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Introduction

The discovery of Electroconvulsive Therapy (ECT) is 
closely related to the treatment of schizophrenic patients. In 
1938, Cerletti, Bini and Accornero were the first to use elec-
tricity in order to induce a seizure for therapeutic purposes 
in psychotic patients (1–3). After 80 years of use around 
the world and after a continuous improvement in technique 
and methodology, nowadays the ECT represents a well-
established and safe method in the treatment of many severe 
psychiatric disorders, mostly mood disorders and some clini-
cal forms of schizophrenia (SCZ), especially in pharmacore-
sistant patients (4). Ethical and legal implications arise from 
this practice as well (5). With specific regard to SCZ, the 
American Psychiatric Association (APA) recommends the 
use of ECT in schizophrenic patients in the following cases: 
treatment-resistant schizophrenia (TRS), catatonic state and 
psychotic symptoms in the current episode with an abrupt 
or recent onset (6). Similarly, in the UK, the Royal College 
of Psychiatrists (RCP) limits ECT in acute catatonic states, 
schizoaffective disorders, acute paranoid syndromes and in 
type I SCZ in which patients are intolerant or unresponsive to 
a dose of neuroleptic equivalent to 500 mg of chlorpromazine 
on a daily basis (7).  On the contrary, the National Institute 
for Clinical Excellence (NICE), in London, recommends 
the use of ECT in catatonia (8). 

Within the context of SCZ, TRS represents a critical 
clinical picture that regards approximately 30% of schizo-
phrenic patients (9). Commonly, TRS patients are defined 
as unresponsive to at least two different antipsychotics at a 
dose of 600 mg chlorpromazine equivalent/day for at least 
six weeks (10). Neurocognitive performance impairment 
(11,12), poorer social adjustment and worst community 
functioning are more present in TRS compared to patients 
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who respond to antipsychotics (13,14). All these findings 
are consistent with the possibility that, rather than repre-
senting a severe form of SCZ, the treatment-resistant sub-
type could have a fundamentally different cause than the 
treatment responsive one (15). This proposal is in line with 
the emerging view that TRS might be a non-dopaminergic 
subtype of SCZ, with symptoms which instead are driven 
by non-dopaminergic abnormalities, perhaps involving the 
glutamate system (16,17). A number of adjunctive treatments 
and antipsychotics augmentation, especially with clozapine, 
has been suggested in the management of TRS, however, 
only 60-70% of patients finally responded (18). 

Neurotrophins (NTs), especially NGF (Nerve Growth 
Factor) and BDNF (Brain-Derived Neurotrophic Factor), 
have been involved in the vulnerability and resilience of 
various psychiatric and other disorders, among which SCZ 
(19–26). In the late 90s, we first observed changes in the 
brain and circulating NGF levels in animal models of SCZ 
as well as in schizophrenic patients (26–28). Through neuro-
development animal models inducing -like behaviors, it was 
also found a reduction of brain mRNA and protein levels of 
NGF and BDNF along with structural brain abnormalities, 
resembling those observed in SCZ and SCZ-like psychoses 
(29–35). Different animal/human psychopharmacological 
studies, some of which pursued by our group,  supported the 
potential role played by NGF and BDNF in the mechanisms 
of action of typical and atypical antipsychotics (36–41).

The mechanism of action of ECT has not been fully 
clarified. As for atypical antipsychotics, lithium, valproate, 
serotoninergic antidepressants, as well as agomelatine and 
low- dose ketamine, accumulating evidence from animal 
studies and few human studies have suggested a specific 
neurotrophic effect of ECT via phosphorylation/inactiva-
tion of GSK-3β and subsequent transcription/expression 
of different neurotrophic, angiogenic and neuroprotective 
proteins (26,30,42–44). 

As for NGF, it is very important to underline that the 
intrinsic mechanism of ECT shows analogies with some 
neurobiological processes mediated by this NT. Indeed, 
if on one hand, NGF appears to be involved in neuronal 
plasticity, regulation of monoamine synthesis, neuroendo-
crine integration and maintenance of homeostasis (45), on 
the other hand, ECT would intervene in the promotion of 
synaptic exchanges, in the synthesis, turnover and uptake 
of brain monamines and in the normalization of neuroen-
docrine dysfunctions (46–49). Furthermore, animal studies 
have demonstrated that NGF may play an important role in 
seizure development (50,51).

