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Fig. 1. An overview of the results of our study of different CCD methods run on 60 million queries (both vertex-face and edge-edge). For each method,

we show the number of false positives (i.e., the method detects a collision where there is none), the number of false negatives (i.e., the method misses a

collision), and the average runtime. Each plot reports results in a logarithmic scale. False positives and negatives are computed with respect to the ground

truth computed using Mathematica [Wolfram Research Inc. 2020]. Acronyms are defined in Section 4.2.

We introduce a large-scale benchmark for continuous collision detec-

tion (CCD) algorithms, composed of queries manually constructed to high-
light challenging degenerate cases and automatically generated using exist-
ing simulators to cover common cases. We use the benchmark to evaluate
the accuracy, correctness, and efficiency of state-of-the-art continuous col-
lision detection algorithms, both with and without minimal separation.

We discover that, despite the widespread use of CCD algorithms, exist-
ing algorithms are (1) correct but impractically slow; (2) efficient but in-
correct, introducing false negatives that will lead to interpenetration; or
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(3) correct but over conservative, reporting a large number of false posi-
tives that might lead to inaccuracies when integrated in a simulator.

By combining the seminal interval root finding algorithm introduced
by Snyder in 1992 with modern predicate design techniques, we propose
a simple and efficient CCD algorithm. This algorithm is competitive
with state-of-the-art methods in terms of runtime while conservatively
reporting the time of impact and allowing explicit tradeoff between
runtime efficiency and number of false positives reported.

CCS Concepts: • Computing methodologies → Collision detection;
Physical simulation;

Additional Key Words and Phrases: Continuous collision detection, compu-

tational geometry, physically based animation
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1 INTRODUCTION

Collision detection and response are two separate, yet intercon-
nected, problems in computer graphics and scientific computing.
Collision detection specializes in finding when and if two objects
collide, while collision response uses this information to deform
the objects following physical laws. A large research effort has
been invested in the latter problem, assuming that collision detec-
tion can be solved reliably and efficiently. In this study we focus on
the former, using an experimental approach based on large-scale

ACM Transactions on Graphics, Vol. 40, No. 5, Article 188. Publication date: September 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3460775
https://doi.org/10.1145/3460775


188:2 • B. Wang et al.

testing. We use existing collision response methods to generate col-
lision detection queries to investigate the pros and cons of existing
collision detection algorithms.

Static collision detection is popular in interactive applications
due to its efficiency, its inability to detect collisions between fast
moving objects passing through each other (tunneling) hinders
its applicability. To address this limitation, continous collision

detection (CCD) methods have been introduced: By solving a
more computationally intensive problem, usually involving find-
ing roots of a low-degree polynomial, these algorithms can detect
any collision happening in a timestep, often assuming linear tra-
jectories.

The added robustness makes this family of algorithms popular,
but they can still fail due to floating-point rounding errors. Float-
ing point failures are of two types: false negatives, i.e., missed col-
lisions, which lead to interpenetration, and false positives, i.e., de-
tecting collisions when there are none.

Most collision response algorithms can tolerate minor imperfec-
tions, using heuristics to recover from physically invalid states (in
reality, objects cannot inter-penetrate). However, these heuristics
have parameters that needs to be tuned for every scene to ensure
stability and faithfulness in the simulation [Li et al. 2020]. Recently,
the collision response problem has been reformulated to avoid the
use of heuristics, and the corresponding parameter tuning, by dis-
allowing physically invalid configurations [Li et al. 2020]. For in-
stance, in the attached video, the method in Li et al. [2020] can-
not recover from interpenetration after the CCD misses a collision
leading to an unnatural “sticking” and eventual failure of the sim-
ulation. This comes with a heavier burden on the CCD algorithm
used, which should never report false negatives.

We introduce a large benchmark of CCD queries with ground
truth computed using the exact, symbolic solver of Mathemat-
ica [Wolfram Research Inc. 2020] and evaluate the correctness (lack
of false negatives), conservativeness (false positive count), and run-
time efficiency of existing state-of-the-art algorithms. The bench-
mark is composed of both manually designed queries to identify
degenerate cases (building upon [Erleben 2018]) and a large col-
lection of real-world queries extracted from simulation sequences.
On the algorithmic side, we select representative algorithms from
the three main approaches existing in the literature for CCD root-
finding: inclusion-based bisection methods [Redon et al. 2002; Sny-
der et al. 1993], numerical methods [Vouga et al. 2010; Wang et al.
2015], and exact methods [Brochu et al. 2012; Tang et al. 2014].
Thanks to our benchmark, we identified missing cases that were
not handled by previous methods, and we did a best effort to fix
the corresponding algorithms and implementations to account for
these cases. Figure 1 provides an overview of our study.

The surprising conclusion of this study (Section 4.2) is that the
majority of the existing CCD algorithms produce false negatives,
except three: (1) symbolic solution of the system and evaluation
with exact arithmetic computed using Mathematica [Wolfram Re-
search Inc. 2020], (2) Bernstein sign classification (BSC) with
conservative error analysis [Wang et al. 2015], and (3) inclusion-
based bisection root finding [Redon et al. 2002; Snyder et al. 1993].
Item (1) is extremely expensive and, while it can be used for gener-
ating the ground truth, it is impractical in simulation applications.
Item (2) is efficient but generates many false positives and the num-

ber of false positives depends on the geometric configuration and
velocities involved. Item (3) is one of the oldest methods proposed
for CCD. It is slow compared to state-of-the-art algorithms, but it
is correct and allows precise control of the tradeoff between false
positives and computational cost.

This extensive analysis and benchmark inspired us to introduce
a specialization of the classical inclusion-based bisection algorithm
proposed in Snyder [1992] to the specific case of CCD for triangu-
lar meshes (Section 5). The major changes are as follows: a novel
inclusion function, an efficient strategy to perform bisection, and
the ability to find CCD roots with minimal separation (Section 6).
Our novel inclusion function:

(1) is tighter leading to smaller boxes on average thus making our
method more accurate (i.e., less false positive);

(2) reduces the root-finding problem into the iterative evaluation
of a Boolean function, which allows replacing explicit interval
arithmetic with a more efficient floating point filtering;

(3) can be vectorized with Advanced Vector Extensions

(AVX2) instructions.

With these modifications, our inclusion-based bisection algorithm
is only 3× slower on average than the fastest inaccurate CCD
algorithm. At the same time it is provably conservative, provides
a controllable ratio of false positives (within reasonable numerical
limits), supports minimal separation, and reports the time of
impact. We also discuss how to integrate minimal separation
CCD in algorithms employing a line search to ensure the lack
of intersections, which are common in locally injective mesh
parametrization and have been recently introduced in physical
simulation by Li et al. [2020].

Our dataset is available at the NYU Faculty Digital Archive,
while the implementation of all the algorithms compared in the
benchmark, a reference implementation of our novel inclusion-
based bisection algorithm, and scripts to reproduce all results (Sec-
tion 4) are available at https://github.com/Continuous-Collision-
Detection. We believe this dataset will be an important element
to support research in efficient and correct CCD algorithms, while
our novel inclusion-based bisection algorithm is a practical solu-
tion that will allow researchers and practitioners to robustly check
for collisions in applications where a 3× slowdown in the CCD
(which is usually only one of the expensive steps of a simulation
pipeline) will be preferable over the risk of false negatives or the
need to tune CCD parameters.

2 RELATED WORK

We present a brief overview of the previous works on contin-
uous collision detection for triangle meshes. Our work focuses
only on CCD for deformable triangle meshes and we thus exclude
discussing methods approximating collisions using proxies (e.g.,
Hubbard [1995]; Mirtich [1996]).

Inclusion-based Root-Finding. The generic algorithm in the sem-
inal work of Snyder [1992] on interval arithmetic for computer
graphics is a conservative way to find collisions [Redon et al. 2002;
Snyder et al. 1993; Von Herzen et al. 1990]. This approach uses in-
clusion functions to certify the existence of roots within a domain,
using a bisection partitioning strategy. Surprisingly, this approach
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is not used in recent algorithms despite being provably conserva-
tive and simple. Our algorithm is based on this approach, but with
two major extensions to improve its efficiency (Section 5).

Numerical Root-Finding. The majority of CCD research focuses
on efficient and accurate ways of computing roots of special cu-
bic polynomials. Among these, a most popular cubic solver ap-
proach is introduced by Provot [1997], in which a cubic equa-
tion is solved to check for coplanarity, and then the overlapping
occurrence is validated to determine whether a collision actually
occurs. Refined constructions based on this idea have been intro-
duced for rigid [Kim and Rossignac 2003; Redon et al. 2002] and
deformable [Hutter and Fuhrmann 2007; Tang et al. 2011] bodies.
However, all of these algorithms are based on floating-point arith-
metic, requiring numerical thresholds to account for the unavoid-
able rounding errors in the iterative root-finding procedure. In fact,
even if the cubic polynomial is represented exactly, its roots are
generally irrational and thus not representable with floating-point
numbers. Unfortunately, the numerical thresholds make these al-
gorithms robust only for specific scenarios, and they can in general
introduce false negatives. Our approach has a moderately higher
runtime than these algorithms, but it is guaranteed to avoid false
negatives without parameter tuning. We benchmark Provot [1997]
using the implementation of Vouga et al. [2010] in Section 4.

