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Abstract: The study of allosteric functional modulation in dynamic proteins is attracting increasing
attention. In particular, the discovery of new allosteric sites may generate novel opportunities and
strategies for drug development, overcoming the limits of classical active-site oriented drug design.
In this paper, we report on the results of a novel, ab initio, fully computational approach for the
discovery of allosteric inhibitors based on the physical characterization of signal propagation
mechanisms in proteins and apply it to the important molecular chaperone Hsp90. We first
characterize the allosteric “hot spots” involved in interdomain communication pathways from the
nucleotide-binding site in the N-domain to the distal C-domain. On this basis, we develop dynamic
pharmacophore models to screen drug libraries in the search for small molecules with the functional
and conformational properties necessary to bind these “hot spot” allosteric sites. Experimental tests
show that the selected moelcules bind the Hsp90 C-domain, exhibit antiproliferative activity in different
tumor cell lines, while not affecting proliferation of normal human cells, destabilize Hsp90 client
proteins, and disrupt association with several cochaperones known to bind the N- and M-domains
of Hsp90. These results prove that the hits alter Hsp90 function by affecting its conformational
dynamics and recognition properties through an allosteric mechanism. These findings provide us
with new insights on the discovery and development of new allosteric inhibitors that are active on
important cellular pathways through computational biology. Though based on the specific case of
Hsp90, our approach is general and can readily be extended to other target proteins and pathways.

Introduction

The dynamic properties of proteins play key roles in all
aspects of protein functions, ranging from molecular recogni-
tion and binding to enzymatic activity.1 A better knowledge

of dynamics from experiments and theory makes it now
feasible to model the conformational properties of several
proteins at the atomic scale.2 Functional dynamics is
determined by a complex interplay of covalent and nonco-
valent interactions that define the relative population of three-
dimensional (3D) structures (determined by their free
energies) and the possible interconversion kinetic pathways
among them (determined by the heights of the free energy
barriers between them).3,4 Binding of a ligand or substrate
at an active site or of a protein partner at a certain region of
the structure may select specific accessible conformations
endowed with specific functional properties.5
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Allosteric molecular perturbations may alter the covalent
and noncovalent forces that determine the fine combination
of dynamic modes at the basis of molecular recognition and
function. This reverberates in a modification of the protein’s
structural and/or dynamic properties, causing a response
where a specific function can be switched on, fine-tuned,
regulated, or blocked. Perturbation of the protein’s confor-
mational ensemble may be achieved through several mech-
anisms, including ligand binding, covalent modifications, or
mutations. A variation of the protein state at a certain site
may thus impact on the binding affinity in a distal functional
region, such as the active site or a protein contact surface.6

Information transmission between distant functional sites in
proteins represents a manifestation of nonlocal interactions
between residues.

The molecular mechanisms of these site-to-site com-
munication phenomena are of great interest, especially since
understanding the dynamic connectivity that favors signaling
through structures may reveal new allosteric binding sites
and illuminate molecular mechanisms of functional regula-
tion.7 Moreover, achieving these goals would offer tremen-
dous opportunities in the design of new drugs, protein
engineering, and chemical genomics. Rational targeting of
alternative sites may reveal new chemotypes for potential
inhibitors and offer new strategies to interfere with
protein-protein interactions, which are generally recognized
as challenging targets.8

In this paper, we present a novel rational strategy for the
computational-based discovery of allosteric inhibitors of
molecular chaperones. In particular, we aim to perturb the
functions of the activated form of the chaperone heat shock
protein-90 (Hsp90), by the rational selection of antagonists

with the structural and functional characteristics necessary
to target “hot-spot” allosteric residues located in the C-
terminal domain (CTD), which are dynamically coupled to
the N-terminal ATP binding-site and may potentially affect
Hsp90 chaperone function. To this end, we build on the
results of a long-range coordination analysis that we devel-
oped to study Hsp90 communication pathways and dynamics
at atomic resolution.9 Our approach showed that conforma-
tional changes and coordination between the N- and C-
domains are responsive to specific nucleotide binding. This
propagates molecular signals long-range, selectively to
functionally important residues and secondary structure
elements at the CTD, which define possible allosteric binding
sites. The physicochemical properties of newly detected
functional CTD sites are used here to build receptor-based
3D pharmacophore models. This allows us to identify novel
antagonists of Hsp90 chaperone function that target a site
distant from the active site, inhibit several important
protein-protein interactions, and show the ability to interrupt
biological pathways important for cancer cell proliferation
(Scheme 1). As expected the activities of the molecules,
selected from a publicly available database, do not make
them immediate candidates for drug development. However,
it is important to underline that our main goal is to use
information on the protein dynamics to identify potential hits.
Drug design and medicinal chemistry efforts can then be
started on this basis to improve the activities and pharma-
cokinetic properties of our hits.

We focus on Hsp90 as an example of a molecular system
in which ligand-based activation and signal communication
between physically distant domains underlies protein-protein
interactions and biological function. Hsp90 is a homodimer

Scheme 1. Computational Biology Strategy for the Selection of Allosteric Inhibitors Exploiting Protein Dynamicsa

a From the analysis of the dynamics of the activated state of the protein (Hsp90 bound to ATP), the hot spot residues active in mediating
signal transduction are identified. Analysis of possible binding pockets centered on these residues identifies putative allosteric binding sites. A
consensus model of functional interactions with the hot spots together with structural shape constraints is used for pharmacophore modeling.
The ensemble-based approach ensures the incorporation of receptor flexibility into the pharmacophore model. Small molecule databases are
then screened for leads fitting with the pharmacophoric hypothesis, and selected hits are tested experimentally.

