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Abstract: Xylella fastidiosa is a phytobacterium able to provoke severe diseases in many species.
When it infects olive trees, it induces the olive quick decline syndrome that leads the tree to a rapid
desiccation and then to the death. This phytobacterium has been recently detected in olive groves
in southern Italy, representing an important threat to the olive growing of the area. In this paper,
in order to identify patterns revealing the presence of Xylella fastidiosa, several hundreds pixels of
MODIS satellite evapostranspiration covering infected and healthy olive groves in southern Italy were
analyzed by means of the Fisher–Shannon method and the multifractal detrended fluctuation analysis.
The analysis of the receiver operating characteric curve indicates that the two informational quantities
(the Fisher information measure and the Shannon entropy) and the three multifractal parameters (the
range of generalized Hurst exponents and the width and the maximum of the multifractal spectrum)
are well suited to discriminate between infected and healthy sites, although the maximum of the
multifractal spectrum performs better than the others. These results could suggest the use of both the
methods as an operational tool for early detection of plant diseases.

Keywords: multifractal detrended fluctuation analysis; Fisher–Shannon; vegetation

1. Introduction

The climate change is rapidly evolving in time and the world connections are more and
more increasing; these two factors represent an important driver of biological invasions [1,2],
which have favored the establishment of extremely dangerous phytopathogens such as
Xylella fastidiosa [3]. This bacterium is transmitted by several vectors, such as the Homalodisca
vitripennis, a sap-sucking leafhopper, native to southeastern United States and northeastern
Mexico [4]. Xylella fastidiosa affects plants, inducing several infections, such as the Pierce’s
disease of grapevines [5], the olive quick decline [6], the bacterial leaf scorch [7], and the
phony peach disease [8], causing significant important economic loss in agriculture. In
Europe, Xylella fastidiosa was detected for the first time in southeastern Italy in 2013 [9], and
then it spread out to several other European countries, representing a real phyto-sanitary
emergency [10]. The first study focused on Xylella fastidiosa was performed by Krugner
et al. [11], who detected Xylella fastidiosa subsp. multiplex in olive trees affected by leaf
scorch and branch dieback; however, in their laboratory experiments they did not see
the same symptoms in olive trees as those found in the field. After Xylella fastidiosa was
detected in olive groves in southeastern Italy, a systematic study on Xylella fastidiosa was
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carried out in Argentina and Brazil, where symptomatic olive trees were found to host
Xylella fastidiosa subsp. pauca [12,13], which was the same subspecies found in the Italian
olive trees [14]. Strona et al. [15] found that the wide distribution of olive groves in Apulia
(southeastern Italy) and the large amount of Philaenus spumarius L., vector of this bacterium,
could have favored the embedding of Xylella fastidiosa in this territory.

Since no treatment has yet been found to allow the infected trees to recover, and
effective strategy to impede the epidemy to spread out is just plucking the infected trees, it
is clear that to lower the risk of spreading the infection relies on an early identification of
asymptomatic or infected trees with visible symptoms of desiccation. The visual inspection
still represents the most commonly adopted approach, which is rapid, easy, and cost-
effective; however, the accuracy of identification depends on the the subjective assessment
of the level of the disease. Moreover, since the collected samples can only be analyzed in
the laboratory, the visual inspection becomes a time-consuming, expensive, and destructive
method of detection of Xylella fastidiosa [16].

Recently, remote sensing (RS) has become a useful technology aiming at monitoring
the vegetation status, and also its relationship with the detection of plant diseases and
infections. For instance, the use of unmanned aerial vehicle (UAVs) in combination with
a multispectral radiometer to classify the severity of plant infection [17], or the airborne
imaging spectroscopy combined with thermography to reveal pre-symptomatic infection
patterns [18], or the use of an RS-driven support vector machine model to predict accu-
rate plant disease spatial distribution [19], represent a few examples of application of RS
employed in the detection of Xylella fastidiosa.

In this paper, we analyze the time dynamics of MODIS satellite evapotranspiration
(ET) data (free available in the Google Earth Engine cloud database) of a large part of
southern Italy covered by olive groves, some infected by Xylella fastidiosa. Since the infection
mechanism of Xylella fastidiosa is given by the obstruction of the vessels that carry water
and nutrients from the roots to the stem and up to the leaves, the infected plants dry up
completely; thus, the use of ET data, which are related to the water content of the plants,
seems suitable to assess the presence of plant diseases due to Xylella fastidiosa.

