; 𝑃−− do

3 if 𝑃 ⋅ 𝑟 ⋅ 𝑙𝑟 ≤ 𝑏 ⋅ 𝐿 and 𝑃 ⋅ 𝑢 ≤ 𝑏 ⋅ 𝑈 then
4 return 𝑃 , 𝑏;

5 return ‘‘No feasible solution found.’’

Algorithm 2: BroMax
Parametrical input: 𝑇 , 𝑐, 𝑟, 𝐿, 𝑈, 𝐵
Measured input: 𝑇𝑝, 𝑇𝑐 ,𝐻max, 𝑙𝑟, 𝑢
Output: 𝑃 , 𝑏

1 for 𝑏 = 𝐵; 𝑏 ≥ 𝑟; 𝑏−− do

2 for 𝑃 =
⌊

𝑏⋅𝐻max
𝑟

⌋

; 𝑃 ≥ max
(

𝑇
𝑇𝑝
, 𝑇
𝑇𝑐
, 𝑐
)

; 𝑃−− do

3 if 𝑃 ⋅ 𝑟 ⋅ 𝑙𝑟 ≤ 𝑏 ⋅ 𝐿 and 𝑃 ⋅ 𝑢 ≤ 𝑏 ⋅ 𝑈 then
4 return 𝑃 , 𝑏;

5 return ‘‘No feasible solution found.’’

raising or lowering the number of brokers to be assigned. Following
that, both algorithms begin reducing the number of partitions 𝑃 for
the chosen number of brokers, starting at the highest allowed number
per broker in terms of open file handles and ending at the lowest al-
lowed number in terms of the desired cluster throughput and consumer
support (line 2).

The first instance of the 𝑃 , 𝑏 combination that fulfils the replication
latency and unavailability time restrictions is then returned by the al-
gorithms as a solution (line 3–4). The underlying drawback of heuristic
techniques is that, as is typically the case, it is impossible to tell if
an algorithm fails to discover a solution (line 5) because there is no
workable solution or because it was unable to do so. Furthermore, the
degree to which a solution given by these approaches is optimum is
sometimes hard to measure. We do a numerical simulation analysis in
Section 3.4 to address the last point. The computational complexity of
both algorithms is (𝐻max

𝑟 𝐵2).
The objective of maximising the number of partitions stems from

the need to efficiently distribute processing load, ensuring that data is
evenly processed across the Kafka cluster. While it may appear counter-
intuitive to aim for higher resource consumption, the primary goal is to
optimise workload distribution. BroMax (which maximises the number
of brokers assigned to partitions) does so with the intention of avoiding
overloading a single broker, thereby preventing resource contention
and improving overall system performance. On the other hand, BroMin
(which minimises the number of brokers assigned to partitions) seeks
to strike a balance between distribution and resource conservation,
potentially benefiting from brokers with greater available resources.
Both BroMax and BroMin aim to address the complex trade-off between
efficient resource utilisation and workload distribution. Therefore, by
providing a range of heuristic strategies, our approach accommodates
varying system requirements and preferences. Also, since the algorithm
inputs are application-dependent (and given that the algorithms return
a solution that is always feasible for the given inputs), their philosophy
is application-driven.

3.4. Performance evaluation via numerical simulations

We conclude the section by presenting our numerical simulation

results and the experimental evaluation setup, which enables us to
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Table 2
Numerical simulation parameter set-
tings.

Parameter Value

𝑐 200–600
𝑇𝑝 10 MB/s
𝑇𝑐 20 MB/s
𝐻max 10.000
𝐵 20–60
𝑟 4–20
𝑙𝑟 1 ms
𝐿 200 ms
𝑢 5 ms
𝑈 2000 ms

analyse and evaluate the performance of our approach. We utilise
a combination of simulations and prototype experiments to validate
the efficacy of our approach in a high-volume, real-time fog envi-
ronment. As mentioned in previous sections, our modelling approach
involves constructing a detailed model that captures the behaviour of
the Apache Kafka brokers, producers, and consumers under different
workload conditions. The model is built based on a set of input param-
eters that represent the various system parameters, such as network
latency, throughput, message size, and processing time. We assign
values to these parameters based on state-of-the-art measurements, as
discussed in the previous section.

