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A B S T R A C T   

Although the degradation growth of several technological units is naturally bounded, stochastic models used to 
describe them are typically unbounded. In general, this manifest contradiction does not significantly affect the 
effectiveness of unbounded degradation models, because degrading units are conventionally considered failed 
when their degradation level exceeds a threshold that is far below the physical bound. Yet, this is not always the 
case. Motivated by these arguments, the main aim and novel contribution of this paper is investigating the impact 
on a condition based maintenance policy and related costs of using a degradation model that neglects the 
presence of the bound when it exists. In particular, the paper focuses on situations where bound and failure 
threshold have comparable values. The study is conducted considering as competing models a bounded and an 
unbounded transformed gamma. The competing models are used to formulate a condition-based maintenance 
policy for the liners of a marine engine. An example of application based on real data is firstly developed. Hence, 
the results of a Monte Carlo simulation study are presented and discussed. Obtained results highlight that, 
neglecting the presence of the upper bound when it really exists, can cause substantial (unnecessary) additional 
maintenance costs.   

1. Introduction 

Interest of reliability and maintenance engineers in degradation 
models is mostly motivated by the fact that many technological units are 
subject to degradation phenomena that, in the long-run, cause a pro
gressive loss of functionality or performance. In fact, these units are 
usually considered failed when their degradation level exceeds a pre
determined failure threshold. 

Describing the degradation process of these units by stochastic 
models is twofold useful. Indeed, degradation models can be used both 
to obtain reliability estimates from degradation data, even in the 
absence of failures, and to perform condition based (i.e., degradation 
based) estimates of remaining useful life (RUL) and residual reliability, 
by taking advantage of degradation data collected, in real time, during 
the operational life of the units. These latter prognostic tools are very 
useful for formulating condition-based maintenance (CBM) policies, 
which provide a better trade-offs between corrective and preventive 
maintenance costs with respect to traditional age-based maintenance 
(ABM) and time-based maintenance (TBM) strategies (see, e.g., Wang 
and Pham [1], Ahmad and Kamaruddin [2], and Gertsbakh [3]). 

Potential benefits of CBM with respect to ABM and TBM strategies are 
discussed in detail in de Jonge et al. [4]. 

Obviously, the success of any maintenance policy mainly depends on 
the ability of the adopted stochastic model to adequately describe the 
real-world degradation phenomena of interest. 

Performances of CBM have been largely investigated in the literature 
(see, e.g., Alaswad and Xiang [5] and the more recent paper of Ali and 
Abdelhadi [6] for a comprehensive review of proposed modeling solu
tions). The large majority of the proposed CBM models describe the 
growth of the degradation over time by using stochastic processes with 
independent increments, such as the classical gamma, inverse Gaussian, 
and Wiener degradation processes (see, e.g., [7–12]), which allow for a 
good level of flexibility and great convenience from the mathematical 
point of view. For example, [13–23] construct CBM policies based on the 
gamma process. Still focusing on gamma degrading units, Esposito et al. 
[24] suggest a hybrid age-/condition-based maintenance policy that 
accounts for the presence of unit to unit variability and measurement 
errors, whereas Yuan e al. [25] use a Bayesian pre-posterior analysis to 
quantify the economic value of an inspection and preventive replace
ment program. [26–29] suggest CBM strategies that use the inverse 
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Gaussian process, whereas [30–35] propose CBM approaches that adopt 
the Wiener process. Some (very few) CBM policies refer to degradation 
processes with increments that depend both on age and state. Two ex
amples are given in [36,37], where the degradation phenomenon is 
described by using a transformed gamma process [38]. 

A potential limitation of all these processes is that they assume that 
the degradation level can increase indeterminately. In the practice, this 
latter assumption is often not realistic, because many real-world 
degradation phenomena are intrinsically bounded above (see, e.g. 
Ling et al. [39], and Deng and Pandey [40]). Taking into account such 
considerations, recently Fouladirad et al. [41] proposed a new bounded 
version of the transformed gamma process [38] and used it to describe 
the degradation process of the cylinder liners of a Diesel engine for 
marine propulsion. Model parameters were estimated from a set of real 
wear data. The upper bound was treated as an unknown parameter and 
was estimated directly from the available dataset. The proposed process 
was then used to estimate the remaining useful life and residual reli
ability of the liners. Obtained results were compared to those obtained 
by using a classical (unbounded) transformed gamma process. The study 
showed that, in the examined case, the unbounded transformed gamma 
process provides estimates much more pessimistic than those obtained 
by using the new bounded model. 

Although, due to risk aversion, the use of a more conservative un
bounded model could be generally preferred to a bounded one, the high 
cost of the liners, the strong interest to extend their operating life, and 
the fact that the considered wear induced soft failure does not produce 
catastrophic consequences, rise the doubt that neglecting the presence of 
the bound, when available data give statistical evidence of its existence, 
could significantly affect the prognostic ability of degradation models 
and consequently undermine the effectiveness of implemented CBM 
policy. 

Motivated by all these arguments, considered that there are very few 
papers that focus on modeling of bounded degradation phenomena and 
that, to the best of our knowledge, there are no studies dealing jointly 
with CBM and bounded degradation phenomena in the literature, the 
aim and novel contribution of this paper is to investigate the effect on 
CBM policy optimization and related maintenance costs, of using an 
unbounded process in place of a bounded one, when the true process is 
bounded above. In particular, inspired by a real world example of 
application, where a CBM policy is applied to the cylinder liners of a 
Diesel engine for marine propulsion, the paper focuses on experimental 
situations where bound and failure threshold have comparable values. 

The degradation process is described by adopting the bounded 
transformed gamma process, suggested in [41]. The bounded state 
function, which characterizes the process, is modeled by using three new 
functional forms that generalize the ones suggested in [41] and enhance 
the flexibility of the existing model. The CBM policy used to perform the 
investigation is similar to the one suggested in [36]. Here, with respect 
to [36], we use a more general cost function, which includes an addi
tional item that accounts for the effect of downtime. As competing 
(unbounded) degradation process we consider the transformed gamma 
process adopted in [36]. 

The rest of the paper is structured as it follows. Section 2 briefly 
resumes characteristics and properties of the (asymptotically) bounded 
transformed gamma process and introduces the new functional forms 
suggested for its state function. Section 3 is devoted to the formulation of 
the reliability function and conditional distribution of the RUL. Section 4 
addresses the maximum likelihood estimation of model parameters. 
Sections 5 and 6 focus on the application of the bounded transformed 
gamma process and of the considered CBM policy to the cylinder liners 
of a Diesel engine for marine propulsion. The application is developed 
by using the same set of real wear data analyzed in [36,41]. Purpose of 
these sections is to motivate the use of a bounded process, to demon
strate the affordability and the effectiveness of the proposed approach, 
and to show that neglecting the presence of a bound (when there is 
statistical evidence in favor of the bounded model) could cause (costly) 

preventive premature replacements of liners. Section 7 presents the re
sults of a small Monte Carlo simulation study aimed to evaluate the 
actual effect of a model misspecification on maintenance decisions and 
costs in an experimental situation similar to that of the real wear data. 
Lastly, Section 8 is devoted to final comments and conclusions. 

2. The bounded transformed gamma process 

Let η(t) be a non-negative, monotone increasing function of time t, 
with η(0) = 0, here referred to as age function, and let wlim denote the 
asymptotic upper bound of the degradation process. As stated in [41], 
the increasing bounded degradation process {W(t); t ≥ 0} is a bounded 
transformed gamma process (BTGP) if:  

(i) the degradation increments over disjoint time intervals are not 
independent;  

(ii) the degradation increment ΔW(t, t+Δt) ≡ W(t+Δt) − W(t) over 
the time interval (t, t+ Δt) depends on the process history up to t 
only through the current time t and the current degradation level 
(status) wt = W(t), being independent on the past (i.e., the pro
cess enjoys the Markov property); 

(iii) the conditional probability density function (pdf) of the incre
ment ΔW(t, t + Δt), given W(t) = wt, can be expressed as: 

fΔW(t,t+Δt)|W(t)(δ|wt) = g′(wt +δ)
[Δg(wt, wt +δ)]Δη(t,t+Δt)− 1

Γ(Δη(t, t+Δt))

×exp( − Δg(wt,wt +δ)), 0< δ<wlim − wt

(1)   

where g(w) is a non-negative, monotone increasing and differentiable 
function, with bounded domain, of the degradation level w 
(0 ≤ w < wlim), called the state function, with g(0) = 0 and 

lim
w→wlim

g(w) = ∞, (2)  

g′(wt +δ) is the first derivative of g(w) evaluated at wt + δ, Δg(wt ,wt + δ)
= g(wt + δ) − g(wt), Δη(t, t + Δt) = η(t + Δt) − η(t), and Γ(⋅) is the 
complete gamma function. 

Of course, the BTGP is fully defined once the functional forms of the 
state and age functions are specified. Suitable 2-parameter forms for the 
state function of a BTGP, referred to as “bounded” state functions, were 
proposed by Fouladirad et al. [41]: 

g1(w) = − β ln
(

1 −
w

wlim

)

(3)  

g2(w) = β
w

wlim − w
(4)  

g3(w) = β tan
(

π
2

w
wlim

)

, (5) 

To enhance the flexibility of the BTGP, the following new (more 
general) 3-parameter “bounded” state functions: 

g4(w) = − β ln
(

1 −
(

w
wlim

)γ)

(6)  

g5(w) = β
(

w
wlim − w

)γ

(7)  

g6(w) = β tan
(

π
2

(
w

wlim

)γ)

, (8)  

are here proposed, which reduce to the (2-parameter) state functions in 
Eqs. (3)–(5) for γ = 1. The first derivatives of the functions in Eqs, (6)- 
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(8) are, respectively: 

g′4(w) =
γ β
w

1
(wlim/w)γ

− 1
(9)  

g′5(w) =
γ β wlim

w2

(
w

wlim − w

)γ+1

(10)  

g′6(w) =
γ β
w

(
w

wlim

)γ π/2

cos2
(

π
2

(
w

wlim

)γ) . (11) 

In Fig. 1 the “bounded” state functions in Eqs. (6)–(8) are depicted, 
by assuming wlim = 10 and several values of the shape parameter γ, and 
by setting the parameter β so that gl(8) = 4 (l = 4, 5, 6). The figure gives 
evidence that the suggested state functions cover a wide range of be
haviors of monotonically increasing functions with bounded domain, 
showing in some cases the presence of an inflection point. 