For most applications, false positives are less problematic than
false negatives since a false negative will miss a collision, leading
to interpenetration and potentially breaking the simulation. Tang
et al. [2010] propose a simple and effective filter that can reduce
both the number of false positives and the elementary tests be-
tween the primitives. Wang [2014] and Wang et al. [2015] improve
its reliability by introducing forward error analysis, in which error
bounds for floating-point computation are used to eliminate false
positives. We benchmark the representative method of Wang et al.
[2015] in Section 4.

Exact Root-Finding. Brochu et al. [2012] and Tang et al. [2014]
introduce algorithms relying on exact arithmetic to provide exact
continuous collision detection. However, after experimenting with
their implementations and carefully studying their algorithms, we
discovered that they cannot always provide the exact answer (Sec-
tion 4). Brochu et al. [2012] rephrase the collision problem as count-
ing the number of intersections between a ray and the boundary
of a subset of R3 bounded by bilinear faces. The ray casting and
polygonal construction can be done using rational numbers (or
more efficiently with floating point expansions) to avoid floating-
point rounding errors. In Tang et al. [2014] the CCD queries are
reduced to the evaluation of the signs of Bernstein polynomials
and algebraic expressions, using a custom root finding algorithm.
Our algorithm uses the geometric formulation proposed in Brochu
et al. [2012], but uses a bisection strategy instead of ray casting to
find the roots. We benchmark both Brochu et al. [2012] and Tang
et al. [2014] in Section 4.

Minimal Separation. Minimal separation CCD (MSCCD)

[Harmon et al. 2011; Lu et al. 2019; Provot 1997; Stam 2009]
reports collisions when two objects are at a (usually small)
user-specified distance. These approaches have two main appli-
cations: (1) a minimal separation is useful in fabrication set-

tings to ensure that the fabrication errors will not lead to pen-
etrations and (2) a minimal separation can ensure that, after
floating-point rounding, two objects are still not intersecting, an
invariant that must be preserved by certain simulation codes
[Harmon et al. 2011; Li et al. 2020]. We benchmark [Harmon et al.
2011] in Section 6.2. Our algorithm supports a novel version of
minimal separation, where we use the L∞ norm instead of L2 (Sec-
tion 6.1).

Collision Culling. An orthogonal problem is efficient high-level
collision culling to quickly filter out primitive pairs that do not col-
lide in a timestep. Since in this case it is tolerable to have many false
positives, it is easy to find conservative approaches that are guaran-
teed to not discard potentially intersecting pairs [Curtis et al. 2008;
Govindaraju et al. 2005; Mezger et al. 2003; Pabst et al. 2010; Provot
1997; Schvartzman et al. 2010; Tang et al. 2009a, 2008; Volino and
Thalmann 1994; Wong and Baciu 2006; Zhang et al. 2007; Zheng
and James 2012]. Any of these approaches can be used as a prepro-
cessing step to any of the CCD methods considered in this study
to improve performance.

Generalized Trajectories. The linearization of trajectories com-
monly used in collision detection is a well-established, practi-
cal approximation, ubiquitous in existing codes. There are, how-
ever, methods that can directly detect collisions between objects
following polynomial trajectories [Pan et al. 2012] or rigid mo-
tions [Canny 1986; Redon et al. 2002; Tang et al. 2009b; Zhang et al.
2007] and avoid the approximation errors due to the linearization.
Our algorithm currently does not support curved trajectories and
we believe this is an important direction for future work.

3 PRELIMINARIES AND NOTATION

Assuming that the objects are represented using triangular meshes
and that every vertex moves in a linear trajectory in each timestep,
the first collision between moving triangles can happen either
when a vertex hits a triangle, or when an edge hits another edge.

Thus a continuous collision detection algorithm is a procedure
that, given a vertex-face or edge-edge pair, equipped with their lin-

ear trajectories, determines if and when they will touch. Formally,
for the vertex-face CCD, given a vertex p and a face with vertices
v1,v2,v3 at two distinct time steps t0 and t1 (we use the super-
script notation to denote the time, i.e., p0 is the position of p at t0),
the goal is to determine if at any point in time between t0 and t1

the vertex is contained in the moving face. Similarly for the edge-
edge CCD the algorithm aims to find if there exists a t ∈ [t0, t1]
where the two moving edges (pt

1,p
t
2 ) and (pt

3,p
t
4 ) intersect. We will

briefly overview and discuss the pros and cons of the two major
formulations present in the literature to address the CCD problem:
multi-variate and univariate.

Multivariate CCD Formulation. The most direct way of solving
this problem is to parametrize the trajectories with a parameter
t ∈ [0, 1] (i.e., pi (t ) = (1 − t )p0

i + tp
1
i and vi (t ) = (1 − t )v0

i + tv
1
i )

and write a multivariate polynomial whose roots correspond to
intersections. That is finding the roots of

Fvf : Ωvf = [0, 1] × {u,v � 0|u +v � 1} → R3

ACM Transactions on Graphics, Vol. 40, No. 5, Article 188. Publication date: September 2021.



188:4 • B. Wang et al.

with

Fvf (t ,u,v ) = p (t ) −
(
(1 − u −v )v1 (t ) + uv2 (t ) +vv3 (t )

)
, (1)

for the vertex-face case. Similarly for the edge-edge case, the goal
is to find the roots of

Fee : Ωee = [0, 1] × [0, 1]2 → R3

with

Fee (t ,u,v ) =
(
(1−u)p1 (t )+up2 (t )

)
−
(
(1−v )p3 (t )+vp4 (t )

)
. (2)

In other words, the CCD problem reduces to determining if F has
a root in Ω (i.e., there is a combination of valid t ,u,v for which the
vector between the point and the triangle is zero) [Brochu et al.
2012]. The main advantage of this formulation is that it is direct
and purely algebraic: There are no degenerate or corner cases to
handle. The intersection point is parameterized in time and local
coordinates and the CCD problem reduces to multivariate root-
finding. However, finding roots of a system of quadratic polyno-
mials is difficult and expensive, which led to the introduction of
the univariate formulation.

Univariate CCD Formulation. An alternative way of addressing
the CCD problem is to rely on a geometric observation: Two prim-
itives intersects if the four points (i.e., one vertex and the three
triangle’s vertices or the two pairs of edge’s endpoints) are copla-
nar [Provot 1997]. This observation has the major advantage of
only depending on time, thus the problem becomes finding roots
in a univariate cubic polynomial:

f (t ) = 〈n(t ),q(t )〉 = 0, (3)

with

n(t ) =
(
v2 (t ) −v1 (t )

)
×
(
v3 (t ) −v1 (t )

)
and q(t ) = p (t ) −v1 (t )

for the vertex-face case and

n(t ) =
(
p2 (t ) − p1 (t )

)
×
(
p4 (t ) − p3 (t )

)
and q(t ) = p3 (t ) − p1 (t )

for the edge-edge case. Once the roots t� of f are identified, they
need to be filtered, as not all roots correspond to actual collisions.
While filtering is straightforward when the roots are finite, special
care is needed when there is an infinite number of roots, such as
when the two primitives are moving on the same plane. Handling
these cases, especially while accounting for floating point round-
ing, is very challenging.

4 BENCHMARK

4.1 Dataset

We crafted two datasets to compare the performance and cor-
rectness of CCD algorithms: (1) a handcrafted dataset that con-
tains over 12 thousand point-triangle and 15 thousand edge-edge
queries, and (2) a simulation dataset that contains over 18 million
point-triangle and 41 million edge-edge queries. To foster replica-
bility, we describe the format of the dataset in Appendix A.

The handcrafted queries are the union of queries simulated
with [Li et al. 2020] from the scenes in Erleben [2018] (Figure 2)
and a set of handcrafted pairs for degenerate geometric configu-
rations. These include: point-point degeneracies, near collisions
(within a floating-point epsilon from collision), coplanar vertex-
face and edge-edge motion (where the function f (3) has infinite

Fig. 2. Scenes from Erleben [2018] that are used to generate a large part

of the handcrafted dataset.

Fig. 3. The scenes used to generate the simulation dataset of queries. We

use two simulation methods: (top) a sequential quadratic programming

method with constraints and active set update from Verschoor and Jalba

[2019] and (bottom) the method proposed by Li et al. [2020].

roots), degenerated function Fvf and Fee, and CCD queries with
two or three roots.

The simulation queries were generated by running four nonlin-
ear elasticity simulations. The first two simulations (Figure 3, top
row) use the constraints of Verschoor and Jalba [2019] to simulate
two cow heads colliding and a chain of rings falling. The second
two simulations (Figure 3, bottom row) use the method of Li et al.
[2020] to simulate a coarse mat twisting and the high-speed impact
of a golf ball hitting a planar wall.

