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A B S T R A C T

Historic masonry buildings are highly vulnerable to anthropic actions and environmental factors
due to their low tensile strength, and bounded compressive strength. Over the years, numerous
studies and experimental campaigns have been conducted to characterise the buildings’ response
to external actions and identify solutions for their conservation against multiple factors, such as
climatic changes, material ageing and earthquakes. However, the historic masonry structures’
response in case of fire and their safety assessment in post-fire conditions, still needs to
be thoroughly investigated both from an experimental and numerical point of view. This
paper generalises the constitutive equation of masonry-like (or no-tension) materials under non-
isothermal conditions to the case in which the masonry has weak tensile strength and bounded
compressive strength, even temperature dependent. The generalised constitutive equation is
then implemented in NOSA-ITACA and the explicit solution to the equilibrium problem of a
masonry circular ring in plane strain condition is calculated and compared with the numerical
solution. Subsequently, the code is used to perform an uncoupled thermo-mechanical analysis
of a real case study: a masonry barrel vault tested in fire conditions. The agreement between
the experimental and numerical results paves the way for further study and research.

. Introduction

Masonry cultural heritage is an integral part of human history, representing communities’ rich architectural traditions and
ultural identities worldwide. During their entire life, masonry constructions are constantly threatened by multiple factors, such
s climatic changes, ageing of material, earthquakes [1], floods [2], urbanisation [3], and fire [4]; the risk of being lost forever
s considerable, and their loss would mean not only a collective history and identity decay but also would have significant socio-
conomic impacts. While the last decades have witnessed significant developments in the experimental and numerical analysis of
he seismic response of historic masonry buildings [5,6], the attention paid to masonry structural response under fire and in post-fire
onditions is quite limited. In addition, in Europe, no specific code lays down rules on the fire protection of cultural heritage; only
he Recommendation of the European Council no. of 23 November 1993 deals with the safety of cultural assets in a general way, and
he [7] provides rules related to the design and safety assessment, in case of fire scenario, of linear elements (walls or slabs) of new
onstruction [8]. Experimental tests on masonry structures under fire are crucial to understand their behaviour and performance
uring a fire event. In general, they involve a portion [9,10] or full masonry structural elements subjected to controlled fire
onditions in a laboratory or on-site environment [11–14]. Their primary objective is to evaluate the response of masonry structures
o fire, including their thermal behaviour, structural integrity, and failure mechanisms [8]. Even if different testing procedures and
ethods are used to evaluate masonry’s thermal and mechanical properties, all the documents in the literature [8,12,15–18] show a

eneral decay in these properties with increasing temperature. In particular, the compressive strength that governs the load-bearing
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capacity of fire-exposed components can undergo a reduction of up to 70%–80% due to high temperatures [10,18], while the
tensile strength, usually neglected in ambient temperature, can govern the magnitude of spalling and thermally induced cracks [12]
but still showing a decrease of up to 80% compared to its original value [15,16,19]. Most of the tests reported in the literature
analyse the structural behaviour of masonry walls in case of fire. In contrast, the analysis of different structural elements (such as
vaults and arches) is limited to only two cases described in [13,14]; it is, therefore, clear the need to fill this gap and carry out other
experimental campaigns in order to characterise their behaviour when subjected to high temperatures. At the same time, the study of
simple numerical models capable of describing the main phenomena occurring in masonry structures under fire conditions and their
implementation in easy-to-use open-source numerical codes is paramount. From a numerical point of view, two different approaches
can be used to investigate the behaviour of masonry structures under fire, i.e. limit analysis and finite element (FE) simulations.
Relative to the first one, the only contribution present in the literature is [13], in which the Authors proposed a method to predict
the loadbearing capacity of arches and vaults based on the simplified procedure described in the Eurocode 6 [7] typically used to
assess the capacity of walls and columns. In detail, they applied the limit analysis method to reduced cross-sections of symmetrical
curvilinear elements (in terms of geometry, material properties and load arrangement, with respect to the keystone cross-section)
and validated the approach by exploiting the experimental test results carried out on two arches subjected to the standard fire load
in the intrados and different distributed loads on the extrados. Regarding FE analysis, most of the papers in the literature deal with
uncoupled thermomechanical analyses of walls or wall portions adopting a macro or micro modelling approach. In [20], a 3D micro-
modelling approach has been employed to assess the spalling of two (load and non-load-bearing) masonry walls made of hollow
bricks and traditional mortar during fire exposure. The simulation results, related to non-load-bearing walls carried out considering
the nonlinear elastic behaviours of the materials, showed good agreement with the experimental tests performed. In contrast, as
far as load-bearing walls are concerned, further investigations are needed. A micro model discretisation has also been used by [10]
to simulate the residual behaviour of masonry prisms made of bricks and mortar exposed to elevated temperatures. The numerical
investigations, performed using a quasi-brittle material constitutive law, seemed promising and were able to replicate the residual
compressive strength of the masonry system. The Authors of [21,22] applied an uncoupled FE modelling approach to explore the
residual mechanical performance of load-bearing masonry walls after insulation failure, focusing on the influence of wall thickness,
masonry units and their void percentage. The simulations, run by DIANA software, consisted of a nonlinear transient heat flow stress
analysis up to insulation failure, followed by a ‘‘cold’’ structural analysis in compression on the model after cooling. DIANA code has
also been employed to develop a 2-D finite element based micro modelling framework for thermo-mechanical analysis of solid brick
masonry structures subjected to fire, described in [23]. The framework considered geometric and material nonlinearities by total
strain rotating crack model and transient states of strain with temperature-dependent material properties. The FE predictions were
validated against the experimental response of a half-scale masonry wall subjected to one-sided fire exposure. In [24,25], the Authors
describe a procedure to estimate the deformed configuration (bowing) of masonry walls exposed to fire, considering the geometrical
and material characteristics of the blocks and joints through a homogenisation method. Compared to available experimental data,
the results obtained show that the numerical model can roughly predict the deformation of walls even if limited to an elastic model
for the constituent materials. Finally, [26] presents three modelling strategies to simulate the mechanical behaviour of the main
structural elements of Notre-Dame de Paris Cathedral before and after the fire: two discrete block-to-block 3D approaches (DEM and
FEM) and one continuum 3D approach (FEM). The results obtained proved the efficiency and robustness of the tools for establishing
a comparative diagnosis of the stability of the structure, despite the simplified hypotheses on the thermomechanical behaviour of
materials under the action of fire and its extinction.

An in-depth investigation on the numerical modelling of the static behaviour of masonry solids subjected to thermal loads
as addressed in [27,28], where the constitutive equation of masonry-like materials [29,30] with zero tensile strength e infinite

compressive strength is generalised to the non-isothermal case to consider thermal dilatations due to temperature variations. The
equation has been implemented in NOSA-ITACA (www.nosaitaca.it/software/), a FE code, developed by ISTI-CNR, for the static [31]
and dynamic structural analysis [32] of masonry constructions also in non-isothermal conditions [33]. The present work originates
from the necessity to extend the constitutive equation of no-tension materials under non-isothermal conditions [30] to the case in
which the masonry has weak tensile strength and bounded compressive strength, even temperature dependent. Furthermore, dealing
with historical masonry structures means poor knowledge of the thermo-mechanical properties of the constituent materials, which
generally cannot be improved by in situ tests. So, the paper shows how, through a simple constitutive model, whose application
requires knowledge of a limited number of parameters, it is possible to assess the behaviour of historical masonry structures subjected
to fire and estimate their bearing capacity in post-fire conditions. To this aim, in Section 2, the constitutive law for isotropic masonry-
like materials is recalled and extended to the case of limited mechanical strength and non-isothermal conditions. In Section 3, the
developed equation, implemented in NOSA-ITACA, is validated by using an artificial example. Finally, Section 4 shows its application
to a masonry vault in fire conditions, tested by Vigili del Fuoco [14].

2. No tension materials with weak tensile strength and bounded compressive strength under non-isothermal conditions

In this section, the constitutive equation of the masonry-like materials under non-isothermal conditions [30] is recalled. The
equation considers masonry as a homogeneous and isotropic nonlinear elastic material with zero or low tensile strength and infinite
or limited compressive strength and can realistically model the most significant aspects of masonry’s behaviour; here, the equation
is generalised under the hypothesis of temperature-dependent tensile and compressive strength.

