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Abstract

The recent rise of Neural Radiance Fields (NeRFs)-like methods has revolutionized high-fidelity scene reconstruction, with
3D Gaussian Splatting (3DGS) standing out for its ability to generate photorealistic images while maintaining fast, efficient
rendering. 3DGS delivers high-fidelity representations of complex scenes at any scale (from very small objects to entire cities),
accurately capturing geometry, materials, and lighting, while meeting the need for fast and efficient rendering—crucial for
applications requiring real-time performance. Although High Dynamic Range (HDR) technology, which enables the capture of
comprehensive real-world lighting information, has been used in novel view synthesis, several questions remain unanswered.
For example, does HDR improve the overall quality of reconstruction? Are 8 bits enough? Can tone mapped images be a
balanced compromise regarding quality and details? To answer such questions, in this work, we study the application of HDR
technology on the 3DGS method for acquiring real-world scenes.

CCS Concepts
• Computing methodologies → Rendering; Computational photography; Reconstruction;

1. Introduction

Neural Radiance Fields (NeRF)-like methods [MST∗20, BMT∗21,

MESK22, FKYT∗22, KKLD23, HMR19, STH∗19] enable users to

capture and represent reality with very high fidelity using simple

equipment. Among these methods, 3D Gaussian Splatting (3DGS)

[KKLD23] stands out for its ability to combine high-quality repre-

sentations with fast and efficient rendering.

Before these methods, utilizing photogrammetry, capturing in-

volved different time-consuming sessions for each component of

the rendering pipeline: geometry, materials (i.e., textures, BRDFs,

etc.), and lighting. Typically, each component needs its own sep-

arate campaign using expensive and bulky specialized equipment

such as laser scanners, structured light scanners, LIDAR systems,

high quality photographic setups, goniophotometers, etc.

Therefore, such revolutionizing technologies allow users to save

time and money at the same time, as 3DGS and other NeRFs-like

methods can be acquired using a DSLR camera or just a smart-

phone. This makes them highly valuable across various industries,

including cinema for visual effects (e.g., bullet time, 360° camera

rotation), product advertising, virtual tourism, and more.

Another technology that has revolutionized capturing and dis-

play is High Dynamic Range (HDR) imaging [MP95, DM97] that

allow us to capture from very dark areas (e.g., details in shad-

ows at night) to very bright areas (e.g., a light bulb filament) of

a scene. Even though we now have smartphones in our pockets that

can capture and display some sort of HDR data, such technology

has rarely been applied to 3DGS and other NeRF-like methods.

Recently, novel display technologies [ZJY∗21] have shown an in-

credible match with reality when multi-view capture is paired with

HDR imaging. Therefore, it is crucial to study the impact of HDR

imaging in the field of neural rendering.

In this work, we apply HDR imaging in 3DGS capturing and pro-

cessing (see Sec. 2.1 and Sec. 2.2 for details on these technologies,

and Fig. 1 and Sec. 3.1 for an overview of our pipeline). Our main

aim is to understand if classic Standard Dynamic Range (SDR) im-

ages are enough to achieve high-quality reconstructions or if the

use of HDR imaging improves the overall quality. Specifically, we

want to understand if tone mapping operators (TMOs), which com-

press and convert HDR content into SDR one, could be an accept-

able compromise, given that working directly with HDR images is

computationally expensive and thus requires significant hardware

resources.

To summarize, the main contributions of this paper are:
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• A new dataset for 3DGS rendering, acquired using HDR imag-

ing, which is freely available online†;

• A novel study to determine the impact of tone mapping in 3DGS

rendering in comparisons to single exposure and HDR data;

• A novel strategy for multi-view tone mapping for generating

consistent renderings of HDR images.

2. Related Work

2.1. NeRF and 3D Gaussian Splatting

Mildenhall et al. [MST∗20] introduced an innovative approach that

achieves state-of-the-art results for synthesizing novel views of

complex static scenes from photographs and computer generated

images. This work had a significant impact, paving the way for a

surge of new research in the field of novel view synthesis and driv-

ing substantial progress in the area. This work has sparked many

extensions with improved quality [BMT∗21] and reduced training

time [MESK22, FKYT∗22]. However, all these extension cannot

have at the same time real-time performance, high quality results,

and fast training times.