4.2 Comparison

We compare seven state-of-the-art methods: (1) the interval

root-finder (IRF) [Snyder 1992], (2) the univariate interval

root-finder (UIRF) (a special case of the rigid-body CCD
from Redon et al. [2002]), (3) the floating-point time-of-impact

root finder (FPRF) [Provot 1997] implemented in Vouga et al.
[2010], (4) TightCCD (TCCD) [Wang et al. 2015], (5) Root Parity

(RP) [Brochu et al. 2012], (6) a rational implementation of Root

Parity (RRP) with the degenerate cases properly handled, and

ACM Transactions on Graphics, Vol. 40, No. 5, Article 188. Publication date: September 2021.



A Large-scale Benchmark and an Inclusion-based Algorithm for Continuous Collision Detection • 188:5

Table 1. Summary of the Average Runtime in μs (t), Number of False

Positive (FP), and Number of False Negative (FN) for the Six Competing

Methods

Handcrafted Dataset (12K): Vertex-Face CCD
IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 14942.40 124242.00 2.18 0.38 1.41 928.08 176.17 12.90 1532.54
FP 87 146 9 903 3 0 11 16 108
FN 0 0 70 0 5 5 13 386 0

Handcrafted Dataset (15K): Edge-Edge CCD
IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 12452.60 18755.80 0.48 0.33 2.33 1271.32 121.80 2.72 3029.83
FP 141 268 5 404 3 0 28 14 214
FN 0 0 147 0 8 8 47 335 0

Simulation Dataset (18M): Vertex-Face CCD
IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 115.89 6191.98 7.53 0.24 0.25 1085.13 34.21 51.07 0.74
FP 2 18 0 95638 0 0 23015 75 2
FN 0 0 5184 0 0 0 0 0 0

Simulation Dataset (41M): Edge-Edge CCD
IRF UIRF FPRF TCCD RP RRP BSC MSRF Ours

t 215.80 846.57 0.23 0.23 0.37 1468.70 12.87 10.39 0.78
FP 71 16781 0 82277 0 0 4593 228 17
FN 0 0 2317 0 7 7 27 1 0

(7) BSC [Tang et al. 2014]. For each method, we collect the average
query time, the number of false positives (i.e., there is no collision
but the method detects one), and the number of false negatives (i.e.,
there is a collision but the method misses it). To obtain the ground
truth, we solve the multivariate CCD formulation (Equations (1)
and (2)) symbolically using Mathematica [Wolfram Research Inc.
2020], which takes multiple seconds per query. Table 1 summa-
rizes the results. Note that “Ours” corresponds to our new method
that will be introduced and discussed in Section 5 and minimum

separation floating-point time-of-impact root finder (MSRF)

is a minimum separation CCD discussed in Section 6.2.

IRF. The inclusion-based root-finding described in Snyder
[1992] can be applied to both the multivariate and univariate CCD.
For the multivariate case, we can simply initialize the parameters
of F (i.e., t ,u,v) with the size of the domain Ω, evaluate F and
check if the origin is contained in the output interval [Snyder et al.
1993]. If it is, then we sequentially subdivide the parameters (thus
shrinking the size of the intervals of F ) until a user-tolerance δ is
reached. In our comparison we use δ = 10−6. The major advantage
of this approach is that it is guaranteed to be conservative: It is im-
possible to shrink the interval of F to zero. A second advantage is
that a user can easily trade accuracy (number of false positives) for
efficiency by simply increasing the tolerance δ (Appendix D). The
main drawback is that bisecting Ω in the three dimensions makes
the algorithm slow, and the use of interval arithmetic further in-
creases the computational cost and prevents the use of certain com-
piler optimization techniques (such as instruction reordering). We
implement this approach using the numerical type provided by the
Boost interval library [Schling 2011].

UIRF. Snyder [1992] can also be applied to the univariate func-
tion in Equation (3) by using the same subdivision technique on
the single variable t (as in Redon et al. [2002] but for linear trajec-
tories). The result of this step is an interval containing the earliest
root in t , which is then plugged inside a geometric predicate to
check if the primitives intersect in that interval. While finding the
roots with this approach might, at a first glance, seem easier than

in the multi-variate case and thus more efficient, this is not the
case in our experiments. If the polynomial has infinite roots, then
this algorithm will have to refine the entire domain to the maximal
allowed resolution, and check the validity of each interval, making
it correct but very slow on degenerate cases (Appendix D). This re-
sults in a longer average runtime than its multivariate counterpart.
Additionally, it is impossible to control the accuracy of the other
two parameters (i.e., u,v), thus introducing more false positives.

FPRF. Vouga et al. [2010] aim to solve the univariate CCD prob-
lem using only floating-point computation. To mitigate false nega-
tives, the method uses a numerical tolerance η (Appendix E) shows
how η affects running time, the false positive, and negative). The
major limitations are that the number of false positives cannot be
directly controlled as it depends on the relative position of the in-
put primitives and that false negatives can appear if the parameter
is not tuned accordingly to the objects velocity and scale. Addition-
ally, the reference implementation does not handle the edge-edge
CCD when the two edges are parallel. This method is one of the
fastest, which makes it a very popular choice in many simulation
codes.

TCCD. TightCCD is a conservative floating-based implementa-
tion of Tang et al. [2014]. It uses the univariate formulation cou-
pled with three inequality constraints (two for the edge-edge case)
to ensure that the univariate root is a CCD root. The algorithm
expresses the cubic polynomial f as a product and sum of three
low-order polynomials in Bernstein form. With this reformulation
the CCD problem becomes checking if univariate Bernstein poly-
nomials are positive, which can be done by checking some specific
points. This algorithm is extremely fast but introduces many false
positives that are impossible to control. In our benchmark, this is
the only non-interval method without false negatives. The major
limitation of this algorithm is that it always detects collision if the
primitives are moving in the same plane, independently from their
relative position.

RP and RRP. These two methods use the multivariate formula-
tion F (Equations (1) and (2)). The main idea is that the parity of
the roots of F can be reduced to a ray casting problem. Let ∂Ω
be the boundary of Ω, the algorithm shoots a ray from the ori-
gin and counts the parity of the intersection between the ray and
F (∂Ω) that corresponds to the parity of the roots of F . Parity is
however insufficient for CCD: These algorithms cannot differenti-
ate between zero roots (no collision) and two roots (collision), since
they have the same parity. We note that this is a rare case hap-
pening only with sufficiently large timesteps and/or velocities: We
found 13 (handcrafted dataset) and 7 (simulation dataset) queries
where these methods report a false negative.

We note that the algorithm described in Brochu et al. [2012] (and
its reference implementation) does not handle some degenerate
cases leading to both false negatives and positives. For instance,
in Appendix B, we show an example of a “hourglass” configura-
tion where RP misses the collision, generating a false negative. To
overcome this limitations and provide a fair comparison to these
techniques, we implemented a naïve version of this algorithm that
handles all the degenerate cases using rational numbers to sim-
plify the coding (see the additional materials). We opted for this
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rational implementation since properly handling the degeneracies
using floating-point requires designing custom higher precision
predicates for all cases. The main advantage of this method is that
it is exact (when the degenerate cases are handled) as it does not
contain any tolerance and thus has zero false positives. We note
that the runtime of our rational implementation is extremely high
and not representative of the runtime of a proper floating point
implementation of this algorithm.

BSC. This efficient and exact method uses the univariate for-
mulation coupled with inequality constraints to ensure that the
coplanar primitives intersects. The coplanarity problem reduces
to checking if f in Bernstein form has a root. Tang et al. [2014] ex-
plain how this can be done exactly by classifying the signs of the
four coefficients of the cubic Bernstein polynomial. The classifica-
tion holds only if the cubic polynomial has monotone curvature;
which can be achieved by splitting the curve at the inflection point.
This splitting, however, cannot be computed exactly as it requires
divisions (Appendix C). In our comparison, we modified the refer-
ence implementation to fix a minor typo in the code and to handle
f with inflection points by conservatively reporting collision. This
change introduces potential false positives, and we refer to the ad-
ditional material for more details and for the patch we applied to
the code.

Discussion and Conclusions. From our extensive benchmark of
CCD algorithms, we observe that most algorithms using the uni-
variate formulation have false negatives. While the reduction to
univariate root findings provides a performance boost, filtering the
roots (without introducing false positives) is a challenging problem
for which a robust solution is still elusive.

Surprisingly, only the oldest method, IRF, is at the same time
reasonably efficient (e.g., it does not take multiple seconds per
query as Mathematica), correct (i.e., no false negatives), and re-
turns a small number of false positives (which can be controlled
by changing the tolerance δ ). It is, however, slower than other
state-of-the-art methods, which is likely the reason why it is cur-
rently not widely used. In the next section, we show that it is pos-
sible to change the inclusion function used by this algorithm to
keep its favorable properties, while decreasing its runtime by ∼250
times, making its performance competitive with state-of-the-art
methods.

5 METHOD

We describe the seminal bisection root-finding algorithm intro-
duced in Snyder [1992] (Section 5.1) and then introduce our novel
Boolean inclusion function and how to evaluate it exactly and effi-
ciently using floating point filters (Section 5.2).