For our investigation purposes, we will use the Fisher–Shannon analysis [20,21] and
the multifractal detrended fluctuation analysis (MFDFA) [22], which are well-known statis-
tical methods capable of characterizing the complexity of time series in terms of informa-
tional and multiscaling behavior, such as that of ET, which would reflect the transformation
processes of the trees.

2. Methods
2.1. The Periodogram Analysis and Spectral Filtering

Given a time series xn, for n = 0, . . . , N − 1, where N is the length of the series, its
discrete Fourier transform (DFT) is defined as

Φk+1 =
N−1

∑
j=0

xj+1e−jk 2π
N i =

N−1

∑
j=0

xj+1

(
cos 2π

jk
N
− i sin 2π

jk
N

)
= A(k)− iB(k), (1)

where i is the imaginary unit and

A(k) =
N−1

∑
j=0

xj+1 cos 2π
jk
N

(2)

B(k) =
N−1

∑
n=0

xj+1 sin 2π
jk
N

. (3)
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The series xn can be obtained from its DFT by

xj+1 =
1
N

N−1

∑
k=0

Φk+1ejk 2π
N i. (4)

The periodogram of xn is defined as

S( fk) =
1
N
|Φk|2 =

1
N

(
A(k)2 + B(k)2

)
, fk =

k
N

, k = 0, ..,
N
2

. (5)

A peak in the periodogram at a frequency fh = h
N indicates a periodicity in the time

series with period 1
fh
= N

h . The removal of this periodicity from the time series (spectral
filtering) is performed by removing A(h) and B(h) from Equation (4).

2.2. The Fisher–Shannon Analysis

The Fisher–Shannon analysis is based on the calculation of two informational quanti-
ties: the Fisher information measure (FIM) and Shannon entropy (SE), which locally and
globally, respectively, quantify the type of smoothness of the probability distribution func-
tion of the time series, with the FIM being an indicator of the order and organization [20],
and the SE an indicator of the uncertainty or disorder of the series [21]. Their definitions
are as follows:

FIM =
∫ +∞

−∞

(
∂

∂x
f (x)

)2 dx
f (x)

(6)

SE =
∫ +∞

−∞
fX(x)log( fX(x))dx (7)

where f(x) is the distribution of the series’ values x. The Shannon entropy power NX, which
is always positive, is generally used instead of SE:

NX =
1

2πe
e2SE. (8)

FIM and NX are linked by the isoperimetric inequality FIM · NX ≥ D [23], where D is
the dimension of the space (1 for time series). The so-called Fisher–Shannon information
plane (FSIP), whose coordinate axes are FIM and NX, can be used to represent time series
with points that can occupy only the domain FIM · NX ≥ 1, where the minimum FIM ·
NX = 1 is only for series with a Gaussian distribution. Thus, the FSIP, combining the
global and local properties of SEP and FIM, respectively, could furnish a useful means of
discrimination between different time dynamics of time series [23].

2.3. The Multifractal Detrended Fluctuation Analysis

The multifractal detrended fluctuation analysis (MFDFA) [22] is a well-known multi-
fractal method, efficiently used to investigate the multifractality of time series, characterized
by heterogeneity, intermittency, and different roles played by small and large fluctuations.
Considering the series x(i), for i = 1, 2, . . . , N with mean xave, its profile y(i) is obtained
by a simple integration:

y(i) =
i

∑
k=1

[x(k)− xave] (9)

The profile y(i) is divided into Nm = [N/m] contiguous boxes of identical size m that
are called scale. In case N is not a multiple of m, since a short part of the series could
remain at the end, the same procedure is applied from the end of the profile y(i). In each of
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the 2Nm boxes, the profile is fitted with a p-degree polynomial by a least square method,
obtaining the following variance:

F2(m, ν) =
1
m

m

∑
i=1
{[(ν− 1)m + i]− yν(i)}2, ν = 1, . . . , Nm (10)

and

F2(m, ν) =
1
m

m

∑
i=1
{[(N − (ν− Nm)m + i]− yν(i)}2, ν = Nm, . . . , 2Nm (11)

where yν(i) is the p-degree polynomial fitting the profile in the box ν; the polynomial, thus,
removes all the trends until the order p in the profile, and until the order p-1 in the original
time series. Then, the qth order fluctuation function Fq(m) is calculated as

