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Universal density of low-frequency states in silica glass at finite temperatures
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The theoretical understanding of the low-frequency modes in amorphous solids at finite temperature is still in-
complete. The study of the relevant modes is obscured by the dressing of interparticle forces by collision-induced
momentum transfer that is unavoidable at finite temperatures. Recently, it was proposed that low-frequency
modes of vibrations around the thermally averaged configurations deserve special attention. In simple model
glasses with bare binary interactions, these included quasilocalized modes whose density of states appears to
be universal, depending on the frequencies as D(ω) ∼ ω4, in agreement with the similar law that is obtained
with bare forces at zero temperature. In this paper, we report investigations of a model of silica glass at finite
temperature; here the bare forces include binary and ternary interactions. Nevertheless, we can establish the
validity of the universal law of the density of quasilocalized modes also in this richer and more realistic model
glass.
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I. INTRODUCTION

Simple models of amorphous solids employ ensembles of
particles interacting via binary forces [1]. Choosing different
sizes of particles (or, equivalently, ranges of interaction of
these forces), one can create useful models of glass form-
ing systems. In athermal conditions (T = 0), these given
forces offer also a straightforward path to analyzing the vi-
brational modes around a local energy minimum state [2].
The bare Hamiltonian U (r1, . . . rN ) provides the Hessian (or
force-constant) matrix H which determines, in the harmonic
approximation, all the modes and their frequencies [3],

Hαβ
i j ≡ 1√

mimj

∂2U (r1, . . . rN )

∂rα
i ∂rβ

j

. (1)

Here ri is the ith coordinate of a constituent atom of mass mi

in a system with N atoms. As long as the T = 0 configuration
is stable, all the eigenvalues of the bare Hessian are real and
positive (with the exception of few possible zeros associated
with Goldstone modes). The force on each atom F i is given
by −∂U (r1, . . . rN )/∂ri, and it vanishes for all i’s in athermal
equilibrium. One then computes the eigenfunctions and eigen-
values of the Hessian H . The eigenvalues λi are related to the
frequency ωi according to

ωi = ±
√

λi. (2)

In amorphous solids, the eigenfunctions can be extended
or quasilocalized with possible hybridization between these
classes. In principle, one can distinguish between these differ-
ent types of modes by considering the participation ratio (PR)

which is defined as in previous papers [4],

PR =
[

N
∑

i

(ei · ei )
2

]−1

, (3)

where ei is the ith element of a given eigenfunction of the
Hessian matrix. We expect the participation ratio to be of
order O(1/N ) for a quasilocalized mode (QLM) and of order
unity for an extended mode. It was expected for a long time
[5–8] that the QLMs display a density of states (DOS) D(ω)
with a universal power law,

D(ω) ∼ ω4 in all dimensions. (4)

However, the actual verification of this prediction was slow
in coming. The difficulty is that in large systems the QLMs
hybridize strongly with low-frequency delocalized elastic ex-
tended modes. The latter are expected to follow the Debye
theory with density of states depending on frequency as
ωd−1 where d is the spatial dimension. Recently, a remedy
was found: By examining small systems one can bound the
frequency of Debye modes from below, exposing the low-
frequency QLMs to shine in isolation [9]. Indeed, in such
circumstances the universal law Eq. (4) can easily be demon-
strated. A direct verification of such a law with numerical
simulations of glass formers with binary interactions [10–15]
and for silica glass with binary and ternary interactions [4,16]
was recently achieved.

Once we turn to finite temperatures, however, it is not im-
mediately obvious how to examine the existence of a similar
universal law. The system is never at rest with atoms moving,
colliding, and imparting momentum. The bare Hessian matrix
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FIG. 1. Starting from the inherent structure configuration, we
perform molecular dynamics monitoring the mean squared displace-
ment. Here we plot mean square displacements (MSDs) vs time. In
the considered time window at a large-enough T the cages break and
the MSD deviates from the plateau. The final horizontal lines were
added to report the final average value of each curve.

Eq. (1) loses its usefulness since it generically gains negative
eigenvalues when computed in a given frozen configuration.
The total force F i on an ith atom as computed from the bare
Hamiltonian, does not vanish, and the eigenfunctions of the
bare Hessian lose their meaning as modes associated with a
frequency of vibration around a well defined energy mini-
mum. We, thus, need a new definition of modes that mimics
their athermal counterparts.

A recently proposed idea focuses on the thermal average
positions of our atoms and the modes of fluctuations around
these [17,18]. The average positions of a thermal glass are
constant on timescales shorter than the typical diffusion time
τG. We, thus, need to consider relatively stable glasses at suf-
ficiently low temperatures such that the cage structure around
every atom remains stable, apart from thermal motion for
times that are sufficiently long to allow the evaluation of the
average position of each atom but sufficiently shorter than
the diffusion time at which the cage structure is destroyed.
At these average positions, the bare forces do not vanish, but
one can consider effective forces which are derived from an
effective Hamiltonian that takes into account the dressing of
the forces due to the momentum transfer during collisions. Of
course, these forces will no longer be binary, but rather have
ternary, quaternary, and higher order contributions [19,20].
Whereas it is quite hard to determine precisely the effective
forces, it is rather straightforward to define the effective Hes-
sian. To this end, we compute the time averaged positions Ri,