Allosteric Inhibitors J. Chem. Theory Comput., Vol. 6, No. 9, 2010 2979



in which each protomer is characterized by a modular
architecture with three domains: an N-terminal regulatory
domain (NTD), a middle domain (M-domain), and a carboxy-
terminal domain (CTD).10-12 The biological activity of
Hsp90 depends on ATP binding and hydrolysis, which is
coupled to a conformational cycle that involves the opening
and closing of a dimeric molecular clamp formed by the
association of the NTDs of Hsp90.13 In solution, the protein
exists as a dimer owing to the stable association of highly
conserved motifs in its CTD. ATP binds to the NTDs of
Hsp90, stabilizes their transient dimerization,13 and sends a
conformational signal to the CTD, which is responsible for
the acquisition of the ATP-ase competent conformation
required for chaperone activity. Moreover, the Hsp90
chaperone function is finely regulated in the cell by physical
association with a number of cochaperones that regulate the
ATP-ase activity or direct Hsp90 to interact with different
client proteins. Different cochaperones bind to different
domains of Hps90 (for a complete review see).14

Hsp90 has a well-established role in the conformational
maturation, stability, and function of a wide range of “client”
proteins within the cell. In cancer cells, Hsp90 is overex-
pressed and intersects signaling pathways essential for tumor
maintenance, and its inhibition through drugs targeting the
N-terminal ATP-site showed promising therapeutic perspec-
tives.15

The results presented here open the possibility to rationally
expand the chemical space of Hsp90 antagonists to effective
inhibitors of allosteric communications.

Experimental Section

In this section, we describe the computational and experi-
mental procedures in detail. In the Computational Details
Section, we first describe how molecular dynamics (MD)
simulations and signal communication modeling were carried
out. These experimental details have already been fully
described in.9 Here we are reporting them for clarity. Next
we describe the development of the pharmacophore model-
ing, virtual ligand screening (VLS), the docking of known
and new compounds to the newly discovered pockets.

In the Experimental Procedures Section, we report on the
experimental procedures used to test the small molecules.

Computational Details. MD Simulations. The MD simu-
lation trajectories used in this work were carried out as
already described in ref 9. The details and the full description
of the MD set up and runs can thus be found in the published
paper dealing with the characterization of the ligand modula-
tion of Hsp90 dynamics.9

Briefly, the crystal structure (pdb entry 2CG9)10 containing
yeast Hsp90 dimer bound to ATP was employed as a starting
point for the simulations. The system was solvated in a
tetrahedral solvation box contains around 57 000 particles.
All simulations and the analysis of the trajectories were
performed using the GROMACS software package16 using
the GROMOS96 force field17 and the SPC water model.18

The ATP-bound Hsp90 dimer system was first energy
relaxed with 2000 steps of steepest-descent energy minimi-
zation followed by another 2000 steps of conjugate gradient

energy minimization. The energy minimization was used to
remove possible bad contacts from the initial structures. The
system was then equilibrated by a 50 ps of MD run with
position restraints on the protein and ligand to allow
relaxation of the solvent molecules. The first equilibration
run was followed by a second 50 ps run without position
restraints on the solute. The first 5 ns of the trajectory was
not used in the subsequent analysis in order to minimize
convergence artifacts. Equilibration of the trajectory was
checked by monitoring the equilibration of quantities, such
as the root-mean-square deviation (rmsd) with respect to the
initial structure, the internal protein energy, and fluctuations
were calculated on different time intervals. The electrostatic
term was described by using the particle mesh Ewald
algorithm. The LINCS19 algorithm was used to constrain all
bond lengths. For the water molecules, the SETTLE algo-
rithm20 was used. A dielectric permittivity, ε ) 1, and a time
step of 2 fs were used. All atoms were given an initial
velocity obtained from a Maxwellian distribution at the
desired initial temperature of 300 K. The density of the
system was adjusted performing the first equilibration runs
at NPT condition by weak coupling to a bath of constant
pressure (P0 ) 1 bar, coupling time τP ) 0.5 ps).21 In all
simulations, the temperature was maintained close to the
intended values by weak coupling to an external temperature
bath21 with a coupling constant of 0.1 ps. The proteins and
the rest of the system were coupled separately to the
temperature bath. The structural cluster analysis was carried
out using the method described by Daura and co-workers
with a cutoff of 0.25 nm.22

Signal Propagation Analysis. This approach was also
already described in ref 9. It is based on the adaptation of a
recent approach proposed by Bahar and co-workers to the
analysis of all-atom MD simulation trajectories. The analysis
of signal propagation, which was developed based on elastic
network models,23 defines signal transduction events in
proteins as directly related to the fluctuation dynamics of
atoms, defining the communication propensities (CP) of a
pair of residues as a function of the fluctuations of inter-
residue distances. Residues whose CR-CR distance fluctu-
ates with a relatively small intensity during the trajectory
are supposed to communicate more efficiently than residues
whose distance fluctuations are large. In the former case, a
perturbation at the one site, affecting the CR position, is likely
to be visible (reflected) at the second site, while in the latter
case, the communication is less efficient due to the intrinsic
amplitude of the distance fluctuations. The CP of any two
residues is defined as the mean-square fluctuation of the
interresidue distance defining dij ) |rbi - rbj| as distance
between the CR atoms of residues i and j, respectively:

By projecting these quantities on the 3D structures of the
protein bound to different ligands, it will be possible to
identify possible differences in the interdomain and inter-
protomer long-range redistributions of interactions.