Fq(m) = { 1
2Nm

2Nm

∑
ν=1

[F2(m, ν)]
q
2 }

1
q (12)

where q 6= 0. For q = 0, F0(m) is calculated as follows:

e
1

4Nm ∑2Nm
ν=1 ln[F2(m,ν)] ≈ mho (13)

from which the exponent h0 is obtained. For q > 0 the large fluctuations are enhanced, while
for q < 0 the small ones are highlighted. The fluctuation function Fq(m) increases with the
box size or scale m; but if such increase is a power law, then the series is characterized by
long-range power law correlations:

Fq(m) ≈ mhq (14)

where hq is called generalized Hurst exponent. If the exponent hq is nearly constant
with q, the series is called monofractal, indicating that the scaling behavior of the small
and large fluctuations is approximately identical. If the small and large fluctuations
have different scaling behaviors, hq decreases with q, indicating that more exponents
are necessary to describe the fractality of the series that, in this case, is multifractal with a
more complex structure. The range of the exponents hq (hq-range) is employed to quantify
the multifractality of a series. The larger the hq-range, the larger the multifractal degree of
the series. The degree of multifractality can be investigated by means of the multifractal
spectrum. From the following relationships (also known as the Legendre transform),

τ(q) = qhq − 1 (15)

and
α =

dτ

dq
(16)

the multifractal spectrum f (α) is calculated as

f (α) = qα− τ(q) (17)

where α is the so-called Hölder exponent. The multifractal spectrum furnishes an indication
of the relative dominance of the various scaling exponents in the series and is typically
single-humped shaped. It can be fitted by a second-degree polynomial:

f (α) =
2

∑
i=0

ci(α− α0)
i (18)
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where α0 is the maximum. The width W of the multifractal spectrum is defined as

W = αmax − αmin (19)

where αmax and αmin are the two zeros of the fitted second-degree polynomial. W is
often employed to quantify the multifractality in a series. The larger the value of W, the
higher the multifractal degree of the series. The maximum α0 of the multifractal spectrum
conveys information about the regular behavior of the process, and it is high for less-regular
processes with a finer structure, and small for more regular ones.

2.4. The ROC Analysis

The receiver operating characteristics (ROC) analysis is used for selecting classifiers
based on their performance. In binary classification problems, an instance can be labeled as
positive or negative, and a classifier maps instance to predicted classes.

Given a classifier and an instance, there are four possible outcomes. The instance is
counted (1) as a true positive (TP) if it positive and it is classified as positive; (2) as a false
negative (FN) if it is positive and classified as negative; (3) as a true negative (TN) if is
negative and is classified as negative; and (4) as a false positive (FP) if it is negative and
classified as positive [24]. We can define the following ratios, the true positive rate (TPr)
and the false positive rate (FPr):

TPr =
Number o f TP
Total positives

, (20)

FPr =
Number o f FP
Total negatives

. (21)

The sensitivity is the TPr and the specificity is 1-FPr. An ROC curve is a two-
dimensional graph in which the sensitivity is plotted on the Y axis and 1-specificity is
plotted on the X axis. In the ROC space, the point (0,1) represents perfect classification, and
one point is better than another if it is to the northwest of the first. The diagonal line y = x
represents the random classification, and a good classifier has to be represented by a point
located in the upper triangle of the ROC space.

Some classifiers yield a score, a numeric value that represents the degree to which
an instance is a member of a class. Such a scoring classifier can be used with a threshold
to produce a binary classifier, and depending upon the relationship between the output
and the threshold, the classifier produces a positive or a negative. Each threshold value
produces a point in ROC space; varying the threshold from two extremal values, a curve
can be traced through ROC space; this curve is called the ROC curve. The area under the
ROC curve (AUC) is generally used to quantify the performance of the classifier. Each
point on the ROC curve represents a sensitivity/specificity tradeoff corresponding to a
particular threshold. Generally, to maximize such a tradeoff, the point of the ROC curve
closest to (0,1) is considered and the corresponding threshold is used.

3. Data and Study Area

Since the effect of the infection by Xylella fastidiosa in olive trees is the rapid branch
desiccation [25], we analyzed the Moderate Resolution Imaging Spectroradiometer (MODIS)
evapotranspiration (ET) data that are able to monitor the water status of plants and, thus,
to detect signs of the presence of disease. The data, which have 500 m spatial resolution
and are eight-day sampled, are freely available online (https://lpdaac.usgs.gov) and in
the Google Earth Engine (GEE) cloud database. The ET is calculated, summing up soil
evaporation (Es), canopy evaporation (Ec), and canopy transpiration (Tc):

ET = Es + Ec + Tc (22)

https://lpdaac.usgs.gov
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with