In this section, we present the results of our extensive numeri-
cal simulation evaluation, performed in Octave 6.2.0. According to
validated state-of-the-art measurements, we assign values to the algo-
rithm’s measured inputs. For instance, parameters like batching size,
compression codec, type of acknowledgement, replication factor, etc.
affect the per-partition throughput 𝑇𝑝 that may be achieved on the
producer. On a single partition, however, one may typically ingest
data at 𝑇𝑝 = 10 MB/s, as demonstrated in [26]. Since the consumer
throughput 𝑇𝑐 reflects how quickly the consumer logic can process data,
it frequently depends on the application. In our situation, we set it to
𝑇𝑐 = 20 MB/s as an example. Additionally, it is mentioned in [17] that
it might take up to 5 ms to elect a new leader for a single partition,
herefore the comparable unavailability time was set to 𝑢 = 5 ms. The
ame source asserts that Apache Kafka production clusters can support
ore than 30,000 open file handles per broker. In our situation, we

et 𝐻max = 10.000 in order to be able to record even weaker values.
ollowing that, it can be inferred from the report’s information that the
eplication latency for a single partition (without taking into account
ther partitions) may be as low as 𝑙𝑟 = 1 ms. We set the unavailability
ime as 𝑢 = 5 ms since, finally, the report claims that leader election
or a single partition might take up to 5 ms. The parametrical inputs
𝑇 , 𝑐, 𝑟, 𝐿, 𝑈 and 𝐵 are determined by the needs of the application. These
arameters may have entirely different values in other applications.
he parameter settings are displayed in Table 2.

In our numerical simulations, we measure several performance
etrics that are relevant to evaluate the effectiveness of our proposed

pproach. The first important metric is throughput, which we measure
ndirectly with the number of partitions as an indicator, giving us an
dea of the efficiency of the system in handling large volumes of data.
he desired throughput 𝑇 also feeds the algorithms as a system con-
traint. Another key metric that we use to evaluate the performance of
ur system is latency, which is the time delay between the production
f a message by the producer and its consumption by the consumer.
ower latency values indicate that the system is able to process and
eliver messages more quickly, which is especially important in real-
ime applications where timely delivery of messages is critical. The
ominant factor in this end-to-end procedure (which included pro-
essing, storing, etc.) is the replication time of the data. We capture
his metric by appropriately measuring 𝑙𝑟, but also through the system
nput constraint 𝐿. We also consider the number of brokers in the
178
nfrastructure as an important metric, since it can significantly impact
he overall performance of the system. A larger number of brokers can
mprove the scalability of the system and increase its capacity to handle
ore data, but at the same time, it can also increase the communication

verhead and infrastructure costs. The OS load, measured in terms of
pen file handles, is another important metric that we consider in our
valuation. Finally, we also measure the unavailability of the system,
hich refers to the amount of time that the system is not available

o process messages. This can happen due to various reasons, such as
etwork failures, hardware failures, or software errors. By measuring
he unavailability of the system, we can evaluate its resilience and
dentify potential areas for improvement.

As discussed in Section 2.2, there is no established topic partitioning
enchmark or related approach in the literature to compare our algo-
ithms with. For this reason, to define a baseline we took into account
combination of industry best practices in the fog computing realm,

rom Microsoft and Confluent. Microsoft reports in [28] that it is a
eneral rule of thumb not to exceed 1.000 partitions and replicas per
roker. Additionally, Confluent, reports in [23,27] that the number of
artitions 𝑃 per broker 𝑏 ideally can be concentrated around to 100⋅𝐵⋅𝑟.