Suitable (possibly non-linear) forms for the age function are the 
power-law function 

η(t) = (t/a)b
, a, b > 0, (12)  

which is convex (concave) when the shape parameter b is larger than 1 
(smaller than 1), and the exponential function 

η(t) = (b / a)[exp(t / b) − 1], a > 0, − ∞ < b < ∞, (13)  

which is convex (concave) when the shape parameter b is larger than 
0 (smaller than 0). Clearly, the age function in Eq. (12) is linear with the 
age t when b = 1, whereas the age function in Eq. (13) tends to be linear 
with t when b→∞. Note that when η(t) is linear with the age t, so that 
Δη(t, t + Δt)∝Δt, then from Eq. (1) we have that the conditional distri
bution of the degradation increment ΔW(t, t + Δt), given the current 
state W(t) = wt, does not depend on the current age t. Otherwise, the 
conditional distribution of ΔW(t, t + Δt), given the current state W(t) =

wt, depends also on the current age t and hence the process is said to be 
age- and state-dependent. 

Similarly, the functional form of the state function g(w) determines 
how, given the age t, the increment ΔW(t, t+Δt) depends on the current 
degradation state W(t) = wt. 

From Eq. (1), the conditional cumulative distribution function (Cdf) 
of the degradation increment ΔW(t, t+Δt) is given by: 

FΔW(t,t+Δt)|W(t)(δ|wt)

=

⎧
⎪⎪⎨

⎪⎪⎩

ΓL(Δg(wt,wt + δ);Δη(t, t + Δt))
Γ(Δη(t, t + Δt))

, for δ < wlim − wt

1, for δ ≥ wlim − wt

,
(14)  

where: 

ΓL(x; a) =
∫x

0

ua− 1exp(− u) du (15)  

is the (lower) incomplete gamma function. From Eqs. (1) and (14), by 
using g(w) and η(t) in place of Δg(wt ,wt +δ) and Δη(t, t + Δt), respec
tively, the pdf and the Cdf of the degradation level W(t) at the time t of a 
new (unused) unit (that is, of a unit with age t = 0 and state W(0) = 0) 
are obtained: 

fW(t)(w) = g′(w) [g(w)]
η(t)− 1

Γ(η(t)) exp(− g(w)), 0 < w < wlim (16)  

FW(t)(w) =

⎧
⎪⎨

⎪⎩

ΓL(g(w); η(t))
Γ(η(t)) , for w < wlim

1, for w ≥ wlim

. (17) 

The conditional mean and variance of the degradation increment, 
given the state wt at the time t, are not in a closed form, and require 
numerical integration: 

E{ΔW(t, t+Δt)|W(t)=wt} =

∫wlim − wt

0

δ fΔW(t,t+Δt)|W(t)(δ|wt) dδ (18)  

V{ΔW(t, t + Δt)|W(t) = wt} =

∫wlim − wt

0

δ2 fΔW(t,t+Δt)|W(t)(δ|wt) dδ

− E2{ΔW(t, t + Δt)|W(t) = wt}.

(19) 

Likewise, the mean and variance of the degradation level W(t) are 
given by: 

E{W(t)} =

∫wlim

0

w fW(t)(w)dw (20)  

Fig. 1. The “bounded” state functions gl(w) (l = 4, 5, 6), for wlim = 10, several values of γ, and β such that gl(8) = 4 (l = 4, 5, 6).  
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V{W(t)} =

∫wlim

0

w2 fW(t)(w)dw − E2{W(t)} . (21) 

Under the considered settings, also these mean and variance func
tions are not available in closed form. 

Due to the “bounded” nature of the state function g(w), for t→∞ the 
pdf in Eq. (16) tends to the Dirac delta distribution with support wlim, 
and hence the mean E{W(t)} of the degradation process tends to wlim for 
t→∞. In turns, the variance V{W(t)}, which initially grows with time, 
approaches to zero for t→∞. 

Similarly, for Δt→∞, (given t) the conditional pdf in Eq. (1) tends to 
the Dirac delta distribution with support wlim − wt , and hence the con
ditional mean E{ΔW(t, t+Δt)|W(t) = wt} of the degradation increment 
tends to wlim − wt, and the conditional variance V{ΔW(t, t+Δt)|W(t) =
wt} approaches to zero for Δt→∞. Of course, for wt→wlim, the condi
tional mean E{ΔW(t, t+Δt)|W(t) = wt} tends to 0. 

In addition, from Eq. (16), we have that, under the state functions in 
Eqs. (6)–(8), the upper limit wlim acts as a scale parameter for the pdf 
fW(t)(w) of the degradation level at the time t, which then can be 
rewritten as: 

fW(t)(w) =
1

wlim
h(w /wlim; η(t), β, γ), (22)  

where the function h(z; η(t), β, γ), with z = w/wlim, depends on η(t), on 
the functional form of g(w), on β, and on γ. Thus, since dw /dz = wlim, the 
(dimensionless) random variable Z(t) = W(t)/wlim has pdf fZ(t)(z) = h(z;
η(t), β, γ) that does not depend on wlim. In particular, under the state 
functions in Eqs. (6)–(8), the function fZ(t)(z) is given by, respectively: 

fZ(t)(z) =
γ zγ− 1β η(t) [ − ln(1 − zγ)]

η(t)− 1

Γ(η(t)) (1 − zγ)
β− 1

, 0 < z < 1  

fZ(t)(z) =
γ β η(t) zγη(t)− 1

(1 − z)γη(t)+1 Γ(η(t))
exp

(

− β
(

z
1 − z

)γ)

, 0 < z < 1  

fZ(t)(z) =
π
2

γ βη(t) zγ− 1

cos2
(π

2
zγ
)

[
tan

(π
2

zγ
)]η(t)− 1

Γ(η(t)) exp
(
− β tan

(π
2

zγ
))

,

0 < z < 1.

This implies that the mean and the variance of W(t) depend linearly 

on wlim and w2
lim, respectively: 

E{W(t)} = wlim

∫1

0

z fZ(t)(z) dz  

V{W(t)} = w2
lim

⎡

⎢
⎣

∫1

0

z2 fZ(t)(z) dz −

⎛

⎝
∫1

0

z fZ(t)(z) dz

⎞

⎠

2
⎤

⎥
⎦.

By assuming the state function g4(w) in Eq. (6) and the power-law age 
function η(t) = (t/a)b in Eq. (12), the curves of the degradation mean 
E{W(t)} are depicted in Fig. 2, for wlim = 10, and different selected 
values of the process parameters a, b, β, and γ, that is: (1, 1, 1, 1), (1, 0.5, 
1, 1), (1, 1, 2, 1), (1, 2, 5, 1), (3, 1, 1, 1), and (1, 2, 5, 0.5), respectively. 
We have that the mean curve has an inflection point only when the age 
parameter b is larger than 1 (see the dashed green and black lines of 
Fig. 2 for which b = 2.0), that is, when the age function is convex. 

In Fig. 3, the variance V{W(t)} of the same degradation model is 
depicted for wlim = 10 and for the same selected values of the process 
parameters a, b, β, and γ, used for Fig. 2. We note that, since the age 
function η(t), being non negative, continuous, and unbounded, only 
affects the “time” scale of the process, the maximum value Vmax{W(t)} of 
the variance does not depend on the functional form of the age function 
and on the values of its parameters a and b (see, at this purpose, the 
dashed brown line and the continuous blue and red lines in Fig. 3, whose 
maximum is the same). Thus, the ratio Vmax{W(t)}/w2

lim does not de
pends on a and b, but only on the parameter β of the state function. 

In addition, given a, b, β and γ, the time at which the variance reaches 
its maximum value does not depend on the value of wlim, and given b, β 
and γ is proportional to a, regardless of the value of wlim. At this purpose, 
see the continuous blue and red lines of Fig. 3 (indexed by the same 
values of b, β, and γ), where the time at which the corresponding vari
ances reach their maximum value is equal to 0.81 (blue line, when a =

1.0) and 2.43 (red line, when a = 3.0). 
Similar behavior of the mean and variance curves and the same 

properties of the mean and variance of W(t) are provided by assuming 
the state functions in Eqs. (7) and (8) and/or the exponential age 
function in Eq. (13). 

3. The remaining useful life and reliability function 

In the context of increasing degradation processes, a unit is 

Fig. 2. Behavior of the degradation mean E{W(t)}, for wlim = 10 and selected values of the process parameters a, b, β, and γ, when 
g(w) = g4(w) = − β ln(1 − (w/wlim)

γ
) and η(t) = (t/a)b. 
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conventionally assumed to fail when its degradation level W exceeds a 
threshold limit D (D < wlim). Then, the unit lifetime X is defined as the 
operating time to the first, and sole, passage beyond the limit D. 

Likewise, the remaining useful life (RUL) Xt of a unit at time t is 
defined as Xt = max{0, X − t}, so that Xt is equal to X − t if the unit at t is 
unfailed, and is assumed to be 0 otherwise. 