Es = fw
∆AS +

(1− fc)ρaCP(eS−ea)
rs

a

∆ + γ
rS

S
rS

a

+ RH
(eS−ea)

βsm (1− fW)
∆AS +

(1− fc)ρaCP(eS−ea)
rs

a

∆ + γ
rS

S
rS

a

(23)

Ec = fw
∆AS +

fcρaCP(eS−ea)
rwc

a

∆ + γ
rwc

S
rS

a

(24)

Tc = (1− fw)
∆AC + fcρaCP(eS−ea)

rt
a

∆ + γ(1 + rt
S

rS
a
)

. (25)

where fc is the canopy cover, fw is the pixel wet surface fraction, RH is the relative humidity,
∆ is the gradient of the saturation vapor pressure–temperature, As and Ac are the available
energy to the soil and canopy, respectively, γ is the psychrometric constant, βsm is a
parameter related to the soil moisture constraint, rs

s and rs
a are the surface and aerodynamic

resistance for the soil surface, rwc
s and rwc

a are the surface and aerodynamic resistance for
the wet canopy evaporation, and rt

s and rt
a are the surface and aerodynamic resistance for

the canopy transpiration [26].
The analyzed ET data cover the southeastern part of Italy (Figure 1) from 2010 through

the present. The length of each pixel time series is 575, and data missing percentage is
less than 25%. We investigated areas infected and not infected by Xylella fastidiosa. For
the infected area, the number of analyzed pixels is 996, while that of the not-infected area
is 1023.

Figure 1. Infected and healthy sites. The infected sites were selected on the basis of [27].

The areas occupied by infected and uninfected plants are in different locations, neither
overlapping nor neighboring. The selection of both types of areas (infected and uninfected)
was driven by the fact that they are quite homogeneous from the topographical (as shown
in the inset of Figure 1) and climatic points of view. These areas are quite flat, especially in
the SE part of Apulia (where infected olive trees have been detected) and in the NE part of
Apulia and along the Ionian coast of Basilicata (where no traces of Xylella fastidiosa have
been found so far), with hilly topographic features in the NE part of Basilicata, characterized
by a distinctly Mediterranean climate with cold winters and hot and dry long summers.
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4. Results

The ET time series are characterized by oscillating variability, as shown by Figure 2,
which represents, as an example, the time variation of ET of a pixel of infected area.
Figures 3 and 4 show the periodogram and the heat map of the pixel time series of the
infected and not-infected areas; all pixels are modulated by annual and sub-annual (6,
4, and 3 months) cycles that represent the phenological cycles of vegetation correlated
with the meteo-climatic oscillations. In order to investigate the inner time dynamics of
vegetation not driven by the meteo-climatic oscillations, we filtered them out and analyzed
the residuals. Figure 5 shows the normalized residual after the spectral filtering of the pixel
time series shown in Figure 2.

Figure 2. Pixel time series of an infected site.

Figure 3. Periodogram of the time series of the MODIS ET pixels covering the not-infected area.
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Figure 4. Periodogram of the time series of the MODIS ET pixels covering the infected area.

Figure 5. Normalized residual of pixel time series shown in Figure 2.

We applied the MFDFA to each residual pixel time series, varying the moment order
q from −5 to 5 and the scale m from 10 to 1/4 of the length of the series. The gaps were
eliminated by simply stitching together the two neighbors [28]. In order to select the
optimum degree of the detrending polynomial, we calculated the fluctuation functions
Fq for each q for detrending polynomial degree p = 1, . . . , 5. For each Fq we computed
the coefficient of determination R2 of the linear fit of log10Fq ∼ log10(m) and analyzed the
multifractality of those pixels, whose R2 ≥ 0.9 for any q, while those with R2 < 0.9 for
at least one value of q were discarded. Figures 6 and 7 show the variation of < R2 >pixel

(average of R2 over all the selected pixels) versus q, for p = 1, . . . , 5 for the infected and
not-infected areas, respectively; we can see that < R2 >pixel is relatively larger for p = 4
for the areas not affected by Xylella fastidiosa, while it is the largest for p = 3 for the affected
areas. Thus, we analyzed the multifractality with p = 3 and p = 4 for the Xylella-affected
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and Xylella-not-affected areas, respectively. Moreover, with these values of p, the number
of selected pixels is 989/996 for the infected area and 1005/1023 for the not-infected area.
As an example, Figures 8 and 9 show the fluctuation functions for q = −5 and q = 5 of two
pixels, the first for an infected site and the other for an uninfected site. Figures 10–12 show
the boxplots of the multifractal parameters: hq-range, W, and α0.