Consequently, after considering these industry best practices, we define
the MS-CNFL (Microsoft/Confluent) benchmark method and we express
it as follows:

𝑃 = min
(

𝑃 ∈𝑅

[

1...1.000 ⋅ 𝐵
𝑟

]

, 𝑃 ∈𝑅 [1...100 ⋅ 𝐵]
)

, 𝑏 ∈𝑅 [1...𝐵]

with ∈𝑅 defined as selection uniformly at random. Table 3 displays a
descriptive comparison of the three methods discussed so far.

In Fig. 2 we illustrate the numerical simulation results on the
performance evaluation for increasing numbers of consumers in the
system. We can see that BroMax and MS-CNFL maintain a similar
number of partitions regardless of the number of consumers, whereas
BroMin linearly increases the number of partitions when the number
of consumers increases. The same behaviour can be observed with the
number of brokers used. It is apparent that MS-CNFL maintains a larger
number of partitions compared to BroMin and BroMax throughout the
simulations. However, this overuse of partitions comes at a cost, with
MS-CNFL violating the latency constraint. The unavailability and OS
load thresholds are respected by all the algorithms; MS-CNFL, however,
underperforms.

In Fig. 3 we illustrate the numerical simulation results on the
performance evaluation for increasing numbers of available brokers in
the system. We can see that BroMax and MS-CNFL linearly increase the
number of partitions when the number of available brokers increases,
whereas BroMin maintains a similar number of partitions regardless of
the number of available brokers in the system. The same behaviour
can be observed with the number of brokers used. Like in the previous
batch of results, MS-CNFL uses more brokers than BroMin and BroMax,
but this leads to violating the latency constraint. MS-CNFL also exhibits
the highest unavailability time and OS load, even though they remain
below the respective thresholds.

In Fig. 4 we illustrate the numerical simulation results on the
performance evaluation for increasing replication factor value in the
system. We can see that BroMax and MS-CNFL decrease the number
of partitions when the replication factor increases, whereas BroMin
maintains a similar number of partitions regardless of the replication
factor. Instead, BroMax and MS-CNFL assign a constant number of
brokers, irrespective of the replication factor, while the number of
brokers assigned by BroMin increases linearly with the replication
factor up to the point when the curves BroMax and BroMin meet at
𝑟 = 20. Due to the higher number of partitions, MS-CNFL exceeds the
replication latency threshold even in this last batch of simulation results
and is outperformed by BroMax/BroMin in terms of unavailability time
and OS load once more.

The key messages of the numerical simulation analysis are as fol-
lows:
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Table 3
Methods and benchmark used in the numerical simulation performance evaluation.

Name Source Description Insight

BroMin Current paper Heuristic Meet the objective/constraints via minimising broker usage
BroMax Current paper Heuristic Meet the objective/constraints via maximising broker usage
MS-CNFL Microsoft, Confluent [23,27] Industry best practices Rules of thumb regarding partition and replica numbers
Fig. 2. Numerical simulations: Performance for variable numbers of consumers.
• BroMin and BroMax satisfy the application constraints, while the
industrial best practices can violate the latency constraint.

• BroMin and BroMax are able to achieve efficient performance
with a smaller number of partitions.

• This holds true even for the unavailability and OS load metrics.
• BroMin and BroMax distribute partitions across the brokers in a

smarter manner, especially when 𝑟 is increasing.

4. Prototype experiments

In this section, we complement the numerical simulation analysis
in Section 3.4 with experiments obtained in a prototype system that
includes Apache Kafka brokers, producers, and consumers, where we
have conducted a series of experiments to measure its performance
under various conditions. The experimental evaluation allows us to
verify the applicability of our simulation results and provides us with
a reliable method for evaluating the performance of our approach.
179

The prototype experiments have been carried out in a realistic fog b
environment, where two servers are connected to a local network and
communicate with each other. We have performed three experiment
types (consumption, production, end-to-end) and changed various pa-
rameters, such as message sizes to investigate the behaviour of our
two heuristics under wildly different target scenarios. We begin by
illustrating the framework developed and the methodology used for the
experiments.