Then, by using the conditional Cdf in Eq. (14) of the degradation 
increment ΔW(t, t + Δt), the residual reliability, that is the conditional 
probability of the RUL Xt exceeding the time x, given the current state 
W(t) = wt < D at the current age t, is given by: 

Rt(x|wt) = Pr{ΔW(t, t + x) ≤ D − wt|W(t) = wt}

=
ΓL(Δg(wt,D);Δη(t, t + x))

Γ(Δη(t, t + x))
.

(23) 

If the age function η(t) is differentiable with respect to t, then the 
conditional pdf of the RUL Xt can be obtained by deriving the residual 
reliability in Eq. (23) with respect to x: 

fXt |W(t)(x|wt) = −
d
dx

∫Δg(wt ,D)

0

uΔη(t,t+x)− 1

Γ(Δη(t, t + x))
exp(− u)du. (24) 

Both the suggested age functions, say the power-law function η(t) =
(t/a)b in Eq. (12) and the exponential function η(t) = (b /a)
[exp(t /b) − 1] in Eq. (13), are differentiable with respect to t, and the 
derivatives of Δη(t, t+x) with respect to x are, respectively, equal to: 
dΔη(t, t+x)/dx = (b /a)[(t + x)/a]b− 1 and dΔη(t, t + x)/dx = (1 /a) exp 
((t + x)/b). 

Then, by using arguments provided in [36], instead of resorting to 
numerical integrations, the conditional pdf of Xt can be expressed in the 
following analytical form: 

where ψ(z) denotes the digamma function. 
From Eq. (23), by using g(D) and η(x) in place of Δg(wt ,D) and Δη(t,

t + x), respectively, the reliability function of a new unit is given by: 

R(x) = Pr{W(x) ≤ D} =
ΓL(g(D); η(x))

Γ(η(x)) . (26) 

Likewise, from Eq. (25), the pdf of the lifetime X of a new unit is 
given by: 

fX(x) =
dη(x)

dx
1

Γ(η(x))

×

{

ΓL(g(D); η(x)) [ψ(η(x)) − ln(g(D))] +
∑∞

k=0

(− 1)k
[g(D)]

η(x)+k

[η(x) + k]2 k!

}

.

(27) 

Finally, the mean E{Xt |W(t) = wt} of the RUL and the mean lifetime 
E{X} of a new item are given by, respectively: 

E{Xt|W(t) = wt} =

∫∞

0

Rt(x|wt)dx

=

∫∞

0

ΓL(Δg(wt,D);Δη(t, t + x))
Γ(Δη(t, t + x))

dx  

and 

E{X} =

∫∞

0

R(x)dx =

∫∞

0

ΓL(g(D); η(x))
Γ(η(x)) dx .

Fig. 3. Behavior of the degradation variance V{W(t)}, for wlim = 10 and selected values of the process parameters a, b, β, and γ, when 
g(w) = g4(w) = − β ln(1 − (w/wlim)

γ
) and η(t) = (t/a)b. 

fXt |W(t)(x|wt) =
dΔη(t, t + x)

dx
1

Γ(Δη(t, t + x))

×

{

ΓL(Δg(wt,D);Δη(t, t + x)) [ψ(Δη(t, t + x)) − ln(Δg(wt,D))] +
∑∞

k=0

(− 1)k
[Δg(wt,D)]

Δη(t,t+x)+k

[Δη(t, t + x) + k]2 k!

}

,

(25)   
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4. The maximum likelihood estimation procedure 

Let suppose that m identical units operate under the same conditions 
over the time intervals (0, Ti) (i = 1, …, m), and that ni degradation 
measurements are made on the unit i by performing periodic inspections 
at the ages ti,1,…,ti,ni which are possibly non equispaced and different 
from unit to unit. Moreover, let wi,j (i = 1,…,m; j = 1,…,ni) denote the 
degradation level of the unit i at the epoch of its j-th inspection. 

From the conditional pdf in Eq. (1), the conditional pdf of the wear 
increment ΔW(ti,j− 1, ti,j) accumulated by the unit i during the inspection 
interval (ti,j− 1, ti,j), given the state W(ti,j− 1) = wi,j− 1 of the unit i at the 
beginning of the interval, is: 

fΔW(ti,j− 1 ,ti,j)|W(ti,j− 1)

(
δi,j

⃒
⃒wi,j− 1

)

= g′
(
wi,j− 1 + δi,j

)
(
Δgi,j

)Δηi,j − 1

Γ
(
Δηi,j

) exp
(
− Δgi,j

)
, 0 < δi,j < wlim − wi,j− 1,

(28)  

where δi,j = wi,j − wi,j− 1 is the observed degradation increment, Δgi,j =

Δg(wi,j− 1, wi,j− 1 + δi,j), and Δηi,j = Δη(ti,j− 1,ti,j), with wi,0 = ti,0 = 0 for all 
i. From Eq. (28), the log-likelihood function relative to the whole 
observed dataset w = (w1,1,…,w1,n1 ,…, wm,1,…,wm,nm ) is: 

l (w; θ,wlim) =
∑m

i=1

∑ni

j=1
ln
(

fΔW(ti,j− 1 ,ti,j)|W(ti,j− 1)

(
δi,j

⃒
⃒wi,j− 1

))
, (29)  

where θ denotes the vector of parameters which, together to wlim, index 
the age and state functions. For example, if the age function is the power- 
law function in Eq. (12) or the exponential function in Eq. (13) and the 
state function is one of those in Eqs. (6)–(8), then θ = (a,b,β, γ). 

The maximum likelihood (ML) estimates θ̂ and ŵlim of the process 
parameters can be easily obtained by numerically maximizing the log- 
likelihood function in Eq. (29) with respect to θ and wlim. Of course, 
the maximization procedure of the log-likelihood in Eq. (29) is “natu
rally” constrained because wlim must be greater than the maximum 
observed degradation level wM = max(w1,n1 ,…,wm,nm ), that is, it must be 
wlim > wM. 

Moreover, in several circumstances, previous experiences and/or 
physical considerations on the degradation phenomenon allow the an
alyst to fix a lower limit wL > wM or an interval (wL, wU) of plausible 
values for wlim. In this case, the constrained maximization procedure 
must satisfy also these additional (possibly more restrictive) constraints. 

Once the vector of unknown parameters has been estimated, the ML 
estimate of any quantity of interest, say ϕ(θ,wlim), can be easily obtained 
by substituting θ̂ and ŵlim to θ and wlim in ϕ(θ,wlim). In particular, by 
using this approach, one can easily obtain the ML estimates of the 
conditional distribution fXt |W(t)(x|wt) of the RUL, the mean lifetime E{X}, 
the mean RUL E{Xt |W(t) = wt}, the residual reliability, and the condi
tional distribution of the degradation growth over a future time interval. 

5. Case study 

Let now consider the wear measurements of the liners of the 
8-cylinder SULZER engine which equips a cargo ship of the Grimaldi 
Lines, which has operated under homogeneous conditions. The dataset, 
given in Table 1 and depicted in Fig. 4, consists of a total of 23 wear 
measurements made via ad hoc inspections carried out between 1994 
and 2004. At each inspection, the wear of the inspected liner is measured 
by positioning a micrometer inside a predetermined hole located at the 
top dead center of the liner (the point where maximum mechanical and 
thermal loads are concentrated). Each datum consists of the age (in 
hours) of the liner at the inspection epoch and of the corresponding wear 
measurement (in mm). 

Hereinafter, for the sake of simplicity, we will use interchangeably 
the wording “age of the liner at the inspection epoch” and “inspection 
time”. 

These wear data were previously analyzed by Giorgio et al. [36] by 
using a transformed gamma process (TGP) with the “unbounded” 
power-law state function g(w) = (w/α)β, and two different age func
tions: the power-law function η(t) = (t/a)b in Eq. (12), and the expo
nential function η(t) = (b /a)[exp(t /b) − 1] in Eq. (13). 

The TGP with power-law age function provided the best fit for these 
data, but although this TGP showed to be able to fit quite well the 
empirical mean of the wear process (see the dashed line in the following 
Fig. 5), it was not able to fit adequately the empirical variance (see the 
dashed line in the following Fig. 6), in particular in the region where the 
empirical variance decreases quickly. 

On the other side, physical considerations related to the wear 
mechanism suggest that the liner wear cannot growth up to the thickness 
of the liners (i.e., 100 mm), so that an asymptotical upper bound wlim for 
the wearing phenomenon exists, although the same physical consider
ations alone do not allow to determine it exactly. However, previous 
experiences suggest that the liner wear can approach the value of 
4.3 mm, a wear value which is obviously larger than the maximum value 
wM = 3.05 mm of the considered dataset. Thus, the liner wear data were 
analyzed in [41] under the BTGP by treating the upper bound as an 
unknown parameter subject to the constraint wlim ≥ wL = 4.3 mm. 

In particular, the three “bounded” state functions in Eqs. (3)–(5) and 
the power-law age function η(t) = (t/a)b in Eq. (12) were there consid
ered. According to the Akaike information criterion (see Akaike [42]), 
the BTGP that provided the best fit to the wear data was the 
(4-parameters) BTGP with the state function g2(w) in Eq. (4), here 
denoted by “PL-BTGP2”. 

In this paper we have analyzed the same wear data by using the more 
general state functions in Eqs. (6)–(8), jointly with the power-law age 
function η(t) = (t/a)b in Eq. (12) or the exponential age function 
η(t) = (b /a)[exp(t /b) − 1] in Eq. (13). Estimates have been obtained by 
maximizing the log-likelihood function in Eq. (29). To account for the 
presence of a constraint on wlim, the maximization has been performed 
by using the DBCPOL subroutine of the IMSL Math/Library [43], a 
double-precision Fortran routine that minimizes a function (in this case, 
the negative log-likelihood) of n variables subject to bounds on the 
variables using a direct search complex algorithm. 