Figure 6. R2 of the pixels covering the infected area.

Figure 7. R2 of the pixels covering the not-infected area.
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Figure 8. Fluctuation functions for q = −5 and q = 5 of an Xylella-affected pixel.

Figure 9. Fluctuation functions for q = −5 and q = 5 of an Xylella-unaffected pixel.
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Figure 10. Boxplot of the hq-range.

Figure 11. Boxplot of the width W.
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Figure 12. Boxplot of the maximum α0.

Moreover, we applied the Fisher–Shannon analysis and calculated the FIM and the
NX for the investigated pixel time series of both types of area. Figures 13 and 14 show the
boxplots of the two informational quantities.

Figure 13. Boxplot of the FIM.
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Figure 14. Boxplot of the SEP.

Table 1 shows the average, the standard deviation, and the minimum and maximum
of each multifractal and informational parameter for both the infected and uninfected areas.

Table 1. Average, standard deviation, and minimum and maximum of the obtained parameters for
the Xylella affected (unaffected) sites.

Parameter Average σ Minimum Maximum

hq-range 0.1634 (0.3784) 0.0806 (0.1691) 0.0156 (0.0272) 0.58937 (0.9732)

W 0.5222 (0.8168) 0.1299 (0.2106) 0.1410 (0.2157) 0.9983 (1.4920)

α0 1.042 (/1.2172) 0.0763 (0.0875) 0.7798 (0.9686) 1.3171 (1.4844)

FIM 1.080 (1.2204) 0.0689 (0.1610) 0.9582 (0.9716) 1.4880 (2.0421)

SEP 1.0282 (0.9845) 0.0235 (0.0515) 0.8166 (0.6278) 1.0774 (1.0719)

We analyzed the receiver operating characteristic (ROC) curve of each of the three
multifractal (hq-range, W, and α0) and of the two informational (FIM and NX) parameters
to test their performance in discriminating between infected and not-infected olive trees.
The ROC curves are well known to test the performance of binary classifiers [24]. The
ROC curve shows the relationship between the TPr and the FPr. For each of the five
parameters, we constructed the corresponding ROC curve by varying a threshold. Focusing,
for instance, on the parameter W that is the width of the multifractal spectrum, there are
989 values for infected pixels (with a mean µin f ected = 0.5222) and 1005 for uninfected pixels
(with a mean µunin f ected = 0.8168). W ranges from the minimum 0.1410 to the maximum
1.4920 (see Table 1). The threshold ranges from the minimum to the maximum of all the
values of W. After sorting all values of W in increasing order and fixing a threshold F,
since µin f ected < µunin f ected, a TP is a value of infected pixel below F, an FP is a value of
uninfected pixel below F, an FN is a value of infected pixel above F, and a TN is a value
of uninfected pixel above F. Thus, for this value F of the threshold, the TPr and the FPr
can be calculated and one point of the ROC curve is obtained. Changing the value of the
threshold among all those between the minimum and the maximum and repeating the
same procedure, the entire ROC curve is obtained. After cosntructing the ROC curve, the
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value of the optimal threshold corresponds to the point of the ROC curve that is the closest
to (0,1).

Figure 15 shows the ROC curve for the five analyzed parameters. The thresholds
corresponding to the point of the ROC curve closest to (0,1) along with the TPr and the FPr
for each parameter are reported in Table 2.

Figure 15. ROC curves for the five investigated parameters.

Table 2. Threshold, TPr, and FPr corresponding to the point of the ROC curve closest to (0,1).

Parameter Threshold TPr FPr

hq-range 0.2251 0.8342 0.2109

W 0.6358 0.8337 0.2022

α0 1.1278 0.8564 0.1443

FIM 1.1040 0.7634 0.2868

SEP 1.0183 0.7412 0.2493

Figure 16 shows the corresponding AUC. It is clearly evident that all the parameters
can be considered good classifiers and the maximum α0 is the best one.
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Figure 16. AUC for the five investigated parameters.

5. Discussion and Conclusions

Recent investigations performed by Telesca et al. [29] showed that MODIS satellite
ET, along with other vegetation indices, was effective for assessing the deterioration of
pinus tree vegetation by another parasite, Toumeyella parvicornis, suggesting the use of this
parameter for the monitoring of pest and parasite attack at both landscape and field scale.