3DGS [KKLD23] has emerged as the main solution in response

to these challenges by introducing an innovative scene represen-

tation technique that manages real-time rendering at high-quality

and competitive training times (i.e., less than a hour). Unlike

coordinate-based implicit models [MST∗20, HMR19, STH∗19],

3DGS represent a scene employing a point cloud. Each k-th point

is a 3D Gaussian, Gi, defined as:

Gk(x) = exp
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k (x−μk)

)
(1)

where μk is the position (where Gk is centered), and Σk is an

anisotropic 3×3 covariance matrix determining the shape of Gk. To

model appearance, we have a transparency value, αk, and spherical

harmonics coefficients, Sk, to encode RGB view-dependent colors

baking the appearance. For a given pixel (i, j) of the camera image

plane, the final pixel color is computed as:
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where N is the number of Gaussians, ck is a RGB color computed

using Sk for the given (i, j) pixel, G′ is a Gaussian projected on the

image plane. Note that Gaussians are sorted from back to front to

maintain the correct transparency order.

3DGS represents a novel approach that integrates state-of-the-art

visual quality with competitive training times: its tile-based splat-

ting solution guarantees real-time rendering with state-of-the-art

quality for 1080p resolution across various previously published

datasets. This has pushed 3DGS to a huge popularity with many

extensions introduced in a very short time [FXZ∗24a].

3D Gaussian Splatting (3DGS) has been applied in a range of

fields, with research focusing on refining its efficiency, realism, and

applicability across practical domains. It has seen use in robotics,

† https://github.com/cnr-isti-vclab/3DGS-HDR

urban mapping, autonomous navigation, and virtual/augmented re-

ality, among others, with studies exploring its capabilities for tasks

such as reconstruction, manipulation, and perception [FXZ∗24b].

In light of these considerations, we chose 3DGS to explore the

use of HDR imaging and neural radiance fields.

2.2. HDR Imaging

HDR imaging captures images with a broader range of brightness

levels than SDR imaging. In a high-contrast scene with both bright

areas and deep shadows, SDR images tend to lose details in the

shadows, while bright areas appear faded or washed out. HDR

imaging, with its expanded dynamic range, preserves details in both

dark and bright regions, bringing the image closer to the full spec-

trum of colors and brightness levels seen in the real world.

Typically, HDR images are created by capturing multiple pho-

tographs of the same scene at different exposure times [DM97,

LEPM22], as done in this work. Since HDR images require a higher

bit depth than SDR images to represent the extended dynamic

range, tone mapping operators (TMOs) are essential in HDR imag-

ing during visualization. TMOs transform HDR images to SDR

format so they can be viewed on standard monitors, preserving as

much contrast and detail as possible despite the limited dynamic

range of these displays.

2.2.1. Tone Mapping

Tone mapping has a vast literature [BADC17]. A tone mapping

function converts an HDR image into an SDR one by applying an

operator. We can broadly divide TMOs into two classes: global op-
erators compress the luminance of each pixel applying the same

function using global statistic from the image; and local opera-
tors compress the luminance applying a function that varies locally

based on statistics computed on the pixel neighbors. Recently, deep

learning-based solutions have started appearing [RSV∗20], where

tone mapping is achieved by applying a series of convolutions,

e.g., a UNet, using supervised and unsupervised training strate-

gies [BA23]. Regarding multi-view tone mapping, research is very

limited to stereo images only [SVRL19], which cannot be extended

to be applied to different TMOs and works only on stereo images.

Note that stereo images need to be properly captured with a cus-

tom setup or lens or to be rectified that is an expensive operation.

In our work, we want to apply different TMOs (global and local) to

medium-large number of images meant for 3DGS. Given the lim-

ited literature, we introduce a novel method for tone mapping HDR

images for multi-view datasets that is designed to maintain con-

sistency of values across different viewpoint (in which highlights

move); see Section 3.3.

2.2.2. HDR Encoding

Recently, novel standards have been proposed to encode HDR val-

ues for efficient content compression for HDRTV and smartphones.

The main two encoding functions employed by vendors are the Per-

ceptual Quantizer (PQ) [IR18] and Hybrid Gamma and Logarithm

(HLG) [IR18]. PQ is a rational polynomial function for encoding

HDR values in the range [10−4,104] cd/m2. HLG is a backward

compatible encoding function working like a gamma function for

© 2024 The Authors.