Denoting by 𝐿𝑖𝑛 the space of the second-order tensors, let 𝑆𝑦𝑚 be the subspace of all symmetric elements of 𝐿𝑖𝑛 with the scalar
− +
2

product 𝐀 ⋅ 𝐁 = 𝑡𝑟(𝐀𝐁) for any 𝐀,𝐁 ∈ 𝑆𝑦𝑚. Being 𝑆𝑦𝑚 and 𝑆𝑦𝑚 the sets of all negative-semidefinite and positive-semidefinite

http://www.nosaitaca.it/software/
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elements of 𝑆𝑦𝑚. Given the symmetric tensors 𝐀 and 𝐁, we denote by 𝐀⊗𝐁 the fourth-order tensor defined by 𝐀⊗𝐁[𝐇] = (𝐁 ⋅𝐇)𝐀
or 𝐇 ∈ 𝐿𝑖𝑛 and by I the fourth-order identity tensor on 𝑆𝑦𝑚.

Let 𝜗 ∈ [𝜗1, 𝜗2], with 𝜗2 > 0, be the absolute temperature and 𝜗0 ∈ [𝜗1, 𝜗2] the reference temperature. We assume that the
hermal dilatation due to the temperature variation (𝜗 − 𝜗0) is the spherical tensor 𝛼(𝜗 − 𝜗0)𝐈 where 𝛼 is the linear coefficient of
hermal expansion and I the identity tensor.

Let E(𝜗), 𝜈(𝜗), 𝜎𝑡(𝜗) and 𝜎𝑐 (𝜗) be the temperature-dependent elastic modulus, Poisson ratio, tensile and compressive strength
espectively, and

𝜇(𝜗) =
𝐸(𝜗)

2(1 + 𝜈(𝜗))
(1)

the temperature-dependent shear modulus.
Furthermore, let C(𝜗) be the positive-definite, isotropic fourth-order elasticity tensor

C(𝜗) = 𝐸(𝜗)
1 + 𝜈(𝜗)

(I + 𝜈(𝜗)
1 − 2𝜈(𝜗)

𝐈⊗ 𝐈). (2)

Let us set

𝛾(𝜗) =
𝜈(𝜗)

1 − 2𝜈(𝜗)
(3)

𝛽(𝜗) = 𝛼(𝜗 − 𝜗0), (4)

and

�̃�𝑡(𝜗) =
𝜎𝑡(𝜗)
2𝜇(𝜗)

, �̃�𝑐 (𝜗) =
𝜎𝑐 (𝜗)
2𝜇(𝜗)

(5)

A masonry like material under non-isothermal conditions is an elastic material characterised by the fact that for 𝐄 ∈ 𝑆𝑦𝑚, and
𝜗 ∈ [𝜗1, 𝜗2] there exists a unique quadruplet (𝐓,𝐄𝑒,𝐄𝑓 ,𝐄𝑐 ) of elements of 𝑆𝑦𝑚 such that:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐓 − 𝜎𝑡(𝜗)𝐈 ∈ 𝑆𝑦𝑚−

𝐓 + 𝜎𝑐 (𝜗)𝐈 ∈ 𝑆𝑦𝑚+

𝐄 − 𝛽(𝜗)𝐈 = 𝐄𝑒 + 𝐄𝑓 + 𝐄𝑐

𝐓 = C(𝜗)[𝐄𝑒]
𝐄𝑓 ∈ 𝑆𝑦𝑚+

𝐄𝑐 ∈ 𝑆𝑦𝑚−

𝐄𝑐 ⋅ 𝐄𝑓 = 0
(𝐓 − 𝜎𝑡(𝜗)) ⋅ 𝐄𝑓 = (𝐓 + 𝜎𝑐 (𝜗)) ⋅ 𝐄𝑐 = 0

(6)

ith 𝐓 the Cauchy stress related to the infinitesimal strain 𝐄. Tensors 𝐄𝑒, 𝐄𝑓 and 𝐄𝑐 are the elastic, fracture and crushing parts of
𝐄.

Since C is isotropic, it follows that tensors 𝐄,𝐄𝑒,𝐄𝑓 ,𝐄𝑐 ,𝐓,𝐓 − 𝜎𝑡(𝜗),𝐓 + 𝜎𝑐 (𝜗) are coaxial [30], so the constitutive equation can
e rewritten with respect to the basis {𝐪𝟏, 𝐪𝟐, 𝐪𝟑} of the eigenvectors of 𝐄. Let (𝑒1, 𝑒2, 𝑒3), (𝑒

𝑓
1 , 𝑒

𝑓
2 , 𝑒

𝑓
3 ), (𝑒

𝑐
1, 𝑒

𝑐
2, 𝑒

𝑐
3) and (𝑡1, 𝑡2, 𝑡3) be the

igenvalues of 𝐄, 𝐄𝑓 , 𝐄𝑐 and 𝐓, respectively; it is easy to prove that (6) is equivalent to the system

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

𝑡1 = 2𝜇{(𝑒1 − 𝛽(𝜗) − 𝑒𝑓1 − 𝑒𝑐1) + 𝛾[𝑡𝑟(𝐄 − 𝛽(𝜗)𝐈) − 𝑡𝑟(𝐄𝑓 ) − 𝑡𝑟(𝐄𝑐 )]}

𝑡2 = 2𝜇{(𝑒2 − 𝛽(𝜗) − 𝑒𝑓2 − 𝑒𝑐2) + 𝛾[𝑡𝑟(𝐄 − 𝛽(𝜗)𝐈) − 𝑡𝑟(𝐄𝑓 ) − 𝑡𝑟(𝐄𝑐 )]}

𝑡3 = 2𝜇{(𝑒3 − 𝛽(𝜗) − 𝑒𝑓3 − 𝑒𝑐3) + 𝛾[𝑡𝑟(𝐄 − 𝛽(𝜗)𝐈) − 𝑡𝑟(𝐄𝑓 ) − 𝑡𝑟(𝐄𝑐 )]}

(𝑡1 − 𝜎𝑡(𝜗))𝑒𝑓1 = 0

(𝑡2 − 𝜎𝑡(𝜗))𝑒𝑓2 = 0

(𝑡3 − 𝜎𝑡(𝜗))𝑒𝑓3 = 0

(𝑡1 + 𝜎𝑐 (𝜗))𝑒𝑐1 = 0

(𝑡2 + 𝜎𝑐 (𝜗))𝑒𝑐2 = 0

(𝑡3 + 𝜎𝑐 (𝜗))𝑒𝑐3 = 0

𝑒𝑓1 ≥ 0, 𝑒𝑓2 ≥ 0, 𝑒𝑓3 ≥ 0

𝑒𝑐1 ≤ 0, 𝑒𝑐2 ≤ 0, 𝑒𝑐3 ≤ 0

(𝑡1 − 𝜎𝑡(𝜗)) ≤ 0, (𝑡2 − 𝜎𝑡(𝜗)) ≤ 0, (𝑡3 − 𝜎𝑡(𝜗)) ≤ 0

(𝑡1 + 𝜎𝑐 (𝜗)) ≥ 0, (𝑡2 + 𝜎𝑐 (𝜗)) ≥ 0, (𝑡3 + 𝜎𝑐 (𝜗)) ≥ 0
𝑓 𝑐 𝑓 𝑐 𝑓 𝑐

(7)
3

⎩𝑒1 𝑒1 = 0, 𝑒2 𝑒2 = 0, 𝑒3 𝑒3 = 0
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where 𝑡𝑟(𝐄) = (𝑒1 + 𝑒2 + 𝑒3), 𝑡𝑟(𝐄𝑓 ) = (𝑒𝑓1 + 𝑒𝑓2 + 𝑒𝑓3 ) and 𝑡𝑟(𝐄𝑐 ) = (𝑒𝑐1 + 𝑒𝑐2 + 𝑒𝑐3). Given E(𝜗), 𝜈(𝜗), 𝜎𝑡(𝜗) and 𝜎𝑐 (𝜗), it is possible to solve
7) and obtain the principal components of the stress, fracture and crushing tensors, defined in the following subsets, 1,..10, of
𝑆𝑦𝑚.

