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Social media influence online activity by recommending to users content strongly correlated with what they have
preferred in the past. In this way they constrain users within filter bubbles that strongly limit their exposure
to new or alternative content. We investigate this type of dynamics by considering a multistate voter model
where, with a given probability λ, a user interacts with a “personalized information” suggesting the opinion
most frequently held in the past. By means of theoretical arguments and numerical simulations, we show the
existence of a nontrivial transition between a region (for small λ) where consensus is reached and a region (above
a threshold λc) where the system gets polarized and clusters of users with different opinions persist indefinitely.
The threshold always vanishes for large system size N , showing that consensus becomes impossible for a large
number of users. This finding opens new questions about the side effects of the widespread use of personalized
recommendation algorithms.

Information is nowadays mainly diffused via dig-
ital channels as people increasingly use online plat-
forms instead of newspapers or television to access
news. If, on the one hand, this makes information
easily available to all, on the other hand it allows
extremely detailed personalization. Most web sites
use recommendation algorithms to provide users
with content in line with their taste and way of
thinking. Examples are the personalized page rank
of Google, “suggested for you” posts by Facebook
or the recommendations of Amazon and Netflix.
This leads to the formation of the so-called “filter
bubbles”, in which users are exposed almost ex-
clusively only to content they have already shown
to be interested to. In this manuscript we model
this phenomenon by a modification of a very simple
model for opinion dynamics (the multi-state voter
model) where individuals are influenced not only
by their peers but also by an external “field” which
encodes information about the opinions the indi-
vidual held in the past. This field, if large enough,
leads to a polarized steady state in which users
opinions are crystallized and consensus is no more
possible.

I. INTRODUCTION

The concept of “filter bubble” has crossed the bound-
aries of the academic world reaching public discourse and
mainstream media. This reflects the realization that on-
line social media (OSM) have a tremendous impact on how
people share information and form their opinions. For
this reason they may constitute not only a great oppor-
tunity for the diffusion of knowledge, but also a great
threat for the stability of social fabric and the function-

ing of democracy. A filter bubble occurs when a user is
selectively exposed predominantly to content that tends to
reinforce his/her current opinion/belief/state, while sup-
pressing other alternatives1–3. In OSM this typically hap-
pens because of personalized recommender systems, which
leverage information on past user activity to provide sug-
gestions which, aiming at maximizing user satisfaction,
tend to be very similar to what the user has already shown
to prefer4–6. Together with the “echo chamber” effect7–9,
filter bubbles are thought to be at the heart of the overall
increase of polarization and radicalization that is observed
in many social contexts10–12.

A great deal of activity has been devoted in the last years
to the goal of understanding what are the basic micro-
scopic mechanisms underlying the rise of polarization and
how phenomena observed at population scale are linked to
them13–21 These efforts follow the line of research aimed at
understanding how basic mechanisms underlying the inter-
action of individuals give rise to collective consensus phe-
nomena22,23. The voter model24–26 played an important
role in this activity, because of its extremely simple nature
amenable to exact analytical treatment. Its dynamics de-
scribes the evolution of a population of agents which have
to choose between two perfectly equivalent alternatives and
do it by selecting at random a peer and copying their se-
lection. Starting from a disordered state, clusters of indi-
viduals sharing the same opinion form and grow over time.
For any structure of the interaction pattern among indi-
viduals, consensus (i.e. all agents having the same opin-
ion) is invariably reached. A very natural generalization
is the Multistate Voter Model (MVM), where the number
of available equivalent options is a fixed value M > 227–29.
In mean-field, MVM reaches consensus for any value of
M , and the average time required for it depends on M
only weakly. In this paper we investigate the behavior of
MVM in the presence of an additional interaction mecha-
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nism which biases the opinion of an agent toward the state
the agent has chosen most frequently in the past. This
interaction mimics the filter bubble effect of personalized
recommenders in OSM, which present to users suggestions
based on their previous behavior.

The effect of personalized information on binary voter
model dynamics has been investigated in a previous pub-
lication30. In a homogeneous mean-field framework it was
shown that for sufficiently strong coupling with the agents’
past, consensus is no longer reached and the system re-
mains stuck in a polarized state with coexistence of both
opinions. Here we generalize the work in Ref.30 by studying
both analytically and numerically the effect of personalized
information in the context of the MVM. The goal is to un-
derstand whether, depending on the number of agents N ,
the number of possible opinions M and the strength of the
personalized information (λ, to be defined below) consen-
sus is reached or not. Depending on the scaling of M with
respect to N we identify three different regimes and in each
of them we compute the threshold λc separating consensus
from polarized states. Numerical simulations are in good
agreement with theory in all cases expect for M = N and
they also show that the transition from consensus to po-
larization is continuous and characterized by a power law
distribution of opinions numerosity at the threshold. Re-
markably, for N → ∞ the threshold goes to zero in all
three regimes and this implies that in large systems even a
very small form of personalized information always breaks
consensus, leading to opinion polarization.

II. MULTISTATE VOTER MODEL WITH
PERSONALIZED INFORMATION

A. Definition of the model

Many real life situations are characterized by the pres-
ence of more than two possible opinions or factions, as
in the case of political elections or football clubs, and so
the voter model with binary opinions is not suitable for
schematizing the dynamics of such systems. However this
difficulty can be easily bypassed by considering the usual
voter dynamics and allowing the states of the N agents
to vary among M distinct opinions instead of only two,
so to obtain the so called multistate voter model. De-
noting by σi(t) the opinion of agent i at time t we have
σi(t) = 1 . . .M and the update rule reads

σi(t+ δt) = σj(t) with prob.
Aij∑
j Aij

. (1)

Here Aij is the binary adjacency matrix of the undirected
network over which the dynamics take place, while δt =
1/N . In the following we focus on the mean field case,
meaning that the underlying network is a complete graph
and it holds Aij = 1 for i 6= j; in this case the update rule
Eq. (1) can be written as

σi(t+ δt) = k with prob.
Nk(t)