Proceedings published by Eurographics - The European Association for Computer Graphics.



Piras et al. / A Study on the Use of High Dynamic Range Imaging for Gaussian Splatting Methods: Are 8 bits Enough? 3 of 10

Captured Images

HDR Images

HDR+DurandTMO Images

HDR+ReinhardTMO Images

HDR+HLG Encoding Images

3D

SDR Images

Gaussian
Splatt ing

Optimization

SDR Render

HDR+DurandTMO Render

HDR+ReinhardTMO Render

HDR+HLG Encoding Render

Figure 1: This is the pipeline for our work on the “Jelly” scene captured in the wild. The first step is the photo campaign: for each viewing
angle around the object of interest (the jelly in this scene), three photos are taken; one underexposed, one at the correct exposure, and one
overexposed. The correctly exposed images represent the SDR set, while the three images together were used to create HDR images (one
for each view). Two tone mapping operators (TMOs) were applied to the HDR images: Reinhard et al. TMO (ReinhardTMO) [RSSF02] and
Durand and Dorsey TMO (DurandTMO) [DD02]. Additionally, HLG encoding was applied to the HDR images. This process generated four
different sets of images, which were then used in the 3DGS optimization process [KKLD23] to create four distinct renders.

low luminance values and like a logarithm for high luminance val-

ues for a maximum of 103 cd/m2. Other encoding formats exist;

for example, PU21 [MA21], but they are meant to support larger

dynamic ranges. In this work, we selected the HLG format that is

widely used in TV and mobile devices such as the Apple smart-

phones.

2.3. HDR in NeRF and 3DGS

Recently, researchers have started to exploit the potential of HDR

technology, which refers to the set of techniques that produce HDR

images from multiple SDR images taken at different exposures.

Such application has shown the possibility to capture scenes with

larger dynamic range than before improving the overall fidelity of

the entire capturing process.

Mildenhall et al. [MHMB∗21] introduced RAW-NERF. This

method utilizes the RAW HDR image data and optimizes NeRF di-

rectly on linear RAW input in HDR color space. They demonstrated

that reconstructing NeRF in RAW space makes it significantly more

robust to noisy inputs and enables novel HDR view synthesis appli-

cations. However, this method is not without trade-offs. Most digi-

tal cameras can only save RAW images at full resolution with min-

imal compression. This leads to significant storage requirements.

Sing et al. [SGM24] extended 3DGS applying it to 14-bit RAW in-

puts. These images are processed using a denoiser and bilinear de-

mosaicing extending the dynamic range of captured scenes. In this

way, challenging scenes can be reconstructed successfully without

the typical failures when using 8-bit images. However, the method

cannot capture details in bright regions (e.g., light bulbs’ details)

because more RAW may be required. Huang et al. [HZF∗23] pro-

posed an end-to-end method called HDR-NeRF to recover HDR

neural radiance fields from a set of SDR images with varying expo-

sures at each viewpoint. This neural rendering system can generate

novel HDR views and adjust the exposure of novel SDR views.

It consists of two modules: an HDR radiance field that models

the scene for radiance and densities and a tone mapper that mod-

els the camera response function (CRF) for colors. Although the

HDR-NeRF method achieved high-quality results in terms of out-

put quality, constructing an HDR radiance field is computationally

intensive; i.e., it requires a day of computations on a NVIDIA V100

GPU machine. Concurrently to our work, Wang et al. [WWK∗24]

extended 3DGS to handle HDR imaging and depth-of-field cam-

era control. They achieve this by proposing a novel reconstruction

framework that takes as input sparse images at varying viewpoints,

exposure values, and depth of field.

Compared to our work, these methods focus on RAW files

(12/14-stops), which do not cover the full dynamic range of a scene,

or sparse sampling that may miss some view-dependent highlights.

In our work, we explore how to reconstruct 3D scenes in HDR us-

ing 3DGS with exposure dense sampling [DM97] to faithfully re-

cover the dynamic range of a scene.

© 2024 The Authors.
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3. Method

3.1. Pipeline Overview

For this work, we acquired 9 scenes under both controlled condi-

tions (in the lab) and uncontrolled conditions (in the wild) and we

followed the pipeline of Fig 1. We captured SDR images at three

different exposures for each viewing direction to construct HDR

images (more details in Sec. 3.2).