5.1 Solve Algorithm [Snyder 1992]

An interval i = [a,b] is defined as

i = [a,b] = {x |a � x � b,x ,a,b ∈ R},
and, similarly, an n-dimensional interval is defined as

I = i1 × · · · × in ,
where ik are intervals. We use L (i ) and R (i ) to refer to the left
and right parts of an unidimensional interval i . The width of an

Fig. 4. One-dimensional illustration of the first three levels of the inclusion

based root-finder in Snyder [1992].

interval, written as w (i ) = w ([L (i ),R (i )]), is defined by

w (i ) = L (i ) − R (i )

and, similarly, the width of an n-dimensional interval

w (I ) = max
k={1, ...,n }

w (ik ).

An interval can be used to define an inclusion function. For-
mally, given an m-dimensional interval D and a continuous func-
tion д : Rm → Rn , an inclusion function for д, written �д, is a
function such that

∀x ∈ D д(x ) ∈�д(D).

In other words, �д(D) is a n-dimensional interval bounding the
range of д evaluated over an m-dimensional interval D bounding
its domain. We call the inclusion function�д of a continuous func-
tion д convergent if for an interval X ,

w (X ) → 0 =⇒ w
(�д(X )

)
→ 0.

A convergent inclusion function can be used to find a root
of a function д over a domain bounded by the interval I0 =
[L (x1),R (x1)] × · · · × [L (xm ),R (xm )]. To find the roots of д, we
sequentially bisect the initial m-dimensional interval I0, until it
becomes sufficiently small (Algorithm 1). Figure 4 shows a one-
dimensional (1D) example (i.e., д : R → R) of a bisection algo-
rithm. The algorithm starts by initializing a stack S of intervals to
be checked with I0 (line 3). At every level � (line 5), the algorithm
retrieves an interval I from S and evaluates the inclusion function
to obtain the interval Iд (line 7). Then it checks if the root is in-
cluded in Iд (line 8). If not, then I can be safely discarded since Iд
bounds the range of д over the domain bounded by I . Otherwise
(0 ∈ Iд ), it checks ifw (I ) is smaller than a user-defined threshold δ .
If so, then it appends I to the result (line 10). If I is too large, then
the algorithm splits one of its dimensions (e.g., [L (x1),R (x1)] is
split in [L (x1), x̃1] and [x̃1,R (x1)] with x̃1 = (L (x1) + R (x1))/2)
and appends the two new intervals I1, I2 to the stack S (line 13).

Generic Construction of Inclusion Functions. Snyder [1992] pro-
poses the use of interval arithmetic as a universal and automatic
way to build inclusion functions for arbitrary expressions. How-
ever, interval arithmetic adds a performance overhead to the com-
putation. For example, the product between two intervals is

[a,b] · [c,d] = [min(ac,ad,bc,bd ),max(ac,ad,bc,bd )],

which requires four multiplications and two min/max instead of
one multiplication. In addition, the compiler cannot optimize com-
posite expressions, since the rounding modes need to be correctly
set up and the operation needs to be executed to avoid rounding
errors [Schling 2011].
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ALGORITHM 1: Inclusion-based root-finder

1: function solve(I0,д,δ )
2: res← ∅
3: S ← {I0}
4: � ← 0
5: while L � ∅ do

6: I ← pop(L)
7: Iд ←�д(I ) � Compute the inclusion function
8: if 0 ∈ Iд then

9: if w (I ) < δ then � I is small enough
10: res← R ∪ {I }
11: else

12: I1, I2 ← split(I )
13: S ← S ∪ {I1, I2}
14: � ← � + 1

return res

5.2 Predicate-based Bisection Root Finding

Instead of using interval arithmetic to construct the inclusion func-
tion�F for the interval IΩ = It × Iu × Iv = [0, 1] × [0, 1] × [0, 1]
around the domain Ω, we propose to define an inclusion function
tailored for F (both for Equation (1) and (2)) as the box

BF (IΩ) = [mx ,Mx ] × [my ,My ] × [mz ,Mz ] (4)

with

mc = min
i=1, ...,8

(vc
i ), Mc = max

i=1, ...,8
(vc

i ), c = {x ,y, z}

vi = F (tm ,un ,vl ), tm ,un ,vl ∈ {0, 1}, and m,n, l ∈ {1, 2}.

Proposition 5.1. The inclusion function BF defined in Equa-

tion (4) is the tightest axis-aligned inclusion function of F .

Proof. We note that for any given ũ the function F (t , ũ,v ) is
bilinear; we call this function function Fũ (t ,v ). Thus, F can be
regarded as a bilinear function whose four control points move
along linear trajectories T (u)i , i = 1, 2, 3, 4. The range of Fũ is a
bilinear surface that is bounded by the tetrahedron constructed by
the four vertices forming the bilinear surface, which are moving
on Ti . Thus, F is bounded by every tetrahedron formed by T (u)i ,
implying that F is bounded by the convex hull of the trajectories’
vertices, which are the vertices vi , i = 1, . . . , 8 defining F . Finally,
since BF is the axis-aligned bounding box of the convex-hull of
vi , i = 1, . . . , 8, BF is an inclusion function for F .

Since the vertices of the convex hull belong to F and the convex
hull is the tightest convex hull, the bounding box BF of the convex
hull is the tightest inclusion function. �

Theorem 5.2. The inclusion function BF defined in Equation (4)
is convergent.

Proof. We first note that F is trivially continuous, second that
the standard interval-based inclusion function �F constructed
with intervals is axis-aligned. Therefore, from Proposition 5.1, it
follows that BF (I ) ⊆ �F (I ) for any interval I . Finally, since�F is
convergent [Snyder 1992], then also BF is. �

The inclusion function BF turns out to be ideal for constructing
a predicate: to use this inclusion function in the solve algorithm

(Algorithm 1), we only need to check if, for a given interval I , BF (I )
contains the origin (line 8). Such a Boolean predicate can be con-
servatively evaluated using floating point filtering.

Conservative Predicate Evaluation. Checking if the origin is con-
tained in an axis-aligned box is trivial and it reduces to checking
if the zero is contained in the three intervals defining the sides of
the box. In our case, this requires us to evaluate the sign of F at
the eight box corners. However, the vertices of the co-domain are
computed using floating point arithmetic and can thus be inaccu-
rate. We use forward error analysis to conservatively account for
these errors as follows.

Without loss of generality, we focus only on the x-axis. Let
{vx

i }, i = 1, . . . , 8 be the set of x-coordinates of the eight vertices
of the box represented in double precision floating-point numbers.
The error bound for F (on the x-axis) is

εx
ee = 6.217248937900877 × 10−15γ 3

x

εx
vf
= 6.661338147750939 × 10−15γ 3

x

(5)

with

γx = max(xmax, 1) and xmax = max
i=1, ...,8

( |vx
i |).

That is, the sign of Fx
ee computed using floating-point arithmetic is

guaranteed to be correct if |Fx
ee | > εx

ee, and similarly for the vertex
face case. If this condition does not hold, then we conservatively
assume that the zero is contained in the interval, thus leading to
a possible false positive. The two constants εx

ee and εx
vf

are float-
ing point filters for Fx

ee and Fx
vf

, respectively, and were derived us-
ing [Attene 2020].

Efficient Evaluation. The x ,y, z predicates defined above depend
only on a subset of the coordinates of the eight corners of BF (I ).
We can optimally vectorize the evaluation of the eight corners us-
ing AVX2 instructions (∼4× improvement in performance), since it
needs to be evaluated on eight points and all the computation is
standard floating-point arithmetic. Note that we used AVX2 instruc-
tions because newer versions still have spotty support on current
processors. After the eight points are evaluated in parallel, apply-
ing the floating-point filter involves only a few comparisons. To
further reduce computation, we check one axis at a time and im-
mediately return if any of the intervals do not contain the origin.

Algorithm. We describe our complete algorithm in pseudocode
in Algorithm 2. The input to our algorithm are the eight points rep-
resenting two primitives (either vertex-face or edge-edge), a user-
controlled numerical tolerance δ > 0 (if not specified otherwise, in
the experiment we use the default value δ = 10−6), and the maxi-
mum number of checksmI > 0 (we use the default valuemI = 106).
These choice are based on our empirical results (figures 8 and 9).
The output is a conservative estimate of the earliest time of impact
or infinity if the two primitives do not collide in the time intervals
coupled with the reached tolerance.

Our algorithm iteratively checks the box B = BF (I ), with I =
It ×Iu×Iv = [t1, t2]×[u1,u2]×[v1,v2] ⊂ IΩ (initialized with [0, 1]3).
To guarantee a uniform box size while allowing early termination
of the algorithm, we explore the space in a breadth-first manner
and record the current explored level � (line 6). Since our algorithm
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ALGORITHM 2: Complete overview of our CCD algorithm.