According to [30], Xylella is not the primary cause of the rapid olive desiccation, since
the pathogens damage the plants that have been made weaker due to environmental
criticalities such as, for example, the reduction of rainfall, the excess of chemical herbicides,
the impoverishment of soil organic matter, etc. In this view, these critical factors create an
inhospitable environment for the plant, which loses vigor and increases its vulnerability to
diseases and parasites, such as Xylella fastidiosa. Thus, ET could characterize and capture
the impact of infection by Xylella fastidiosa on plants, since one of the recognizable effects is
that the plant dries up and dies. In fact, the ET is well suited to give information about the
water status of plants, since it furnishes an indirect measure of the loss of water content
of vegetation. Therefore, since the most important symptom of Xylella fastidiosa-induced
disease is the rapid desiccation, it is expected that ET makes it possible to detect the
presence of this bacterium.

All the investigated sites, both infected and healthy, show a cyclic component in
the ET time variability that is very likely linked with the meteo-climatic seasonal cycles.
Two periodicities, in particular, are evidenced, the yearly and the semiannual one. The
semiannual periodicity appears more powerful for the infected pixels than for the healthy
ones; this is probably due the semestral duration of the vector infectivity that generally
lasts from May to October.

The application of MFDFA and the Fisher–Shannon method to the time series of pixels
covering healthy and Xylella fastidiosa-infected olive groves in southern Italy allowed us
to obtain new insights into the time dynamics of ET. The ET time series of the infected
sites show an SEP larger and an FIM lower than those of the healthy sites; this indicates
that their time variability is characterized by a larger disorder or less organization. Since
FIM and SEP relate, respectively, to the local and global properties of the distribution of
the series, the larger SEP of the infected sites would suggest that the global variations of
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their distribution are dominant, while the distribution of the ET series for the healthy sites
would be dominated by the local variations.

The two types of sites have different informational response, and this could be corre-
lated to the different nutritional processes that in the infected trees are seriously damaged.
The nutritional system of plants is governed by processes that control water and nutrient
flux from the roots to the stem and up to the leaves; thus, a healthy tree is characterized by
a nutritional system more complex that involves an interaction with the environment. A
healthy tree can react more efficiently to the local environmental factors, implying a higher
resilience to the external factors that is reflected in a larger heterogeneity, and, thus, in a
larger FIM or lower SEP.

In addition, the multifractal parameters hq-range, multifractal width W, and α0 indicate
that the healthy sites are characterized by larger heterogeneity and complexity in the ET
time variation. The hq-range and the width W quantify the variety of the scaling exponents
of the series; therefore, large hq-range and width W indicate that the ET series of healthy
sites show a relatively irregular behavior with a variety of scaling exponents larger than
that shown by the infected sites that are characterized by a more regular behavior with
more homogeneous variations. The maximum of the multifractal spectrum α0 is lower for
the infected sites that, therefore, are more regular processes with coarser structure. The
larger homogeneity and regularity of the ET of the infected sites could also be an indication
of the less resilient behavior versus the local environmental perturbations; in fact, the status
of desiccation induced by Xylella fastidiosa makes the nutritional control mechanism of the
infected trees less efficient in reacting to the environmental factors, leading, finally, to the
death of the infected plant.

The ROC analysis shows the good performance of the five informational and mul-
tifractal parameters in discriminating healthy from infected sites but it suggests that the
multifractal patterns can be more effective than the informational patterns in ET time
series in discerning signs of Xylella fastidiosa infection; furthermore, among the multifractal
parameters, the maximum of the multifractal spectrum performs better than the others.

In the future, we aim at enlarging the analysis of these data, focusing, in particular,
on two aspects: (1) the application of different classification methods to find the most
efficient procedure that allows the best discrimination between healthy and infected sites;
and (2) the investigation of the time variation of multifractal and informational parameters
in order to better determine the outbreak of the infection. This last point, of course, requires
the availability of a dataset much longer than that analyzed in this work. In fact, in order to
perform a time-varying analysis, a fixed-length window has to be moved over the entire
dataset and the parameters calculated within each window, which has to be large enough
to obtain reliable results and smaller enough (compared with the size of the dataset) to
have a sufficient number of windows.

However, our results point to the role of ET in contributing to the diagnosis of status of
vegetation deterioration due to the attacks of pests and parasites, highlighting the relevance
of this parameter as one of the most useful vegetation indices, whose importance has
already been assessed in climate change investigations, environmental monitoring and risk
estimation, land management, agricultural practices, and food security, thus contributing
to the definition of operational tools for the monitoring of biophysical parameters of the
vegetation status.
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