N
, (2)

where Nk(t) is the number of agents with opinion k at time
t. In order to endow this system with personalized infor-
mation (PI) we consider also N PI fields ei, each coupled
with the corresponding standard voter agent σi. The state
of PI fields is a random variable ranging from 1 to M and
which assumes the value k with probability P [ei(t) = k].
This probability varies from agent to agent and over time,
depending on the history of the corresponding voter: the
more a voter has chosen a given opinion in the past, the
higher the probability that its corresponding PI field sug-
gests that opinion. In order to quantify this reinforcement
process we generalize the expression for P [ei(t) = k] pro-
posed in30 to the case of M distinct opinions, more pre-
cisely

P [ei(t) = k] = P
[
n
(k)
i (t)

]
=

cn
(k)
i (t)∑M

j=1 c
n
(j)
i (t)

, (3)

where n
(k)
i (t) is the number of times agent i has chosen (or

also confirmed) opinion k up to time t; in the following we

will often write n
(k)
i , keeping the time dependence implicit.

The state of the system is thus described by N(M+1) vari-

ables, namely {(σi, n(k)i )}, and the dynamics takes place as
in the voter model with personalized information30. Ini-
tially each opinion σi is set equal to a random value; at
each time step a given agent i is selected uniformly at ran-
dom and with probability 1 − λ it follows the usual voter
dynamics, while with probability λ the agent copies the
state ei(t) of the corresponding PI field. More explicitly

σi(t+ δt) =

{
ei(t) with prob. λ

k with prob. (1− λ)Nk

N

(4)

As in30, the parameter λ sets the strength of the personal-
ized information with respect to the interaction with other
individuals, while c determines how fast personalized in-
formation adapts to the preferences of agents.

B. Phenomenology of the multistate voter model with
personalized information

Let us illustrate the overall qualitative phenomenlogy
of the model, common for generic values of M , N and c.
A crucial observable is the number of surviving opinions
Ms(t) as function of time, which plays the role of the order
parameter of the system. In the absence of personalized
information (that is for λ = 0), for a homogeneous initial
condition with Ms(0) = M states, the average value of
Ms(t) satisfies for t� N27

Ms(t) =
M

1 + M
N t

. (5)

For times of the order of N , Ms reaches the value Ms = 1,
implying an ordered configuration (consensus) in which all
agents share the same opinion, as also shown in Fig. 1a.
Notice also that there is an intrinsic timescale t0 = N/M
in Eq. (5) such that Ms remains constant and equal to
Ms(0) for times up to t0. As λ increases deviations from
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Figure 1: Evolution of the number of surviving opinions for 100 realizations of the dynamical process with various
values of λ. (a) Very small λ = 0.001; (b) Slightly subcritical λ = 0.04; (c) Critical λ = 0.05; (d) Supercritical λ = 0.08.

In all panels N = M = 10000, c =∞. For convenience we plot t+ 1 along the horizontal axis.

Eq. (5) start to appear, but the system keeps reaching
the ordered state after a sufficiently large amount of time,
see Fig. 1b. The behavior changes as λ approaches the
threshold λc; in this case consensus can still be reached,
but in some realizations the system remains trapped in a
stable disordered state (also denoted as polarized state)
characterized by the presence of more than one opinion
(Fig. 1c). Finally, for λ substantially larger than λc, the
system never reaches consensus and the asymptotic state
is always the disordered one (Fig. 1d). This qualitative
phenomenology is observed independently of the value of c
(provided that c > 1). This parameter only determines the
possible presence of an initial transient dominated by the
randomness of personalized information in the first time
steps, as shown Fig. 2. Indeed for c = 1+ δ with δ � 1 the
probability of PI fields, Eq. (3), can be approximated as

P
[
n
(k)
i

]
=

(1 + δ)n
(k)
i∑M

j=1(1 + δ)n
(j)
i

≈ 1 + n
(k)
i δ

M + δ
∑M
j=1 n

(j)
i

.

Exploiting the fact that
∑M
j=1 n

(j)
i is nothing but the num-

ber of times agent i has been updated and that going from
t to t + 1 each agent is on average updated once we have

∑M
j=1 n

(j)
i ≈ t so that

P
[
n
(k)
i

]
≈ 1 + n

(k)
i δ

M + tδ
≈ 1

M
+

δ

M

(
n
(k)
i −

t

M

)
.

Since 0 < n
(k)
i < t this implies

1

M
− δ t

M2
< P

[
n
(k)
i

]
<

1

M
+ δ

t

M

(
1− 1

M

)
.

As a consequence P
[
n
(k)
i

]
= 1

M +O(δt) and so for δ small

the dynamics is initially equal to that of a multistate voter
model with external random field. This produces the ob-
served transient. A detailed analysis of the multistate voter
model in presence of random external information is be-
yond the scope of this work, the interested reader can find
further details in31. In order to determine an upper bound
of the cth above which no transient is observed, let us con-
sider the first update of agent i and let us suppose that
opinion m is selected. As a consequence the probability of
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Figure 2: Temporal evolution of the number of surviving
opinions for N = 1000, M = 1000, c = 1.2 and various
values of λ. The inset shows the same plot for λ = 0.35

and various values of c.

the corresponding PI field for the successive update is

P [ei = k] =


c

c+M − 1
for k = m

1

c+M − 1
for k 6= m.

If the probability of the PI to be in state m is larger than
the probability of being in any other state, a reinforcing
loop gets established and the PI gets more and more po-
larized along opinion m. This implies that a sufficient con-
dition for observing a polarized PI already after the first
step is

P [ei(δt) = m] >
∑
k 6=m

P [ei(δt) = k],

which implies

c

c+M − 1
>

M − 1

c+M − 1

yielding a threshold value

cth = M − 1. (6)

Fig. 2 shows that this estimate is an upper bound of
the real cth. The duration of the transient governed by a
random external field gets shorter as c is increased and it
is completely absent for c ≈ cth = 999. Since c plays only
a marginal role, in the rest of the paper we focus on the
case c > cth so as to remove the initial transient.