The CP was calculated for any pair of residues during the
trajectory. It is worth noting that CP describes the distance

CP ) 〈(dij - dij,ave)
2〉
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fluctuation of the two residues, therefore, low CP values
characterize residues that move in a highly coordinated
fashion and hence may be involved in the efficient relay of
conformational signals.9 The average CP value for consecu-
tive amino acids along the sequence, calculated considering
for each residue i the neighbors comprised between i - 4
and i + 4, is 0.025. The average CP value for residues distant
more than 40 Å is 0.12. In the presence of ATP, around 1%
of residue pairs have CP < 0.025 even if they are at distances
larger than 40 Å.9 Therefore, in the presence of ligands, a
number of very distant residues may have a low CP value
and display high coordination despite their physical separa-
tion, and we set CP ) 0.025 as a convenient threshold for
discriminating high dynamic coordination at long distance.
CP values at increasing distances were scanned through
histogram analysis. Each bin of the histogram refers to a
residue and gives the fraction of residues that have high
coordination with it (CP < 0.025) at distances larger than an
increasing cutoff of 40, 60, and 80 Å, respectively. Residues
corresponding to histogram peaks define regions that are
specifically involved in efficient long-range correlations.
Results of the analysis are fully reported in ref 9.

Upon increase of the residue-residue distance in the CP
scanning histograms, some peaks become progressively
smaller or disappear, since the fraction of effectively
coordinated residues decreases at longer physical distances.
On the other hand, since the total number of possible pairs
also decreases with increasing distance, for some residues
the fraction of highly coordinated partners may grow at
longer distances, and those residues we define to be strongly
active in long-range signaling.

The residues in the C-terminal preserving the most efficient
communication propensities with the ATP site were used to
define the possible allosteric-binding pocket. They comprise
the NTD residues 81-95 and 121-140 (Hsp90 residues
numbering as in the pdb entry 2CG9) that have a long-range
signaling propensity with segments 574-580 and with the
two C-terminal interface helices, made of residues 645-654
(helix 4) and 661-671 (helix 5), respectively.

MD-Based Pharmacophore Modeling. Hsp90 dimer con-
formations were collected at every 0.5 ns of the final 20 ns
MD trajectory using the GROMACS software package and
superimposed at the putative C-terminal binding pocket, i.e.,
residues 475-477, 591-595, 602-603, and 652-657 of one
monomer and residues 502-504, 591-595, and 656-662
of another. Superimposition was performed based on back-
bone atoms. GREATER v1.2.2, the graphical user interface
for GRID v22a, was used to calculate molecular interaction
fields (MIFs) with the probes DRY (hydrophobic), O (sp2
carbonyl oxygen) and N1 (neutral flat amide NH).24 The
protein was considered rigid and a 31 × 27 × 18 Å grid
box was centered at the binding pocket. Grid spacing was
set to 0.25 Å. Local energy minima, defined as isocontours
from probes DRY (-0.8), O (-7), and N1 (-7 kcal/mol),
were represented with the VMD software v1.8.6.25 Binding
pocket regions with consistently favorable interactions along
the MD trajectory were used to define 3D pharmacophore
features of a pharmacophore hypothesis for Hsp90 C-terminal
binding.

Pocket analysis was also carried out with the PocketFinder
module of the ICM suite.26 Probe atoms (carbon, oxygen,
and nitrogen atoms) were placed at the center of higher
density areas and converted into a pharmacophore hypothesis
using the Catalyst ViewHypothesis workbench of the Catalyst
v4.1.1 software. Local energy minima identified with the
DRY, O, and N1 probes were converted into hydrophobic
and hydrogen-bond acceptor and donor features, respectively.
Flexibility was taken into account with 1.6 Å radium
tolerances around each pharmacophore feature, i.e., spherical
volumes where matching chemical groups should be located.
Projection points from which the extended hydrogen-bond
partner participates, i.e., Arg591 and/or Ser657 hydrogen
bonding an acceptor group and Asp503 and/or Ser602
hydrogen bonding a donor group, were created in order to
mimic the location of their side chains during the MD
simulation. Shape filtering was done by filling the common
binding cavity along the last 10 ns MD trajectory with
chemical probes (carbon atoms) and converting them into
inclusion volumes using the convert molecule to shape tool
of the Catalyst ViewHypothesis workbench. The minimum
similarity tolerance was set to 0.5.

The final pharmacophore hypothesis consisted of a 3D
arrangement of six features (i.e., four hydrophobic regions
and one each hydrogen-bond acceptor and donor) located at
defined positions. These were surrounded by 1.6 Å radium
tolerance spheres, assessing the area in space that should be
matched by corresponding chemical functions of the virtual
screening molecules. The hydrogen-bond acceptor and donor
features additionally include a vector indicating the direction
of the interaction. The desirable shape of the new virtual
screening hits was delimited by a series of inclusion volumes.
Table 1 reports on the distance constraints for the pharma-
cophore model generated.

Virtual Screening. The NCI database was downloaded
from the 2007 release of the ZINC library27 and converted
into a multiconformer Catalyst database. A maximum of 100
conformations, within a 20 kcal/mol energy range above the
calculated global minimum, were generated for each mol-
ecule using the “FAST” conformational analysis model of
catDB utility program. The pharmacophore hypothesis was
screened using the “fast flexible database search” settings.