If

𝐄 ∈ 1 = {𝐄 ∈ 𝑆𝑦𝑚 ∣ 𝑒3 − 𝛽 + 𝛾[𝑡𝑟(𝐄) − 3𝛽] − �̃�𝑡 ≤ 0,

𝑒1 − 𝛽 + 𝛾[𝑡𝑟(𝐄) − 3𝛽] + �̃�𝑐 ≥ 0},
(8)

hen

𝑒𝑓1 = 𝑒𝑓2 = 𝑒𝑓3 = 0,

𝑒𝑐1 = 𝑒𝑐2 = 𝑒𝑐3 = 0,

𝑡1 = 2𝜇[(1 + 𝛾)(𝑒1 − 𝛽) + 𝛾(𝑒2 + 𝑒3 − 2𝛽)],

𝑡2 = 2𝜇[(1 + 𝛾)(𝑒2 − 𝛽) + 𝛾(𝑒1 + 𝑒3 − 2𝛽)],

𝑡3 = 2𝜇[(1 + 𝛾)(𝑒3 − 𝛽) + 𝛾(𝑒1 + 𝑒2 − 2𝛽)].

(9)

asonry is undamaged, with nil cracking and crushing strain, and exhibits linear elastic behaviour.
If

𝐄 ∈ 2 = {𝐄 ∈ 𝑆𝑦𝑚 ∣ 𝑒1 − 𝛽 + 𝛾[𝑡𝑟(𝐄) − 3𝛽] + �̃�𝑐 < 0,

𝛾(𝑒2 − 𝛽) + (1 + 𝛾)(𝑒3 − 𝛽) − 𝛾�̃�𝑐 − (1 + 𝛾)�̃�𝑡 < 0,

(1 + 2𝛾)(𝑒2 − 𝛽) + 𝛾(𝑒3 − 𝛽) + �̃�𝑐 ≥ 0},

(10)

hen

𝑒𝑓1 = 𝑒𝑓2 = 𝑒𝑓3 = 0,

𝑒𝑐1 = (𝑒1 − 𝛽) +
𝛾

1 + 𝛾
(𝑒2 + 𝑒3 − 2𝛽) + �̃�𝑐

1 + 𝛾
,

𝑒𝑐2 = 𝑒𝑐3 = 0,

𝑡1 = −𝜎𝑐 ,

𝑡2 = 2𝜇[(𝑒2 − 𝛽) +
𝛾

1 + 𝛾
(𝑒2 + 𝑒3 − 2𝛽 − �̃�𝑐 )],

𝑡3 = 2𝜇[(𝑒3 − 𝛽) +
𝛾

1 + 𝛾
(𝑒2 + 𝑒3 − 2𝛽 − �̃�𝑐 )].

(11)

Masonry achieves the compressive strength along a principal direction, resulting in crushing strain; no cracking strain develops, and
the material exhibits linear elastic behaviour under tensile stresses.

If

𝐄 ∈ 3 = {𝐄 ∈ 𝑆𝑦𝑚 ∣ (1 + 2𝛾)(𝑒2 − 𝛽) + 𝛾(𝑒3 − 𝛽) + �̃�𝑐 < 0,

(1 + 3𝛾)(𝑒3 − 𝛽) − 2𝛾�̃�𝑐 − (1 + 𝛾)�̃�𝑡 < 0,

(1 + 3𝛾)(𝑒3 − 𝛽) + �̃�𝑐 ≥ 0},

(12)

hen

𝑒𝑓1 = 𝑒𝑓2 = 𝑒𝑓3 = 0,

𝑒𝑐1 = (𝑒1 − 𝛽) +
𝛾

(1 + 2𝛾)
(𝑒3 − 𝛽) + �̃�𝑐

(1 + 2𝛾)
,

𝑒𝑐2 = (𝑒2 − 𝛽) +
𝛾

(1 + 2𝛾)
(𝑒3 − 𝛽) + �̃�𝑐

(1 + 2𝛾)
,

𝑒𝑐3 = 0,

𝑡1 = −𝜎𝑐 ,

𝑡2 = −𝜎𝑐 ,

𝑡3 =
2𝜇

1 + 2𝛾
[(1 + 3𝛾)(𝑒3 − 𝛽) − 2𝛾�̃�𝑐 ]}.

(13)

Masonry crushes along two principal directions, while no fracture strain occurs; this implies that any tensile stress is lower than the
material’s tensile strength.

If

𝑐

4

𝐄 ∈ 4 = {𝐄 ∈ 𝑆𝑦𝑚 ∣ (1 + 3𝛾)(𝑒3 − 𝛽) + �̃� < 0} (14)
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then

𝑒𝑓1 = 𝑒𝑓2 = 𝑒𝑓3 = 0,

𝑒𝑐1 = (𝑒1 − 𝛽) + �̃�𝑐

1 + 3𝛾

𝑒𝑐2 = (𝑒2 − 𝛽) + �̃�𝑐

1 + 3𝛾

𝑒𝑐3 = (𝑒3 − 𝛽) + �̃�𝑐

1 + 3𝛾
𝑡1 = 𝑡2 = 𝑡3 = −𝜎𝑐 .

(15)

asonry is completely crushed having reached its maximum compressive strength; crushing strains arise along the three principal
irections.

If
𝐄 ∈ 5 = {𝐄 ∈ 𝑆𝑦𝑚 ∣ (𝑒3 − 𝛽) + 𝛾[𝑡𝑟(𝐄) − 3𝛽] − �̃�𝑡 > 0,

(1 + 2𝛾)(𝑒2 − 𝛽) + 𝛾(𝑒1 − 𝛽) − �̃�𝑡 ≤ 0,

(1 + 𝛾)(𝑒1 − 𝛽) + 𝛾(𝑒2 − 𝛽) + 2𝛾�̃�𝑡 + (1 + 𝛾)�̃�𝑐 > 0},

(16)

then

𝑒𝑓1 = 𝑒𝑓2 = 0,

𝑒𝑓3 = (𝑒3 − 𝛽) +
𝛾

1 + 𝛾
(𝑒1 + 𝑒2 − 2𝛽) − �̃�𝑡

1 + 𝛾
,

𝑒𝑐1 = 𝑒𝑐2 = 𝑒𝑐3 = 0,

𝑡1 =
2𝜇

1 + 𝛾
[(1 + 2𝛾)(𝑒1 − 𝛽) + 𝛾(𝑒2 − 𝛽) + 𝛾�̃�𝑡],

𝑡2 =
2𝜇

1 + 𝛾
[(1 + 2𝛾)(𝑒2 − 𝛽) + 𝛾(𝑒1 − 𝛽) + 𝛾�̃�𝑡],

𝑡3 = 𝜎𝑡.

(17)

Masonry is cracked along one principal direction (where one of the stress tensor eigenvalues is equal to the material’s tensile
strength), while under compression, masonry can exhibits linear elastic behaviour.

If
𝐄 ∈ 6 = {𝐄 ∈ 𝑆𝑦𝑚 ∣ (1 + 2𝛾)(𝑒2 − 𝛽) + 𝛾(𝑒1 − 𝛽) − �̃�𝑡 > 0,

(1 + 3𝛾)(𝑒1 − 𝛽) − �̃�𝑡 ≤ 0,

(1 + 3𝛾)(𝑒1 − 𝛽) + 2𝛾�̃�𝑡 + (1 + 2𝛾)�̃�𝑐 ≥ 0},

(18)

hen

𝑒𝑓1 = 0,

𝑒𝑓2 = (𝑒2 − 𝛽) +
𝛾

(1 + 2𝛾)
(𝑒1 − 𝛽) − �̃�𝑡

(1 + 2𝛾)
,

𝑒𝑓3 = (𝑒3 − 𝛽) +
𝛾

(1 + 2𝛾)
(𝑒1 − 𝛽) − �̃�𝑡

(1 + 2𝛾)
,

𝑒𝑐1 = 𝑒𝑐2 = 𝑒𝑐3 = 0,

𝑡1 =
2𝜇

1 + 2𝛾
[(1 + 3𝛾)(𝑒1 − 𝛽) + 2𝛾�̃�𝑡],

𝑡2 = 𝑡3 = 𝜎𝑡;

(19)

Masonry reaches the maximum tensile strength along two principal directions (with the corresponding cracks formation).
If

𝐄 ∈ 7 = {𝐄 ∈ 𝑆𝑦𝑚 ∣ (1 + 3𝛾)(𝑒1 − 𝛽) − �̃�𝑡 > 0} (20)

then

𝑒𝑓1 = (𝑒1 − 𝛽) − �̃�𝑡

1 + 3𝛾
,

𝑒𝑓2 = (𝑒2 − 𝛽) − �̃�𝑡

1 + 3𝛾
,

𝑒𝑓3 = (𝑒3 − 𝛽) − �̃�𝑡

1 + 3𝛾
,

𝑒𝑐1 = 𝑒𝑐2 = 𝑒𝑐3 = 0,
𝑡

(21)
5

𝑡1 = 𝑡2 = 𝑡3 = 𝜎 .
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Masonry is unable to withstand tensile stresses greater than its tensile strength; cracking strains, different from zero, arise along the
principal directions.