4.1. Framework and methodology

Experiments have been carried out in controlled and repeatable
conditions with a reusable framework that we made publicly available
to the research community on GitHub5: the repository includes the
detailed steps to prepare the prototype, the full set of well-documented

5 https://github.com/ccicconetti/kafka-hdd tag 1.0.0, experiments la-
elled from 001 to 003.

https://github.com/ccicconetti/kafka-hdd
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Fig. 3. Numerical simulations: Performance for variable numbers of available brokers.
a
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scripts to execute the experiments, and the dataset of results obtained
on our servers. Our framework enables three types of experiments, each
stimulating different aspects of the system performance, which can be
more relevant for a specific target production scenario:

1. Consumption experiment, which focuses on the consumption
throughput 𝑇𝑐 that can be obtained by a set of clients from an
Apache Kafka cluster for messages of a given size 𝑀 , where
the data injection is not a choke point. For consumption, the
rebalance time 𝜏𝑅, i.e., the time needed for the assignment of the
partitions to the consumers to converge to its final configuration,
can be also relevant and, thus, it is produced as output by this
type of experiment.

2. Production experiment, which is complementary to the previous
one and focuses on the production throughput 𝑇𝑝 that can be
obtained, together with the production latency 𝑙𝑝, i.e., the time
between when a given message is generated by a client and when
it is committed by the cluster

3. End-to-end experiment, where there are both producers and con-
sumers concurrently generating/reading data in a real-time
streaming fashion, with the end-to-end latency 𝑙𝑒2𝑒 being the
main performance metric.

Our prototype consists of two high-end servers: one hosting the
client-side scripts and tools and another handling the cluster-side, i.e., the
180
Apache Kafka brokers and a Zookeeper instance for leader election
among them. The software on the cluster-side server runs within
Docker containers configured with Docker Compose,6 which is a tool
to start/stop/manage applications consisting of multiple containers
defined in a single YAML file. This approach is suitable for running the
entire cluster within a single physical server, but the scripts we devel-
oped can be adapted to match the specific characteristics of the target
deployment under test, e.g., a distributed environment where Apache
Kafka is run within a Kubernetes (K8s) cluster. The methodology would
remain the same and it is illustrated by means of the sequence diagram
in Fig. 5, which is entirely managed through the execution of a single
Bash script on the client-side server as detailed in the following.

At the beginning of the experiment, there is no Apache Kafka cluster
running. In principle, there are situations where we could reuse a
running cluster from the previous experiment, i.e., when the cluster
parameters 𝑃 , 𝑏 remain the same but we decided to start with clean
conditions to ensure independence and repeatability. The input of the
experiment is: the Apache Kafka cluster provisioning algorithm 𝐴,
the replication factor 𝑟, the number of consumers 𝑐, and the size of
the Apache Kafka messages exchanged 𝑀 , in bytes. The algorithms
lso require additional system parameters, as described in Section 3.4,
hich are considered static in the experiments described in this work.

6 https://docs.docker.com/compose/

https://docs.docker.com/compose/
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Fig. 4. Numerical simulations: Performance for variable replication factor values.
n the client side, the algorithm 𝐴, i.e., BroMin or BroMax, is run to
etermine the number of topic partitions 𝑃 and brokers 𝑏. Then, the

client issues the commands required to remotely start the Apache Kafka
cluster of 𝑏 brokers via Docker Compose, creates the topic that will
be used in the current experiment, and configures it with the given
replication factor 𝑟 and the number of partitions 𝑃 . Once done, the next
steps depend on the experiment type:

1. Consumption experiment. The client starts a producer to fill the
topic with a dataset of messages of size 𝑀 . When the dataset is
complete, the core part of the experiment starts. It is carried out
by means of a pool of 𝑐 consumers, all belonging to the same
consumer group, started as independent processes with a small
random initial delay. All the consumers greedily read messages
from the dataset as fast as they can, without performing any pro-
cessing on the payload or saving it, until the dataset is exhausted.
This is because the experiment intends to measure an upper
bound of the consumer throughput 𝑇𝑐 , as well as the rebalance
time. Both these metrics are produced by the script consumer-
perf-test.sh, bundled with Apache Kafka, which is used
under the hood by our framework.