Docking of Known and Newly DiscoVered Compounds.
Initial models for novobiocin, its derivatives, and the selected
small molecules described in the paper were generated using
the standard building blocks of MAESTRO v8.5 and
minimized with MACROMODEL v8.1,28,29 using the Merck
molecular force field (MMFF),30 the Polak-Ribiere conju-
gate gradient (PRCG) minimization method with an energy
convergence criterion of 0.05 kJ/mol and the generalized

Table 1. Pharmacophore Conformational Propertiesa

HYD1 HYD2 HYD3 HYD4 HBA

HYD2 2.6
HYD3 9.9 7.9
HYD4 13.4 11.7 4.5
HBA 9.8 8.1 5.3 5.6
HBD 15.8 14.1 7.0 2.6 7.1

a Distance constraints in Å.
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Born equation/surface area (GB/SA)31 continuum solvation
model with parameters for water (dielectric constant ε ) 78).
Five thousand steps of the systematic unbounded multiple
minimum (SUMM) method implemented in MACRO-
MODEL were used in order to allow a full exploration of
the conformational space. Autodock Tools v1.5 was used to
prepare ligands and receptors for docking, namely, to remove
water molecules, add hydrogens, compute Gasteiger
charges,32 and merge nonpolar hydrogens. Side chain charges
were assigned according to their pKa. Blind docking experi-
ments on the whole Hsp90 C-terminus domain were per-
formed with the novobiocin derivatives using AutoDock
v4.0.33 Grid maps were generated with AutoGrid v4.0 using
a 0.375 Å grid spacing. The Lamarckian genetic algorithm
was employed for all docking runs. An initial population of
150 individuals randomly placed on the Hsp90 C-terminus
domain was created. Random orientations and torsions were
used. The number of generations was set to 25 million, and
the maximum number of energy calculations was set to 27
thousands. A mutation rate of 0.02 and a crossover rate of
0.8 were used, and the local search frequency was set up at
0.06. Two hundred independent runs were performed for each
compound with the parameters described above. Results
differing by less than 2 Å in positional rmds were clustered
together and represented by the result with the most favorable
free energy of binding.

Initial geometries for the virtual screening hit compounds
were collected from the ZINC database.27 Docking runs were
limited to the allosteric binding pocket at the dimer interface.

Experimental Procedures. Cell Viability, Elisa Tests,
and Akt Folding. Cells and Cell Cultures. Human prostate
adenocarcinoma PC3 and lung adenocarcinoma H460 cells
were obtained from the American Type Culture Collection
(ATCC, Manassas, VA) and maintained in cultures as
recommended by the supplier. Human umbilical vein en-
dothelial cells (HUVEC) were obtained from Clonetics. Rat
A10 smooth muscle cells were the generous gift of Dr.
Michael Conte, University of California, San Francisco.

Antibodies. Antibodies to b-actin (Sigma-Aldrich) and Akt
(CST, Inc., Danvers, MA) were used.

Binding Assays. Plastic microtiter wells were coated with
increasing concentrations (0-150 µM) of the various com-
pounds, blocked in 3% gelatin, and further mixed with
recombinant full length Hsp90 or Hsp90 C-domain (residues
629-732, 1 mg/mL) produced in BL-21 E.Coli as a GST
fusion protein, and further isolated from the GST frame by
thrombin cleavage. After a 2 h incubation at 22 °C,
compound binding under the various conditions tested was
detected with an antibody to Hsp90, followed by a peroxi-
dase-conjugated secondary reagent and quantification of
absorbance at 405 nm.

Cell Viability Analysis. The various normal or tumor cell
types (2 × 105/ml, 50 mL) were seeded in triplicates in 96-
well plates and incubated with increasing concentrations of
the various Hsp90-C terminus compounds (0-150 mM) for
16 h at 22 °C. At the end of the incubation, cultures were
analyzed for cell viability by an 3(4,5-dimethyl-thyazoyl-2-
yl)2,5 diphenyl-tetrazolium bromide (MTT) colorimetric
assay with absorbance at 405 nm. In other experiments,

tumor cell types were incubated with various concentrations
of Hsp90 C-terminus compounds, and whole cell extracts
were analyzed by Western blotting.

Statistical Analysis. Data were analyzed using the two-
sided unpaired t test on a GraphPad software package for
Windows (Prism). A p value of 0.05 was considered as
statistically significant.

Cochaperone and Client Protein Interactions with Coim-
munoprecipitation Assays. Cell Culture, Transfection, and
Immunoprecipitation. COS7 cells (American Type Culture
Collection) were cultured in a temperature-controlled incuba-
tor (37 °C and 5% CO2) in Dulbecco’s modified Eagle’s
medium (DMEM) medium supplemented with 10% (v/v)
fetal bovine serum (FBS), 10 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES, pH 7.0), 2 mM
glutamine, 1 mM of sodium pyruvate, and nonessential
amino acids (Biosource/Invitrogen). Cells were transiently
transfected with pcDNA3 empty vector or pcDNA3 contain-
ing flag-tagged wild-type human Hsp90alpha by using
FuGene6 (Roche Applied Science), following the manufac-
turer’s instructions. Twenty-four hours after transfection, cells
were treated with 100 µM of indicated compounds for 1 h.
Then, cells were lysed (20 mM HEPES, 100 mM NaCl, 1
mM MgCl2, 0.1% NP-40, 20 mM Na2MoO4, phosphatase
inhibitor (Roche), and protease inhibitors(Roche)), and
incubated with anti-flag antibody-conjugated beads (Sigma)
for 2 h at 4 °C. Coimmunoprecipitated proteins were
identified by immunoblotting with indicated antibodies
recognizing Flag (Affinity Bioreagents), ERBB2 (Santa
Cruz), CDK4 (Santa Cruz), p60Hop (Cell Signaling), p50Cdc37

(Neomarkers), p23 (Affinity Bioreagents), or AHA1 (Rock-
land). See also ref 34.