If
𝐄 ∈ 8 = {𝐄 ∈ 𝑆𝑦𝑚 ∣ (1 + 3𝛾)(𝑒2 − 𝛽) − 𝛾�̃�𝑐 − (1 + 𝛾)�̃�𝑡 ≥ 0,

(1 + 3𝛾)(𝑒1 − 𝛽) + 2𝛾�̃�𝑡 + (1 + 2𝛾)�̃�𝑐 < 0}
(22)

hen
𝑒𝑓1 = 0,

𝑒𝑓2 = (𝑒2 − 𝛽) −
𝛾�̃�𝑐

(1 + 3𝛾)
−

1 + 𝛾
(1 + 3𝛾)

�̃�𝑡,

𝑒𝑓3 = (𝑒3 − 𝛽) −
𝛾�̃�𝑐

(1 + 3𝛾)
−

2 + 𝛾
(1 + 3𝛾)

�̃�𝑡,

𝑒𝑐1 = (𝑒1 − 𝛽) +
(1 + 2𝛾)�̃�𝑐

1 + 3𝛾
+

2𝛾
1 + 3𝛾

�̃�𝑡,

𝑒𝑐2 = 𝑒𝑐3 = 0,

𝑡1 = −𝜎𝑐 ,

𝑡2 = 𝑡3 = 𝜎𝑡.

(23)

asonry is cracked along two principal directions and crushed along one; its tensile and compressive strength are reached along all
he principal directions.

If
𝐄 ∈ 9 = {𝐄 ∈ 𝑆𝑦𝑚 ∣ (1 + 3𝛾)(𝑒2 − 𝛽) + 𝛾�̃�𝑡 + (1 + 𝛾)�̃�𝑐 ≤ 0,

(1 + 3𝛾)(𝑒3 − 𝛽) − 2𝛾�̃�𝑐 − (1 + 𝛾)�̃�𝑡 > 0},
(24)

then
𝑒𝑓1 = 𝑒𝑓2 = 0,

𝑒𝑓3 = (𝑒3 − 𝛽) −
2𝛾�̃�𝑐

1 + 3𝛾
−

1 + 2𝛾
1 + 3𝛾

�̃�𝑡,

𝑒𝑐1 = (𝑒1 − 𝛽) +
(1 + 𝛾)�̃�𝑐

(1 + 3𝛾)
+

𝛾
(1 + 3𝛾)

�̃�𝑡,

𝑒𝑐2 = (𝑒2 − 𝛽) +
(1 + 𝛾)�̃�𝑐

(1 + 3𝛾)
+

𝛾
(1 + 3𝛾)

�̃�𝑡,

𝑒𝑐3 = 0,

𝑡1 = 𝑡2 = −𝜎𝑐 ,

𝑡3 = 𝜎𝑡.

(25)

Masonry crushed along two principal directions and cracked along one; the eigenvalues of the stress tensor are equal to the
compressive and tensile strength.

Finally, if

𝐄 ∈ 10 = {𝐄 ∈ 𝑆𝑦𝑚 ∣ (1 + 2𝛾)(𝑒1 − 𝛽) + 𝛾(𝑒2 − 𝛽) + 𝛾�̃�𝑡 + (1 + 𝛾)�̃�𝑐 < 0,

(1 + 2𝛾)(𝑒3 − 𝛽) + 𝛾(𝑒2 − 𝛽) − 𝛾�̃�𝑐 − (1 + 𝛾)�̃�𝑡 > 0,

(1 + 3𝛾)(𝑒2 − 𝛽) − 𝛾�̃�𝑐 − (1 + 𝛾)�̃�𝑡 < 0,

(1 + 3𝛾)(𝑒2 − 𝛽) + 𝛾�̃�𝑡 + (1 + 𝛾)�̃�𝑐 > 0},

(26)

𝑒𝑓1 = 𝑒𝑓2 = 0,

𝑒𝑓3 = (𝑒3 − 𝛽) +
𝛾

(1 + 2𝛾)
(𝑒2 − 𝛽) −

1 + 𝛾
(1 + 2𝛾)

�̃�𝑡 −
𝛾

(1 + 2𝛾)
�̃�𝑐 ,

𝑒𝑐1 = (𝑒1 − 𝛽) +
𝛾

(1 + 2𝛾)
(𝑒2 − 𝛽) +

1 + 𝛾
(1 + 2𝛾)

�̃�𝑐 +
𝛾

(1 + 2𝛾)
�̃�𝑡,

𝑒𝑐2 = 𝑒𝑐3 = 0,

𝑡1 = −𝜎𝑐 ,

𝑡2 =
2𝜇

(1 + 2𝛾)
[(1 + 3𝛾)(𝑒2 − 𝛽) + 𝛾(�̃�𝑡 − �̃�𝑐 )],

𝑡3 = 𝜎𝑡;

(27)

Masonry reaches its maximum tensile and compressive strength along two principal directions; the material exhibits cracking and
crushing strain different from zero. Meanwhile, along the second direction, it shows linear elastic behaviour.

It is easy to prove that in regions 2, 6 and 8 𝑒1 < 𝑒2 ≤ 𝑒3 and that in 3, 5 and 9, 𝑒1 ≤ 𝑒2 < 𝑒3. Lastly, the eigenvalues
6

of 𝐄 are distinct in 10. The explicit expression of the derivatives of the stress function with respect to the strain tensor can be
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Fig. 1. The circular ring (left) and its mesh (right) created by NOSA-ITACA.

Fig. 2. Stationary temperature field in the ring (left) and temperature versus compressive strength (right).

calculated in the same way shown in [30]. These derivatives are then used to calculate, for each strain tensor 𝐄, the tangent
stiffness matrix employed in the numerical procedure implemented in NOSA-ITACA to solve the equilibrium problem and based on
the Newton–Raphson iterative scheme; for sake of brevity this part is omitted [30].

3. Numerical examples

In this section, two different examples are examinated, with the aim of validating the constitute law described in Section 2
and its implementation in the finite element code NOSA-ITACA. In the first example, a circular ring (Fig. 1) subjected to a plane
strain condition, resulting from uniform radial pressures 𝑝2 and 𝑝1 and a stationary temperature field due to a steady heat flow
(cf. relation (28), Fig. 2) is considered modelling the constituent material as a masonry-like material with zero tensile strength and
temperature independent compressive strength. The explicit solution of the problem is determined and compared with the numerical
one calculated by NOSA-ITACA in terms of stress components, crushing strain and displacement. The second example follows the
previous one, but the analysis is conducted under the hypothesis that the compressive strength depends linearly on temperature (cf.
relation (46), Fig. 2). Also in this case the analytic solution is compared with the one obtained from the FE code.

3.1. The circular ring made of masonry-like material with temperature independent compressive strength.

The circular ring, sketched in Fig. 1, with a inner radius 𝑎 and outer radius 𝑏, is subjected to two uniform radial pressures 𝑝2
and 𝑝1, acting uniformly on the outer and inner surface, and a steady temperature field varying with radius 𝑟:

𝜗(𝑟) =
𝜗1

𝑏 log( 𝑏
𝑟
) (28)
7

log( 𝑎 )
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e

with 𝜗1 > 0 the absolute value of the temperature on the inner surface. In the following let it be 𝐸 the Young’s modulus, 𝜈 the
Poisson’s ratio, 𝜗0 = 0 the reference temperature and 𝛽 = 𝛼𝜗 the thermal expansion with constant 𝛼. A polar reference system
{𝑂, r, 𝜑}, whose origin coincides with the centre of the ring and the 𝑧-axis orthogonal to its plane, is chosen to analyse the problem;
because of symmetry, the only non-zero displacement is the radial component 𝑢(𝑟).