In Table 2 the ML estimates of the parameters of the considered 
5-parameter BTGPs, the corresponding estimated log-likelihood l̂ , 
and the Akaike information criterion (AIC) value (AIC = 2ν − 2 l̂ , where 
ν denotes the number of model parameters) are provided, and compared 
to the estimates obtained both in [41] under the PL-BTGP2 and in [36] 
under the TGP with power-law age and state functions. 

Note that the 5-parameter BTGP with “bounded” state function gl(w)

(l = 4,5,6) in Eqs. (6)–(8) and power-law age function is here denoted as 
“PL-BTGPl”, whereas the 5-parameter BTGP with “bounded” state 
function gl(w) (l = 1, …, 3) in Eqs. (6)–(8) and exponential age function 
is denoted as “Ex-BTGPl” (l = 4,5,6). 

Table 1 
Wear wi,j = W(ti,j) [mm] accumulated by liner i up to the inspection time ti,j [h].  

i wi,1 ti,1 wi,2 ti,2 wi,3 ti,3 wi,4 ti,4 

1 0.90 11,300 1.30 14,680 2.85 31,270   
2 1.50 11,300 2.00 21,970     
3 1.00 12,300 1.35 16,300     
4 1.90 14,810 2.25 18,700 2.75 28,000   
5 1.20 10,000 2.75 30,450 3.05 37,310   
6 0.50 6860 1.45 17,200 2.15 24,710   
7 0.40 2040 2.00 12,580 2.35 16,620   
8 0.50 7540 1.10 8840 1.15 9770 2.10 16,300  
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The estimation results given in Table 2 show that all the proposed BTGPs 
fit the liner wear data better than the TGP, because the corresponding AIC 
values are smaller than the AIC value relative to the TGP. In addition, 
among the BTGPs, the process that provides the best fit is the PL-BTGP2, 
already used in [41], with the state function g2(w) = β w/(wlim − w)

given in Eq. (4) and the age function η(t) = (t/a)b given in Eq. (12). Indeed, 
although the estimated log-likelihoods under the PL-BTGP5 and the 
Ex-BTGP5 are both larger than the estimated log-likelihood under the 
PL-BTGP2, this latter bounded process is favored in terms of AIC by the fact 
that it is indexed by only ν = 4 parameters, instead of 5. Thus, in the 
following, we will mainly focus on PL-BTGP2 and TGP to analyze the wear 
data of the cylinder liners. 

In Figs. 5 and 6 the ML estimates of the mean E{W(t)} and variance 
V{W(t)} of the wear process under the PL-BTG2 and the TGP are 
compared to the empirical estimates. 

Since the inspection times generally differ from liner to liner, and 
hence the wear measurements generally refer to different operating 
times of the liners, the empirical estimates of mean and variance were 
obtained by using the interpolation procedure at selected equi-spaced 
times τk (τk = k⋅2.5⋅103 h) already adopted in [36]. In particular, for 

each liner i such that ti,ni ≥ τk, the linearly interpolated wear value wi(τk)

at the time τk is obtained by: 

wi(τk) =
wi,j − wi,j− 1

ti,j − ti,j− 1

(
τk − ti,j− 1

)
+ wi,j− 1,

where ti,j is the smallest inspection time of liner i larger than or equal to 
τk. 

From Fig. 5 we have that the proposed PL-BTGP2 fits the empirical 
mean a little better that the TGP, in particular for large operating time t 
where the mean of the TGP, unlike the one of the PL-BTGP2, is not able 
to bend down. On the other side, Fig. 6 shows that the PL-BTGP2, unlike 
the TGP, is able to fit adequately both the initial growth of the empirical 
variance and its subsequent rapid reduction. 

In Fig. 7 the ML estimates of the reliability function of a new liner 
under the PL-BTGP2 and the TGP are plotted. As noted also in [41] the 
TGP greatly underestimates the unit reliability, and consequently also 
the mean lifetime E{X}, with respect to the PL-BTGP2. Indeed, the ML 
estimates of E{X} is equal to 109,994 h under the PL-BTGP2, whereas 
under the TGP it is equal to only 49,954 h. 

Fig. 8 depicts the ML estimates of the conditional pdf fXt |W(t)(x|wt) of 

Fig. 4. Observed wear paths of the liners (measurements that pertain to the same liner are linearly connected for graphical convenience).  

Fig. 5. Empirical and ML estimates of the mean wear E{W(t)} under the PL-BTGP2 and the TGP.  
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the RUL Xt of the liners #3 and 5 under the PL-BTGP2 and the TGP, 
given their wear level wt = 1.35 and 3.05 mm at the last inspection time 
t = 16, 300 and 37,310 h, respectively. Note that liners #3 and 5 were 
chosen for the comparative analysis because these liners are those that at 
the last inspection reached the lowest and the highest wear level, 
respectively. These plots show that the TGP greatly underestimates the 
RUL of both the liners. It should be noted that similar results have been 
obtained for the other liners. 

Table 3 gives the ML estimate Ê{Xt |W(t)= wt} of the mean RUL of all 
the liners, given the age t and the wear level wt at the last inspection 
epoch of each liner, under the PL-BTGP2 and the TGP. We can note that 
the TGP strongly underestimates the mean RUL of the liners with respect 
to the PL-BTGP2, sometimes being the estimate of E{Xt |W(t) = wt} ob
tained under the TGP four times smaller than the one obtained under the 
PL-BTGP2. The greater the current wear level is, the more the TGP un
derestimates the liner RUL. 

Fig. 6. Empirical and ML estimates of the variance V{W(t)} under the PL-BTGP2 and the TGP.  

Table 2 
Estimation results under the BTGP and the TGP.  

Process â [h] b̂ ŵlim [mm] α̂ [mm] β̂ γ̂ l̂ AIC 

PL-BTGP4 1936 1.239 4.3  33.69 1.204 2.693 4.614 
PL-BTGP5 2298 1.359 4.3  19.13 0.931 3.862 2.276 
PL-BTGP6 1527 1.187 4.3  21.81 1.010 3.837 2.326 
Ex-BTGP4 1250 1.000⋅1011 [h] 4.3  29.83 0.854 2.572 4.856 
Ex-BTGP5 868 4.341⋅105 [h] 4.3  21.11 0.852 3.981 2.038 
Ex-BTGP6 797 6.323⋅105 [h] 4.522  19.78 0.740 3.531 2.938 
PL-BTGP2 2682 1.434 4.363  18.62  3.843 0.314 
TGP 5107 1.701  0.750 2.312  0.590 6.820  

Fig. 7. ML estimates of the reliability R(x) of a new liner under the PL-BTGP2 and the TGP.  
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It must also be noted that so large differences between the pre
dictions of the RUL Xt under the PL-BTG2 and the TGP, even when the 
current wear level is far below the estimated upper bound ŵlim (as oc

curs in particular for the liner #3), are due to the fact that the upper 
bound of the liner wear process is slightly greater than the threshold 
value D. 

Fig. 8. ML estimates of the conditional pdf fXt |W(t)(x|wt) of the remaining useful life Xt of liners #3 and 5, given the age t and the wear level wt at the last inspection 
epoch, under the PL-BTGP2 and the TGP. 

Table 3 
Age t and state wt of each liner i (i = 1,…, 8) at the last inspection epoch and ML estimates of the mean RUL E{Xt |W(t) = wt} under the PL-BTGP2 and the TGP.   

Liner  

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

Current age t [h] 31,270 21,970 16,300 28,000 37,310 24,710 16,620 16,300 
Current state wt [mm] 2.85 2.00 1.35 2.75 3.05 2.15 2.35 2.10 

Ê{Xt |W(t)= wt} under PL-BTGP2 78,270 89,750 95,533 80,822 72,822 87,536 90,344 92,201 

Ê{Xt |W(t)= wt} under TGP 18,653 29,389 35,649 20,693 14,965 27,180 29,224 31,434  

Fig. 9. ML estimates of the conditional pdf fΔW(t,t+Δt)|W(t)(δ|wt) of the wear increment of liners #3 & 5 at the last inspection epoch during the future time interval of 
width Δt = 10,000 h, given their current age t and the wear level wt , under the TGP and the PL-BTGP2. 

Table 4 
Age t and state wt of each liner i (i = 1,…, 8) at the last inspection epoch and ML estimates of the mean wear growth E{ΔW(t, t +Δt)|W(t) = wt} under the PL-BTGP2 
and the TGP for Δt = 10, 000 h.   

Liner  

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

Current age t [h] 31,270 21,970 16,300 28,000 37,310 24,710 16,620 16,300 
Current state wt [mm] 2.85 2.00 1.35 2.75 3.05 2.15 2.35 2.10 

Ê{ΔW(t, t+Δt)|W(t) = wt} under PL-BTGP2 0.353 0.693 0.969 0.382 0.289 0.639 0.489 0.597 

Ê{ΔW(t, t+Δt)|W(t) = wt} under TGP 0.637 0.750 0.903 0.623 0.653 0.743 0.563 0.623  
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Finally, Fig. 9 provides the ML estimates of the conditional pdf 
fΔW(t,t+Δt)|W(t)(δ|wt) of the wear increment ΔW(t, t+Δt) of liners #3 and 5 
during the future time interval of width Δt = 10, 000 h, under the 
PL-BTGP2 and the TGP, given their wear level wt = 1.35 and 3.05 mm 
and age t = 13,300 and 37,310 h, respectively, at the last inspection 
epoch. 

From the plots in Fig. 9 we note that, compared to the PL-BTGP2, the 
TGP greatly overestimates the future wear growth of the liner #5, whose 
current wear level wt = 3.05 is no far from the estimated ŵlim = 4.363. 
On the contrary, for the liner #3 whose current wear level wt = 1.35 is 
far from the estimated ŵlim, the TGP underestimates a little the wear 
growth with respect to the PL-BTGP2. 