2. Production experiment. The client starts a multi-threaded pro-
181

ducer that fills the topic with a dataset of messages of size 𝑀 as
fast as possible and the experiment terminates after a preconfig-
ured number of messages have been generated. If the client-side
server is more powerful than the cluster-side server and the
interconnecting network is not a performance bottleneck (these
conditions are both verified in our testbed), then the message
rate produced in output can be considered as an upper of the
production throughput 𝑇𝑝. On the other hand, the production
latency 𝑙𝑝 provides an indication of the time required by the
cluster to confirm that a given message has been replicated
across all the required brokers as needed based on the replication
factor requested. The tool used internally for this experiment
type is kafka-producer-perf-test.sh.

3. End-to-end experiment. In this case, two pools of processes are
spawned on the client-side server: producers and consumers.
The producers inject messages of a random size drawn from a
uniform distribution on the cluster with a configurable constant
message rate: this emulates data streaming from a continuous
but variable-rate application, like an IP video camera. Concur-
rently, the consumers read messages as fast as possible. Times-
tamps are recorded by both the producers and the consumers
so that the time elapsed between when a message is created

and when it is consumed, called end-to-end latency 𝑙𝑒2𝑒, can be
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Fig. 5. Methodology adopted for the execution of automated experiments with an
Apache Kafka cluster.

retrieved. Customer Python scripts are used as producers and
consumers and shipped as part of our framework.

In the experiments illustrated hereafter, we have set the maximum
umber of brokers available 𝐵 to 16, based on the hardware character-
stics of the cluster-side server7 and we varied the number of consumers

7 A Supermicro server with four CPUs AMD Opteron(tm) Processor 6282
E and 128 GB RAM.
182
Fig. 6. Prototype experiments: Number of partitions (𝑃 , top) and brokers (𝐵, bottom)
selected by the BroMin/BroMax algorithms for replication factor 𝑟 = 3, 5 and used in
the prototype experiments.

𝑐 in the range [25, 125]. In Fig. 6 we show the output of the BroMax and
BroMin algorithms, i.e., 𝑃 on the left-side plot and 𝑏 on the right-side
one, with two replication factors: 𝑟 = 3, which is a typical value used
in production systems, and 𝑟 = 5, which is intended for the dispatch of
critical messages in a system where brokers are prone to failures. These
plots are akin to Figs. 2–4, previously discussed as part of the numerical
simulation analysis, only for different ranges adjusted to fit the scope
of the prototype experiments in this section. They are reported here
to show the values of 𝑃 and 𝑏 with all the combinations of 𝐴, 𝑟, and
𝑐. The data collected during the warm-up and cool-down phases of
each experiment have been removed to focus on steady-state measures.
Finally, for each combination of factors we have run multiple iterations:
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in the plots, we show only the average value across them for better
readability; the interested reader can find the plots with confidence
intervals in the GitHub repository.

4.2. Consumption experiments

We begin with consumption experiments and we start focusing on
messages of small size, that is 𝑀 = 1 kB. In Fig. 7(a), we show the
onsumer throughput 𝑇𝑐 . As can be seen, all the curves decrease with
ncreasing number of consumers 𝑐. This is an expected behaviour with
mall message sizes and lightweight consumers because they can ingest
essages very fast, thus a more aggressive parallelisation results in a
egligible speed-up compared to a noticeable overhead. Furthermore,
roMax always achieves the lowest 𝑇𝑐 , even though it always saturates
he number of brokers, i.e., 𝑏 = 𝐵 = 16 in the experiments, and uses
ore partitions for the topic, as shown in Fig. 6 above.8 Finally, the

mpact of the replication factor 𝑟 = 3 vs. 𝑟 = 5 is small with BroMax
nd negligible with BroMin. Again, this is because of the small size of
essages, which keeps the additional overhead due to an increased

eplication low, especially with fewer brokers/partitions, i.e., in the
roMin case.