The solution to the equilibrium problem of a circular ring made of a homogeneous isotropic linear elastic material subjected to
pressure 𝑝1 and 𝑝2 and having the temperature distribution (28) can be expressed as the sum of the solutions of two problems [34]:

𝜎𝑟(𝑟) = 𝜎𝑝𝑟 (𝑟) + 𝜎𝑡𝑟(𝑟),

𝜎𝜑(𝑟) = 𝜎𝑝𝜑(𝑟) + 𝜎𝑡𝜑(𝑟),
(29)

with 𝜎𝑟(𝑟) and 𝜎𝜑(𝑟) the radial and circumferential component of the stress tensor;

𝜎𝑝𝑟 (𝑟) =
1

𝑏2 − 𝑎2
[𝑝1𝑎2 − 𝑝2𝑏

2 + 𝑎2𝑏2(𝑝2 − 𝑝1)
1
𝑟2
],

𝜎𝑝𝜑(𝑟) =
1

𝑏2 − 𝑎2
[𝑝1𝑎2 − 𝑝2𝑏

2 − 𝑎2𝑏2(𝑝2 − 𝑝1)
1
𝑟2
],

(30)

the stress field in the circular ring due to the outer and inner pressure surface and

𝜎𝑡𝑟(𝑟) = 𝑘[− log( 𝑏
𝑟
) − 𝑎2

𝑏2 − 𝑎2
(1 − 𝑏2

𝑟2
) log( 𝑏

𝑎
)]

𝜎𝑡𝜑(𝑟) = 𝑘[1 − log( 𝑏
𝑟
) − 𝑎2

𝑏2 − 𝑎2
(1 + 𝑏2

𝑟2
) log( 𝑏

𝑎
)]

𝑘 =
𝛼𝐸𝜗1

2(1 − 𝜈) log( 𝑏𝑎 )

(31)

the resulting stress field of the stationary temperature load.
Let us assume that 𝑝1 and 𝑝2 verify the condition:

𝑎2 + 𝑏2

2𝑏2
𝑝1 ≤ 𝑝2 ≤

𝑎2 + 𝑏2

2𝑏2
𝑝1 +

𝑏2 − 𝑎2

2𝑏2
𝜎𝑐 , (32)

Then, 𝜎𝑝𝜑(𝑟) and 𝜎𝑝𝑟 (𝑟) are monotonic functions of 𝑟 and not positive [30]. If 𝜗1 > 0, 𝜎𝑡𝑟(𝑟) is negative at every point and nil on the
dge and 𝜎𝑡𝜑(𝑟) is negative for 𝑟 = 𝑎 [34]. The condition for which 𝜎𝜑(𝑏) ≤ 0 implies that:

𝛼𝜗1 ≤
2(1 − 𝜈)

𝐸
𝑝2(1 + 𝜂2) − 2𝑝1
𝜂2 − 2 log 𝜂 − 1

𝑙𝑜𝑔𝜂, (33)

where we set

𝜂 = 𝑏
𝑎
. (34)

Following an approach similar to that used in [35] is possible to prove that the circumferential stress is still non-positive for
each 𝑟 ∈ [𝑎, 𝑏]; the proof of this statement is omitted for sake of brevity.

Let us now assume the circular ring made of a masonry-like material with zero tensile strength and limited compressive strength
𝜎𝑐 not depending on temperature. In seeking the solution, and by virtue of (32), tentatively suppose that the strain belongs to the
region in 2 (10) assuming the circumferential stress 𝜎𝜑(𝑟) = 𝑡1 = −𝜎𝑐 (11) in a portion of the circular ring 𝛺1 = {(𝑟, 𝜑) ∶ 𝑟 ∈ [𝑎, 𝑟𝑐 ]},
where the radius 𝑟𝑐 is unknown. In this region, from the equilibrium equation:

𝑑𝜎𝑟
𝑑𝑟

+
𝜎𝑟 − 𝜎𝜑

𝑟
= 0 (35)

By virtue of (11), we get

𝜎𝑟 =
𝐸

1 − 𝜈2
[𝜀𝑟 − 𝛼𝜗(1 + 𝜈)] − 𝜈

1 − 𝜈
𝜎𝑐 , (36)

where 𝜀𝑟 = 𝑒2 is the radial strain, equal to the derivative with respect to the radius of the displacement 𝑢(𝑟):

𝜎𝑟 =
𝐸

1 − 𝜈2
[𝑑𝑢
𝑑𝑟

− 𝛼𝜗(1 + 𝜈)] − 𝜈
1 − 𝜈

𝜎𝑐 , (37)

𝑑𝜎𝑟
𝑑𝑟

= 𝐸
1 − 𝜈2

[𝑑
2𝑢

𝑑𝑟2
− 𝛼(1 + 𝜈)𝑑𝜗

𝑑𝑟
] (38)

The relation (35) is then equivalent to the differential equation

𝑟 𝑑
2𝑢

𝑑𝑟2
− 𝛼𝑟(1 + 𝜈)𝑑𝜗

𝑑𝑟
+ 𝑑𝑢

𝑑𝑟
− 𝛼𝜗(1 + 𝜈) + 𝜈

𝜆
𝜎𝑐 = 0 (39)

with 𝜆 = 𝐸𝜈
(1+𝜈)(1−2𝜈) the Lame constant. From (39) it follows

𝑑𝑢 = 𝛼𝜗(1 + 𝜈) + 𝑐 − 𝜈 𝜎𝑐 (40)
8

𝑑𝑟 𝑟 𝜆
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which replaced in (37) gives

𝜎𝑟(𝑟) =
𝐸

1 − 𝜈2
𝑐
𝑟
− 𝜎𝑐 (41)

The constant 𝑐 can be determined imposing the boundary condition 𝜎𝑟(𝑎) = −𝑝1 holding that 𝑐 = 1−𝜈2
𝐸 𝑎(𝜎𝑐 − 𝑝1).

In the remain circular ring 𝛺2 = {(𝑟, 𝜑) ∶ 𝑟 ∈ [𝑟𝑐 , 𝑏]} the stress field will coincide with the linear elastic solution of a ring
subjected to an external pressure 𝑝2, an internal pressure 𝑝𝑐 = 𝜎𝑐 − 𝑎

𝑟𝑐
(𝜎𝑐 − 𝑝1) and the temperature distribution 𝜗(𝑟) = 𝜗𝑟

log( 𝑏
𝑟𝑐

)
log( 𝑏𝑟 )

ith 𝜗𝑟 =
𝜗1

log( 𝑏𝑎 )
log( 𝑏

𝑟𝑐
) given from (28) assuming 𝑟 = 𝑟𝑐 .

The value of 𝑟𝑐 that separates 𝛺1 and 𝛺2 can be estimated imposing the continuity of 𝜎𝜑(𝑟) at 𝑟 = 𝑟𝑐 :

− 𝜎𝑐 = 𝜎𝜑(𝑟−𝑐 ) = 𝜎𝜑(𝑟+𝑐 )

𝜎𝜑(𝑟+𝑐 ) =
𝑝𝑐 (𝑏2 + 𝑟2𝑐 ) − 2𝑝2𝑏2

𝑏2 − 𝑟2𝑐
+ 𝑘[1 − log( 𝑏

𝑟𝑐
) −

𝑟2𝑐
𝑏2 − 𝑟2𝑐

(1 + 𝑏2

𝑟2𝑐
) log( 𝑏

𝑟𝑐
)]

(42)

Therefore, the solution in term of stress components is

𝜎𝑟(𝑟) =

⎧

⎪

⎨

⎪

⎩

𝑎
𝑟 (𝜎

𝑐 − 𝑝1) − 𝜎𝑐 , 𝑟 ∈ [𝑎, 𝑟𝑐 ]
𝑟2(𝑝𝑐 𝑟2𝑐−𝑝2𝑏

2)+𝑟2𝑐 𝑏
2(𝑝2−𝑝𝑐 )