Results

Background: Hot Spots in Signal Transduction from
the ATP-Site to the CTD. Different dynamic states of
Hsp90 can be switched on/off in response to the presence
of a specific ligand at the ATP-binding site. In this context,
we generated a computational model aimed to identify the
substructures (subdomains, secondary structure elements,
single residues) that play a relevant role in the dynamic
communication between a certain binding site and distal
regions of the protein implied in function. The results
showed, at atomic resolution, that the identity of mediators
of the cross-talk between N- and C-domains was dependent
on the specific nucleotide activating differential functional
motions. Briefly, in our approach, which builds on the work
of Chennubotla and Bahar,23 the CP between any two
residues, as a function of fluctuation of their distance
components, is evaluated. CP describes a communication
time; therefore, low CP values are related to efficiently
communicating residues. The threshold for high communica-
tion efficiency is the CP value calculated for four consecutive
residues along the sequence. Hot spots for signal transduction
are identified by calculating for each residue the fraction of
all other protein residues that have high communication
efficiency with it (CP lower than the threshold) at distances
larger than an increasing cutoff of 40, 60, and 80 Å. Distant,
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physically separated residues that have a more efficient
communication than that defined by the “local” threshold
define the regions specifically involved in efficient long-range
signal transduction.9

This analysis illuminated different pathways of signal
transduction that selectively depend on the ligand identity.
In particular, specific clusters of residues participate in the
signal transduction from the N-terminal nucleotide-binding
site to the CTD. In the ATP-bound, active form of the
chaperone, long-range communication from the binding site
is mainly directed to residues at the CTD interface. In
particular, NTD residues 81-95 and 121-140 involved in
ATP recognition (residue numbering from 2CG9.pdb) show
a consistently high long-range coordination with segments
574-580 and with the C-terminal interface helices, made
of residues 645-654 (helix 4) and 661-671 (helix 5),
respectively (see Supporting Information, Figure S1).

Identification of Allosteric Pockets. The C-terminal
interface region with higher communication propensity with
the distal ATP-binding site was then subjected to structural
investigation to detect potential binding sites centered on the
communication hot spots. Cluster analysis of the trajectories
was used to identify the most representative conformations
of the CTD. Individual frames were grouped into 21 clusters,
with the most populated five accounting for 84% of the
structural diversity.

These representative structures and the original crystal
structure (2CG9.pdb) were subjected to analysis with the
pocketFinder module of the ICM software,26 complemented
by visual inspection. Nine potential binding pockets with
volume and area suitable for interaction with drug-like
compounds were identified in the X-ray crystal structure
(Scheme 1, Table 2, and Figure S1b,c of the Supporting
Information). Interestingly, only pocket A is consistently
detected in all representative MD conformations, increasing
in volume and area and defining a binding tunnel at the dimer
interface suitable to accommodate small compounds able to
interact directly with the hot spot residues involved in
efficient long-range coordination (Figure 1a, Table 2, and
Figure S1c of the Supporting Information).

Allosteric Inhibitor Discovery: Pharmacophore Model-
ing Based on Signal Transduction Information. Next, we
used the information on signal transduction, conformational
states spanned by hot spot residues, and conformational
properties of pocket A together with the analysis of their
chemical properties to develop pharmacophore models for
virtual screening of small molecule databases. The pharma-
cophores are designed to recapitulate the complementary
interactions necessary to guarantee productive binding with
the putative allosteric site.

Structures from the final 20 ns of the MD simulations were
used. Local molecular interaction fields (MIF) minima were
calculated at the allosteric site with the GRID force field
and probes accounting for hydrophobic (DRY) and hydrogen-
bond acceptor (O) and donor (N1) interactions.35 Isosurfaces
at -0.8 kcal/mol derived from the DRY probe highlight four
hydrophobic regions related to favorable interactions with
apolar residues, such as Met 603, Leu 652, Phe 656, Leu
658, and Pro 661 (Figure 1b). Surfaces defined at an energy Ta
bl
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level of -7 kcal/mol with the probes O and N1 identified
two regions prone to hydrogen bonding, one of these acting
mainly as acceptor from Arg 591 and Ser 657 (Figure 1b)
and the other as donor to Asp 503 and Ser 602 (Figure 1b).
The fluctuations in the positions, distances, and dihedral
angles among the side chain functionalities of these critical
residues were used to define the average and upper and lower
boundaries in the positioning of the hydrogen-bond donor
functions of the pharmacophore.

Taken together, these interactions defined a six-feature
pharmacophore model for the virtual screening of new
C-terminus targeted inhibitors of Hsp90 (Figure 2). The size
and shape features of the new compounds were filtered with
a set of inclusion volumes defined based on the radius and
shape of pocket A at 65.2 ns of the MD simulation.

Allosteric Inhibitors: New Hits through Pharmacoph-
ore Guided Virtual Screening. The new allosteric phar-
macophore model was used to perform a screening search
of the NCI repository. The database contains a library of
more than 290 000 compounds. Filtering of the database with
the pharmacophore returned 36 hits (Figure 2), corresponding
to 0.01% of the database.