Finally, we illustrate the nature of the transition ob-
served as λ is varied. As evident from Fig. 1, around the
transition different realizations of the process lead to differ-
ent outcomes: either consensus or a stationary state. The
transition is characterized by the variation, as a function
of λ, of the fraction Ps of runs reaching a stationary state
(Fig. 3a,inset). As it is possible to see, the larger is N , the
sharper the transition becomes. Moreover, since for large

N the critical threshold λc goes to zero (see Subsec. III C
and figures therein) and the transition gets very sharp, this
implies that in large systems even an infinitesimal amount
of personalized information is sufficient to make the reach-
ing of consensus impossible. The main panel of Fig. 3a
displays how the fraction of surviving opinions in the sta-
tionary state Ms(t → ∞)/M = M∞s /M , averaged only
over surviving runs, varies as a function of λ. The quan-
tity M∞s /M grows in a continuous fashion, starting from
a finite value decreasing with N . This suggests that in the
large N limit the transition is continuous, as also confirmed
by inspecting the distribution of Sk(t → ∞) = S∞k , the
number of agents polarized along opinion k in the station-
ary state. When c > cth the number of polarized agents
Sk along opinion k is given by the number of agents such

that n
(k)
i > n

(j)
i for any j 6= k, since, in this case, the

personalized information suggest the most chosen opinion.
Indeed, by looking at Fig. 3b it is clear that such a distri-
bution decays as a power-law for λ = λc, with a nontrivial
exponent approximately equal to 2.8 (for N = M).

III. ANALYTICAL APPROACH

As shown above, the phenomenology of the model is only
marginally influenced by the parameter c. Therefore con-
sider the case c � cth which can be more easily handled
analytically. Indeed in such a situation the probability of
the PI field ei is strongly peaked on the opinion more fre-
quently held by agent i and Eq. (3) reduces to

P [ei = k] = δk,m, (7)

where m is the opinion which satisfies

m = argmax
k

[
n
(k)
i

]
.

In other words the PI suggests only the favorite opinion
in the past. Our goal is to derive, under the assumption
of large c, analytical estimates of the critical value λc for
generic large values of N and M .

A. Stability of polarized states

Let us consider an agent i in state σi and let us as-
sume that its PI is polarized along opinion m. Combining
Eqs. (4) and (7) we can write the transition probability of
this agent32 as

W (σi → k) =


1

N

[
λ+ (1− λ)

Nk
N

]
for k = m

1

N
(1− λ)

Nk
N

for k 6= m.

(8)

For the overall stability of the polarized state, the PI field
ei should remain polarized on opinion m so as to keep the
agent we are considering fixed (on average) on this same
opinion. This requires the transition probability to opinion
m to be larger than the transition probability to any other
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Figure 3: a) Main: Stationary value of the fraction Ms of opinions, for M = N , averaged only over surviving runs.
Inset: Probability that consensus is reached as a function of λ for N = 102, 104, 106 and M = 20. As N increases the
transition between consensus and polarization becomes sharper and sharper. b) Probability distribution of the number
of agents Sk polarized along opinion k at criticality for N = M . This has been obtained by letting the system evolve

toward the stationary state and then performing a binning over the Sk so to obtain their histogram. Note that such an
histogram corresponds to a single realization of the system.
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Figure 4: Temporal evolution of Nmax −N/M , compared with the critical value Nmc(λ) for N = 104, M = 200: a)
λ = 0.07; b) λ = 0.08. Different colors correspond to different simulations.

opinion l, otherwise n
(l)
i would grow faster than n

(m)
i and

the PI would eventually depolarize and then polarize along
opinion l. As a consequence, in order for the polarized state
to be stable it must be

W (σi → m) > W (σi → l) ∀l 6= m,

which yields, using Eq. (8)

Nm −Nl
N

> − λ

1− λ = −mc(λ). (9)

Here, in analogy with30, we defined the critical magnetiza-
tion mc(λ) as

mc(λ) =
λ

1− λ. (10)

We can then repeat this same reasoning but considering an
agent j whose PI field ej is polarized along opinion l. This

leads to

Nm −Nl
N

< mc(λ).

Combining this expression with Eq. (9) we obtain the fol-
lowing necessary condition for a polarized state to be stable

∣∣∣∣Nm −NlN

∣∣∣∣ < mc(λ) ∀(l,m). (11)

By introducing the partial magnetization mk along opin-
ion k, we can also rewrite this constraint as

mk =
Nk −

∑
l 6=kNk

N
=

2Nk −N
N

.

In this way Eq. (11) becomes∣∣∣∣mm −ml

2

∣∣∣∣ < mc. (12)
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The conclusion if the difference between any two magneti-
zations is smaller than the threshold mc then the polarized
state is stable. Note, however, that this condition is very
strict and a polarized state can be stable on average even if
there are some opinions held by a small number of agents
not fulfilling it. Indeed in such a situation these opinions
will be absorbed by the others, but still consensus will not
be reached. As a consequence what really matters is that
(11) is fulfilled when considering the most common opin-
ion whose size is Nmax and the average opinion size given
by N/M . The condition ensuring the system not to reach
consensus is thus

Nmax −
N

M
< Nmc(λ). (13)

Fig. 4 checks and confirms the validity of this argument
in numerical simulations. Note that mc is larger than 1 for
λ > 1/2 and so, as in the voter model with personalized
information, above λ = 1/2 an opinion can survive even
with only a single agent supporting it.