A number of studies have been carried out on the neu-
rotrophic effects of ECT in Treatment- Resistant Depression 
(TRD) (52–63) but only a few studies have been performed 
in SCZ (44) and only one in TRS  (64). None of these studies 
explored the NGF blood levels during ECT in TRS. There-
fore, the aim of the present study was both to investigate 
baseline serum NGF levels during the ECT treatment course 
as well as the acute NGF response to each ECT, and to look 
into the association of possible changes in NGF levels to 
clinical ECT-induced improvement.

Materials and methods

Subjects

The study sample was composed of twelve male inpa-
tients meeting DSM-5 criteria for SCZ treated with ECT in 
the Department of Psychiatric Sciences and Psychological 
Medicine, Sapienza University of Rome, from 1992 to 1999, 
during the last period, when it was legally allowed to perform 
ECT in public hospitals in Italy.  Patients’ age ranged from 
18 to 65 years (mean ± S.D. = 39.09 ± 18.44 years). The 
duration of illness ranged from 3 to 11 years (mean ± S.D. 
= 9.33 ± 3.61 years). 

All patients fulfilled the conditions for TRS - based on 
at least two adequate prior drug trials of 4–6 weeks duration 
with no clinical improvement. All patients were kept free 
from psychotropic drugs for at least 1 week before entering 
the trial and during the ECT treatment in order to avoid 
changes in the seizure threshold (65) as well as to prevent 
confounding factors that might affect NGF levels. 

Before undergoing ECT, each patient was screened for 
general medical conditions through an accurate clinical 
evaluation including the collection of a detailed medical 
history, a physical and neurological examination, blood 
and urine tests, electrocardiogram and a cerebral computed 
tomography scan. None of the patients reported alcohol 
and/or psychoactive substance use/abuse, a lifetime history 
of suicidal attempts, infections in the last month, immune, 
endocrine and/or neoplastic diseases, and/or showed mental 
retardation. None of the patients had previously been treated 
with ECT.

The psychopathological status was assessed by the same 
senior psychiatrist by the administration of the Positive and 
Negative Syndrome Scales (PANSS) (66). The patients 
were assessed at two different time-points: the day before 
the first ECT session and the day after the eighth session. 
For each patient, mean PANSS total and subscales scores 
were calculated.

A written informed release was obtained from all patients 
and their relatives, and all the study procedures were in ac-
cordance with the Helsinki Declaration of 1975, as revised 
in 1983, for human experimentation.

Procedures

ECT was carried out by a team composed of an anaes-
thesiologist, three psychiatrists and a psychiatric nurse. In 
the morning, at 8.00, overnight fasting patients received 
ECT with the bilateral-bitemporal method using Mecta 
Spectrum 5000Q ECT device, with bifrontal EEG and ECG 
monitoring. An at least 25s EEG seizure was targeted by 
administering square wave-type pulses of 800 mA of current 
(stimulus width 1–2 ms, frequency 40–90 Hz, with a 0.5–2 
s, 576 maximum mC charge). 

Anesthesia was carried out by the same anesthesiologist 
(PO) by 0.5 mg of intravenous atropine, 0.5 mg/kg intrave-
nous succinylcholine and propofol (1.2 mg/kg) in a rapid 
infusion. All patients were subjected to assisted ventilation 
with 100% O

2
, administered through a mask and carried on 
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until complete awakening. When the subjects had an initial 
reduction in sleep depth, evidenced by the reappearance 
of eyelids’ reflexes and the initial synchronization of the 
electroencephalographic pattern, the electrical pulse was 
administered. This method was used to mitigate the varia-
bility of convulsive response linked to the different stages of 
anesthesia at the moment of administration of the stimulus. 
The determination of the seizure threshold has been carried 
out according to the MECTA Manual in a session that took 
place two days before the beginning of the treatment. 

The complete course of ECT consisted of 8 sessions 
(sessions 1-8) after the session for the identification of 
baseline ST, at a rate of 3 sessions per week. Hence, all 
patients received 8 ECT.

At 8.00 a.m., 5 ml blood samples were taken from the 
peripheral arm vein of the patients at the first and the eighth 
ECT sessions, at the following five-time points: 5 minutes 
before the induction of seizure, 0 minutes (baseline: imme-
diately before the induction of seizure), 5, 15 and 30 minutes 
after the seizure. Blood samples, collected in heparin tubes, 
were immediately centrifuged at 3.000 rpm for 15 min and 
the serum was stored at -60 °C until NGF assay. 