Ri ≡ 1

τ

∫ τ

0
dt ri(t ), (5)

where τ � τG. By definition, the positions Ri are time inde-
pendent and the configuration {Ri}N

i=1 is stable, at least, within
the time interval [0, τG]. An additional quantity of importance

FIG. 2. Density of states as computed from the effective Hessian
at different temperatures, T = 1, 4, 16, 64 K for SiO2 glass samples
of 1032 [panels (a) and (c)] and 4008 [panels (b) and (d)] atoms. In
panels (a) and (b) all the eigenfrequencies are included whereas in
panels (c) and (d) only the modes with participation ratios smaller
than 0.1 are considered. For all T values, data from over 1000
samples were included. The gray dotted lines report the ω3 and ω5

trends.

is the covariance matrix �, defined as

�i j ≡
√

mimj

τ

∫ τ

0
dt[ri(t ) − Ri][r j (t ) − R j]. (6)

We can now define an effective Hessian via

H(eff) = kBT �+. (7)

Here �+ is the pseudoinverse of the covariance matrix [17].
Next, we note that the effective Hessian given by Eq. (7) and
the covariance matrix have the same set of eigenfunctions,

H(eff)�i = λH
i �i, (8)

and their eigenvalues are related by

λH
i = kBT

λ�
i

. (9)

For all the calculations we have computed the eigenvalues
λH

i from the covariance matrix by taking the inverse of its
eigenvalues λ�

i using Eq. (9), after removing the Goldstone
modes. In Ref. [17], it was shown that the eigenvalues and
eigenfunctions of H(eff) serve the same role for the time-
averaged configuration as the corresponding ones for the bare
Hessian play for the athermal configuration. Indeed, in simple
model glass formers one could show that the QLMs of H(eff)

have a universal density of states of the form of Eq. (4). The
aim of this paper is to examine how universal this result is by
studying in silica glass at nonvanishing temperatures.

054104-2



UNIVERSAL DENSITY OF LOW-FREQUENCY STATES IN … PHYSICAL REVIEW E 105, 054104 (2022)

N =1032 N =4008

FIG. 3. Participation ratio [Eq. (3)] calculated for the (left panels) 1032-atoms and (right panels) 4008-atoms system at four different
temperatures T .

II. THE MODEL SILICA GLASS

The silica glass is simulated in a three-dimensional cubic
box for two different system sizes:

(1) N = 1032 atoms, therefore, NSi = 344 silicon atoms
and NO = 688 oxygen atoms with a box length L = 25 Å.

(2) N = 4008 atoms, therefore, NSi = 1336 silicon atoms
and NO = 2672 oxygen atoms with a box length L = 39.3 Å.
The interaction between atoms is given by Vashishta’s po-
tential [21]. In this paper, units are defined on the basis of
energy, length, and time, respectively, being eV, angstroms,
and picoseconds.

Preparation protocol. Following Ref. [4], glass samples are
initially prepared with randomly positioned Si and O atoms
with a density ρin = 2.196 g/cm3 and an annealing protocol:
(i) 2 ps of Newtonian dynamics where atoms have Lennard-
Jones interactions and are viscously damped with a rate of
1/ps and atomic velocities limited to 1 Å/ps, (ii) 8 ps of
damped Newtonian dynamics with Vashishta’s potential for
silica glass. (iii) Heating up the system up to 4000 K and then
quench to 0 K in 100 ps, corresponding to a cooling rate of
40 K/ps. The so-produced configurations are then minimized
through the fast inertial relaxation engine [22] until the total
force on every atom satisfies |F i| � 10−10 eV/Å.

Simulations at nonvanishing temperatures. We perform
simulations using a Langevin thermostat (damping parameter
1 ps) at T = 1, 2, 4, 8 K for 50 ps followed by microcanonical
ensemble simulations for 100 ps (200 ps) for the smallest
(largest) system size, monitoring the MSDs of the atoms. The
total number of starting configurations for each temperature
is 1000. Different from our previous works on silica glasses
[23,24] where we used a different interatomic potential, we
use here Vashishta’s potential as implemented in LAMMPS [25]
since it is more efficient in terms of computation time.

III. RESULTS

To guarantee that our measurements do not exceed the
time window in which diffusion does not play a role, we
measure the MSD of our atoms at each temperature T . Since
the covariance matrix Eq. (6) has to be measured inside the
glass basin, we must ensure that the system is still in the basin
prepared at t = 0. Figure 1 presents the MSD as a function
of time. Obviously, when the temperature is too high, the
system escapes from the basin, preventing us from measur-
ing a stationary covariance matrix. On the other hand for
low temperatures (from T = 1 K up to T = 32 K), the MSD
reaches a plateau which survives throughout our simulation
window (1000 ps). Note that as the temperature increases,
the plateau increases as expected from solid mechanics. At
a finite temperature-dependent timescale τG the MSD departs
from the plateau, meaning that diffusion sets in and the system
departs from the local minimum. In practice, we have to
compute the covariance matrix within the range of the plateau
before the MSD displays the upturn.