B. Polarization time

In deriving Eq. (12) we assumed all PI fields to be po-
larized on a certain opinion, meaning that for any i there

is only one k such that n
(k)
i is maximum. However initially

n
(k)
i = 0 for all pairs (i, k) and the randomness of voter

updates implies the occurrence of several ties between the

various n
(k)
i . The assumption that PI fields are polarized

starts to be valid only after a polarization time t∗ > 0.
In order to compute this time we write down the master

equation for the distribution of the n
(k)
i values, Q(n

(k)
i ),

that reads

dQ
(
n
(k)
i

)
dt

= NR
(
n
(k)
i − 1

)
Q
(
n
(k)
i − 1

)
−NR

(
n
(k)
i

)
Q
(
n
(k)
i

)
,

(14)
where we introduced the single transition probability

NR
(
n
(k)
i

)
= (1− λ)

Nk
N

+ λP (ei = k)

≈ (1− λ)
1

Ms(t)
+ λP (ei = k). (15)

Here we assumed that all surviving opinions share approx-
imately the same number of agents and so we can make
the approximation Nk/N ≈ 1/Ms(t). Now, considering
opinion k, only a fraction Sk/N of the agents is polarized
along this opinion and thus we assume that the distribu-

tion Q(n
(k)
i ) is formed by two normalized components Q1

and Q2 corresponding to the two types of agents: those po-
larized on opinion k (component Q2) and those polarized
on any other opinion or not polarized at all (component
Q1). We can then write Q as a bimodal distribution

Q
(
n
(k)
i

)
=

(
1− Sk

N

)
Q1

(
n
(k)
i

)
+
Sk
N
Q2

(
n
(k)
i

)
.

Both components evolve according to the same general
master equation Eq. (14), but the transition rates are dif-
ferent. For what concerns the polarized component Q2 we
have

NR
(
n
(k)
i

)
= (1− λ)

1

Ms(t)
+ λ

and using this expression and Eq. (14) we can compute
both the mean value n2 and the variance σ2

2 of the distri-
bution Q2 for polarized agents, finding

n2 = σ2
2 =

∫ t

0

dt′
(

1− λ
Ms(t′)

+ λ

)
, (16)

Analogously, the transition rate of the component Q1, cor-
responding to agents not polarized on opinion k, is

NR
(
n
(k)
i

)
= (1− λ)

1

Ms(t)

and so the mean value n1 and the variance σ2
1 are

n1 = σ2
1 =

∫ t

0

dt′
(

1− λ
Ms(t′)

)
. (17)

Detailed computations are reported in Appendix A.
Looking at Eqs. (16) and (17) it is clear that initially

the two components are indistinguishable since they both
have null mean and variance. However, having different
velocities they tend to separate over time. This behavior
is shown in Fig. 5. Until Q1 and Q2 are superposed there
is no real distinction between polarized and unpolarized
agents, as all agents can change their preferred opinion in
one or few voter updates. Consequently we identify the
polarization time t∗ introduced above as the time when
the two components split for the first time. This can be
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readily determined by imposing the distance between the
two peaks to be equal to their widths, that is

n2(t∗)− n1(t∗) = 2

[√
σ2
1(t∗) +

√
σ2
2(t∗)

]
,

where the factor 2 is somewhat arbitrary and does not in-
fluence the scaling of t∗. Substituting Eqs. (16) and (17)
into this last expression we come up with an implicit inte-
gral expression for the polarization time t∗

t∗ =
2

λ


√∫ t∗

0

[
1− λ
Ms(t)

+ λ

]
dt′ +

√∫ t∗

0

1− λ
Ms(t)

dt′

 (18)

C. The transition point

Once the polarization time has been obtained we can
turn to the determination of the critical parameter λc. The
idea is the following: In the initial stage of the dynamics,
the numbers of agents holding the different opinions, Nl,
tend to fluctuate and their differences tend to grow over
time. If this growth is slow enough, at the polarization
time t∗ the condition for the stability of polarized states,
Eq. (13) is satisfied. In such a case the disordered state
with multiple coexisting opinions is stable and persists for-
ever. Conversely, if at t∗ Eq. (13) is violated, the system
will eventually evolve toward the consensus state. The con-
dition for λc thus reads

xmax(t∗) = Nmax(t∗)− N

M
= N

λc
1− λc

. (19)

By means of numerical simulations and a simple scaling
argument (see Appendix B) we determine that for M � N
xmax(t) scales as

xmax(t) ∼ γN
1/2

M
t3/2, (20)

where γ ≈ 1/4 is a numerical constant. We also derived an
equation for the time growth of Nk−N/M and we checked
that the temporal scaling of xmax(t) is consistent with this
expression, see Appendix C. Replacing this last expression
into Eq. (19) we obtain an equation for λc

γ
N1/2

M
t∗3/2 = N

λc
1− λc

,

implying

λc =
γN

1/2

M [t∗(λc)]
3/2

N + γN
1/2

M [t∗(λc)]
3/2

. (21)

Eq. (21), together with Eq. (18) for the polarization
time, provide a closed system of equations in λc and t∗


t∗ =

2

λc


√∫ t∗

0

[
1− λc
Ms(t′)

+ λc

]
dt′ +

√∫ t∗

0

1− λc
Ms(t′)

dt′


λc =

γN
1/2

M (t∗)3/2

N + γN
1/2

M (t∗)3/2
.

(22)

In order to solve this system we need an explicit ex-
pression for the number Ms(t) of surviving opinions. We
consider two possible assumptions, which are expected to
be fairly accurate for different values of M and N . Here
we limit ourselves to report the main results, the interested
reader can find detailed calculations in Appendix D.

D. M � N

If the number of opinions in much smaller than the num-
ber of agents, each opinion is initially shared by a large
number of individuals. As a consequence during a first
time interval no opinion disappears and it is reasonable to
make the approximation

Ms(t) = M

In this way Eq. (22) can be rewritten as
t∗ =

4

λ2c

[√
1− λc
M

+ λc +

√
1− λc
M

]2

λc =
γN

1/2

M (t∗)3/2

N + γN
1/2

M (t∗)3/2
.

(23)

Depending on how large M is with respect to N , the solu-
tions of this system scale in different ways.

• M� N1/3

{
t∗ ≈ 4(MN)1/4

λc ≈ 2
(
M5N

)−1/8
.

(24)

• N1/3 �M� N

{
t∗ ≈ 28/5

(
NM2

)1/5
λc ≈ 22/5

(
NM2

)−1/5
.