Finally, in Table 4, the ML estimates Ê{ΔW(t, t+Δt)|W(t)= wt} of 
the mean wear growth of all the liners under the PL-BTGP2 and the TGP 
are provided, for Δt = 10,000 h. We note that, always with respect to 
the PL-BTGP2, the TGP greatly overestimates the mean wear growth of 
almost all liners (the overestimation is larger than 40%, being in 
particular equal to 165% for the liner #5), with the exception of liners 
#2 and 3, whose current wear levels are the lowest ones, say 2.00 and 
1.35 mm, respectively. In particular, the TGP overestimates the mean 
wear growth of the liner #2 by only 8.3%, whereas the TGP even un
derestimates the mean wear growth of the liner #3 by 6.8%. 

For the sake of comparison, and also to check whether the use of 
another bounded process in place of the PL-BTGP4 could lead to 
different conclusions, in Tables 5 and 6 we report the estimates of the 
RUL and mean wear growth E{ΔW(t, t + Δt)|W(t) = wt}, respectively, 
computed under the other bounded processes with the power-law age 
function (12) and the 3-parameter “bounded” state functions (6)-(8), 
already considered in Table 2. 

The results reported in Table 5 show that all the bounded processes 
provide estimates of the mean RUL that are much greater than the 
corresponding estimates obtained under the TGP (see Table 3), clearly 
due to the effect of the finite bound wlim. We also note that the estimates 
of the mean RUL provided by the PL-BTGP5 and PL-BTGP6 are always 
rather close to the ones obtained under the PL-BTGP2, whereas the mean 
RUL estimates provided by the PL-BTGP4 model, although larger than 
the estimates under the unbounded TGP, are quite pessimistic when 
compared to the PL-BTGP2, PL-BTGP5, and PL-BTGP6 models. 

Differences among the mentioned estimates are more evident in the 
case of liners whose degradation level is closer to the estimated bound 
ŵlim. For example, from Fig. 10 it is evident that, in the case of the liner 
#1, whose current degradation level is 2.85 mm, the pdfs of the RUL at 
t = 31,270 h obtained under all the bounded processes are much more 
optimistic than the one estimated by using the unbounded TGP. In fact, 
also the conditional pdf of Xt obtained under the PL-BTGP4 (that, ac
cording to the Akaike information criterion, see Table 2, is the bounded 
process that provides the worst fit for the considered liner data is quite 
shifted to the right with respect to the conditional pdf obtained under 
the unbounded TGP. 

From Table 6, we see that the estimates of mean wear growth pro
vided by the PL-BTGP4, PL-BTGP5, and PL-BTGP6 are very similar to 
those obtained under the PL-BTGP2 (provided in Table 4), and that the 
estimates of the mean wear growth provided by the TPG are similar to 

those provided by the bounded processes only for the liners # 2, 3, 6, 7, 
and 8, whose current wear level is quite smaller than the estimated 
bound ŵlim, due to relatively short time horizon of 10,000 h. In the other 
cases, all the bounded processes provide estimates of the mean wear 
growth significantly smaller than those provided by the unbounded 
TGP. 

This circumstance is clearly shown by the Figs. 11 and 12, which 
evidence how the difference between the estimates of the conditional 
pdf of the increment ΔW(t, t+Δt) given the current state W(t) = wt 
provided by PL-BTGPs and unbounded TGP for the liner #1, which 
current degradation level and age are wt = 2.85 mm and t = 31,270 h, is 
much larger than the difference existing between the corresponding 
estimated pdfs obtained for the liner #2, which current degradation 
level and age are wt = 2.00 mm and t = 21, 970 h. 

Based on the results of Tables 3–6, and on Figs 10–12, we can 
conclude that the unbounded TGP provides estimates of the mean RUL 
and of the mean wear growth that are more pessimistic than the ones 
provided by the bounded processes, regardless of the adopted bounded 
state function (i.e., either g2(w), g4(w), g5(w), or g6(w)). Moreover, ob
tained results indicate that differences between the estimates provided 
by unbounded and bounded TGPs are primarily influenced by the time 
horizon, rather than by the specific adopted bounded state function. 

In fact, for example, the unbounded TGP provides estimates of the 
mean wear growth that are similar to those provided by the bounded 
processes only when the time horizon is small and the current degra
dation level of the liner is far below the estimated bound ŵlim. 

Based on these preliminary results, in Section 6, where we present a 
condition based maintenance policy, we focus our attention only on the 
PL-BTGP2 (i.e., on the model that according to the Akaike information 
criterion is the best one, among the considered alternatives, for the liner 
data in Table 1) and on the TGP which (among the unbounded TGP 
processes considered in [36]) provides the best fit for the same data. 
Then, in Section 7, where we investigate the consequences caused by a 
misspecification of a PL-BTGP2 with a TGP in terms of maintenance 
decision and maintenance costs by carrying out a small Monte Carlo 
simulation study, we also consider different values of the width of the 
time horizon which the decision relates to, for evaluating the sensitivity 
of results to this feature of the maintenance policy. 

6. The condition-based maintenance policy 

A condition-based maintenance policy very similar to the one pro
posed in Giorgio et al. [36] is apply in this paper. The only (slight) 
difference concerns the cost function, which includes a new (additional) 
term that account for the effect of downtime. 

The policy is conceived taking into account the maintenance activ
ities that are carried out in real settings on the considered cylinder liners 
of marine engines and the nature of the failure these units are subject to. 

Due to a contract clause, whose failure to comply determines the 
forfeiture of the guarantee, the liners should be replaced before their 
degradation level exceeds a threshold limit D that is defined by the 
manufacturer of the engine. In compliance with this contractual agree
ment, a liner whose degradation level has passed this threshold value is 

Table 5 
Age t and state wt of each liner i (i = 1,…, 8) at the last inspection epoch and ML estimates of the mean RUL E{Xt |W(t) = wt} under the PL-BTGP4, PL-BTGP5, and 
PL-BTGP6.   

Liner  

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

Current age t [h] 31,270 21,970 16,300 28,000 37,310 24,710 16,620 16,300 
Current state wt [mm] 2.85 2.00 1.35 2.75 3.05 2.15 2.35 2.10 

Ê{Xt |W(t)= wt} under PL-BTGP4 47,285 57,646 62,796 48,840 43,760 56,192 54,047 56,690 

Ê{Xt |W(t)= wt} under PL-BTGP5 87,305 98,997 104,778 89,926 81,850 96,823 99,108 101,103 

Ê{Xt |W(t)= wt} under PL-BTGP6 98,967 111,191 117,089 101,389 93,666 109,174 109,617 112,079  
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said “failed”, although it is not necessarily unable to operate. In fact, in 
the most of the cases, a liner (soft) failure induced by excessive wear 
only causes a loss of power. 

During their operating life, the liners are subject to sequential 
non-periodic inspections that are planned to perform several checks or 
maintenance actions on the whole engine, and then cannot be skipped 
for the sole purpose of optimizing the liner maintenance. During each 

inspection, the wear accumulated by each liner is measured. If the wear 
level wt of a liner at the inspection time t (measured from the time at 
which the liner is placed in service) exceeds the threshold value D, then 
the liner is immediately replaced with a new one. Otherwise, given the 
current state (i.e., the wear level) wt of the liner and the scheduled time 
t + τ for the next inspection, one has to decide what action to take 
between two alternatives: 

Table 6 
Age t and state wt of each liner i (i = 1,…, 8) at the last inspection epoch and ML estimates of the mean wear growth E{ΔW(t, t +Δt)|W(t) = wt} under the PL-BTGP4, 
PL-BTGP5, and PL-BTGP6 for Δt = 10, 000 h.   

Liner  

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

Current age t [h] 31,270 21,970 16,300 28,000 37,310 24,710 16,620 16,300 
Current state wt [mm] 2.85 2.00 1.35 2.75 3.05 2.15 2.35 2.10 

Ê{ΔW(t, t+Δt)|W(t)= wt} under PL-BTGP4 0,468 0,719 0,904 0,493 0,414 0,681 0,577 0,654 

Ê{ΔW(t, t+Δt)|W(t)= wt} under PL-BTGP5 0,348 0,689 0,964 0,379 0,282 0,633 0,495 0,601 

Ê{ΔW(t, t+Δt)|W(t)= wt} under PL-BTGP6 0,348 0,688 0,944 0,383 0,277 0,631 0,520 0,623  

Fig. 10. ML estimates of the conditional pdf fXt |W(t)(x|wt) of the remaining useful life Xt of liner #1, given the age t = 31,270 h and the wear level wt = 2.85 mm at 
the last inspection epoch, under the TGP, PL-BTGP2, PL-BTGP4, PL-BTGP5, and PL-BTGP6. 

Fig. 11. ML estimates of the conditional pdf fΔW(t,t+Δt)|W(t)(δ|wt) of the wear increment of liner #1 at the last inspection epoch during the future time interval of width 
Δt = 10,000 h, given its current age t = 31,270 h and wear level wt = 2.85 mm, under the TGP, PL-BTGP2, PL-BTGP4, PL-BTGP5, and PL-BTGP6. 
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(a) deferring the replacement of the liner to a later time (the next 
inspection time t + τ or even later), or 
(b) replacing immediately the liner with a new one. 

Of course, the decision must be taken on the basis of the expected 
utility loss associated with each possible action. 