𝑟2(𝑏2−𝑟2𝑐 )
+ 𝑘[− log( 𝑏𝑟 ) −

𝑟2𝑐
𝑏2−𝑟2𝑐

(1 − 𝑏2

𝑟2
) log( 𝑏

𝑟𝑐
)], 𝑟 ∈ [𝑟𝑐 , 𝑏]

𝜎𝜑(𝑟) =

⎧

⎪

⎨

⎪

⎩

−𝜎𝑐 , 𝑟 ∈ [𝑎, 𝜌𝑐 ]
𝑟2(𝑝𝑐 𝑟2𝑐−𝑝2𝑏

2)−𝑟2𝑐 𝑏
2(𝑝2−𝑝𝑐 )

𝑟2(𝑏2−𝑟2𝑐 )
+ 𝑘[1 − log( 𝑏𝑟 ) −

𝑟2𝑐
𝑏2−𝑟2𝑐

(1 + 𝑏2

𝑟2
) log( 𝑏

𝑟𝑐
)], 𝑟 ∈ [𝜌𝑐 , 𝑏]

From (40) and in virtue of (28) is possible to calculate the displacement 𝑢 in 𝛺1:

𝑢 = 𝛼(1 + 𝜈)
𝜗1

log( 𝑏𝑎 )
[𝑟 log( 𝑏

𝑟
) + 𝑟] + 1 − 𝜈2

𝐸
𝑎(𝜎𝑐 − 𝑝1) log(𝑟) −

𝜈
𝜆
𝜎𝑐𝑟 + 𝑑 (43)

ith 𝑑 a constant which can be determined by imposing the continuity of 𝑢(𝑟) at 𝑟 = 𝑟𝑐 .
The displacement in 𝛺2 it is:

𝑢(𝑟) = 1 − 𝜈2

𝐸
𝑟[𝜎𝜑(𝑟) −

𝜈
1 − 𝜈

𝜎𝑟(𝑟)] + (1 + 𝜈)𝛼
𝜗𝑟

𝑙𝑜𝑔 𝑏
𝑟𝑐

𝑟𝑙𝑜𝑔 𝑏
𝑟 (44)

Finally, by virtue of (11), (40) and remembering that 𝑒1 = 𝜀𝜑 = 𝑢(𝑟)∕𝑟 and 𝜀𝑟 =
𝑑𝑢
𝑑𝑟 , it follows:

𝜀𝑐𝜑(𝑟) =

⎧

⎪

⎨

⎪

⎩

(𝜀𝜑(𝑟) − 𝛼𝜗) + 𝜈
1−𝜈 (𝜀𝑟(𝑟) − 2𝛼𝜗 + 𝜎𝑐

𝜆 ), 𝑟 ∈ [𝑎, 𝑟𝑐 ]

0, 𝑟 ∈ [𝑟𝑐 , 𝑏]

For the numerical calculation of the solution, the following values of the constants are used:

𝑎 = 1.0 m, 𝑏 = 2.0 m
𝑝1 = 1.0 × 106 Pa, 𝑝2 = 2.8 × 106 Pa
𝜈 = 0.2, 𝐸 = 3.0 × 109 Pa, 𝜎𝑐 = 5.0 × 106 Pa
𝛼 = 1 × 10−5(◦C)−1

𝜗0 = 0 ◦C, 𝜗1 = 100 ◦C

(45)

With the aim of comparing the explicit solution with the numerical one calculated by means of the finite element code NOSA-
TACA, the ring is discretised into 20,000 4-node isoparametric quadrilateral elements with linear shape functions (corresponding
o element 6 of NOSA-ITACA library) for a total of 20,200 nodes and 40,400 degrees of freedom (Fig. 1).

Fig. 3 shows the radial (top) and tangent (bottom) stresses for the circular ring obtained from the explicit solution (continuous
ed line) compared with the numerical solution achieved by the FE code (black bold points); as it is possible to note there is a perfect
oincidence between the two results. In order to underline the different behaviours of a linear elastic material and a masonry-like
aterial, the solution to the linear elastic problem is also depicted in the Figure by a dotted red line. The radial displacement (top)

nd the crushing strain component (bottom) calculated analytically (continuous red line) and numerically (black bold points) are
ompared in Fig. 4. Again, the two solutions coincide, even in terms of the radius of transition value 𝑟𝑐 = 1.56m; furthermore, it is
9

oted that the no-tension model leads to an increase in radial displacement of approximately 40%.
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Fig. 3. Radial (top) and circumferential (bottom) stress component.

Fig. 4. Radial displacement (up) and circumferential (bottom) crushing strain.
10
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3.2. The circular ring modelled by masonry-like material with temperature dependent compressive strength.

In the case of 𝜎𝑐 = 𝜎𝑐 (𝜗) and 𝜗 = 𝜗(𝑟) expressed by (46) and (28) respectively, following a procedure similar to that used in
ection 3.1 the equilibrium in radial direction (35), supposing to be again in region 2 (10), becomes:

𝜎𝑐 (𝜗) = 𝜎𝑐0 +
𝜎𝑐100 − 𝜎𝑐0

𝜗1
𝜗 (46)

𝑟 𝑑
2𝑢

𝑑𝑟2
+ 𝑑𝑢

𝑑𝑟
+ 𝑘1 + 𝑘2 log

𝑏
𝑟
= 0 (47)

with 𝑘1 and 𝑘2 constant values equals to:

𝑘1 =
𝜗1

𝑙𝑜𝑔 𝑏
𝑎

[𝛼(1 + 𝜈) + 𝜈
2𝜇

𝜎𝑐100 − 𝜎𝑐0
𝜗1

] + 𝜈
𝜆
𝜎𝑐0

𝑘2 =
𝜗1

𝑙𝑜𝑔 𝑏
𝑎

[
𝜎𝑐100 − 𝜎𝑐0

𝜗1
𝜈
𝜆
− 𝛼(1 + 𝜈)]

(48)

with 𝜎𝑐0 and 𝜎𝑐100 the compressive strength at 𝜗0 = 0 ◦C and 𝜗100 = 100 ◦C, resp.
The solution of (47) can be expressed in the following form:

𝑑𝑢
𝑑𝑟

= 𝑐
𝑟
− 𝑘1 − 𝑘2(log

𝑏
𝑟
+ 1) (49)

where the constant 𝑐 is determined imposing the boundary condition 𝜎𝑟(𝑎) = −𝑝1:

𝑐 = 𝑎[ 1 − 𝜈2

𝐸
( 𝜈
1 − 𝜈

𝜎𝑐100 − 𝑝1) + 𝑘1 + 𝑘2(1 + log( 𝑏
𝑎
)) + 𝛼(1 + 𝜈)𝜗1] (50)

Again, it is possible to find the transition radius value 𝑟𝑐 that separates the crushing zone from the linear elastic one, imposing
he continuity of 𝜎𝜑(𝑟) at 𝑟 = 𝑟𝑐 . It follows:

𝜎𝑟(𝑟) =

⎧

⎪

⎨

⎪

⎩

𝐸
1−𝜈2 [

𝑐
𝑟 − 𝑘1 − 𝑘2(1 + log( 𝑏𝑟 )) − 𝛼𝑞1(1 + 𝜈) log( 𝑏𝑟 )] −

𝜈
1−𝜈 (𝜎

𝑐
0 + 𝑞1𝑞 log(

𝑏
𝑟 )), 𝑟 ∈ [𝑎, 𝑟𝑐 ]

𝑟2(𝑝𝑐 𝑟2𝑐−𝑝2𝑏
2)+𝑟2𝑐 𝑏

2(𝑝2−𝑝𝑐 )
𝑟2(𝑏2−𝑟2𝑐 )

+ 𝑘[− log( 𝑏𝑟 ) −
𝑟2𝑐

𝑏2−𝑟2𝑐
(1 − 𝑏2

𝑟2
) log( 𝑏

𝑟𝑐
)], 𝑟 ∈ [𝑟𝑐 , 𝑏]

𝜎𝜑(𝑟) =

⎧

⎪

⎨

⎪

⎩

−𝜎𝑐0 − 𝑞1𝑞 log(
𝑏
𝑟 ), 𝑟 ∈ [𝑎, 𝜌𝑐 ]

𝑟2(𝑝𝑐 𝑟2𝑐−𝑝2𝑏
2)−𝑟2𝑐 𝑏

2(𝑝2−𝑝𝑐 )
𝑟2(𝑏2−𝑟2𝑐 )

+ 𝑘[1 − log( 𝑏𝑟 ) −
𝑟2𝑐

𝑏2−𝑟2𝑐
(1 + 𝑏2

𝑟2
) log( 𝑏

𝑟𝑐
)], 𝑟 ∈ [𝜌𝑐 , 𝑏]

where:

𝑞 =
𝜎𝑐100 − 𝜎𝑐0

𝜗1

𝑞1 =
𝜗1

𝑙𝑜𝑔 𝑏
𝑎

𝑝𝑐 =
𝐸

1 − 𝜈2
[ 𝑐
𝑟𝑐

− 𝑘1 − 𝑘2(1 + log( 𝑏
𝑟𝑐
)) − 𝛼𝑞1(1 + 𝜈) log( 𝑏

𝑟𝑐
)] − 𝜈

1 − 𝜈
(𝜎𝑐0 + 𝑞1𝑞 log(

𝑏
𝑟𝑐
))

(51)

The expression of radial displacement and circumferential crushing strain can be calculated as in the previous section and here,
he step by step solution, is omitted for sake of brevity.