1: function solve(F ,δ ,mI )
2: n ← 0 � Number of check counter
3: Q ← {{[0, 1]3, 0}} � Push first interval and level 0 in Q
4: �p ← −1 � Previous checked level is -1
5: while Q � ∅ do

6: I , � ← pop(Q) � Retrieve level and interval
7: B ← BF (I ) � Compute the box inclusion function
8: n ← n + 1 � Increase check number
9: if B ∩Cε � ∅ then

10: if � � �p then � I is the first colliding interval of �
11: If ← It � Save t-component of I

12: if n � mI then � Reached max number of checks
13: return L (If ),w (It ) � Return left side of If

14:

15: if w (B) < δ or B ⊆ Cε then

16: if � � �p then

17: return L (If ),w (It ) � Root found

18: else

19: I1, I2 ← split(I )
20: Q ← Q ∪ {{I1, � + 1}, {I2, � + 1}}
21: sort(Q,order)

22: �p = � � Update the previous colliding level

23: return∞, 0 � Q is empty and no roots were found

24:

25: function split(I = It × Iu × Iv )
26: Compute κt ,κu ,κv according to (7)
27: ct ← w (It )κt , cu ← w (Iu )κu , cv ← w (Iv )κv

28: c ← max(ct , cu , cv )
29: if ct = c then � ct is the largest
30: I1 ← [L (It ), (L (It ) + R (It ))/2] × Iu × Iv ,
31: I2 ← [(L (It ) + R (It ))/2,R (It )] × Iu × Iv
32: else if cu = c then � cu is the largest
33: I1 ← It × [L (Iu ), (L (Iu ) + R (Iu ))/2] × Iv ,
34: I2 ← It × [(L (Iu ) + R (Iu ))/2,R (Iu )] × Iv
35: else � cv is the largest
36: I1 ← It × Iu × [L (Iv ), (L (Iv ) + R (Iv ))/2],
37: I2 ← It × Iu × [(L (Iv ) + R (Iv ))/2,R (Iv )]

38: return I1, I2
39:

40: function order({I1, �1}, {I2, �2})
41: if �1 = �2 then

42: return I t
1 < I t

2
43: else

44: return �1 < �2

is designed to find the earliest time of impact, we sort the visiting
queue Q with respect to time (line 21).

At every iteration, we check if B intersects the cube Cε =

[−εx , εx ] × [−εy , εy ] × [−εz , εz ] (line 9); if it does not, then we
can safely ignore I since there are no collisions.

If B∩Cε � ∅, then we first check ifw (B) < δ or if B is contained
inside the ε-box (line 15). In this case, it is unnecessary to refine the
interval I more since it is either already small enough (ifw (B) < δ )

Fig. 5. A 2D example of root finding (left) and its corresponding diagram

(right). A small colliding (red) box b that is not the earliest, since another

box a exists in the same level (a did not trigger the termination of the

algorithm since it is too big).

Fig. 6. A 2D example of root finding (left) and its corresponding diagram

(right). Our algorithm stops when the number of checks n reaches mI after

checking the box s , which is a non-colliding box (green). The algorithm will

return the first colliding box (f ) of the same level, right.

or any refinement will lead to collisions (if B ⊆ Cε ). We return I lt
(i.e., the left hand-side of the t interval of I ) only if I was the first
intersecting interval of this current level (line 16). If I is not the
first intersecting in the current level, then there is an intersecting
box (which is larger than δ ) with an earlier time since the queue is
sorted according to time (Figure 5).

If B is too big, then we split the interval I in two sub-intervals
and push them to the priority queue Q (line 19). Note that, dif-
ferently from Algorithm 1, we use a priority queue Q instead of
the stack S . For the vertex-triangle CCD, the domain Ω is a prism,
thus, after spitting the interval (line 19), we append I1, I2 toQ only
if they intersect with Ω. To ensure that B shrinks uniformly (since
the termination criteria, Line 15, is w (B) < δ ) we conservatively

estimate the width of B (in the codomain) from the widths of the
domain’s (i.e., where the algorithm is acting) intervals It , Iu , Iv :

α > 0,w (It ) <
α

κt
,w (Iu ) <

α

κu
,w (Iv ) <

α

κv
=⇒ w (BF (I )) < α

(6)
with α a given constant and

κt = 3 max
i, j=1,2

‖F (0,ui ,vj ) − F (1,ui ,vj )‖∞,

κu = 3 max
i, j=1,2

‖F (ti , 0,vj ) − F (ti , 1,vj )‖∞,

κv = 3 max
i, j=1,2

‖F (ti ,uj , 0) − F (ti ,uj , 1)‖∞.
(7)

Proposition 5.3. Equation (6) holds for any positive constant α .

Proof. While BF (I ) is an interval, for the purpose of the proof
we equivalently define it as an axis-aligned bounding box whose
eight vertices are bi . We will use the super-script notation to refer
to the x ,y, z component of a 3D point (e.g., bx

i is the x-component
of bi ) and define the set I = {1, . . . , 8}. By using the box definition
the width of BF (I ) can be written as

w (BF (I )) = ‖bM − bm ‖∞
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with
bk

M = max
i ∈I

(bk
i ) and bk

m = min
i ∈I

(bk
i ).

Since BF (I ) is the tightest axis-aligned inclusion function (Propo-
sition 5.1)

bk
M � max

i ∈I
vk

i , bk
m � min

i ∈I
vk

i ,

wherevi = F (I
j
t , I

k
u , I

l
v ),with j,k, l ∈ {l , r }, thus for any coordinate

k we bound

bk
M − b

k
m = max

i, j ∈I
(vk

i −v
k
j ) � max

i, j ∈I
‖vi −vj ‖∞.

For any pair of vi and vj we have

vi −vj = s1αl,m + s2βn,p + s3γp,q ,

for some indices l ,m,n,o,p,q ∈ {1, 2} and constant s1, s2, s3 ∈
{−1, 0, 1} with

αi, j = w (It )
(
F (0,ui ,vj ) − F (1,ui ,vj )

)
,

βi, j = w (Iu )
(
F (ti , 0,vj ) − F (ti , 1,vj )

)
,

γi, j = w (Iv )
(
F (ti ,uj , 0) − F (ti ,uj , 1)

)
,

since F is linear on the edges. We note that αi, j , βi, j , and γi, j are
the 12 edges of the box BF . We now define

ek
t = max

i, j ∈{1,2}
|αk

i, j |, ek
u = max

i, j ∈{1,2}
|βk

i, j |, ek
v = max

i, j ∈{1,2}
|γk

i, j |

which allows us to bound

max
i, j ∈I

‖vi −vj ‖∞ � ‖et + eu + ev ‖∞ � ‖et ‖∞ + ‖eu ‖∞ + ‖ev ‖∞.

Since

‖et ‖∞ � w (It ) max
i, j=1,2

‖F (t1,ui ,vj ) − F (t2,ui ,vj )‖∞ = w (It )κt /3,

and similarly ‖eu ‖∞ � κu/3, ‖ev ‖∞ � κv/3, we have

‖et ‖∞ + ‖eu ‖∞ + ‖ev ‖∞ �
w (It )κt +w (Iu )κu +w (Iv )κv

3
Finally, from the assumption (6) it follows that

w (BF (I )) � max
i, j ∈I

‖vi −vj ‖∞ � ‖et ‖∞ + ‖eu ‖∞ + ‖ev ‖∞ < α .

�

Using the estimate of the width of It , Iu , Iv we split the dimen-
sion that leads to the largest estimated dimension in the range of
F (line 28).

Fixed Runtime or Fixed Accuracy. To ensure a bounded runtime,
which is very useful in many simulation applications, we stop the
algorithm after an user-controlled number of checksmI . To ensure
that our algorithm always returns a conservative time of impact we
record the first colliding interval If of every level (line 11). When
the maximum number of check is reached we can safely return the
latest recorded interval If (line 13) (Figure 6). We note that our al-
gorithm will not respect the user specified accuracy when it termi-
nates early: If a constant accuracy is required by applications, then
this additional termination criteria could be disabled, obtaining an
algorithm with guaranteed accuracy but sacrificing the bound on
the maximal running time. Note that without the termination cri-
teria mI , it is possible (while rare in our experiments) that the al-
gorithm will take a long time to terminate, or run out of memory
due to storing the potentially large list of candidate intervals L.

5.3 Results

Our algorithm is implemented in C++ and uses Eigen [Guen-
nebaud et al. 2010] for the linear algebra routines (with the
-avx2 g++ flag). We run our experiments on a 2.35 GHz AMD
EPYC™ 7452. We attach the reference implementation and the data
used for our experiments, which will be released publicly.

The running time of our method is comparable to the floating-
point methods, while being provably correct, for any choice of pa-
rameters. For this comparison we use a default tolerance δ = 10−6

and default number of iterations mI = 106. All queries in the sim-
ulation dataset terminate within 106 checks, while for the hand-
crafted dataset only 0.25% and 0.55% of the vertex-face and edge-
edge queries required more than 106 checks, reaching an actual
maximal tolerance δ of 2.14× 10−5 and 6.41× 10−5 for vertex-face
and edge-edge respectively. We note that, despite the percentages
begin small, by removingmI the handcrafted queries take 0.015774
and 0.042477 s on average for vertex-face and edge-edge respec-
tively. This is due to the large number of degenerate queries, as
can be seen from the long tail in the histogram of the run-times
(Figure 7). We did not observe any noticeable change of running
time for the simulation dataset.