Let cL denote the total cost of a new liner (including the cost of 
mounting) and let E{X} be its mean lifetime. The utility loss 
ULa(τ|wt+τ, tD) associated to the action (a) depends on the (unknown) 
wear level wt+τ of the liner of age t + τ at the next planned inspection 
and on the (unknown) downtime tD of the unit in the future time interval 
(t, t+ τ) (that is, the unknown amount of time, in the interval in 
(t, t+ τ), during which the wear level exceeds the threshold D), and is 
given by: 

ULa(τ|W(t+ τ)=wt+τ, TD = tD) = Uc(wt) − U(wt+τ, tD), (30)  

where: i) Uc(wt) = cL E{Xt |W(t)= wt}/E{X} is the current utility (or 
residual economic value) of the liner, assumed to be proportional to its 
current (conditional) mean RUL E{Xt |W(t) = wt}, and ii) U(wt+τ, tD) is 
the utility of same liner at the time t + τ of the next planned inspection. 
The utility U(wt+τ, tD) depends on the (unknown) liner wear level wt+τ at 
the time of the next inspection, as well as on the (unknown) downtime tD 
of the unit in (t, t+ τ), and is given by: 

U(wt+τ, tD)

=

⎧
⎪⎪⎨

⎪⎪⎩

cL E{Xt+τ|W(t + τ) = wt+τ}/E{X}; wt+τ < D

0; wt+τ = D

− [(wt+τ − D)/c]d − q tD; wt+τ > D

.
(31) 

From Eq. (31), we have that the utility U(wt+τ, tD) is:  

(1) positive, if the liner will not fail within t + τ (that is, if wt+τ < D), 
and proportional to the (conditional) mean RUL 
E{Xt+τ|W(t+τ)= wt+τ} at the next inspection time t+ τ;  

(2) null, if the liner will reach the threshold limit D exactly at t+ τ, 
and  

(3) negative, if the liner will exceed the threshold limit before the 
next inspection. In this case, by adopting a more general formu
lation with respect to Giorgio et al. [36], the (negative) utility is 
assumed to be the sum of a power-law function of the (possible) 
excess of wear wt+τ − D (already considered in [36]) and a (new) 
term consisting in a linear function of the downtime tD. 

From Eqs. (30) and (31), the expected utility loss associated to the action 
(a) is then given by:  

Fig. 12. ML estimates of the conditional pdf fΔW(t,t+Δt)|W(t)(δ|wt) of the wear increment of liner #2 at the last inspection epoch during the future time interval of width 
Δt = 10,000 h, given its current age t = 21,970 h and the wear level wt = 2.00 mm, under the TGP, PL-BTGP2, PL-BTGP4, PL-BTGP5, and PL-BTGP6. 

E{ULa(τ)} =

∫A

wt

∫τ

0

[Uc(wt) − U(wt+τ, tD)] fW(t+τ)|W(t)(wt+τ|wt) fTD |W(t),W(t+τ),(tD|wt,wt+τ) dtD dwt+τ

= cL
E{Xt|W(t) = wt}

E{X}
−

∫D

wt

cL
E{Xt+τ|W(t + τ) = wt+τ}

E{X}
fW(t+τ)|W(t)(wt+τ|wt) dwt+τ

+

∫A

D

(
wt+τ − D

c

)d

fW(t+τ)|W(t)(wt+τ|wt) dwt+τ +

∫τ

0

q tDfTD |W(t)(tD|wt) dtD,

(32)   
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where: 

A =

{
∞; if the degradation process is not bounded

wlim; if the degradation process is bounded ,

fW(t+τ)|W(t)(wt+τ|wt) is the (conditional) pdf of the wear level W(t+τ) at 
the next inspection time t+ τ, given the current wear level wt: 

fW(t+τ)|W(t)(wt+τ|wt) = g′(wt+τ)
[Δg(wt, wt+τ)]

Δη(t,t+τ)− 1

Γ(Δη(t, t + τ))
× exp( − Δg(wt,wt+τ)), wt < wt+τ < A,

(33)  

fTD |W(τ),W(t+τ)(tD|wτ,wt+τ) is the conditional pdf of the downtime TD of the 
used unit, given W(τ) = wτ and W(t + τ) = wt+τ, fTD |W(t)(tD|wt) is the 
“marginal” pdf of TD, given W(t) = wt: 

fTD |W(t)(tD|wt)

=

∫A

wt

fTD |W(τ),W(t+τ) (tD|wτ,wt+τ)fW(t+τ)|W(t)(wt+τ|wt) dwt+τ .

and the last integral in Eq. (32) arises from the equality: 

∫τ

0

q tDfTD |W(t)(tD|wt) dtD =

∫A

wt

∫τ

0

q tDfTD |W(t),W(t+τ)(tD|wt,wt+τ)

× fW(t+τ)|W(t)(wt+τ|wt) dtD dwt+τ .

Moreover, since in this case TD = max(0, τ − Xt), where Xt is the 
remaining useful life (RUL), the last integral in Eq. (32) can be rewritten 
as: 

∫τ

0

q tDfTD |W(t)(tD|wt) dtD

= q τ
∫τ

0

fXt |W(t)(xt|wt) dxt − q
∫τ

0

xt fXt |W(t)(xt|wt) dxt

= q τ [1 − Rt(τ|wt)] − q
∫τ

0

xt fXt |W(t)(xt|wt) dxt .

Likewise, the utility loss ULb(τ|W(τ)= wτ,TD = tD) associated to the 
action (b): replacing immediately the liner with a new one, given the 
(unknown) value of the wear level wτ of the new liner of age τ at the next 
planned inspection and the (unknown) downtime tD of the new liner, is 
given by: 

ULb(τ|W(τ)=wτ,TD = tD) = Uc(wt) + Uc(0) − U(wτ, tD), (34)  

where: i) Uc(wt) = cL E{Xt |W(t)= wt}/E{X} is the current residual eco
nomic value of the (used) liner of age t that is replaced even if not yet 
failed, ii) Uc(0) = cL is the current utility (economic value) of the new 
liner that is mounted in place of the current one, and iii) U(wτ, tD) is the 
utility of the new liner at the time τ of the next planned inspection. 

The utility U(wτ, tD) of the new liner depends on the (unknown) liner 
wear level wτ at the time of the next inspection and on the (unknown) 
downtime tD of the new liner, and is given by: 

U(wτ, tD) =

⎧
⎨

⎩

cL E{Xτ|W(τ) = wτ}/E{X}; wτ < D
0; wτ = D

− [(wτ − D)/c]d − q tD; wτ > D
, (35)  

where, similarly to Eq. (31), U(wτ) is: i) positive, if the new liner will not 
exhaust his life within τ (wτ < D), ii) null, if the new liner will reach the 
threshold limit D exactly at τ, and iii) negative, if the new liner will 
exceed the threshold limit before the next inspection, being now wτ − D 
the (possible) excess wear. 

Thus, from Eqs. (34) and (35), the expected utility loss associated to 
the action (b) is given by: 

E{ULb(τ)}

= U(wt) +

∫A

0

∫τ

0

[Uc(0) − U(wτ, tD)] fW(τ)(wτ) fTD |W(τ)(tD|wτ) dtD dwτ

= cL
E{Xt|W(t) = wt}

E{X}
+ cL −

∫D

0

cL
E{Xτ|W(τ) = wτ}

E{X}
fW(τ)(wτ) dwτ

+

∫A

D

(
wτ − D

c

)d

fW(τ)(wτ) dwτ +

∫τ

0

q tDfTD (tD) dtD,

(36)  

where fW(τ)(wτ) is the pdf in Eq. (16) of the wear level W(τ) of the new 
liner at the next inspection time τ, fTD |W(τ)(tD|wτ) is the conditional pdf of 
the downtime TD of a new unit, given W(τ) = wτ, and fTD (tD) is the 
marginal pdf of TD, given by: 

fTD (tD) =

∫A

0

fTD |W(τ)(tD|wτ)fW(τ)(wτ) dwτ,

and the last integral in Eq. (36) arises from the equality: 

∫τ

0

q tDfTD (tD)dtD =

∫A

0

∫τ

0

q tD fW(τ)(wτ) fTD |W(τ)(tD|wτ) dtD dwτ .

Moreover, since in this case TD = max(0, τ − X), where X is the 
lifetime, the last integral in Eq. (36) can be rewritten as: 

∫τ

0

q tDfTD (tD)dtD = q τ
∫τ

0

fX(x) dx − q
∫τ

0

x fX(x)dx

= q τ [1 − R(τ)] − q
∫τ

0

x fX(x)dx .

Let now assume that cL = 10,000 €, and that the cost due to an excess 
wear of 0.2 mm is equal to 100,000 €. By setting d = 1.5, we have that 
the failure cost parameter c is c = 9.283⋅10− 5 mm. In addition, we as
sume that the cost due to a downtime of 10,000 hours is equal to 20,000 
€, from which q = 2 €/h. 

By using the MLE of the model parameters in Table 2 under the 
PL-BTGP2, the expected utility losses in Eqs. (32) and (36), associ
ated, respectively, to the actions (a) and (b), are estimated for each 
liner, by assuming that the next inspection of the liners is planned 
after τ = 15, 000 h. As shown in Table 7, the estimated E{ULa(τ)}
under the PL-BTGP2 is always smaller than the estimated E{ULb(τ)}, 
and then we decide to defer the replacement of all the liners. 

For a comparative purpose, we have also estimated the expected 
utility losses E{ULa(τ)} and E{ULb(τ)} under the (unbounded) TGP with 
power-law age and state functions. As shown in Table 7, under the 
(unbounded) TGP the estimated E{ULa(τ)} is larger than E{ULb(τ)} for 
liners #1 and 5. This implies that, if the (unbounded) TGP is used to 
describe the liner wear process, then the liners #1 and 5 would have 
been immediately replaced with new liners at their last inspection times, 
say 31,270 and 37,310 h 

A deeper insight into the observed difference is provided by the 
Fig. 13, where the expected utility losses E{ULa(τ)} and E{ULb(τ)} of the 
liner #5 at its last inspection time t = 37,310 h, under the PL-BTGP2 
and the TGP are depicted as the time τ to the next inspection varies. 
From the plotted expected losses, we have that the “indifferent time” τ* 

for the future inspection of the liner #5, that is the time at which the 
expected utility losses associated to the actions (a) and (b) the same 
value, is equal to 73,860 h under the PL-BTGP2 process, and is equal to 
11,090 h under the TGP. 