Experimental Tests on Newly Discovered Hsp90 In-
hibitors Targeting the C-terminal. Fourteen of the selected
compounds resulting from the virtual screening could be
obtained from the NCI and tested for affinity for the Hsp90
full-length protein, the CTD, for their effects on cancer and
normal cell viability, for the induction of degradation of
specific Hsp90 client proteins, and for their activity in
disrupting Hsp90 association with cochaperones.

Molecular Interactions between Selected Molecules and
Hsp90. By ELISA tests several of the discovered lead
compounds (namely 6, 8, 9, 11, 12) bound the recombinant
isolated Hsp90 C-domain in a specific and saturable manner
(Figure 3a). Functionally, treatment of lung adenocarcinoma
H460 or prostate adenocarcinoma PC3 cells with the selected
compounds resulted in a concentration-dependent loss of cell
viability (Figure 3b). This response was specific for inhibition
of cancer-related signaling, as the implicated compounds did
not reduce the viability of normal A10 smooth muscle cells
or human umbilical vein endothelial cells (Figure 3b).

Selected Hits Inhibit Hsp90 Chaperone Function and
Impact on Hsp90 Association with Cochaperones. We next
asked whether the cytotoxic effect exerted by compounds
6, 8, 9, 11, and 12 was due to loss of Hsp90 client proteins
resulting from inhibition of chaperone function. Consistent
with this model, a preliminary analysis of compounds 6, 8,
and 9 induced a concentration-dependent loss of the Hsp90
client protein, the kinase Akt, in tumor cells. Selected
compounds were active in a concentration range between
25 and 100 µM, with activities comparable to those of known
C-terminal inhibitors. As control, compound 5, which showed
no effect on tumor cell viability, did not reduce Akt levels
in tumor cells (Supporting Information, Figure S2).

Selected compounds were also tested in a different
experimental setting (see Materials and Methods in Sup-
porting Information) using coimmunoprecipitation assays to
probe the interaction of Hsp90 with client and cochaperone
proteins. In this test, compound 6 clearly disrupted interac-
tions with two kinase client proteins ERBB2 and CDK4.

Figure 1. Pharmacophore model and resulting small molecules. (a) 3D representations of potential ligand binding pockets
identified with the ICM pocketFinder module on the CTD of the Hsp90 dimer from X-ray crystal structure and from the representative
structure corresponding to 65.2 ns of the MD simulation (cluster 2). Pocket A located at the dimer interface increases in area,
volume, and number of contacts with the communication hot spot residues represented with a red ribbon. (b) Isosurfaces for the
DRY, O, and N1 probes from the GRID force field in the putative allosteric pocket. DRY probe highlights four hydrophobic
regions related to favorable interactions with apolar residues, such as Met 603, Leu 652, Phe 656, Leu 658, and Pro 661. O and
N1 probes identify two regions prone to hydrogen bonding, one of these acting mainly as acceptor from Arg 591 and Ser 657
and the other as donor to Asp 503 and Ser 602, respectively.
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Moreover, compound 6 was shown to impair the binding of
cochaperones p23, p50, and Aha1. While Aha1 interacts with
the middle segment of Hsp90, p23 and p50 bind Hsp90 at
the NTD. Since compound 6 is selected to interact with the
CTD, these data suggest that it likely alters Hsp90 confor-
mational equilibrium affecting client and cochaperone bind-
ing via an allosteric mechanism. Interestingly, compound 6
emerged as the only one able to slightly reduce Hsp90
association with p60, a cochaperone known to bind to the
CTD. Binding of the inhibitor at the CTD may directly
interfere with the physical binding of p60 at the same region
of the protein (Figure 4).

The coimmunoprecipitation experiments also showed that
compound 8 could dramatically disrupt ERBB2/Hsp90
association at 75 and 100 µM doses, supporting the validity
of the computational design approach (Figure 4).

Overall, these results confirm the validity of the compu-
tational approach taking the full dynamics of the protein into
account to discover new allosteric sites.

Binding Poses of the Hits in Hsp90 CTD. The molecular
interactions of the compounds identified through the allosteric
dynamic pharmacophore with the Hsp90 CTD were char-
acterized via computational docking and analysis. The
allosteric binding pocket is a small tunnel located at the dimer
interface, delimited by residues 474-487, 502-503, 591-599,
602-603, and 652-657 from one monomer and residues

502-504, 591-595, and 656-662 from another (pocket A,
Figure 1, and Figure S1, Supporting Information). Although
already present in the Hsp90 crystal structure, the shape of
the newly found putative site increases its binding comple-
mentarity to C-terminus inhibitors during the MD simulation,
in the absence of the inhibitors. Multiple structures from the
MD simulation of the ATP-complex were used as targets.
This is equivalent to describing relevant representatives of
the ensemble of conformational states, taking flexibility of
the whole protein into account.

Binding poses and theoretical affinities were calculated
and the results are reported in Table S1 of the Supporting
Information. The whole CTD surface was scanned, and the
active compounds were observed to dock selectively and
favorably in the proposed allosteric pocket, consistent with
MD simulations and pharmacophore analysis (Figure 5).
These molecules show a good shape complementarity to
pocket A at the dimer interface, establishing hydrogen bonds
and hydrophobic contacts with the proposed allosteric hot
spot residues.

Finally, we docked Hsp90 inhibitors targeting the CTD
derived from the literature to the newly discovered allosteric
pocket to further validate our approach through structure-
activity relationships. No experimental structural information
is available on complexes between CTD and these inhibitors.
Novobiocin (IC50 700 µM) and the more potent related

Figure 2. The pharmacophore and selected hits. The resulting six-feature pharmacophore and the molecular structures of the
compounds selected from virtual screening with the pharmacophore model of the NCI database.