(25)

E. M = N

If M = N each agent has initially a different opinion.
Hence, even during the first time steps, some opinions dis-
appear by chance. In this case we can approximate the
surviving opinions Ms(t) with the expression valid for the
simple multistate voter model, Eq. (5), that is for M = N ,

Ms(t) =
N

1 + t
. (26)

Substituting this expression in Eq. (22) and imposing M =
N � 1, λc � 1 we obtain the following system

t∗ =
32N1/2 + 8λcN

2(λ2cN − 16)

λc =
γN−1/2[t∗(λc)]

3/2

N + γN−1/2[t∗(λc)]
3/2

,

(27)
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whose solution scales as{
t∗ ≈ 24/3N2/3

λc ≈ 4N−1/2
(28)

IV. NUMERICAL SIMULATIONS

We now compare theoretical predictions with numerical
simulations. We iterate MVM dynamics for various values
of M and N up to t = 2000 and we determine the fraction
of times Ps(λ) the system has reached consensus. We take
as numerical estimate of λc the values such that Ps(λc) =
1/2.

For fixed value ofM and increasing sizeN , the analytical
results predict initially a scaling regime given by Eq. (25)
as long as N is much larger than M but much smaller than
M3, followed by a scaling given by Eq. (24). For M = 20,
the first regime spans a short interval of N values. In
Fig. 6a we see only a hint of the associated scaling, while
for larger values of N the agreement between theory and
numerics is very good. For M = 200 instead (see Fig. 6b),
the first regime extends to much larger values of N , so that
feasible values of N lie only in this regime. In this case λc
nicely scales as N−1/5, as predicted by Eq. (25), although
the prefactor is not predicted exactly.

For the case M = N instead, Figure 6c show that the
theory is not able to catch the correct scaling. This mis-
match has various potential origins. Indeed using Eq. (26)
for the temporal dependence of Ms(t) is a quite rough ap-
proximation, as the number of different opinions actually
decays much more slowly over time. But also the use of
Eq. (19) for xmax(t) is not warranted for M = N . A deeper
understanding of the phenomenology of the case M = N
remains an interesting open question.

V. CONCLUSIONS

In this paper we have introduced and analyzed a mul-
tistate voter model where the coupling with an exter-
nal history-dependent individual field mimics the effect
of personalized recommendation algorithms in online so-
cial media. A population of agents, initially having dif-
ferent opinions, reaches consensus on a single opinion or
remains polarized on multiple different opinions, depend-
ing on the strength of personalized information. The phe-
nomenology is governed by the competition between the
fluctuations induced by voter dynamics and the tendency,
due to personalized information, to bind agents to the
opinion they adopted most frequently in the past. By
means of arguments based on this physical picture, we
estimated analytically the critical threshold between the
two regimes, obtaining a reasonable agreement with sim-
ulations for M � N . Conversely, the dynamics when the
initial number of opinions is comparable with the number
of agents seems to elude our approach.

From a more general point of view, our study indicates
how difficult reaching consensus is, in the presence of per-
sonalized recommendations. For any number M of initial

opinions the threshold λc tends to vanish when the num-
ber of agents N diverge. This means that no matter how
weak is the coupling with the personalized information, if
the system is large enough polarization unavoidably arises.
In this respect, note that voter dynamics is extremely fa-
vorable to the establishment of consensus: for any inter-
action pattern, consensus is necessarily reached for any fi-
nite number of interacting individuals. The addition of a
personalized recommendation completely changes this pic-
ture, at least for large systems. For a finite number of
interacting agents instead consensus is still reached if the
strength of personalized information is small enough. The
transition between the two regimes exhibits nontrivial fea-
tures that may be the focus of future activity along with
generalizations to include nontrivial interaction patterns
or a different functional dependence between the proba-
bility distribution of the personalized information and the
number of times an opinion has been selected in the past.

A natural extension of this work would be to analyze
more realistic recommendation algorithms. With respect
to this, a promising possibility is to consider collabora-
tive filtering algorithms33, which are based on similarities
among the history of different users or opinions instead of
considering only the history of the user itself. This typol-
ogy of algorithm is used in real life applications34,35, but
still it is sufficiently simple to try an analytical study of its
effects on opinion dynamics models.

REFERENCES

1E. Pariser, The filter bubble: What the Internet is hiding from you
(Penguin UK, 2011).

2T. R. Dillahunt, C. A. Brooks, and S. Gulati, “Detecting and visu-
alizing filter bubbles in google and bing,” in Proceedings of the 33rd
Annual ACM Conference Extended Abstracts on Human Factors
in Computing Systems, CHI EA ’15 (Association for Computing
Machinery, New York, NY, USA, 2015) p. 1851–1856.

3S. Nagulendra and J. Vassileva, “Understanding and controlling the
filter bubble through interactive visualization: A user study,” in
Proceedings of the 25th ACM Conference on Hypertext and Social
Media, HT ’14 (Association for Computing Machinery, New York,
NY, USA, 2014) p. 107–115.

4T. T. Nguyen, P.-M. Hui, F. M. Harper, L. Terveen, and J. A.
Konstan, “Exploring the filter bubble: The effect of using recom-
mender systems on content diversity,” in Proceedings of the 23rd
International Conference on World Wide Web, WWW ’14 (Asso-
ciation for Computing Machinery, New York, NY, USA, 2014) p.
677–686.

5L. V. Bryant, “The youtube algorithm and the alt-right filter bub-
ble,” Open Information Science 4, 85–90 (2020).

6D. O’Callaghan, D. Greene, M. Conway, J. Carthy, and P. Cun-
ningham, “The extreme right filter bubble,” arXiv preprint
arXiv:1308.6149 (2013).

7M. Cinelli, G. De Francisci Morales, A. Galeazzi, W. Quat-
trociocchi, and M. Starnini, “The echo chamber ef-
fect on social media,” Proceedings of the National
Academy of Sciences 118 (2021), 10.1073/pnas.2023301118,
https://www.pnas.org/content/118/9/e2023301118.full.pdf.