As depicted in Fig. 13, from Eqs. (32) and (36) we have that: 
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• for τ = 0, it results E{ULa(0)} = 0 and 
E{ULb(0)} = cL E{Xt |W(t) = wt}/E{X};  

• for τ sufficiently smaller than the mean RUL E{Xt |W(t) = wt}, so that 
the failure probability at t+ τ, say 1 − FΔW(t,t+τ)|W(t)(D − wt |wt), is 
negligible, the difference between the conditional mean RUL at t and 
mean RUL at t+ τ, given wt, is approximately: 

E{Xt|W(t) = wt} −

∫D

wt

E{Xt+τ|W(t + τ) = wt+τ}

× fW(t+τ)|W(t)(wt+τ|wt) dwt+τ ≅ τ,

and hence, from Eq. (32), it results that E{ULa(τ)} ≅ cLτ/E{X}, so 
that E{ULa(τ)} initially increases linearly with τ, with rate cL /E{X};  

• for τ sufficiently smaller than the mean lifetime E{X}, so that the 
failure probability 1 − FW(τ)(D) of the new liner before the time τ of 
the next planned inspection is negligible, the difference between the 
mean lifetime of the new liner and its marginal mean RUL at τ is 
approximately: 

E{X} −
∫D

0

E{Xτ|W(τ)=wτ} fW(τ)(wτ) dwτ ≅ τ,

and hence, from Eq. (36), we have that E{ULb(τ)} ≅ cL E{Xt |W(t) =
wt}/E{X}+ cLτ/E{X}, so that E{ULb(τ)} initially increases linearly 
with τ with the same rate of E{ULa(τ)}. 

In particular, as depicted in Fig. 13 for the liner #5, the linear 
approximation of E{ULa(τ)} and E{ULb(τ)} under the PL-BTGP2, when 
the mean RUL E{Xt |W(t)= wt} = 72, 822 h and the mean lifetime 

E{X} = 109,994 h, works very well up to τ = 60,000 h and 
τ = 95,000 h, respectively. Likewise, under the TGP, when the mean 
RUL E{Xt |W(t)= wt} = 14, 965 h and the mean lifetime E{X} = 49, 954 
h, the linear approximation of E{ULa(τ)} and E{ULb(τ)} works very well 
up to τ = 7000 h and τ = 37,000 h, respectively. 

In a nutshell, based on the results of this case study, it is possible to 
affirm that the (incorrect) use of a TGP when the true process is the 
PL-BTGP2 would bring to the (possibly immature) immediate replace
ment of the liners #5 and 1. From the results obtained under the 
PL-BTGP2, reported in the first and second rows of Table 7, the (potential) 
expected utility losses (extra costs) caused by these decisions are esti
mated to be equal to 8480 - 1364 = 7116 € and 7,985 - 1364 = 6621 €, 
respectively. On the other hand, in the case of the considered real data it is 
not possible to be certain that the PL-BTGP2 and the TGP are the true and 
wrong model, respectively. Indeed, we can only say that, according to 
Akaike information criterion, the PL-BTGP2 is to prefer to the TGP. 
Hence, in order to better investigate the effect of a misspecification of a 
PL-BTGP2 with a TGP we have carried out the small simulation study 
illustrated in Section 7. 

7. Simulation study 

In order to investigate the consequences caused by a misspecification 
of a bounded PL-BTGP2 with an unbounded TGP, we have carried out a 
small Monte Carlo simulation study. The investigation is conducted by 
generating 100 pseudo-random samples of degradation data from the 
PL-BTGP2 whose parameters are equal to the ML estimates reported in 
Table 2 (i.e., â = 2682 h, ̂b = 1.434, ŵlim = 4.363 mm, and β̂ = 18.62). 
Hereinafter, this PL-BTGP2 will be referred to as “true wear model”. 

The 100 datasets have the same structure (i.e., the same number of 

Table 7 
Age t and state wt of each liner at the last inspection time and estimated expected losses (in €) E{ULa(τ)} and E{ULb(τ)}, associated to actions (a) and (b), respectively, 
under the PL-BTGP2 and the TGP, when τ = 15,000 h.   

Liner  

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

Current age t [h] 31,270 21,970 16,300 28,000 37,310 24,710 16,620 16,300 
Current state wt [mm] 2.85 2.00 1.35 2.75 3.05 2.15 2.35 2.10 

E{ULa(τ)} under PL-BTGP2 1364 1364 1364 1364 1364 1364 1364 1364 
E{ULb(τ)} under PL-BTGP2 8480 9524 10,050 8722 7985 9323 9578 9747 
E{ULa(τ)} under TGP 8362 3004 3003 4409 43,290 3009 3004 3003 
E{ULb(τ)} under TGP 6737 8886 10,140 7145 5998 8444 8853 9997  

Fig. 13. Expected utility losses E{ULa(τ)} and E{ULb(τ)} of the liner #5 under the PL-BTGP2 and the TGP.  
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units, the same number of measurements, and the same measurement 
times) of the real wear data reported in Table 1. The considered TGP is 
the one with power-law state function g(w) = (w/α)β and power-law age 
function η(t) = (t/a)b, which provided the best fit for the real wear data 
within the (unbounded) TGP. 

For each simulated dataset, we have estimated the parameters of 
both the PL-BTGP2 and TGP models. As in the case of the real data, the 
MLE of the parameters of the PL-BTGP2 have been obtained under the 
constraint wlim ≥ wL = 4.3 mm. Hence, for each of the two processes, 
based on the estimated parameters and the maintenance policy pre
sented in Section 6, we have identified the liners that should be imme
diately replaced at the last inspection time. In the rest of this section, the 
estimated PL-BTGP2 and TGP models will be indicated as PL-BTGP2 and 
TGP, by omitting the term “estimated”. 

As in Section 6, we have considered the case where the decision is 
made under the assumption that the next inspection is planned after τ =
15,000 h. The cost model is also calibrated as in Section 6. 

The results of this simulation study are summarized in Table 8. As 
indicated in the first row of the table, for all the liners the correct de
cision (i.e., the one defined by using the true wear model) is always to 
defer the replacement. The other two rows of the table give the fraction 
of times the PL-BTGP2 (second raw) and the TGP (third raw) have led to 
identify the preventive immediate replacement of the liner as optimal 
action (that is, the fraction of times the PL-BTGP2 and the (unbounded) 
TGP leads to a wrong maintenance decision). 

Obtained results show that i) the PL-BTGP2 always brings to make 
the correct decision, and ii) the misspecification of the PL-BTGP2 with 
the (unbounded) TGP leads to a total of 128 incorrect decisions (i.e., 
premature replacement of the liner) over a total of 800 decisions, 
especially in the case of the liners that are observed for a longer time, 
such as the liner #5 (observed up to 37,310 h), #1 (observed up to 
31,270 h), and #4 (observed up to 28,000 h). 

The expected value of the total extra cost caused (for each liner) by 
the wrong decisions (i.e., the premature replacement of the liner) made 
under the TGP when τ = 15, 000 h are reported in Table 9. These values 
are obtained by adding the expected extra costs caused by all the (single) 
wrong decisions (e.g., in the case of the liner #5, the value 479,913 € is 
computed by summing the expected extra costs caused by 73 out of 100 
wrong decisions). The expected extra cost caused by a single wrong 
decision is determined by computing the difference between the true 
expected loss of utility caused by the actions (b) and (a) (i.e., as 
E{ULb(τ)} − E{ULa(τ)}), The true values of the expected utility losses are 
calculated by using the true model. 

From the extra costs in Table 9 under the TGP, whose sum is equal to 
878,722 €, it results that the (estimated) mean expected cost of a wrong 
decision is equal 6865 € and the (estimated) mean expected cost for 
sample due to wrong decisions is equal to 8787 €. The expected utility 

loss caused by a single wrong decision ranges between 5852 € and 8468 
€. 

In order to investigate the sensitivity of the results on the width of the 
time horizon (that, as highlighted in Section 5, affects significantly the 
estimate of the mean degradation growth) we have repeated our ana
lyses considering the cases where the decision is made under the as
sumptions that the next inspection is planned after τ = 10,000 h and τ =

25,000. In Tables 10 and 11 the fraction of times the PL-BTGP2, and the 
TGP lead to identify the preventive immediate replacement of the liners 
as optimal action when τ = 10,000 h and τ = 25,000 h, respectively, are 
provided. 

Obtained results show that, as the time interval τ increases, the 
misspecification of the PL-BTGP2 with the TGP significantly increases 
the risk of deciding to replace immediately the liner when the correct 
decision would be to postpone its replacement:  

i when τ = 10,000 h, the TGP brings to make the incorrect decision 26 
times over 800. In particular, the liner # 5, whose current wear level 
is the largest one, is subject to the incorrect decision 23 times over 
100. On the contrary, the PL-BTGP2 model always brings to the 
correct decision; 

ii when τ = 25,000 h, the PL-BTGP2 brings to make the incorrect de
cision 413 times out of 800. In particular, the liner # 5 is always 

Table 8 
Fraction of times the true wear model, the PL-BTGP2, and the TGP lead to 
identify the preventive immediate replacement of the liners as optimal action 
when τ = 15, 000 h.  