𝑢(𝑟) =

⎧

⎪

⎨

⎪

⎩

−𝑘2𝑟 log(
𝑏
𝑟 ) + 𝑐𝑙𝑜𝑔(𝑟) − 𝑟(𝑘1 + 2𝑘2) + 𝑑, 𝑟 ∈ [𝑎, 𝑟𝑐 ]

1−𝜈2
𝐸 𝑟[𝜎𝜑(𝑟) −

𝜈
1−𝜈 𝜎𝑟(𝑟)] + (1 + 𝜈)𝛼 𝜗𝑟

𝑙𝑜𝑔 𝑏
𝑟𝑐

𝑟𝑙𝑜𝑔 𝑏
𝑟 , 𝑟 ∈ [𝑟𝑐 , 𝑏]

𝜀𝑐𝜑(𝑟) =

⎧

⎪

⎨

⎪

⎩

(𝜀𝜑(𝑟) − 𝛼𝜗) + 𝜈
1−𝜈 (𝜀𝑟(𝑟) − 2𝛼𝜗 + 𝜎𝑐 (𝑟)

𝜆 ), 𝑟 ∈ [𝑎, 𝑟𝑐 ]

0, 𝑟 ∈ [𝑟𝑐 , 𝑏]

For the numerical solution, the following values are used:

𝑎 = 1.0 m, 𝑏 = 2.0 m
𝑝1 = 1.0 × 106 Pa, 𝑝2 = 2.8 × 106 Pa
𝜈 = 0.2, 𝐸 = 3.0 × 109 Pa
𝜎𝑐0 = 5.00 × 106 Pa, 𝜎𝑐100 = 4.25 × 106 Pa
𝛼 = 1 × 10−5(◦C)−1

◦ ◦

(52)
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𝜗0 = 0 C, 𝜗1 = 100 C
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Fig. 5. Radial (top) and circumferential (bottom) stress component.

Fig. 6. Radial displacement (top) and circumferential (bottom) crushing strain.

In order to compare the numerical solution with the analytical one, the ring is still discretised into 20,000 4-node isoparametric
quadrilateral elements with linear shape functions (corresponding to element 6 of NOSA-ITACA library) for a total of 20,200 nodes
and 40,400 degrees of freedom.

Fig. 5 shows the radial (top) and tangent (bottom) stresses for the circular ring obtained from the explicit solution (continuous
red line), and by the FE code (black bold points); again, it is possible to note a perfect coincidence between the two results. The
12



Finite Elements in Analysis & Design 234 (2024) 104128D. Pellegrini
Fig. 7. Geometrical vault scheme (top left; measurement in meters) and thermocouple layout (lower left); air temperature recorded during the fire test in the
oven (right).

radial displacement (top) and the crushing strain component (bottom) calculated analytically (continuous red line) and numerically
(black bold points) are compared in Fig. 6, confirming that the solutions overlap also in terms of the radius of transition 𝑟𝑐 = 1.83m.
The comparison with the case of temperature independent compressive strength (Section 3.1) highlights how a maximum reduction
of 15% of 𝜎𝑐 leads to an increase in the crushed area of 17% and a displacement increment of approximately 40%. Finally, using
the masonry-like model implies a 96% rise in radial displacement compared to the linear elastic case.

4. A real case study

The constitutive equation outlined in Section 2 is here applied to analyse the behaviour of a real case study consisting of a
barrel masonry vault (Fig. 7) tested in fire conditions by Vigili del Fuoco [14]. The vault has span length = 1.61 m, intrados radius
= 0.93 m (0.465 m rise), thickness = 0.12 m and length = 2.070 m. Bricks of 55 × 120 × 250 mm3 and premixed cement-lime-based
mortar were used for building the vault. In order to represent the backfill, two concentrated loads were symmetrically applied on two
concrete curbs at a 0.5 m distance from the keystone. During the fire test, the temperature of the extrados, intrados and inside the
vault were measured using 34 thermocouples placed according to the layout shown in Fig. 7. Additional thermocouples in the oven
were allowed to monitor the air temperature in real time. The fire test was interrupted after 52 min, although neither collapses nor
spalling occurred in the vault. The thermo-mechanical analysis, carried out by the NOSA-ITACA code, is here performed assuming
that the displacement gradient, thermal expansion and its derivative with respect to temperature, strain rate and temperature rate
are small so that the thermoelastic equilibrium equations governing the problem are uncoupled and can be integrated separately
[27]. The thermal analysis and its results are shown in Section 4.1, while Section 4.2 analyses the vault’s mechanical behaviour
under the temperature gradient and the external static loads applied to the vault extrados.

4.1. Thermal analysis of the masonry vault.

The purpose of this subsection is to show that it is possible to obtain the temperature field measured in the vault during the
experimental test [14], following the guidelines in Eurocode Part 1 − 2 [36] and employing some parameter values recovered from
the literature. During the test, the environmental temperature in the oven increased following the trend reported in Fig. 7, where the
black line represents the mean temperature value recorded by the thermocouples placed in the oven. According to the Eurocode, the
net flux heat ℎ̇net on the surface of a structural element exposed to fire can be determined by considering heat transfer by convection
and radiation as:

ℎ̇net = ℎ̇net,c + ℎ̇net,r (53)

The net convective heat flux ℎ̇net,c and the net radiative heat flux component per unit surface area ℎ̇net,r are determined by:

ℎ̇net,c = 𝛼c(𝜗g − 𝜗m)
4 4 (54)
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ℎ̇net,r = 𝜙𝜀m𝜀f𝜎[(𝜗r + 273) − (𝜗m + 273) ]
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Fig. 8. Vault mesh (top) and absolute temperature field obtained by thermal analysis (bottom).

where: 𝛼c is the coefficient of heat transfer by convection; 𝜗g and 𝜗m are the gas temperature in the vicinity of the fire exposed
member and the surface temperature of the structural element; 𝜙, 𝜀f, 𝜀m and 𝜎 are the configuration factor, the surface emissivity
of the member, the emissivity of the fire and the Stephan Boltzman constant; 𝜗r is the effective radiation temperature of the fire
environment [36]. The transient thermal analysis of the vault is performed by building a continuum FE model (Fig. 8) consisting
of 1280 4-node isoparametric plane elements with linear shape functions (element 11 of NOSA-ITACA library) for a total of 1397
nodes and 1397 degrees of freedom and assuming the following temperature independent material properties: thermal conductivity
1 W/mK [37]; specific heat for unit mass 1000 J/kgK [38]; emissivity, 1.0; mass density 1720 kg/m3 [14] and initial temperature
31 ◦C [14]. As boundary conditions a distributed flux ℎ̇net,c is applied to the vault’s extrados assuming 𝛼c = 9 W∕m2K [36] and
𝜗g = 31 ◦C while for the intrados surface the distributed flux expressed by (53) is used considering 𝛼c = 25 W∕m2K [36], 𝜗g
equal to the mean value of temperature recorded during the fire test and neglecting ℎ̇net,r (in the absence of information on 𝜗r).
Fig. 9 compares the experimental temperature histories and their numerical counterpars. In each chart, the grey lines represent the
temperature increment recorded by each thermocouple, the black line their mean value and the red line the numerical result. Chart
(a) is related to the thermocouples placed at the vault intrados, (b) and (c) refers to the thermocouples five and seven centimeters
away, respectively, from the intrados and (d) is related to the thermocouples positioned at extrados. It is possible to notice the
similarity of the experimental and numerical temperature trend at intrados and extrados with a maximum relative error of 3.8%
(maximum experimental increment temperature 582 ◦C versus 560 ◦C numerical) at the intrados and 12.0% (maximum experimental
increment temperature 27 ◦C versus 24 ◦C numerical) at the extrados. As regards the temperature trend inside the vault, the
difference between the experimental and numerical data could be traced back to sensors malfunctioning or material non-linear
behaviour not considered in the analysis.