In Fig. 7(b) we show the rebalance time 𝜏𝑅. Based on the results, the
eplication factor does not affect significantly this metric. On the other
and, BroMax requires a significantly longer time for the consumer
roup to converge to a stable distribution of partitions than BroMin
ith a small number of consumers, i.e., as 𝑐 < 85. This can be
xplained by the higher number of brokers. However, as the number
f consumers becomes very large, i.e., in the right part of the plot,
he 𝜏𝑅 curves become almost overlapping, due to the counterbalancing
ffect of the number of consumers. Remember that in our experiments
he consumers join the group with small random offsets and every new
onsumer entering the group will trigger a rebalancing procedure: more
onsumers result in a higher rate of rebalancing events triggered.

In Fig. 8(a) we report a representative snapshot of the CPU load
easured on the physical servers, which were unloaded except for the
pache Kafka prototype experiments. The valleys correspond to when

he experiment iterations terminate, after which the load increases up
o peaks that mark the end of the respective experiments. In addition to
ollowing the same time pattern, incidentally, the CPU load of the client
nd server also have similar values. We included this plot to show that
either of the two servers is overloaded (the server has 64 real CPU
ores), which otherwise would have affected the results.

For the same reason, we report in Fig. 8(b) the disk I/O on the
luster server. This metric is irrelevant on the client side because the
lients do not use the disk at all as they drop immediately the payload
f messages after ingesting them. Also for this metric, we can see that
he server cannot be considered to be overloaded, and in fact, Apache
afka is known to be quite efficient in this respect despite it relying
eavily on data persistence on disk.

We now move to the case of large message size, i.e., 𝑀 = 100 kB.
irst we show 𝑇𝑐 in Fig. 9(a). Unlike with small message size, here the
erformance is dominated by the replication factor: 𝑟 = 3 achieves a
uch higher throughput (about 10×) than 𝑟 = 5. This suggests that a

arge value of 𝑟 should be configured only when strictly necessary, for
nstance, if the Apache Kafka brokers are highly unreliable; otherwise,
he performance can be unnecessarily degraded. The difference be-
ween BroMax and BroMin is less noticeable than with small messages,
ith BroMin achieving a higher throughput in the order of 10% for

8 There are some low-level parameters in Apache Kafka that could be
djusted to fine-tune the communication performance, such as the size of the
uffers used by TCP sockets. However, to the best of our knowledge, there
re no widely-used guidelines that can be adopted to optimise performance
etrics according to a specific scenario, thus we have left the default values
183

nd did not consider them as part of our analysis. a
Fig. 7. Prototype consumption experiments: (a) Consumer throughput, and (b)
rebalance time, with message size 𝑀 = 1 kB.

= 25 and 𝑐 = 45 for both 𝑟 = 3 and 𝑟 = 5 (the latter cannot be
een from the graph for scale reasons); for both replications factors,
he difference becomes negligible with more concurrent consumers.

We conclude the analysis with 𝜏𝑅, shown in Fig. 9(b). As expected,
he rebalance time is always smaller with 𝑟 = 3, even though not
rastically so. With 𝑟 = 3, 𝜏𝑅 is comparable to that with a small message
ize previously shown in Fig. 7(b), with the BroMin curve laying below
he BroMax curve, again, only for 𝑐 = 25 and 𝑐 = 45. With 𝑟 = 5, 𝜏𝑅
hows a more erratic behaviour, which however remains in a 10 s range

round 20 s.
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Fig. 8. Prototype consumption experiments: (a) CPU load (client vs. cluster), and (b)
isk I/O (cluster only), with message size 𝑀 = 1 kB.