Then, we generated 3DGS [KKLD23] representations employ-

ing the following sets of images: the SDR images, the HDR images

with tone mapping applied using the Durand and Dorsey opera-

tor [DD02] (DurandTMO), the HDR images with tone mapping ap-

plied using the Reinhard et al. operator [RSSF02] (ReinhardTMO),

and finally, the HDR images processed with the HLG encoding

function (a very popular encoding format for mobile devices and

TV); refer to Sec. 3.3 for further details on tone mapping operators.

Finally, we applied various metrics to all the renderings to assess

their quality and similarity to the respective ground truth.

3.2. Acquisition

For the acquisition phase, we used a Canon 5D DSLR camera

mounted on a tripod to avoid alignment issues and ghost artifacts

that can be caused when the camera is hand-held. We captured a

total of 9 scenes: two under controlled lighting conditions, with

spatial (checkerboard) and color (color checker) references, i.e., in

the lab, and seven under uncontrolled lighting conditions, without

spatial and color references, i.e., in the wild. Before the acquisitions

in the lab and in the wild, we performed a white balance procedure

based on the controlled lighting conditions in the lab, and on the

uncontrolled lighting in the wild.

We used two liver phantoms as subjects in our lab scenes to

explore the potential of applying 3DGS and HDR imaging to

biomedical data, particularly in organ reconstruction. These liver-

like structures were created to replicate the liver’s color, visual ap-

pearance, and texture. The geometry of these phantoms approxi-

mates the dimensions and shape of a liver placed on the surgical

table. Specifically, they are modeled as spherical caps with a base

radius of 5.5 cm and a height of 3 cm. A mold was designed using

CAD software (SolidWorks) to create these phantoms. The mold

was then 3D-printed in ABS using the FDM approach, and Ecoflex

00-10 silicone was poured into it, with the addition of a softener to

achieve the “squishy” consistency of a real liver.

Two phantoms were created: one with the reddish-brown col-

oration of a healthy liver and one with the yellowish tones charac-

teristic of a fatty liver (see Fig. 2). The phantoms were coated with

a layer of PVA-PVP to replicate the visual appearance of the liver

during the acquisition. Additionally, neutral-colored support was

designed in CAD software (Fusion 360) and 3D-printed in PLA to

hold the phantoms.

Figure 2: Liver phantoms: On the left is the fatty liver phantom,
characterized by a yellowish color. On the right, there is the healthy
liver phantom, characterized by a reddish-brown color.

The two phantoms were acquired under controlled conditions,

using the following strategies: a checkerboard was placed under-

neath the phantoms to increase matching points in the photographs

and to provide a scale reference within the scene; a color checker

was positioned next to the subjects to ensure accurate color rep-

resentation; and lighting similar to that of an operating room was

used.

To create HDR images, we captured three images at each camera

position with exposure values of -2-stop, 0-stop, and +2-stop: one

underexposed, one overexposed, and one correctly exposed (i.e.,

the SDR image); see Fig. 3. We captured JPEG files to avoid the

step of simulating a camera pipeline for the SDR image (i.e., 0-

stop). Such image is typically employed in NeRF-like methods,

so it was crucial to have real data in this step. To reduce dis-

tortions in the estimation of the camera response function (CRF)

when merging different exposure for obtaining a HDR image, we

pre-calibrated the CRF using an ad-hoc exposure stack (i.e., color-

checker scene) using the HDR Toolbox [BADC17].

Exposure Values# of

-2 0 +2
triplets

# 40

# 52

Figure 3: Triplet of images used to generate HDR images. For each
scene captured in the lab, the underexposed image (exposure value
-2-stop, left), the correctly exposed image (exposure value 0-stop,
center), and the overexposed image (exposure value +2-stop, right)
are shown.

For the scenes captured in the wild, we used various subjects

with characteristics that make them very difficult, if not impossi-

ble, to capture using traditional photogrammetry techniques, and

which also pose challenges for NeRF-like methods. Specifically,

© 2024 The Authors.
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we captured bottles with colored liquids inside to evaluate the ac-

quisition of semi-transparent objects; fruits to assess the acquisition

of translucent objects; a cactus and a stuffed toy to test the acquisi-

tion of fuzz and hair; a gelatin dessert with fresh flowers inside to

further assess transparent objects; and finally, a ceramic object and

a stapler to evaluate reflective surfaces.