Our algorithm has two user-controlled parameters (δ andmI ) to
control the accuracy and running time. The tolerance δ provides
a direct control on the achieved accuracy and provides an indirect
effect on the running time (Figure 8). The other parameter, mI , di-
rectly controls the maximal running time of each query: for small
mI our algorithm will terminate earlier, resulting in a lower accu-
racy and thus more chances of false positives (Figure 9, top). We
remark that, in practice, very few queries require so many subdivi-
sions: by reducing mI to the very low value of 100, our algorithm
early-terminates only on ∼0.07% of the 60 million queries in the
simulation dataset.

6 MINIMUM SEPARATION CCD

An additional feature of some CCD algorithms is minimal separa-

tion, that is, the option to report collision at a controlled distance
from an object, which is used to ensure that objects are never too
close. This is useful to avoid possible inter-penetrations introduced
by numerical rounding after the collision response, or for modeling
fabrication tolerances for additive or subtractive manufacturing.
An MSCCD query is similar to a standard query: Instead of check-
ing if a point and a triangle (or two edges) are exactly overlapping,
we want to ensure that they are always separated by a user-defined
distance d during the entire linear trajectory. Similarly to the stan-
dard CCD (Section 3), MSCCD can be express using a multivariate
or a univariate formulation, usually measuring distances using the
Euclidean distance. We focus on the multivariate formulation since
it does not require to filter spurious roots, we refer to Section 4.2
for a more detailed justification of this choice.

Multivariate Formulation. We observed that using the Euclidean
distance leads to a challenging problem, which can be geometri-
cally visualized as follows: The primitives will not be closer than
d if F (Ω) does not intersect a sphere of radius d centered on the
origin. This is a hard problem, since it requires checking conserva-
tively the intersection between a sphere (which is a rational poly-
nomial when explicitly parametrized) and F (Ω).
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Table 2. Summary of the Average Runtime in μs (t), Number of False Positive (FP), and Number of False Negative (FN) for MSRF and Our Method

Handcrafted–Vertex-Face MSCCD Handcrafted–Edge-Edge MSCCD Simulation–Vertex-Face MSCCD Simulation–Edge-Edge MSCCD
MSRF Ours MSRF Ours MSRF Ours MSRF Ours

d t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN

10−2 12.89 854 114 18.86K 2.6K 0 3.84 774 189 9.64K 4.8K 0 55.47 156.8K 18.3K 12.04 8.1M 0 14.42 354.1K 7.0K 19.12 8.3M 0
10−8 15.05 216 2 1.60K 159 0 2.89 230 18 3.42K 309 0 55.26 75 0 0.72 8 0 11.12 228 1 0.73 40 0
10−16 13.90 151 35 1.51K 108 0 2.90 231 21 2.92K 214 0 54.83 4 3.8K 0.71 2 0 10.70 10 4 0.72 17 0
10−30 13.59 87 141 1.39K 108 0 2.89 118 157 2.79K 214 0 53.73 0 10.2K 0.66 2 0 10.68 0 1.7K 0.67 17 0
10−100 14.45 16 384 1.43K 108 0 3.05 14 335 2.82K 214 0 53.53 0 18.6K 0.66 2 0 10.59 0 5.0K 0.68 17 0

Fig. 7. Log histograms of the running time of positive queries and negative

queries on both dataset.

Fig. 8. Top, average runtime of our algorithm for different tolerances δ for

the simulation dataset. The shaded area shows the range of the distribu-

tion (min and max). Bottom, distribution of running times of our algorithm

for three different tolerances δ = 10−8, 10−4, and 1 over the simulation

dataset.

Studying the applications currently using minimal separation,
we realized that they are not affected by a different choice of the
distance function. Therefore, we propose to change the distance
definition from Euclidean to Chebyshev distance (i.e., from the L2

to the L∞ distance). With this minor change the problem dramati-
cally simplifies: instead of solving for F = 0 (Section 5), we need to
solve for |F | � d . The corresponding geometric problem becomes
checking if F (Ω) intersects a cube of side 2d centered on the origin.

Fig. 9. The percentage of early-termination and maximum value of the

tolerance δ for different mI for the simulation dataset.

Univariate Formulation. The univariate formulation is more com-
plex since it requires to redefine the notion of co-planarity for min-
imum separation. We remark that the function f in Equation (3)
measures the length of the projection of q(t ) along the normal,
thus to find point at distance d the equation becomes f (t ) �
〈n(t ),q(t )〉 = d ‖n(t )‖. To keep the equation polynomial, remove
the inequality, and avoid square roots, the univariate MSCCD root
finder becomes

〈n(t ),q(t )〉2 − d2‖n(t )‖2.
We note that this polynomial becomes sextic, and not cubic as in
the zero-distance version. To account for replacing the inequality
with an equality, we also need to check for distance between q and
the edges and vertices of the triangle [Harmon et al. 2011]. In ad-
dition to finding the roots of several high-order polynomials, this
formulation, similarly to the standard CCD, suffers from infinite
roots when the two primitives are moving on a plane at distance d
from each other.

6.1 Method

The input to our MSCCD algorithm are the same as the standard
CCD (eight coordinates, δ , and mI ) and the minimum separation
distance d � 0. Our algorithm returns the earliest time of impact
indicating if two primitives become closer than d as measured by
the L∞ norm.

We wish to check whether the box BF (Ω) intersects a cube of
side 2d centered on the origin (Figure 10). Equivalently, we can
construct another box B′

F
(Ω) by displacing the six faces of BF (Ω)

outward at a distance d , and then check whether this enlarged box
contains the origin. This check can be done as for the standard
CCD (Section 5), but the floating point filters must be recalcu-
lated to account for the additional sum (indeed, we add/subtract d
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Fig. 10. One-dimensional illustration of the first three levels of our

MSCCD inclusion based root-finder. Instead of checking if Iд intersects

with the origin, we check if it intersects the interval [−d, d] marked in

light green.

to/from all the coordinates). Hence, the filters for F ′ are as follows:

ϵx
ee = 7.105427357601002 × 10−15γ 3

x

ϵx
vf
= 7.549516567451064 × 10−15γ 3

x .
(8)

As before, the filters are calculated as described in Attene [2020]
and they additionally assume that d < γx .

To account for minimum separations, the only change in our
algorithm is at line 7 where we need to enlarge B by d and in
lines 9 and 15 sinceCε needs to be replaced withCϵ = [−ϵx , ϵx ]×
[−ϵy , ϵy ] × [−ϵz , ϵz ].

6.2 Results

To the best of our knowledge, the MSRF [Harmon et al. 2011] im-
plemented in Lu et al. [2019], is the only public code supporting
minimal separation queries. While not explicitly constructed for
MSCCD, FPRF uses a distance tolerance to limit false negatives,
similarly to an explicit minimum separation. We compare the re-
sults and performance in Appendix E.

MSRF. Uses the univariate formulation, which requires to find
the roots of a high-order polynomial, and it is thus unstable when
implemented using floating-point arithmetic.

Table 2 reports timings, false positive, and false negatives for
different separation distances d . As d shrinks (around 10−16) the
results of our method with MSCDD coincide with the ones with
d = 0 since the separation is small. For these small tolerances,
MSRF runs into numerical problems and the number of false nega-
tives increases. Figure 11 shows the average query time versus the
separation distance d for the simulation dataset, since our method
only requires to check the intersection between boxes, the running
time largely depends on the number of detected collision, and the
average is only mildly affected by the choice of d .

7 INTEGRATION IN EXISTING SIMULATORS

In a typical simulation the objects are represented using triangu-
lar meshes and the vertices are moving along a linear trajectory
in a timestep. At each timestep, collisions might happen when a
vertex hits a triangle, or when an edge hits another edge. A CCD
algorithm is then used to prevent interpenetration; this can be
done in different ways. In an active set construction method (Sec-
tion 7.1) the CCD is used to compute contact forces to avoid pen-
etration assuming linearized contact behaviour. For a line-search
based method (Section 7.2), CCD and time of impact are used to
prevent the Newton trajectory from causing penetration by limit-

Fig. 11. Top, average runtime of our algorithm for varying minimum sepa-

ration d in the simulation dataset. The shaded area depicts the range of the

values. Bottom, distribution of running time for three different minimum

separation distanced d = 10−50, 10−8, and 1 over the simulation dataset.

ing the step length. Note that the latter approach requires a con-
servative CCD, while the former can tolerate false negatives.

The integration of a CCD algorithm with collision response al-
gorithms is a challenging problem on its own, which is beyond
the scope of this article. As a preliminary study, to show that our
method can be integrated in existing response algorithm, we ex-
amine two use cases in elastodynamic simulations:

(1) constructing an active set of collision constraints [Harmon
et al. 2008; Verschoor and Jalba 2019; Wriggers 1995], Sec-
tion 7.1;

(2) during a line search to prevent intersections [Li et al. 2020],
Section 7.2.

We leave as future work a more comprehensive study including
how to use our CCD to further improve the physical fidelity of
existing simulators or how to deal with challenging cases such as
sliding contact response.