4.3. Production experiments

We now move to a batch of production experiments, obtained
by increasing the message size from 1 kB to 100 kB. Recall from
Section 4.1 that, in this type of experiment, the client-side server uses
all possible resources to produce data as fast as possible in an attempt to
estimate the maximum production throughput of the cluster, therefore
the number of producers is not relevant. By looking at the two plots in
Fig. 10, which show the production throughput 𝑇𝑝 measured in MB/s
vs. record rate, we can see that the qualitative trends are opposite: this
184

a

Fig. 9. Prototype consumption experiments: (a) Consumer throughput, and (b)
rebalance time, with message size 𝑀 = 100 kB.

s because larger messages consume more resources than small ones to
e transferred/serialised/replicated, thus the record rate decreases as

increases, but the throughput in MB/s is more than compensated by
ecreasing per-message overhead and it increases significantly overall.

To better understand the results for what concerns the other param-
ters, i.e., the replication factor and the resource allocation policy, we
eport in Table 4 the number of partitions 𝑃 and brokers 𝑏 selected

by the two heuristic algorithms BroMax and BroMin. As can be seen
from Fig. 10, the production throughput with BroMax is much higher
than that with BroMin for all the values of 𝑀 : this is because the former
llocates way more resources than the latter, in terms of brokers, i.e., 16
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Fig. 10. Prototype production experiments: Production throughput in MB/s (top) and
ecord rate (bottom).

nstead of 3 or 5. As a result, the Apache Kafka cluster can increase the
evel of parallelism when ingesting data, which leads to a higher rate
f produced messages. 𝑇𝑝 is slightly smaller with a higher replication
actor because the amount of resources remains the same but each
essage must be replicated 5 times instead of only 3 in the cluster.
n the other hand, with BroMin the opposite happens: the throughput
ith 𝑟 = 5 is higher than that with 𝑟 = 3 because, while BroMin is

conservative in the use of resources, it cannot allocate a number of
brokers that is less than the replication factor, which leads to improved
performance thanks to the extra resources available with 𝑟 = 5.

We conclude this scenario with the production latency, whose aver-
ge value is shown in Fig. 11. Counter-intuitively, the average latency
185
Fig. 11. Prototype production experiments: Average production latency.

Table 4
𝑃 , 𝑏 selected by BroMax vs. BroMin in the production
experiments.

BroMax BroMin

𝑟 = 3 𝑃 = 213, 𝑏 = 16 𝑃 = 40, 𝑏 = 3
𝑟 = 5 𝑃 = 128, 𝑏 = 16 𝑃 = 40, 𝑏 = 5

decreases as the message size increases, even if the mere transmission
time from client to server obviously increases with 𝑀 . This is because
the production latency takes into account also the time for the cluster
to replicate the data and such an operation is done in batches: with
larger messages, the brokers need to pack together a smaller amount
of messages to perform some of their housekeeping operations, which
eventually leads to lower latency. On the other hand, the BroMax
curves are lower than the BroMin ones, since the latency is inversely
proportional to the throughput. Finally, with BroMax, the difference
in the average latency for the two replication factors is negligible,
while it is noticeable with BroMin, for which 𝑟 = 5 enjoys a relatively
maller average latency, because of the availability of more brokers, as
iscussed above.

.4. End-to-end experiments

We conclude the prototype performance evaluation with an end-to-
nd experiment carried out with 𝑝 producers generating 30 messages/s
ith variable message size in 𝑈 [1 kB, 100 kB]. Initially, we keep the
umber of consumers equal to 5 to best emulate a real production
cenario where there is a fixed number of services that consume data,
.g., for analytics or monitoring purposes, while the number of pro-
ucers may change over time due to, e.g., organic growth of the
nfrastructure. We consider only a replication factor of 3, which is
dequate for most production systems deployed with nodes having
ndustry-standard mean time before failure. We report the Cumula-
ive Distribution Function (CDF) of the latency, with 10, 15, and 20
roducers, in Fig. 12. First, we observe that the latency increases sig-
ificantly with the number of producers: this is expected because each
roducer generates data independently from the others, so increasing 𝑝
orresponds to increasing the overall cluster load proportionally, which
ields higher latencies. This suggests that resource allocation should
lso take the number of producers as an input variable of the problem;
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Fig. 12. Prototype end-to-end experiments: Cumulative distribution of the end-to-end
atency with different resource allocation policies (BroMax vs. BroMin) and number of
roducers (𝑝 = 10, 15, 20), with 5 consumers (𝑐 = 5).