Allosteric Inhibitors J. Chem. Theory Comput., Vol. 6, No. 9, 2010 2985



derivatives ND-1 (active at 100 µM) and ND-2 (active at
40 µM)36,37 (Supporting Information, Figure S3) were thus
docked to the full CTD. The calculated affinities are reported
in Table S2 of the Supporting Information, along with the
contacts established by the docked drugs with signal trans-
duction hot spots. Interestingly, estimated binding energies

with novobiocin and related derivatives resulted in good
agreement with their relative inhibition potencies. The
strongest protein-small molecule interactions with novo-
biocin (-6.02 kcal/mol) and compounds ND-1 and ND-2
(-6.62 and -8.14 kcal/mol, respectively) were found with
the representative structure of cluster 2 (65.2 ns frame of

Figure 3. Small molecules bind to Hsp90 CTD and affect cancer cell viability. (a) ELISA. Microtiter wells were coated with the
indicated increasing concentrations of small molecules and incubated with recombinant full-length or C-domain of Hsp90. Binding
was determined using domain-specific antibodies to Hsp90 and quantified by absorbance at OD405. Data are the mean (SEM
of three independent experiments. (b) Inhibition of cell viability in H460 and PC3 cancer cell lines, and normal smooth muscle
cells A10 and HUVEC cells, as evaluated by cell counting after a 24 h exposure to the selected small molecules. Values represent
the mean ((SD) of three independent experiments.

Figure 4. Inhibition of Hsp90 chaperone function. Client and cochaperone binding to Hsp90 is inhibited by small molecules 6
and 8. COS7 cells were transfected with wild-type Flag-Hsp90. After incubation, cells were treated with 100 µM of the indicated
Hsp90 inhibitor for 1 h. Then, cells were lysed, and proteins were immunoprecipitated (IP) by a Flag antibody-conjugated agarose.
Indicated coprecipitating proteins were detected by immunoblotting.

2986 J. Chem. Theory Comput., Vol. 6, No. 9, 2010 Morra et al.



the MD simulation). The three compounds make contact with
residues belonging to the communication hot spot structures.
Of critical importance is the disruption of a salt bridge
between Glu 477 and Arg 591 after approximately 60 ns
that increases the size and the volume of the binding site
and improves the calculated binding affinity for compounds
ND-1 and ND-2.

The qualitative good correlation between the calculated
affinities and the experimental activities of the small
molecules constitutes an encouraging validation of the target
and of the use of information from signal transduction
analysis in the detection of putative allosteric binding sites.

Discussion

The discovery of new allosteric sites may offer novel
opportunities in the identification of new drugs and in the
understanding of fundamental biological processes. While
consensus is increasing on the importance of allosteric
motions in the context of protein functional control and
regulation, the relevance of using these concepts in drug
design has not been fully exploited.8,38,39 Discovering and
targeting allosteric sites can in fact lead to the expansion of
the chemical space of leads and to new classes of drugs.

Most importantly, the discovery of new molecules targeted
to allosteric sites may represent a viable strategy in the search
for new protein-protein interactions inhibitors.40

Protein conformational plasticity and dynamics appear to
be critical for allosteric events. In the current view of
allostery, a protein populates a certain ensemble of dynamic
conformational states at equilibrium, and perturbations induce
a shift in the relative populations of states. Signals coded
by covalent or noncovalent modifications can be transmitted
long-range through pre-existing pathways4,6 that depend on
the inherent topological architecture of the protein. At a more
refined level, the selection of specific communication path-
ways between physically separate sites depends on the fine
chemical properties of the modification or the binding
partner. Results from several research groups have revealed
the existence of alternative interaction networks with a link
to dynamic motions,41-44 showing that preferred relatively
small, local fluctuations in proteins lead to functionally active
states.

In this paper, we have built on our previous results on the
atomic level characterization of the correlations between
dynamics, long-range coordination, and allosteric com-
munication between the physically distant N- and C-domains
in full-length Hsp90 to develop a new strategy for compu-
tational discovery of allosteric inhibitors. Hsp90 dynamic
and functional properties appeared to be highly responsive
to the presence of a specific nucleotide in the ATP-site at
the N-domain. Once the principal signal transduction path-
ways and the correlated hot spot residues that act as
communication mediators between the ATP-site and the
C-terminal interface have been revealed,9 the translation of
this structural dynamical information into 3D receptor-based
pharmacophore models allowed us to rationally discover new
C-terminal ligands able to interfere with the chaperone
function.

In this framework, we have focused on the activated form
of Hsp90, which represents an important target for cancer
drug discovery. Our signal transduction model revealed that
the most efficient long-range communication (over >60 Å)
from the binding site is mainly directed to a specific subset
of residues at the CTD interface. Conformational analysis
of the whole simulation trajectory showed that this site could
populate a set of conformations apt to optimally accom-
modate known CTD targeted inhibitors. Docking of novo-
biocin and related derivatives to different representative
protein conformations actually provided semiquantitative
correlations between the activities of the compounds and their
calculated binding energies.