All samples were analyzed at one session by a researcher 
who was blinded to the group assignment of the patients. 
NGF serum levels were assessed using a commercial two-
site immune-enzymatic assay (ELISA) Kit by Promega 
(Madison, WI - USA) following the manufacturer’s instruc-
tions. The colorimetric reaction product was measured at 
450nm using a microplate reader (DynatechMR5000, Ger-
many). Neurotrophin concentrations were determined from 
the regression line for the NGF standard (ranging from7.8 
to 500pg/ml) incubated under similar conditions in each 
assay. NGF concentration is expressed as pg/ml of plasma, 
and data are presented as mean ± sd. 

Statistical Methods

NGF levels were analyzed by repeated-measures analysis 
of variance (ANOVA) (with NGF as within subject factor) 
followed by Greenhouse-Geisser correction according to 
methods previously described (67–69). When a significant 
difference was found, the post-hoc paired Student’s t-test 
was used to compare the NGF concentrations at the various 
ECT sessions. 

The PANSS total and subscales scores were also 
analyzed by a paired Student t-test. Possible correlations 
between the various clinical variables (age, duration of 
illness, and PANSS total and subscales scores) and NGF 
levels, between the maximum stimulus administrated and 
NGF levels, and between the changes in PANSS scores 
and ΔNGF (at each ECT session) were investigated using 
Pearson correlation test. Specifically, ΔNGF was computed 
by subtracting the pre-ECT baseline treatment values (5 
minutes pre-ECT) from the 0, +5, +15, and +30 minutes 
baseline/post-ECT values.

All the statistical analyses were performed using IBM 
SPSS Statistics for Windows, Version 20.0 (IBM Corp, Ar-
monk, NY, USA). Differences with p < 0.05 were considered 
statistically significant. 

Results

The mean maximum stimulus administrated at the first 
and the eighth ECT was respectively 65.48 ± 33.68 and 85.56 
± 34.2 ms and the mean EEG-recorded seizure duration was 
48.57 ± 21.39 s at the first and 38.14 ± 10.54 at the eighth 
ECT. No statistical correlation between the intensity of the 
stimulus and NGF levels response was found.

Even though NGF levels showed an increase over time, 
there were no statistical differences in baseline (T0) NGF 
levels before the first and the eighth ECT (Table 1). 

Table 1. Mean NGF values during the first and the eighth ECT 
sessions compared with time points -5, 0, +5, +15, and +30 min.

First ECT Eighth ECT

NGF (pg/ml) a

-5 76.98 (54.36) 111.69 (81.02)

0 41.59 (46.5) 84.23 (72.87)

+5 48.31 (49.67) 79.77 (67.7)

+15 105.53 (191.07) 155 (105.16)

+30 54.41 (31.27) 61.7 (49.15)

a mean (standard deviation)
-5  indicates  5  minutes  before  ECT;  0,  ECT  time;  +5,  
+5  minutes after ECT; +15, 15 minutes after ECT +30, 30 minu-
tes after ECT.

 
At the eighth ECT session, patients showed mean NGF 

levels that decreased significantly from time -5 to time 0 
(t=3.6; p=.009), with even a trend toward a significant dif-
ference at the first ECT session (t=1.9; p=.08).

Clinical improvement throughout the treatment course 
was assessed by a significant reduction in the PANSS total 
and subscales scores from baseline to the end point (Table 
2 and figure 1). No correlation was observed between the 
NGF levels and the considered clinical variables (age, du-
ration of disease and PANSS total and subscales scores). 
No differences were found between ΔNGF and changes in 
PANSS values.

Table 2.  Comparison of mean PANSS values at baseline and after 
the eighth ECT sessions 

Baseline Eighth ECT t p

PANSS  total 
score

121.88 (27.72) 77.86 (26.62) 4.272 0.005

PANSS positive 
scale

25 (11.36) 13.14 (5.43) 4.126 0.006

PANSS negative 
scale

37.38 (6.05) 24.86 (9.32) 3.552 0.012

PANSS general 
scale

62 (16.6) 39.86 (14.15) 3.668 0.01

t = Student’s t test.
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Discussion

To our knowledge, this is the first study aimed at eva-
luating NGF during ECT course in TRS as well as the first 
study in which this neurotrophin has been evaluated in the 
first and in the eighth ECT sessions at 5 different time points 
(-5 minutes pre-ECT, 0, 5, 15 and 30 minutes baseline/post-
ECT), thus monitoring the changes of NGF in each session 
and not just between different sessions. 