For the in the wild scenes, neither a checkerboard nor a color

checker was used, and natural lighting was employed. These cap-

tures were performed in the summer, during the time of day when

the sun was at its zenith, to minimize lighting variations during

image capture, as NeRF-like methods are not robust to changes in

illumination. The objects were placed partly in direct sunlight and

partly in the shade to provide a wider range of lighting dynamics

for the HDR images.

As in the lab, we captured three images at each camera position

for HDR generation. However, this time, we used exposure values

of -3-stop, 0-stop, and +3-stop, expecting a wider dynamic range;

see Fig 4.

Exposure ValuesScenes

-3 0 +3

Bottles

Cactus

Fruit

Jelly

Jelly2.0

Reflective

Scrat

(# of triplets)

(# 41)

(# 41)

(# 40)

(# 38)

(# 40)

(# 40)

(# 40)

Figure 4: Triplet of images used to generate HDR images. For each
scene captured in the wild, the underexposed image (exposure value
-3-stop, left), the correctly exposed image (exposure value 0-stop,
center), and the overexposed image (exposure value +3-stop, right)
are shown.

(a) View 0 (b) View 1

2 4 6 8 10 12
0.2

0.3

0.4

0.5

0.6

0.7

0.8
Uniform View 0
Uniform View 1
Non-Uniform View 0
Non-Uniform View 1

Figure 5: An example showing consistency for the Bottles scenes
from two different views (a) and (b). The bottom graph shows the
plot of luminance values of 13 key points tracked in (a) and (b)
for ReinhardTMO with our scheme (Uniform) and without it (Non-
Uniform). On average, the Uniform scheme reduces luminance dif-
ferences between the same key points in different views more than
the Non-Uniform scheme.

3.3. Consistent Multi-View Tone Mapping

In our work, we want to understand if tone mapping is a valid al-

ternative to HDR images or they perform better than SDR ones.

Similarly to video tone mapping [BADC17], if we tone map

images from a multi-view dataset separately for each image, we

will obtain inconsistent results. For example, Figure 5 (a) and (b)

show the “Bottles” scene (from Figure 4) in two different views,

these images represent the same object from a different view but

view-independent diffuse reflections may have different values be-

cause they were independently tone-mapped. To minimize this ef-

fect, which may create views with varying appearances and intro-

duce view-dependent effects when it is not the case, we propose a

different strategy for gathering statistics.

The first step of our strategy is to compute global statistics on the

luminance channel of each image in the multi-view dataset. These

statistics are average, logarithmic average, minimum, maximum,

key, etc. At this point, we need to pool a value for each global

statistic to use it as input for the tone mapping phase. Different

strategies can be applied. The use of minimum and maximum pool-

ing should be avoided because they may create a few images that

are extremely dark or bright. In our experiments, we found out that

computing the median is a sound strategy. However, if the object

has a “front-face” image, it is preferred, as visual impact, to select

global statistics from that image.

We selected two popular solutions for tone mapping; i.e., Du-

© 2024 The Authors.
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rand and Dorsey operator [DD02] (DurandTMO), and Reinhard et

al.’s operator [RSSF02] (ReinhardTMO). These two operators pro-

vide high-quality results, are straightforward to implement, and are

typically employed as a baseline when doing tone mapping bench-

marks. ReinhardTMO is a sigmoid function applied to the scaled

input luminance based on the image statistics. DurandTMO works

by reducing the luminance dynamic range of low frequencies in

the image/video while keeping untouched the high frequencies. To

avoid halos around edges, the bilateral filter is employed during

frequency separation. Only low frequencies are compressed lin-

early in the logarithm domain. In our experiments, we applied our

scheme for both ReinhardTMO and DurandTMO for computing

global statistics such as the scaling factor, and the maximum white

point. The graph in Figure 5 shows that our proposed schemes re-

duces inconsistency in luminance values. In this example, the mean

absolute difference is 0.0273 when tone mapping each image sepa-

rately (Non-Uniform), while this value lower down to 0.0205 when

using our scheme (Uniform).