We show the density of states obtained by the covariance
matrix at finite temperatures (from 1 to 64 ;) in Fig. 2. Panels
(a) and (b) show the density of states including all modes for
the two system sizes, and the dashed lines correspond to the
ω4 scaling law. Only at very low frequency, the DOS appears
to obey the ω4 scaling; for N = 1032 the behavior is observed
in a very short range of frequencies, but for the bigger sample
N = 4008 this trend is clearer. To exhibit the scaling law
more convincingly, we need to select only QLMs. To this
end, we include only the modes having participation ratios
below 0.1 (see Fig. 3). Indeed after these modes are selected,
we see in panels (c) and (d) that the DOS obeys a clear ω4

scaling. We note that in the case of the small system of 1032
atoms [Fig. 2(c)] at very low ω, the DOS is much smaller
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FIG. 4. Left panels: Distribution of the minimal vibrational fre-
quency P(ωmin ) for the largest investigated system size N = 4008
and four temperatures T . The dotted lines are the corresponding
Weibull distributions, Eq. (12).

than the expected ω4 scaling; this is possibly due to finite
size effects. Indeed in the larger samples of 4008 atoms in
panel (d), the DOS shows ω4 scaling down to the very lowest
available frequencies. By fitting ωp with the collapsed data of
Figs. 2(c) and 4(d) in the 0.4-2.0-THz range we have obtained
p = 3.926 ± 0.248 and p = 3.924 ± 0.165 for N = 1032 and
N = 4008, respectively. The data shown in Fig. 2 indicates the
presence of the ω4 scaling law also at finite temperatures for
the realistic silica glass model. Together with the previously
investigated simple binary mixture systems [18], this implies
that the ω4 scaling law is robust and universal, existing in
different glass models also at finite temperature.

It is interesting to note that recent analysis led two groups
to present density of states with power laws following ω3

[26] and ω5 [27], respectively. Having in mind that in the
present case the scaling range of the ω4 scaling law is rather
limited, we turn now to extreme value statistics to lend further
support to the ω4 law. Since we have many configurations
in our simulations, we can determine the minimal frequency
obtained from the diagonalization of H(eff) in each and every
configuration, denoting it as ωmin. The average of this mini-
mal frequency over the ensemble of configurations is denoted
〈ωmin〉. Referring to the argument first presented in Ref. [28],
we expect that in systems with N atoms,∫ 〈ωmin〉

0
D(ω)dω ∼ N−1. (10)

Using Eq. (4), we then expect that in three dimensions,

〈ωmin〉 ∼ N−1/5 ∼ L−3/5. (11)

Moreover, since the different realizations are uncorrelated, the
values of ωmin are also uncorrelated. Then the well-known

FIG. 5. Density of states as computed from the standard bare
Hessian computed at the mean coordinates Ri at different temper-
atures T = 1, 2, 4, and 8 K for SiO2 glass samples of N = 1032
atoms. Only the modes with participation ratio smaller than 0.1
are considered. For all T values, statistics over 1000 samples was
accounted.

Weibull theorem [29] predicts that the distribution of ωmin

should obey the Weibull distribution in the limit of large N ,

W (ωmin) = 5[
(1.2)]5

〈ωmin〉5
ω4

min exp

[
−

(
ωmin
(1.2)

〈ωmin〉
)5]

, (12)

where 
(x) is the 
 function 
(1.2) ≈ 0.918. This prediction
is tested in four left panels of Fig. 4. The distributions of ωmin

for four values of the temperature T are shown together with
the predicted distributions as dictated by Eq. (12). We stress
that there is no free fitting here, and, therefore, this is a strong
independent test of Eq. (4). Note that the Weibull distribution
is expected to apply only in the limit of large N . Indeed we
found that our data for the smaller system with N = 1032
deviate from the predictions of Eq. (12).

IV. SUMMARY AND DISCUSSION

The main aim of this paper was to examine whether the
universality class expressed by Eq. (4) extends to finite tem-
peratures in glasses whose interactions are richer than those
of simple glass formers with binary interactions [18]. One
needs to understand that the bare Hessian, which can be
computed for any snapshot of our thermal system, does not
yield a scaling law of this form. This bare Hessian has, in
principle, negative eigenvalues (i.e., imaginary frequencies)
since any given state is unstable and is bound to evolve.
In the case of our silica glass model, when computing the
bare Hessian at the mean coordinates Ri of Eq. (5), very low
temperature configurations do not have negative eigenvalues.
But at higher temperatures the number of negative eigenvalues
tends to increase rapidly with T ; already at T = 16 K all the
samples showed negative eigenvalues. Therefore, to consider
the density of states one needs to exclude configurations with
negative eigenvalues. Selecting these configurations only, and
filtering according to the same criterion, i.e., including only
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modes whose participation ratio is smaller than 0.1, we obtain
the density of states shown in Fig. 5. The distribution re-
sembles the unfiltered probability density functions in panels
(a) and (b) of Fig. 2. To obtain probability density functions
following the scaling law (4), we need to compute H(eff) and
filter out the modes with a high participation ratio.
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