The main results of this study are: the absence of signifi-
cant treatment-induced baseline NGF differences before and 
at the end of the treatment course, despite an increase of the 
final levels, in front of a positive clinical response and the 
absence of significant acute changes of NGF immediately 
following the ECT, despite the observed pattern of a curve 
response.

Notably, even though no significant differences were 
found between NGF levels at time 0 and the following time 
points, all patients showed mean NGF levels that decreased 
from time -5 minutes pre-ECT to time 0, significant at the 
eighth ECT session and with a trend at the first ECT ses-
sion. This phenomenon might likely be related to the high 
level of anticipatory anxiety of the subject expecting the 
treatment. It has been speculated that anxiogenic stimuli 
are the most likely psychological/biochemical substrate(s) 
underpinning NGF synthesis and/or release into the blood 
(70). Consistent with this hypothesis are the findings of 
animal models of psychosocial stress (71–75) and studies 
performed on humans subjected to high levels of emotional/
physical stress that demonstrate an increase in the circulating 

neurotrophins levels following and even before the exposure 
to specific challenging situations (40,45,76–80) and after a 
trauma. Furthermore, both animal models and studies on 
humans have (81) shown, in contrast to stressful situations, 
how sedation conditions can actually lower basal brain and 
blood NGF levels (37,82). 

A condition of chronic stress, to which patients with 
a diagnosis of TRS are subjected, maybe at the basis of 
the higher NGF levels observed  (from baseline onwards) 
compared to those reported in previous SCZ studies (83,84).  
Increased NGF levels have also been found in subjects with 
SCZ in the presence of cannabis and/or other substances abu-
se (85,86). These raised NGF levels have been hypothesized 
to correspond to attempted endogenous repair mechanisms 
both in the presence of significant cerebral alterations and/
or damages as seen in SCZ and even more in the presence 
of a noxious stimulus such as cannabis, etc. (85–87). Howe-
ver, the pharmacological effects of previous antipsychotic 
medication on NGF concentration cannot be totally ruled 
out (88). Indeed, higher NGF levels have been reported in 
chronic schizophrenic patients treated with antipsychotics 
as compared to first episode SCZ patients and indeed the 
majority of previous studies reporting lower NGF levels in 
SCZ included drug-naïve SCZ patients (89). 

As above mentioned, there are only a few studies that 
have investigated the effects of ECT on NGF and, to our 
knowledge, none of these studies have focused on SCZ. 
Confirming previous data in affective disorders  (58,90), in 
this sample, NGF levels show an increase along the treatment 

Fig. 1. Change in PANSS scores following eight ECT sessions. The error bars indicate pooled standard deviation means (SDM) derived 
from appropriate error mean square in the ANOVA. The asterisks indicate significant differences between time points (*, p < 0.05).
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course, even though with no significant differences of the 
baseline NGF values between the first and the eighth ECT 
sessions. Interesting in this regard is that animal researches 
demonstrated how electroshock seizure is able to induce an 
upregulation of NGF in various brain regions - mostly in the 
hippocampus and frontal cortex (91–96).

As for a limit of this study, it can be assumed that a more 
significant NGF increase could have been observed in a wider 
group of patients. It can also be speculated that the patients 
were chronically treated as unresponsive patients with a brain 
somehow “aplastic”, with a reduced capacity to change and 
rewire in response to ECT and that this might have affected 
the results. This could at least partially explain the lack of 
correlation between the absence of significant changes in 
NGF levels and the clinical improvement of the patients 
throughout the treatment period. This result is consistent with 
the findings of other similar studies in the literature (65,97) 
and supports the effectiveness of ECT in TRS (98). 

In a recent review (99), we reported that treatment du-
ration and stimulus parameters (intensity, frequency, pulse) 
appear to influence the vagus nerve stimulation effects on 
brain, behavior and clinical pictures through the progressive 
stimulation of different cerebral areas. It is possible that, in 
the study sample, the constancy of the electrical parameters 
in all sessions stimulated in an even way in the interested 
brain areas, obtaining the same NGF response. It would be 
interesting to evaluate, in animal models, the NGF response 
to electrical stimuli of different intensity, investigating the 
activation of different brain areas. 

 Future studies remain to be performed not only to deepen 
this research field and to increase the knowledge about the 
neurotrophic effects of ECT but also to better understand the 
role played by NGF in brain synaptic plasticity and hopefully 
for SCZ related disorders treatment.
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