3.4. 3DGS Training

We decided to study four different types of generated 3DGS; i.e.,

using different input images. In particular, we created 3DGS rep-

resentations for images using the 0-stop SDR image (this image is

the best exposure determined by our camera), the ReinhardTMO (a

sigmoid TMO), the DurandTMO (a local and logarithmic TMO),

and the HLG HDR encoding (a very popular encoding format for

mobile devices and TV); see Figure 6. After preparing all the im-

age sets and extracting the undistorted images and SfM information

generated by COLMAP [SF16], we trained the various models to

obtain the Gaussian splats for each scene. In total, we had 36 train-

ings to be carried out; i.e., 9 scenes and 4 types of input images.

We trained each model for 30,000 iterations on a single NVIDIA

RTX 3090 GPU equipped with 24GB of memory. On average, the

training lasted around 20 minutes and never exceeded 30 minutes.

HDR +
Dur andT M O

S DR HDR +
R e i nha rdT MO

HDR +
HL G

Figure 6: An example of the “Jelly2.0” scene showing the different
types of input images used in our work: 0-stop SDR images, Rein-
hardTMO images, DurandTMO images, and HLG HDR images.

4. Results

To evaluate the quality of the reconstructions for different scenes

(see Fig. 11) based on their similarity to the ground truth (0-

stop SDR images for SDR render, ReinhardTMO images for Rein-

hardTMO render, DurandTMO images for DurandTMO render and

HLG HDR images for HLG HDR render), we used the follow-

ing metrics with reference: the classic Peak signal-to-noise ra-

tio (PSNR), SSIM [WBSS04], LPIPS [ZIE∗18], and DreamSim

[FTS∗23]. Additionally, we used a no-reference metric: NoRVDP-

Net++ [BAM∗23].

3DGS renderings at the reference viewpoints in our dataset may

have a large percentage of background pixels. Typically, the back-

ground may be modeled with a few Guassians and this may result

in low quality background. Note that a low-quality background de-

pends on the scene and the method; see Fig. 9. To avoid low-quality

backgrounds influencing negatively on the metrics, we have de-

cided to apply a central crop (i.e., the central block in a 3×3 grid)

to each rendering. In this way, the background pixels are minimized

reducing their influence in the final metrics computations.

HDR +
DurandTM OS DR HDR +

Re inha rdTMO
HDR +

HLG

S cra t

Cac tu s

F r u i t

Figure 9: An example showing that quality background depends
on the scene and the method. The reconstruction of the “Scrat”
scene using HDR + DurandTMO offers the best compromise be-
tween background blurring and shadow/reflection distortions, com-
pared to other methods. The reconstruction of the “Fruit” scene us-
ing HDR + HLG has the darkest and smoothest background, com-
pared to other methods. The reconstruction of “Cactus” scene us-
ing 0-stop SDR has the best-quality background, compared to other
methods.

Table 1 reports all results for each scene, metric, and method.

These results are summarized per method in Fig. 7. As a first step,

we performed a two-way ANOVA test (Tukey’s multiple compar-

isons t-test using the Bonferroni correction, by comparing, within

each column, the mean of the rows) using Graphpad Prism (ver-

sion 9.1.0) on aggregated data. We ran this test to infer if statis-

tically significant differences were present in the various metrics

based on the tone mapping operation. Fig. 7 shows the results of

this test, these underlines that most of the employed metrics (i.e.,

LPIPS, SSIM, DreamSim, and NoRVDPNet++) are not statistically

significant. This result for SSIM, LPIPS, NoRVDPNet++ (which is

a no-reference version of HDR-VDP2.2 [NMSC15]) is also con-

firmed in the recent literature [LWH∗24]. Unexpectedly, Dream-

Sim, which should match perception in subjective experiments, had

no statistically significant results. From PSNR results in Fig. 7, we

can elicit that the most faithful reconstructions are the ones gener-

ated using HDR+HLG and HDR+ReinhardTMO input images. The

least faithful reconstruction is the one generated by SDR, which is

the classic method for generating 3DGS. This is an interesting find-

ing because it shows HDR imaging improves the overall quality in

reconstructions and it is favorable to be employed for capturing re-

ality. Another interesting finding is the fact a global TMO such as

ReinhardTMO has similar performance to HDR encoded data, but

a local TMO (e.g., DurandTMO) has a lower quality.