hen a value for this parameter cannot be estimated, the latter can be
onitored in the field and used to periodically re-run an appropriate

esource allocation algorithm; such a study is complementary to this
ork and will be considered as part of our future research activities.
econd, BroMax exhibits a higher latency than BroMin; in other words,
nlike in the production experiment above, allocating more resources to
he cluster, that is brokers and partitions, leads to worse performance,
specially in terms of the high tail latency. This effect is due to
he increased overhead for cluster management and it implies that,
ontrary to general intuition, overprovisioning does not necessarily
roduce optimal results, when the key performance is maintaining a
ight pipeline from producers to consumers.

We conclude with an extreme scenario, where we increase further
he number of producers, to 25 and 50, and the number of consumers,
o 10 and 15. As shown in Fig. 13, the latency increases significantly,
ue to the high total throughput (310 Mb/s for 𝑝 = 25 and 620 Mb/s
or 𝑝 = 50) compared to the resources available in the cluster. Unlike
n previous consumer-/producer-only experiments, here the number
f consumers affects significantly the latency, which increases steeply
rom 𝑐 = 10 to 𝑐 = 15. Furthermore, we can see that BroMax generally
xhibits better performance than BroMin, especially in terms of the high
uantiles of latency. This is because the performance bottleneck in this
cenario is created by how fast the messages can be dispatched by the
rokers, hence having more brokers helps in reducing the congestion.

.5. Take-away messages

The key messages of the analysis of prototype experiments are as
ollows:

• The performance in a real Apache Kafka cluster depends sig-
nificantly on the size of the messages exchanged, as well as
on the replication factor, which can significantly degrade the
consumption throughput with large messages.

• With small messages, the advantages of parallelising data inges-
tion with multiple consumers can be offset by the increased com-
munication overhead, thus leading to a reduced cluster through-
put; on the other hand, larger size messages incur smaller cluster
management overhead and more efficient batching, which lead to
improved production throughput and latency.
186
• In a real Apache Kafka cluster, a more aggressive allocation of
resources (BroMax), in terms of the number of brokers and topic
partitions, does not always lead to improved performance: it does
so for production throughput but, on the contrary, the consump-
tion throughput can be lower and it can take longer for the
rebalancing procedure to converge compared a more conservative
use of resources (BroMin).

• In a real-time streaming scenario, BroMin achieves significantly
lower end-to-end latency due to the reduced complexity of the
cluster management procedures, but BroMax reduces the conges-
tion in extremely loaded conditions.

. Conclusions and future work

In this paper, we have formulated the Apache Kafka topic parti-
ioning process as an optimisation problem to determine the optimal
umber of partitions to satisfy the requirements and constraints of high-
eliability real-time data streaming applications. We have proposed
wo efficient heuristics that strive to achieve a balanced allocation
f resources while avoiding under- or over-utilisation of the system
esources, which have been evaluated in a broad set of configura-
ions through numerical simulations. Furthermore, we have devised
methodology for the fully-automated performance evaluation of an
pache Kafka cluster in three types of experiments: consumption,
roduction, and end-to-end. We have showcased the framework with
testbed prototype and compared BroMax and BroMin in represen-

ative scenarios with different message sizes and replication factors.
he results have highlighted some qualitative differences with respect
o the conclusions obtained through simulations: this suggests the
eed for cross-checking analysis with real-life data before production
eployment. Our evaluation framework, which was made available
o the community, can be used precisely for this purpose. Future
irections on the topic include but are not limited to (i) modelling and
ddressing the more generalised problem of multi-topic partitioning,
ii) employing multi-objective optimisation techniques to simultane-
usly address potential concurrent application requirements, and, (iii)
esigning data-driven ML methodologies, with data from actual Apache
afka deployments.
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