To keep consistency across queries, we compute the numerical
tolerances (5) and (8) for the whole scene. That is, xmax, ymax, and
zmax are computed as the maximum over all the vertices in the
simulation. In Algorithms 3 and 4 we utilize a broad phase method
(e.g., spatial hash) to reduce the number of candidatesC that need
to be evaluated with out narrow phase CCD algorithm.

7.1 Active Set Construction

In the traditional constraint based collision handling (such as that
of Verschoor and Jalba [2019]), collision response is handled by
performing an implicit timestep as a constrained optimization. The
goal is to minimize a elastic potential while avoiding interpenetra-
tion through gap constraints. To avoid handling all possible colli-
sions during a simulation, a subset of active collisions constraints
CA is usually constructed. This set not only avoids infeasibilities,
but also improves performance by having fewer constraints. There
are many activation strategies, but for the sake of brevity we focus
here on the strategies used by Verschoor and Jalba [2019].

Algorithm 3 shows how CCD is used to compute the active set
CA. Given the starting and ending vertex positions, x0 and x1, we
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ALGORITHM 3: Active Set Construction Using Exact CCD

1: function ConstructActiveSet(x0,x1,δ ,mI )
2: C ← BroadPhase(x0,x1)
3: CA ← ∅
4: for c ∈ C do � Iterate over the collision candidates
5: t ← CCD(x0 ∩ c,x1 ∩ c,δ ,mI )
6: if 0 � t � 1 then

7: CA ← CA ∪ {(c, t )}
8: return CA

9:

10: function CCD(c0, c1,δ ,mI )
11: if c0 and c1 are edges then

12: F ← build Fee from c0 and c1 � Equation (2)
13: else

14: F ← build Fvf from c0 and c1 � Equation (1)

15: return Solve(F ,δ ,mI )

compute the time of impact for each collision candidate c ∈ C . We
use the notation xi∩c to indicate selecting the constrained vertices
from xi . If the candidate c is an actual collision, that is, 0 � t � 1,
then we add this constraint and the time of impact, t , to the active
set, CA.

From the active constraint set the constraints of Verschoor and
Jalba [2019] are computed as

〈n,p1
c − p2

c 〉 � 0,

where n is the contact normal (i.e., for a point-triangle the triangle
normal at the time of impact and for edge-edge the edge-edge cross
product at the time of impact), p1

c is the point (or the contact point
on the first edge), and p2

c is the point of contact on the triangle
(or on the second edge) at the end of the timestep. Note that, this
constraint requires to compute the point of contact, which depends
on the the time-of-impact that can be obtained directly from our
method.

Because of the difficulty for a simulation solver to maintain and
not violate constraints, it is common to offset the constraints such
that

〈n,p1
c − p2

c 〉 � η > 0.

In such a way, even if the η constraint is violated, the real con-
straint is still satisfied. This common trick, implies that the con-
straints need to be activated early (i.e., when the distance between
two objects is smaller than η) that is exactly what our MSCCD
can compute when using d = η. In Figure 12, we use a value of
η = 0.001 m. When using large values of η, the constraint of Ver-
schoor and Jalba [2019] can lead to infeasibilities because all trian-
gles are extended to planes and edges to lines.

Figure 12 shows example of simulations run with different nu-
merical tolerance δ . Changing δ has little effect on the simulation
in terms of run-time, but for large values of δ , it can affect accu-
racy. We observe that for a δ � 10−2 the simulation is more likely
to contain intersections. This is most likely due to the inaccuracies
in the contact points used in the constraints.

Fig. 12. An elastic simulation using the constraints and active set method

of Verschoor and Jalba [2019]. From an initial configuration (left) we sim-

ulate an elastic torus falling on a fixed cone using three values of δ (from

left to right: 10−1, 10−3, 10−6). The total runtime of the simulation is af-

fected little by the change in δ (24.7, 25.2, and 26.2 s from left to right

compared to 32.3 s when using FPRF). For δ = 10−1, inaccuracies in the

time-of-impact lead to inaccurate contact points in the constraints and,

ultimately, intersections (inset).

7.2 Line Search

A line search is used in a optimization to ensure that every up-
date decreases the energy E. That is, given an update, Δx , to the
optimization variable x , we want to find a step size α such that
E (x + αΔx ) < E (x ). This ensure that we make progress toward a
minimum.

When used in a line search algorithm, CCD can be used to pre-
vent intersections and tunneling. This requires modifying the max-
imum step length to the time of impact. As observed by Li et al.
[2020], the standard CCD formulation without minimal separation
cannot be used directly in a line search algorithm. Let t� the ear-
liest time of impact (i.e., F (t�, ũ, ṽ ) = 0 for some ũ, ṽ and there
is no collision between 0 and t�) and assume that the energy at
E (x0 + t

�Δx ) < E (x0) (Algorithm 4, line 22). In this case the step
α = t� is a valid descent step that will be used to update the po-
sition x in outer iteration (e.g., Newton optimization loop). In the
next iteration, the line search will be called with the updated posi-
tion and the earliest time of impact will be zero since we selected
t� in the previous iteration. This prevents the optimization from
making progress because any direction Δx will lead to a time of
impact t = 0. To avoid this problem we need the line search to find
an appropriate step-size α along the update direction that leaves
“sufficient space” for the next iteration, so that the barrier in [Li
et al. 2020] will be active and steer the optimization away from the
contact position. Formally, we aim at finding a valid CCD sequence

{ti } such that

ti < ti+1, lim
i→∞

ti = t�, and ti/ti+1 ≈ 1.

The first requirement ensures that successive CCD checks will re-
port an increasing time, the second one ensures that we will con-
verge to the true minimum, and the last one aims at having a
“slowly” convergent sequence (necessary for numerical stability).
Li et al. [2020] exploit a feature of FPRF to simulate a minimal sep-
aration CCD: In this work, we propose to directly use our MSCCD
algorithm (Section 6).

Constructing a Sequence. Let 0 < p < 1 be a user-defined toler-
ance (p close to 1 will produce a sequence {ti } converging faster)
and di be the distance between two primitives. We propose to set
d = pdi , and ensure that no primitive are closer than d . Without
loss of generality, we assume that F (x +Δx ) = 0, that is, taking the
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ALGORITHM 4: Line Search with Exact CCD

1: function LineSearch(E,x0,Δx ,p,δ ,mI )
2: x1 ← x0 + Δx
3: C ← BroadPhase(x0,x1) � Collision candidates
4: α ← 1
5: di , ρi ← Distance(C )
6: Compute ϵi from (8)
7: d ← max(pdi ,δ )
8: while p < (d − δ − ϵi − ρi )/d do

9: p ← p/2
10: d ← pdi

11: δi ← δ
12: for c ∈ C do � α is bounded by earliest time-of-impact
13: t , δ̄i ←MSCCD(x0 ∩ c,x1 ∩ c,d,α ,δ ,mI )
14: α ← min(t ,α )
15: δi ← max(δ̄i ,δi )

16: if p < (d − δi − ϵi − ρi )/d then

17: δ ← δi � Repeat with p validated from δi

18: Go to line 8.
19:

20: while α > αmin do � Backtracking line-search
21: x1 ← x0 + αΔx
22: if E (x1) < E (x0) then � Objective energy decrease
23: break

24: α ← α/2

25: return α
26:

27: function MSCCD(c0, c1,d, t ,δ ,mI )
28: if c0 and c1 are edges then

29: F ← build Fee from c0 and c1 � Equation (2)
30: else

31: F ← build Fvf from c0 and c1 � Equation (1)

32: return SolveMSCCD(F , t ,δ ,mI ,d)

full step will lead to contact. By taking successive steps in the same
direction, di will shrink to zero ensuring ti to converge to t�. Sim-
ilarly we will obtain a growing sequence ti since d decreases as we
proceed with the iterations. Finally, it is easy to see thatp = ti/ti+1,
which can be close to 1.

To account for the aforementioned problem, we propose to use
our MSCCD algorithm to return a valid CCD sequence when em-
ployed in a line search scenario. For a step i , we define δ i as the tol-
erance, ϵi the numerical error (8), and ρi as the maximum numer-
ical error in computing the distances di from the candidates set C
(line 5). ρi should be computed using forward error analysis on the
application-specific distance computation: Since the applications
are not the focus of our article, we used a fixed ρi = 10−9, and we
leave the complete forward analysis as a future work. (We note that
our approximation might thus introduce zero length steps, this
however did not happen in our experiments.) Ifdi−(δi+ϵi+ρi ) > d ,
then our MSCCD is guaranteed to find a time of impact larger than
zero. Thus, if we setd = pdi (line 7), then we are guaranteed to find
a positive time of impact if

di >
δi + ϵi + ρi

1 − p .

To ensure that this inequality holds, we propose to validate p be-
fore using the MSCCD with δ (line 8), find the time of impact and
the actual δi (line 12), and check if the used p is valid (line 16). In
casep is too large, we divide it by two until it is small enough. Note
that, it might be that

di < δi + ϵi + ρi ,

in this case we can still enforce the inequality by increasing the
number of iterations, decreasing δ , or using multi-precision in the
MSCCD to reduce ϵi . However, this was never necessary in any of
our queries, and we thus leave a proper study of these options as
a future work.