8W. Cota, S. C. Ferreira, R. Pastor-Satorras, and M. Starnini,
“Quantifying echo chamber effects in information spreading over
political communication networks,” EPJ Data Science 8, 35 (2019).
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Appendix A: Moments of the distribution of n
(k)
i

Let us consider the distribution Q
(
n
(k)
i , t

)
, where n

(k)
i

is defined as the number of times agent i has chosen or
confirmed opinion k in the past. The evolution of this
distribution is given by

Q
(
n
(k)
i , t+ δt

)
= R

(
n
(k)
i − 1

)
Q
(
n
(k)
i − 1, t

)
+

+
[
1−R

(
n
(k)
i

)]
Q
(
n
(k)
i , t

)
.

Expanding the left hand side for small δt = 1/N we obtain
which yields Eq. (14)

dQ
(
n
(k)
i

)
dt

= NR
(
n
(k)
i − 1

)
Q
(
n
(k)
i − 1

)
−

−NR
(
n
(k)
i

)
Q
(
n
(k)
i

)
. (A1)

Now we consider the two components Q1

(
n
(k)
i , t

)
and

Q2

(
n
(k)
i , t

)
introduced in III B and we compute their mean

value and variance. We recall that Q2 corresponds to
agents whose PI are polarized along k, while Q1 to the
remaining agents, and that both components evolve ac-
cording to the same master equation Eq. (14), but with
different transition rates. The general equation for the
drift of the distribution (also called average drift in the
following) is

ν =
d
〈
n
(k)
i

〉
dt

=
∑
nk
i

n
(k)
i

dQ
(
n
(k)
i

)
dt

and using Eq. (A1) we obtain

ν =
∑
nk
i

n
(k)
i

[
NR

(
n
(k)
i − 1

)
Q
(
n
(k)
i − 1

)
−

− NR
(
n
(k)
i

)
Q
(
n
(k)
i

)]
=

=
∑
nk
i

NR
(
n
(k)
i

)
Q
(
n
(k)
i

)
(A2)

Analogously the evolution of the second moment is

d

〈(
n
(k)
i

)2〉
dt

=
∑
nk
i

(
n
(k)
i

)2 dQ(n(k)i

)
dt

,

that using Eq. (A1) becomes

d

〈(
n
(k)
i

)2〉
dt

=
∑
nk
i

(
n
(k)
i

)2 [
NR

(
n
(k)
i − 1

)
Q
(
n
(k)
i − 1

)
−

− NR
(
n
(k)
i

)
Q
(
n
(k)
i

)]
=

=
∑
nk
i

(
n
(k)
i + 1

)2
NR

(
n
(k)
i

)
Q
(
n
(k)
i

)
−

−
(
n
(k)
i

)2
NR

(
n
(k)
i

)
Q
(
n
(k)
i

)
=

=ν + 2
∑
nk
i

n
(k)
i NR

(
n
(k)
i

)
Q
(
n
(k)
i

)
,

(A3)

where we used Eq. (A2). Let us firstly consider agents
polarized along k and so Q2, the transition rate is

NR2

(
n
(k)
i

)
= (1− λ)

1

Ms(t)
+ λ.

and putting this expression into Eqs. (A2) and (A3) we get


ν2 = (1− λ)

1

Ms(t)
+ λ

d

〈(
n
(k)
i

)2〉
2

dt
=

[
(1− λ)

1

Ms(t)
+ λ

]
(1 + 2n2),

(A4)

where we defined n2 =
〈
n
(k)
i

〉
2
. Analogously for the com-

ponent Q1 it holds

NR1

(
n
(k)
i

)
= (1− λ)

1

Ms(t)

and so
ν1 = (1− λ)

1

Ms(t)

d

〈(
n
(k)
i

)2〉
1

dt
= (1− λ)

1

Ms(t)
(1 + 2n2).

(A5)

Finally, considering that

n =

∫ t

0

ν · dt′

σ2
n =

〈(
n
(k)
i

)2〉
− 〈n(k)i 〉2

dσ2

dt
=

d

〈(
n
(k)
i

)2〉
dt

− 2
〈
n
(k)
i

〉d〈n(k)i

〉
dt

we can write the expressions for the mean value and vari-
ance of both components

n2(t) = σ2
2(t) =

∫ t

0

dt′
(

1− λ
Ms(t′)

+ λ

)
n1(t) = σ2

1(t) =

∫ t

0

dt′
1− λ
Ms(t′)

.

(A6)

These are Eqs. (16) and (17).
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Figure 7: (a) Temporal evolution of xmax(t), ymax(t) and their difference for N = 107, M = 20, λ ≈ λc. (b) Collapse
plot to check the scaling (20) with respect to N ; M = 20 and λ ≈ λc. (c) Collapse plot to check the scaling (20) with

respect to M ; N = 107 and λ ≈ λc.

Appendix B: Scaling of xmax(t)

As discussed in the main text, near the transition point
the quantity xmax(t) = Nmax(t)−N/M satisfies Eq. (20),
that is

xmax(t) = γ
N1/2

M
t3/2.

This is shown in Fig. 7, where we test both the evolution in
time and the scaling with respect to M and N . The latter
can be also explained by considering the dynamics during

the first steps. Initially all n
(k)
i are null and all opinions are

equally common, so each agent, when updated, chooses an
opinion with uniform probability. This regime lasts up to

t < t̄, where t̄ is defined as the time when the n
(k)
i becomes

statistically different from zero and so the PI stops to be
completely random. This implies that for fixed i and up to

t̄ the M variables n
(k)
i are distributed according to a multi-

nomial distribution with uniform probability 1/M . The

multinomial regime ends when the maximum maxk

[
n
(k)
i

]
exceeds the average 〈n(k)i 〉k by one, since when this occurs
the external information stops to suggest random opinions.