Process Liner 

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

True wear model 0 0 0 0 0 0 0 0 
PL-BTGP2 0 0 0 0 0 0 0 0 
TGP 0.25 0.04 0.01 0.18 0.73 0.07 0 0  

Table 9 
Total expected value of the extra costs (in €) caused by wrong decisions (out of 100) made under the PL-BTGP2 and the TGP when τ = 15,000 h.  

Process Liner 

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

PL-BTGP2 0 0 0 0 0 0 0 0 
TGP 176,289 29,011 8,468 133,147 479,913 51,894 0 0  

Table 10 
Fraction of times the true wear model, the PL-BTGP2, and the TGP lead to 
identify the preventive immediate replacement of the liners as optimal action 
when τ = 10,000 h.  

Process Liner 

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

True wear model 0 0 0 0 0 0 0 0 
PL-BTGP2 0 0 0 0 0 0 0 0 
TGP 0.02 0.01 0 0 0.23 0.01 0 0  

Table 11 
Fraction of times the true wear model, the PL-BTGP2, and the TGP lead to 
identify the preventive immediate replacement of the liners as optimal action 
when τ = 25,000 h.  

Process Liner 

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

True wear model 0 0 0 0 0 0 0 0 
PL-BTGP2 0.02 0 0 0.01 0.02 0.01 0 0 
TGP 0.94 0.42 0.08 0.81 1.00 0.66 0.13 0.09  

Table 12 
Simulated dataset. As in Table 2, wi,j = W(ti,j) [mm] indicates the wear level 
accumulated by the liner i up to the inspection time ti,j [h].  

i wi,1 ti,1 wi,2 ti,2 wi,3 ti,3 wi,4 ti,4 

1 1.37 11,300 1.60 14,680 2.82 31,270   
2 1.81 11,300 2.65 21,970     
3 1.76 12,300 1.98 16,300     
4 1.43 14,810 1.96 18,700 2.33 28,000   
5 1.26 10,000 2.78 30,450 3.04 37,310   
6 0.83 6860 2.38 17,200 2.83 24,710   
7 0.01 2040 0.96 12,580 1.49 16,620   
8 0.31 7540 0.39 8840 0.50 9770 0.99 16,300  
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immediately replaced even if the correct decision is to postpone its 
replacement. Moreover, even the other liners that are observed for a 
longer time, such as the liner #1 (observed up to 31,270 h), #4 
(observed up to 28,000 h), and #6 (observed up to 24,710 h), are 
subject to the incorrect decision more times than to the correct one. 
On the contrary, the PL-BTGP2 model brings to an incorrect decision 
only 6 times over 800. 

Finally, to provide further insight into the effect caused by a mis

specification, we report in detail the results obtained from one of the 100 
simulated datasets. For comparative purposes, we have selected a 
dataset for which, as in case of the real data, the use of the TGP leads to 
immediately replace the liners #1 and 5. Again, as in the case of the real 
data, we have assumed that τ = 15,000 h. Obviously, the main differ
ence with respect to the application discussed in Sections 5 and 6 is that 
here the true wear model is known. These simulated data are reported in 
Table 12 and depicted in Fig. 14. 

Table 13 provides the maximum likelihood estimates of the 

Fig. 14. Simulated wear paths of the liners (measurements that pertain to the same path are linearly connected for graphical convenience).  

Table 13 
Estimates obtained under the PL-BTGP2 and TGP from the simulated data.  

Process â [h] b̂ ŵlim [mm] α̂ [mm] β̂ l̂ AIC 

PL-BTGP2 3079 1.432 4.3  14.582 6.832 − 5.664 
TGP 5594 1.617  0.804 2.211 2.016 3.968  

Table 14 
Age t and state wt of each liner i (i = 1,…, 8) at the last inspection epoch, true mean RUL E{Xt |W(t) = wt} and ML estimates of the mean RUL under the PL-BTGP2 and 
the TGP.   

Liner  

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

Current age t [h] 31,270 21,970 16,300 28,000 37,310 24,710 16,620 16,300 
Current state wt [mm] 2.85 2.00 1.35 2.75 3.05 2.15 2.35 2.10 

E{Xt |W(t) = wt} true wear model 78,660 84,869 92,879 84,798 72,996 81,440 94,886 96,597 
Ê{Xt |W(t)= wt} under PL-BTGP2 90,928 97,314 105,295 97,029 85,135 93,867 107,142 108,794 

Ê{Xt |W(t)= wt} under TGP 19,380 24,109 32,656 25,149 15,504 21,123 35,539 37,710  

Table 15 
Age t and wear level wt of all the linear at the last inspection epoch, true expected utility losses (in €) associated to the actions (a) and (b) evaluated under the true wear 
model, and the corresponding expected utility losses (in €) estimated under the PL-BTGP2 and TGP.   

Liner  

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 

Current age t [h] 31,270 21,970 16,300 28,000 37,310 24,710 16,620 16,300 
Current state wt [mm] 2.82 2.65 1.98 2.33 3.04 2.83 1.49 0.99 

E{ULa(τ)} true wear model 1356 1356 1356 1356 1356 1356 1356 1356 
E{ULb(τ)} true wear model 8522 9084 9809 9077 8009 8774 9988 10,140 
E{ULa(τ)} under PL-BTGP2 1227 1227 1227 1227 1227 1227 1227 1227 
E{ULb(τ)} under PL-BTGP2 8665 9187 9838 9164 8191 8905 9991 10,130 
E{ULa(τ)} under TGP 10,861 3640 2974 3276 46,762 6348 2972 2972 
E{ULb(τ)} under TGP 6814 7751 9445 7957 6045 7159 10,020 11,660  
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parameters of both the PL-BTGP2 and TGP, together to the estimate 
log-likelihood l̂ and the AIC value. 

Table 14 provides the ML estimate Ê{Xt |W(t)= wt} of the mean RUL 
of all the liners, given their age t and wear level wt at the last inspection 
time, under the PL-BTGP2 and the TGP. The true values E{Xt |W(t) = wt}

of the mean RUL are given in the third row. By comparing the estimated 
mean RUL to the true mean RUL values it is apparent that the TGP 
strongly underestimates the mean RUL of the liners, whereas the 
PL-BTGP2, provides estimates that are much closer to the true values. 
We can also note that, for this dataset, the PL-BTGP2 slightly over
estimates the mean RUL of all the liners. 

Table 15 provides, for the all the liners, the true expected utility 
losses (in €) associated to the actions (a): deferring the liner replace
ment, and (b): replacing immediately the liner (i.e., the expected utility 
losses evaluated under the “true” PL-BTGP2 used to generate the 
simulated dataset) together with the corresponding expected utility 
losses evaluated by using the estimated PL-BTGP2 and TGP. 

Obtained results show that the expected utility losses evaluated by 
using the PLBTGP2 are satisfactorily close to the true ones. On the 
contrary, the comparison between the true expected utility losses and 
those evaluated under the (unbounded) TGP gives clear evidence that 
this latter model hugely overestimates the expected utility loss associ
ated to the action (a): deferring the liner replacement, and almost al
ways underestimates the expected utility loss associated to action (b): 
replacing immediately the liner. 

These circumstances, in the case of the examined dataset, lead the 
TGP to produce incorrect decisions for the liners #1 and 5. In fact, while 
the true values of expected utility losses associated to the actions (a) and 
(b) indicate that, according to the adopted decision rule, none of the 
liners should be replaced, the results obtained under the TGP would lead 
to immediately replace the liners #1 and 5. From the true values of the 
expected utility losses associated to the actions (a) and (b) given in 
Table 15, it is easy to assess that the wrong decision of immediately 
replacing the liners #1 and 5 would cause an unnecessary additional 
cost of 8522 € – 1356 € = 7166 € and 8009 € – 1356 € = 6653 €, 
respectively. 

Finally, it is also worth to remark that the expected utility losses 
associated to actions (a) and (b) evaluated under the PLBTGP2 would 
lead to make the correct decision for all the liners. 

8. Conclusions 

This paper investigated the effect on the condition based mainte
nance decision process and on related maintenance costs of the use of an 
unbounded degradation model when the degradation phenomena of 
interest is bounded above. The use of a bounded model is motivated by a 
case study based on a set of real wear measurements of the liners of an 8- 
cylinder engine equipping a Diesel engine for marine propulsion. 

The degradation phenomenon is modeled by using a bounded 
transformed gamma process. Three new characterizations are suggested 
of this process, which extend the model recently proposed in the liter
ature. The condition based maintenance policy used to perform the 
study is a generalized version of an existing policy, which has been 
already applied to the considered set of liner data, under an unbounded 
transformed gamma process that, in this paper, is used as unbounded 
(competing) alternative to the bounded one. 

The main characteristics of the proposed bounded process have been 
briefly illustrated and discussed. The set of real liner data has been 
analyzed under the proposed bounded process, and the corresponding 
estimation results have been compared to those provided by the 
considered competing unbounded transformed gamma process. The 
estimated models have been also used to perform a comparative analysis 
involving the unit reliability, the wear increment during a future time 
interval, and a condition-based maintenance policy. This comparative 
analysis shows that modeling the degradation growth by an unbounded 

transformed gamma process when the model that provides the best fit 
for the available data is a bounded transformed gamma process can lead 
to very different (and potentially wrong) reliability estimations, life 
predictions and maintenance decisions. Finally, a small Monte Carlo 
Study has been carried out to investigate the practical effect of the 
wrong assumption of an unbounded transformed gamma process in 
place of the correct bounded one. Obtained results show that the 
mentioned misspecification, in the considered experimental scenario, 
leads very often to wrong maintenance decisions and significant un
necessary additional costs. 

The possibility of using a Bayesian inference approach, able to 
introduce in the loss function estimation prior information on the 
degradation phenomenon possessed by the analyst, will be investigate in 
future studies. 
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