© 2024 The Authors.
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Figure 7: Box-plot (10-90 percentage) showing the metrics (i.e, SSIM, PSNR, LPIPS, DreamSim, NoRVDPNet++) for the SDR images and
the tone mapped ones (i.e., HDR + DurandTMO, HDR + ReinhardTMO, HDR + HLG). The results from the two-way ANOVA statistical test
are shown only for the PSNR metric as the test highlighted no statistically significant difference for the other metrics. In the figure: ns: not
significant, *: p− value ≤ 0.05, **: p− value ≤ 0.01, ***: p− value ≤ 0.001, ****: p− value ≤ 0.0001.

Figure 8: An example of the “Cactus” scene (zoomed) test-
ing HDR+HLG+ReinhardTMO vs HDR+ReinhardTMO:
On the left side, the 3DGS rendering generated using
HDR+HLG+ReinhardTMO; in the middle, the reference Rein-
hardTMO image; on the right side, the 3DGS rendering generated
using HDR+ReinhardTMO. Note that HDR+ReinhardTMO is
closer to the reference in terms of matched tones and colors.
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Figure 10: Box-plot (10-90 percentile) showing the metrics (SSIM,
PSNR, LPIPS, DreamSim, NoRVDPNet++) for the two mappings
HDR + ReinhardTMO and HDR + HLG + ReinhardTMO. In the
figure: ns: not significant, ****: p− value ≤ 0.0001.

At this point, we may conclude that HDR+HLG may be supe-

rior to HDR+ReinhardTMO. This is because we can decode HLG

values, obtain HDR data, and tone map decoded renderings with

a TMO of choice for a given production intent. To assert this, we

ran a further evaluation test. As a first step, we computed render-

ings using HDR+HLG. Then, we decoded this rendering obtain-

ing HDR values and tone mapped using ReinhardTMO. Finally, we

compared these tone mapped images (HDR+HLG+ReinhardTMO)

with ground truth tone mapped images using ReinhardTMO and

against the 3DGS reconstructions HDR+ReinhardTMO. As be-

fore, we computed the previously selected metrics and tested

their results using a two-way ANOVA test (Tukey’s multiple

comparison t-test using the Bonferroni correction, by compar-

ing each cell mean with the other cell mean in that row). From

our statistical analysis, we obtained similar results; i.e., PSNR

is the only statistically significant metric. Apart from this re-

sult, we found that HDR+ReinhardTMO has a better result than

HDR+HLG+ReinhardTMO regarding image quality. Although this

may be counterintuitive, this happens because we have a fitting

process during a 3DGS reconstruction. For HDR+HLG, the fitting

process may lose details that are present in HDR+ReinhardTMO

images and vice versa. Therefore, we do not have an equivalent

rendering quality when comparing HDR+HLG+ReinhardTMO and

HDR+ReinhardTMO. This result is important because it shows

that if our 3DGS needs to maintain details and the intent of a

given TMO, we must first perform tone mapping and then pro-

ceed with the 3DGS reconstruction. HDR+HLG+ReinhardTMO

still produces a reasonable quality (i.e., PSNR over 20), but we

may lose some fidelity regarding tone and color reproduction; see

Fig. 8.
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Figure 11: The different types of input images used in our work for each scene: 0-stop SDR images, ReinhardTMO images, DurandTMO
images, and HLG HDR images. For each scene, we show an example view with the ground truth (GT); i.e., the input of the 3DGS training,
and their corresponding rendering.

5. Conclusions

We have presented a study that contributes to the ongoing explo-

ration of the impact of HDR imaging using dense sampling for

3DGS. To achieve this, we have introduced a simple but effective

novel scheme to enforce consistency when tone mapping multi-

view HDR images representing the same scene. We have shown

using our novel dataset that typically the use of HDR imaging is

an advantage in terms of reconstruction. From visual comparisons,

tone mapping emerges as a strategy to prefer for 3DGS when us-

ing HDR imaging especially when we want to maintain the intent

and quality of a TMO. A further investigation needs to be carried

out to fully understand which classes of TMOs are to be employed

when dealing with 3DGS or other neural rendering methods. In fu-

ture work, we would also like to extend the use of 3DGS and HDR

to biomedical data such as laparoscopic reconstructions in which

specular and glossy highlights can be fully acquired using HDR

imaging and a faithful rendering of dark areas is critical for the

evaluation of organs and to achieve success in robotic or remote

surgeries.
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