The mean value after t extractions satisfies 〈n(k)i 〉k = t/M ,
while by drawing from a multinomial we numerically deter-

mined that maxk

[
n
(k)
i

]
− 〈n(k)i 〉k ≈ t1/2M−1/4, see Fig. 8.
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distribution with M equally probable classes as a
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of M . We denote by nk the number of counts in the kth
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to highlight the scaling with respect to M and we
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We can then obtain the time t̄ as

t̄1/2M−1/4 = 1 → t̄ = M1/2. (B1)

Now we consider the evolution of the number of agents
Nk in opinion k in the simple multistate voter model. The
transition rates are

W (Nk → Nk ± 1) =
1

δt

N −Nk
N

Nk
N

W (Nk ± 1→ Nk) =
1

δt

N − (Nk ± 1)

N

Nk ± 1

N
,

(B2)

where δt = 1/N . The master equation for Nk is thus

P (Nk, t+δt) = P (Nk + 1, t)W (Nk + 1→ Nk)+

+ P (Nk − 1, t)W (Nk − 1→ Nk)+

+ [1−W (Nk → Nk − 1)−W (Nk → Nk + 1)]P (Nk, t).

Expanding for δt small we get

∂P (Nk, t)

∂t
· δt = W (Nk + 1→ Nk)P (Nk + 1, t)

+W (Nk − 1→ Nk)P (Nk − 1, t)+

−[W (Nk + 1→ Nk) +W (Nk − 1→ Nk)]P (Nk, t).
(B3)

Starting from this master equation we can compute the
average drift and the variance of Nk. The average drift
satisfies

νk =
d〈Nk〉
dt

=
∑
Nk

Nk
∂P (Nk, t)

∂t

=
1

δt

∑
Nk

[W (Nk → Nk + 1)−W (Nk → Nk − 1)]P (Nk, t) =

=
∑
Nk

dNk
dt

P (Nk, t) =
∑
Nk

νk(Nk)P (Nk, t), (B4)

where we also introduced the drift νk(Nk) = [W (Nk →
Nk+1)−W (Nk → Nk−1)]/δt. Note that while the average
drift νk determines how the mean value of the distribution
P (Nk) moves in time, the drift νk(Nk) allows to compute
(neglecting diffusion) how a specific value of Nk evolves.
Using Eqs. (B2) we get

νk = 0 → 〈Nk(t)〉 = Nk(0) =
N

M
. (B5)

Analogously the evolution of the variance is

dσ2
k

dt
=
d
〈
N2
k

〉
dt

− 2〈Nk〉
d〈Nk〉
dt

=
d
〈
N2
k

〉
dt

,

where the last equality follows from Eq. (B5). Exploiting
Eq. (B3) we then obtain

d
〈
N2
k

〉
dt

=
∑
Nk

N2
k

∂P (Nk, t)

∂t
= 2

(
〈Nk〉 −

1

N

〈
N2
k

〉)
,

whose solution is〈
N2
k

〉
(t) =

(
N2

M2
− N2

M

)
e−2

t
N +

N2

M
.

The variance is thus

σ2
k(t) =

〈
N2
k

〉
(t)− 〈Nk〉2(t) =

(
N2

M
− N2

M2

)(
1− e−2

t
N

)
.

(B6)
As also shown in Fig. 1, for small times and small values of
λ our model with personalized information behaves as the
usual voter model. This is due to the fact that for t < t̄ the
external information is completely random and so, being
all opinions equally numerous at the beginning, a voter
model-like update or a personalized information update
are equivalent. This implies that we can use Eqs. (B5) and
(B6) to determine how Nmax and thus xmax evolve for small
times even in the presence of personalized information

Nmax(t) ≈ 〈Nk(t)〉+ σk(t) → xmax(t) ≈ σk(t).

By expanding Eq. (B6) for small times we thus obtain

xmax(t) ≈
√

2
t

N

(
N2

M
− N2

M2

)
≈ 2

√
N

M
t for t ≤ t̄,

where again we assumed M � 1. Finally, we know from
empirical evidence that for large times it holds xmax(t) ∼
t3/2; this implies that the functional form of xmax(t) must
be

xmax(t) = αt3/2 + 2

√
N

M
t1/2.

The prefactor α can now be determined imposing the t3/2

scaling to become dominant when the binomial scaling t1/2

ends, so for t = t̄ =
√
M . This gives

αt̄3/2 = 2

√
N

M
t̄1/2
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and so

α =
N1/2

M
.

This shows that for sufficiently large t it holds

xmax(t) ∼ N1/2

M
t3/2.

Appendix C: Evolution of Nk −N/M

The transition rate for Nk in the presence of personalized
information is

W (Nk → Nk + 1) = (1− λ)
N −Nk
N

Nk
N

+ λPPI,→k,

where the first term is the usual voter contribution, while
the second one is due to PI. Denoting as Sk = Nsk the
number of agents whose PI is polarized along opinion k,
we can write the latter as

PPI→k =
N −Nk −

∑
j 6=k Sk

N

1

Ms(t)
.

Let us explain this expression. Among all the N agents,
those already with opinion k do not contribute to the tran-
sition rate to opinion k, while those whose PI is polarized
along j 6= k can make a transition toward k only by a
voter update. As a consequence only N − Nk −

∑
j 6=k Sk

should be considered in computing the transition proba-
bility. Moreover the PI of such agents will be unpolarized
and so we can assume that it suggests a random opinion,
giving the factor 1/Ms(t). Analogously

W (Nk → Nk − 1) = (1− λ)
N −Nk
N

Nk
N

+ λPPI,k→

with

PPI,k→ =
Nk − Sk

N

Ms(t)− 1

Ms(t)
.

Inserting these transition rates in Eq. (B4) we can write
the drift of Nk as

νk(Nk) =
λ

Ms
[N − S −Ms(Nk − Sk)],

where we introduced the total number of polarized agents
as S =

∑
k Sk. The time evolution of Nk, neglecting diffu-

sive fluctuations, is thus

dNk
dt

= νk(Nk) = λ

[(
Sk −

S

Ms

)
−
(
Nk −

N

Ms

)]
.