We set out to search for new molecules targeting the newly
discovered putative C-terminal allosteric site. The aim was
to cause a disruptive interference in the network of interac-
tions coding for the collective motions related to the
chaperone functional activity. Our rationale was that the new
hits should perturb the dynamics of the CTD substructures
important for signal transduction with the NTD and interfere
with the chaperone molecular recognition properties, thus
disrupting association with cochaperones necessary for
function and ultimately blocking client folding. To this end,
we developed a pharmacophore model with complementary

Figure 5. Binding of new hits (compounds 6 and 8) into the
Hsp90 dimer. Lowest binding energies were obtained with a
MD representative conformation (cluster 2, time ) 65 200 ps).
The protein complex is shown in a ribbon representation
colored by a chain with the putative communication hot spot
residues colored in red. The Hsp90 C-terminal binding pocket
(pocket A) is shown as an orange line mesh and protein-ligand
hydrogen bonds are represented with spheres.
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functionalities for the C-terminal allosteric site, using
multiple protein target structures to take the flexibility of
the whole protein into account. The dynamic pharmacophore
was then used to screen the NCI small molecule database.
Strikingly, experimental tests proved that selected molecules
bind the CTD of Hsp90. Moreover, they had important
effects on the viability of two independent cancer cell lines
(H460, lung e PC3, prostate), while affecting to a signifi-
cantly lower degree the two normal cell types (endothelial
cells and vascular smooth muscle). Compounds 6, 8, and 9
were demonstrated to inhibit Hsp90 chaperone function, as
shown by the effects on the levels of Akt, an established
Hsp90 client protein that requires a fully functional chaperone
activity for folding and stability. Using a different experi-
mental approach, compound 6 and 8 were confirmed to
disrupt association with two more client proteins. Most
importantly compound 6 was shown to affect binding to a
specific subset of cochaperones, reducing the association of
Hsp90 with p23, p50, Aha1, and p60.

Interestingly, p23 and p50 bind to Hsp90 NTD, while the
activity of Aha1 and Akt depends on interactions with the
M-domain.45 Since the selected molecules interact directly
with the C-domain, they likely alter Hsp90 molecular
recognition properties by influencing its dynamics through
an allosteric mechanism.

Consequently, these hits represent new leads for the
development of allosteric drugs that act by tweaking the
functional dynamics of the protein toward an inactive state.

The fact that molecule 6 and 8 resulted the only active
hits in this second series of experiments does not exclude
that the other derivatives may show similar effects under
different experimental conditions. The coimmunoprecipita-
tion assays are in fact based on Hsp90 overexpression with
a drug incubation time of 1 h. Different compounds may
have different binding kinetics and affinities for the chap-
erone, determined by specific on/off rates or different
diffusion properties within the cell. The incubation time
allowed for these first control experiments thus may not be
sufficient to break client/cochaperone interactions.

It is worth noting at this point that compound 6 reduces
the interaction between Hsp90 and the cochaperone p60,
which is known to bind the CTD. Consequently, this lead
also appears to perturb the molecular recognition properties
of the CTD.

Importantly, the selected hits induce the disruption of
Hsp90 complexes with important kinase client proteins and
with cochaperones that are fundamental for Hsp90 functional
activity through both the allosteric mechanisms and the
abrogation of direct interactions with the CTD. This indicates
that our hits act simultaneously on different biological
pathways important for cancer development. It is important
to underline here that the activities of our hits are still far
from the ones required for efficient pharmacological ap-
plications. However, the scope of our endeavor was to
identify active hits using information on an allosteric pocket
obtained directly from the study of the dynamics of a
complex molecular machine. Optimization of the structures
through medicinal chemistry design and synthesis are cur-
rently underway.

From the applicative point of view, the possibility to
rationally discover molecules that are active via allosteric
and/or direct effects may facilitate the design of experiments
aimed to disrupt specific interactions and to report on the
behavior of the system/pathway in which the interaction is
involved. All of these aspects may be important in the
development of new cancer chemotherapeutics and in
increasing our understanding of fundamental biochemical
processes.

Moreover, we think that strategies similar to the one
presented here, in which the dynamics of the target is
explicitly taken into account, may be applied to the discovery
of inhibitors of protein-protein interactions or of possible
drug-binding sites for targets that are not easily druggable.
In the former case, by carrying out an atomic resolution
analysis of the protein’s internal dynamics and coordination,
it may be possible to isolate the interaction surfaces that are
endowed with specific flexibility properties and that need
specific remodeling for the molecular recognition and binding
of a second protein partner. In the latter case, the knowledge
of internal coordination may be exploited to identify sites
where binding of a small molecule can induce the perturba-
tion of important functional motions, resulting in the inhibi-
tion of the function of the protein or enzyme under exam.

Our findings point to several features that make ap-
proaches, such as the one presented here, attractive for the
discovery and development of allosteric inhibitors of protein
functions and interactions. The concept of using a combina-
tion of structural, dynamic, and long-range correlation
information led us to rationally discover a new and diverse
set of chemical structures with drug-like properties able to
target allosteric sites very distant from the active site. In this
context, we could expand the molecular diversity space of
Hsp90 antagonists, selecting molecules with promising
anticancer activities.

Incorporating information on functional dynamics, internal
residue-residue coordination, and protein flexibility can help
unveil possible binding states of the receptor that are
available on the protein’s energy landscape but may not be
immediately evident in a single-structure representation. The
discovery of alternative states can thus unveil possible
allosteric binding sites, allow structurally different ligands
to occupy the same site, or guide design efforts aimed at the
functional and structural modification of existing leads to
target-specific receptor geometries.

Overall, the use of biophysical and computational models
taking dynamic and communication into account combined
with pharmacophore development and screening may be
useful to find new chemotypes for specific functions, to
increase the yields of drug screening, and to help design new
allosteric leads with important therapeutic opportunities.
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