4.2. Mechanical analysis of the masonry vault

The temperature field achieved by the previous thermal analysis is here applied to the FE model of the vault made of 1280 4-node
isoparametric plane strain elements with linear shape functions (element 6 of NOSA-ITACA library) for a total of 1397 nodes and
2794 degrees of freedom. Together with the temperature, the self-weight of the vault and two concentrated loads equal to 8770 N
each, and applied to the extrados of the concrete curbs, are also considered as acting on the model. The analysis is run assuming
the vault clamped at the two ends and modelling the concrete as a linear elastic material characterised by an elastic modulus of 25
GPa, a Poisson’s ratio equal to 0.2, a thermal expansion coefficient 𝛼 = 10−5(◦C)−1 and a mass density of 2400 kg/m3. The vault is
modelled as a masonry-like material with zero tensile strength and temperature dependent compressive strength as reported in the
Table 1, inspired by [12]:

For the other mechanical characteristics, the following values are assumed [39]:

𝐸 = 4.0 × 109 Pa,
𝜈 = 0.2,

𝛼 = 2.5 × 10−6(◦C)−1,
𝜌 = 1720 kg/m3

(55)

Fig. 10 shows, at reference temperature 𝜗0 and at the end of the numerical simulation, the minimum eigenvalues of the stress
tensor (top), maximum eigenvalues of the fracture strain tensor (middle) and lines of thrust (bottom) obtained from the integration,
14
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Fig. 9. Comparison between the temperature increment measured during the experimental test and the numerical counterpart.

Table 1
Compressive strength versus temperature.
𝜗 [◦C] 𝜎𝑐 [106 Pa]

0 2.500
20 2.500
100 2.500
200 2.375
400 2.125
600 1.975
800 1.975

on several sections, of the circumferential stress. At 𝜗0, the minimum value of stress is far from the maximum compressive strength
of the masonry, and this is confirmed by the fact that the thrust line is well contained within the vault thickness. In particular, it is
possible to note four compressed struts due to the particular load condition represented by the applied concentrated loads equal to
about the vault weight. Microfracture strains, such as those shown in the Figure, correspond to the stress field resulting from the
masonry zero tensile strength hypothesis. When the intrados reaches the maximum temperature, the distribution of the minimum
eigenvalues of the stress tensor is almost uniform, (Fig. 10) showing a higher value (approximately constant) at the intrados caused
by the hindered expansion of the structure attributable to the boundary conditions. It is necessary to highlight that, in this case,
the colour map associated with the stress field is intentionally limited to the value of −106 Pa to make the Figure more readable. In
reality, at the vault ends, the maximum compressive strength of masonry is reached with the rise of local crushed areas, as shown
in Fig. 12. About the thrust line, it moved towards the intrados of the vault and is characterised by constant eccentricity values;
at the keystone it is almost tangential to the intrados which corresponds a concentration of fracture strains along the entire height
of the section. Fig. 11 compares the experimental crack pattern with the numerical counterpart; the model can catch the fracture
distribution very well also in terms of magnitude, with the keystone cracks deeper and more pronounced than the longitudinal
fracture at the intrados.

Fig. 12(a,b) shows the time history of the minimum eigenvalues of the stress tensor at the interlock section intrados and extrados
(points P1 and P2, respectively). After five minutes, the material at point P1 shows a nonlinear behaviour, until the end of the
process, with the corresponding formation of crushing strains (Fig. 12c); the crushed area is limited to a small portion of the section
as shown by the time history of P2 that reveals a linear elastic behaviour (Fig. 12b). Point P3 in the Figure, three centimeters
from the intrados, represents the crossing point between the crushed and no-crushed zone. Fig. 12d outlines the time history of the
maximum eigenvalues of the fracture strain for points P3 and P4; in this case, cracks grow up only a few minutes after the start of
fire exposure.
15
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Fig. 10. Minimum eigenvalues of the stress tensor (top) at reference and final temperature; maximum eigenvalues of the fracture strain tensor (middle) at
reference and final temperature; line of thrust (bottom) at reference and final temperature.

Fig. 11. Maximum eigenvalue of the fracture strain tensor (top); crack detected at the end of fire test (bottom).
16
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Fig. 12. Time history of: the minimum eigenvalues of the stress tensor at the interlock section intrados (a) and extrados (b); the minimum eigenvalues of the
crushing strain tensor at the interlock section (c); the maximum eigenvalues of the fracture strain tensor at the keystone (d).

Finally, during the experimental test, the keystone displacement was measured using an LVDT; the value is 4.46 mm versus
4.64 mm obtained from the numerical model.

5. Conclusions

The present paper investigated the possibility of applying the constitutive equation of no-tension material to analyse the
mechanical behaviour of masonry structures in fire and post-fire conditions. For this purpose, the equation describing masonry-like
materials under non-isothermal conditions is generalised to consider the low tensile strength and bounded compressive strength
of masonry, including temperature dependence. The constitutive equation is also implemented in NOSA-ITACA, a freeware finite
element (FE) software developed in-house by ISTI-CNR devoted to analysing and calibrating the mechanical behaviours of historic
masonry structures. Thereafter, the explicit solution to the equilibrium problem of a circular ring subjected to uniform radial
pressures acting on the boundaries and to a stationary temperature field is calculated, modelling the constituent material as a
masonry-like material with null tensile strength and bounded compressive strength temperature independent and dependent, resp.
The ring is modelled by the FE code, and the comparison between the explicit solution and the numerical results (in terms of stress
tensor components, crushing strain tensor components and displacements) shows a perfect overlapping. Then, the code is used to
analyse the thermo-mechanical behaviour of a real case study consisting of a barrel masonry vault tested, in fire conditions, by Vigili
del Fuoco. Assuming suitable hypotheses, the equations governing the thermo-mechanical equilibrium problem are uncoupled, so
it is possible to perform a thermal analysis followed by a mechanical analysis applying the temperature field achieved to the FE
vault. Both analyses are performed by NOSA-ITACA, assuming for masonry a zero tensile strength and temperature dependent
bounded compressive strength. For simplicity, and due to a lack of information about the mechanical properties of the constituent
material, all the other parameters necessary for the analyses were assumed temperature-independent, and their values were taken
from the literature. The numerical results of the thermal analysis, in terms of temperature increments, are in good agreement
with experimental ones measured at the vault intrados and extrados. However, the internal measurements show a deviation, likely
attributable to sensor malfunctioning or non-linear behaviour of materials not considered in the numerical analysis. With respect to
the mechanical analysis, first, it is noted that the masonry nonlinear tensile behaviour influences the structure’s response more than
the nonlinearity in compression, which affects only small areas of end sections of the vault. Furthermore, the model is able to catch
very well the cracks patterns that occurs in the vaults, both in terms of location and magnitude. Finally, a comparison between the
vault keystone experimental displacement, and the numerical counterpart shows a relative percentage error of 4%. The use of the
17
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constitutive equation proposed, whose application requires the knowledge of only a few material mechanical characteristics, seems,
therefore, suitable for the historic masonry buildings’ structural safety analysis for which generally the knowledge of the materials
mechanical properties is limited and can only be estimated by non-destructive in situ tests. Further investigations are necessary to
validate the model, highlight its strengths and weaknesses and gather suggestions on improvements and changes. Future works will
include: (i) execution of experimental campaigns to characterise the thermo-mechanical behaviour of masonry specimens; (ii) to
study, from the experimental point of view, the response of curvilinear masonry elements in fire and post-fire conditions; (iii) the
ability to perform coupled thermo-mechanical analyses with the NOSA-ITACA code.
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