For N �M and short times we can make the approxima-
tion Ms ≈M and so defining yk = Sk − S/M we arrive at
an expression for the time evolution of xk = Nk −N/M

dxk
dt

= λ[yk − xk] + diffusive terms. (C1)

This expression provides additional support to our analyti-
cal approach. Indeed, as shown in Fig. 7, it holds ymax(t)−
xmax(t) ∼ t1/2 and so Eq. (C1) predicts xmax(t) ∼ t3/2, as
actually observed in Fig. 7. Note that by ymax we denote
maxk[yk].

Appendix D: Scaling regimes of the critical threshold

1. M � N

For M � N during the first steps no opinion disappears
and so we can make the approximation Ms(t) = M . In-
serting this into Eq. (22) yields Eq. (23), that is

t∗ =
4

λ2c

[√
1− λc
M

+ λc +

√
1− λc
M

]2

λc =
γN

1/2

M (t∗)3/2

N + γN
1/2

M (t∗)3/2
.

(D1)

From the expression for the polarization time t∗ we see
that there are two possible regimes.

A) 1−λc

M � λc
The first equation in Eq. (D1) becomes

t∗ =
4

λc

and replacing this expression into the second equa-
tion we obtain

λc =
γN1/2M−1

(
4
λc

)3/2
N + γN1/2M−1

(
4
λc

)3/2 ≈ 2N−1/2M−1λ−3/2c .

This gives

λc = 22/5
(
NM2

)−1/5
,

so that

λcM = 22/5N−1/5M3/5.

Our initial assumption λcM � 1 is then verified pro-
vided that

M3/5 � N1/5 →M � N1/3.

Recalling that we are assuming M � N we then have

λc = 22/5
(
NM2

)−1/5
for N1/3 �M � N.

Putting together the expressions for t∗ and λc we
finally obtain Eq. (25){

t∗ = 28/5
(
NM2

)1/5
λc = 22/5

(
NM2

)−1/5
B) 1−λc

M � λc
In this case the polarization time becomes

t∗ =
16

Mλ2c

and again, by putting this expression into the expres-
sion for λc we obtain

λc =
γN1/2M−126M−3/2λ−3c

N + γN1/2M−126M−3/2λ−3c
≈ 24M−5/2N−1/2λ−3c .
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This gives

λc = 2
(
M5N

)−1/8
and so

Mλc ≈ 2N−1/8M3/8.

Consequently the two hypotheses M � N and
Mλ� 1 are both satisfied if

M � N1/3

and the expressions for t∗ and λc are{
t∗ ≈ 4(MN)

1/4

λc ≈ 2
(
M5N

)−1/8

i.e., Eq. (24).

2. M = N

For M = N one can no longer make the assumption
Ms(t) = Ms(0) = M , since some of the opinions disappear
even during the first steps. In this case we can approxi-
mated the decrease of Ms(t) exploiting Eq. (5), which is
exact for a simple multistate voter model with M = N .
The general expression is

Ms(t) =
M

1 + M
N t

and putting it into Eq. (22) we get

t∗ =
±
√(

16λNM − 8λN − 16NM
)2 − 64N(λ2N + 16λ− 16)− 16λN

M + 8λN + 16NM
2(λ2N + 16λ− 16)

,

which, for M = N , becomes

t∗ =
±
√

(16λ− 8λN − 16)
2 − 64N(λ2N + 16λ− 16)− 16λ+ 8λN + 16

2(λ2N + 16λ− 16)
,

In the limit of large N and small λ this expression can be
approximated as

t∗ =
±32N1/2 + 8λN

2(λ2N − 16)
(D2)

and, as it is possible to see, there are two distinct solutions.
Requiring the denominator to vanish gives

λ̄2N − 16 = 0 → λ̄ =
4

N1/2

Note that while the solution with the plus, t∗+, diverges in
this limit, the one with the minus, t∗− is finite and positive,
indeed

lim
λ→4N−1/2

−32N1/2 + 8λN

2(λ2N − 16)
=

= 8N1/2 lim
λ→4N−1/2

λN1/2 − 4

2
(
λN1/2 + 4

)(
λN1/2 − 4

) =

=
N1/2

2
.

Moreover, while for λ < λ̄ t∗− is positive, the other one is
negative, meaning that t∗+ is meaningful only in the region

λ > λ̄ since a time must be a positive quantity. For the
solution with the minus we can then take the limit λ→ 0,
which should give back the behavior of the multistate voter
model

lim
λ→0

t∗− = lim
λ→0

−32N1/2 + 8λN

2(λ2N − 16)
= N1/2.

This result suggest that the solution t∗− is non physical,
since if λ = 0 it holds n1 = n2 (see Eqs. (17) and (16)) and
so the two peaks should never split meaning that t∗ =∞.
In conclusion the expression for the splitting time is the
one with the plus and it is not defined for any value of λ,
more precisely

t∗ =
32N1/2 + 8λN

2(λ2N − 16)
with λ > λ̄ =

4

N1/2
. (D3)

In the limit λ → 0 and N → ∞ we have two possible
scaling regimes36

A) λN > N1/2 → λ > N−1/2

In this case we can approximate t∗ as

t∗ ≈ 8λN

2(λ2N − 16)
≈ 4

λ

and substituting this expression into Eq. (21) we get

λc ≈
(

4

N3

)1/5

∼ N−3/5,

where we also exploited the fact that M = N . Note,
however, that this result is in contrast with the initial
assumption λ > N−1/2 and so this scaling regime is
impossible.

B) λ ∼ N−1/2
In this case we can set λ2N = 16 + ε and Eq. (D3)
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becomes

t∗ ≈ 32N1/2

ε
.

Moreover, using Eq. (21), we obtain

λc = γN−3/2(t∗)
3/2

= 213/2N−3/4ε−3/2

and setting λc =
√

16+ε
N we get

ε = 211/3N−1/6.

This is consistent with ε being a small correction
(that is our initial assumption) and moreover we see
that it is the smaller the larger is N .

In conclusion we have{
t∗ ≈ 24/3N2/3

λc ≈ 4
N1/2 ,

that is Eq. (28).
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