As visible from Table 2, our MSCCD slows down as d grows.
Since the actual minimum distance is not relevant in the line
search algorithm, our experiments suggest to cap it at δ (line 7). To
avoid unnecessary computations and speedup the MSCCD compu-
tations, our algorithm, as suggested by Redon et al. [2002], can be
easily modified to accept a shorter time interval (line 13): It only
requires to change the initialization of I (Algorithm 2 line 3). These
two modifications lead to a 8× speedup in our experiments. We re-
fer to this algorithm with MSCCD (i.e., Algorithm 2 with MSCDD,
Section 6.1, and modified initialization of I ) as SolveMSCCD.

Figure 13 shows a simulation using our MSCCD in line search to
keep the bodies from intersecting for different δ . As illustrated in
the previous section, the effect of δ is negligible as long as δ � 10−3.
Timings vary depending on the maximum number of iterations. Be-
cause the distance d varies throughout the simulation, some steps
take longer than others (as seen in Figure 11). We note that if we
use the standard CCD formulation F = 0, then the line search gets
stuck in all our experiments, and we were not able to find a solu-
tion. Note that for a line search based method it is crucial to have a
conservative CCD/MSCCD algorithm: The videos in the additional
material shows that a false negative leads to an artefact in the
simulation.

8 LIMITATIONS AND CONCLUDING REMARKS

We constructed a benchmark of CCD queries and used it to
study the properties of existing CCD algorithms. The study
highlighted that the multivariate formulation is more amenable
to robust implementations, as it avoids a challenging filtering
of spurious roots. This formulation, paired with an interval root
finder and modern predicate construction techniques leads to a
novel simple, robust, and efficient algorithm, supporting minimal
separation queries with runtime comparable to state-of-the-art,
non conservative, methods.

While we believe that it is practically acceptable, our algorithm
still suffers from false positive and it will be interesting to see if
the multivariate root finding could be done exactly with reason-
able performances, for example employing expansion arithmetic
in the predicates. Our definition of minimal separation distance is
slightly different from the classical definition, and it would be in-
teresting to study how to extend out method to directly support
Euclidean distances. Another interesting venue for future work is
the extension of our inclusion function to non-linear trajectories
and their efficient evaluation using static filters or exact arithmetic.

Our benchmark focuses only on CPU implementations: reimple-
menting our algorithm on a GPU with our current guarantees is a
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Fig. 13. An example of an elastic simulation using our line search (Sec-

tion 7.2) and the method of Li et al. [2020] to keep the bodies from in-

tersecting. An octocat is falling under gravity onto a triangulated plane.

From left to right: the initial configuration, the final frame with δ = 10−3,

δ = 10−4.5, δ = 10−6 all with a maximum of 106 iterations. There are no

noticeable differences in the results, and the entire simulations takes 63.3,

67.9, and 67.0 s from left to right (a speed up compared to using FPRF,

which takes 102 s). ©Brian Enigma under CC BY-SA 3.0.

major challenge. It will require to control the floating-point round-
ing on the GPU (and compliant with the IEEE floating-point stan-
dard), to ensure that the compiler does not reorder the operations
or skip the computation of temporaries. Additionally it would re-
quire to recompute the ground truth and the numerical constants
for single precision arithmetic, as most GPUs do not yet support
double computation. This is an exciting direction for future work
to further improve the performance of our approach.

We will release an open-source reference implementation of our
technique with an MIT license to foster adoption of our technique
by existing commercial and academic simulators. We will also re-
lease the dataset and the code for all the algorithms in our bench-
mark to allow researchers working on CCD to easily compare the
performance and correctness of future CCD algorithms.

APPENDICES

A DATASET FORMAT

To avoid any loss of precision we convert every input floating-
point coordinate in rationals using GMP [Granlund and the GMP
Development Team 2012]. This conversion is exact since every
floating point can be converted in a rational number, as long as
the numerator and denominator are arbitrarily large integers. We
then store the numerator and denominator as a string since the
numerator and denominator can be larger than a long number. To
retrieve the floating point number we allocate a GMP rational num-
ber with the two strings and convert it to double.

In summary, one CCD query is represented by a 8 × 7 matrix
where every row is one of the 8 CCD input points, and the columns
are the interleaved x-, y-, and z-coordinates of the point, repre-
sented as numerator and denominator. For convenience, we ap-
pended several such matrices in a common CSV file. The last col-
umn represents the result of the ground truth. For instance a CC
query between p0

1,p
0
2,p

0
3,p

0
4 and p1

1,p
1
2,p

1
3,p

1
4 is represented as
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n
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1x
d
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1
y
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T ,

where pt
ix
n

and pt
ix
d

are respectively the numerator and denomina-

tor of the x-coordinate of p, and T is the same ground truth. The
dataset and a query viewer can be downloaded from the NYU Fac-
ulty Digital Archive.

B EXAMPLE OF DEGENERATE CASE NOT PROPERLY

HANDLED BY [Brochu et al. 2012]

Let

p0 = [0.1, 0.1, 0.1], v0
1 = [0, 0, 1], v0

2 = [1, 0, 1], v0
3 = [0, 1, 1],

p1 = [0.1, 0.1, 0.1], v1
1 = [0, 0, 0], v1

2 = [0, 1, 0], v1
3 = [1, 0, 0]

(9)
be the input point and triangle. Checking if the point intersects the
triangle is equivalent to check if the prism shown in Figure 14 con-
tains the origin. However, the prism contains a bilinear face that
is degenerate (it looks like a “hourglass”). The algorithm proposed
in [Brochu et al. 2012] does not consider this degenerate case and
erroneously reports no collision.

Fig. 14. Prism resulting from the input points and triangle in (9). The origin

is marked by the red dot.

C EXAMPLE OF INFLECTION POINT NOT PROPERLY

HANDLED BY [Tang et al. 2014]

Let

p0 = [1, 1, 0], v0
1 = [0, 0, 5], v0

2 = [2, 0, 2], v0
3 = [0, 1, 0],

p1 = [1, 1, 0], v1
1 = [0, 0, −1], v1

2 = [0, 0, −2], v1
3 = [0, 7, 0]

be the input point and triangle. Checking if they intersect at time
t is equivalent to finding the roots of

−72t3 + 120t2 − 44t + 3.

To apply the method in Tang et al. [2014] we need to rewrite the
polynomial in form of Tang et al. [2014, Equation (1)]:

1B3
0 (t ) − 35

3
B3

1 (t ) +
82

3
B3

2 (t ) + 14B3
3 (t ).

Their algorithm assumes no inflection points in the Bezier curve.
Thus it proposes to split the curve at the eventual inflection point
(as in the case above). The formula proposed in Tang et al. [2014,
Section 4.1] contains a typo, by fixing it we obtain the inflection
point at:

t =
6k0 − 4k1 + k2

6k0 − 6k1 + 3k2 − k3
=

5

9
.

By using the incorrect formula we obtain t = 155/312, which is
not an inflection point. In both cases, t cannot be computed ex-
actly since it contains a division, and computing it approximately
breaks the assumption of not having inflection points in the Bezier
form. In the reference code, the authors detect the presence of an
inflection point using predicates but do not split the curve (the case
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Table 3. Summary of the Average Runtime in μs (t), Number of False Positive (FP), and Number of False Negative (FN) for FPRF and Our Method

Handcrafted – Vertex-Face MSCCD Handcrafted – Edge-Edge MSCCD Simulation – Vertex-Face MSCCD Simulation – Edge-Edge MSCCD
FPRF Ours FPRF Ours FPRF Ours FPRF Ours

d t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN t FP FN

10−2 2.41 1.8K 4 18.86K 2.6K 0 1.16 3.3K 19 9.64K 4.8K 0 8.04 869.1K 1 12.04 8.1M 0 8.01 1.1M 0 19.12 8.3M 0
10−8 4.53 83 3 1.60K 159 0 0.60 160 28 3.42K 309 0 8.00 4 2 0.72 8 0 0.77 16 0 0.73 40 0
10−16 2.23 29 69 1.51K 108 0 0.55 45 145 2.92K 214 0 7.78 0 5.2K 0.71 2 0 0.25 0 2.3K 0.72 17 0
10−30 2.24 9 70 1.39K 108 0 0.58 5 147 2.79K 214 0 7.77 0 5.2K 0.66 2 0 0.25 0 2.3K 0.67 17 0
10−100 2.31 9 70 1.43K 108 0 0.80 5 147 2.82K 214 0 7.75 0 5.2K 0.66 2 0 0.25 0 2.3K 0.68 17 0

is not handled). We modified the code (patch attached in the addi-
tional material) to conservatively return a collision in these cases.

Independently from this problem, their reference implementa-
tion returns false negative (i.e. misses collisions) for certain con-
figurations, such as the following degenerate configuration:

p0 = [1, 0.5, 1], v0
1 = [0, 0.57, 1], v0

2 = [1, 0.57, 1], v0
3 = [1, 1.57, 1],

p1 = [1, 0.5, 1], v1
1 = [0, 0.28, 1], v1

2 = [1, 0.28, 1], v1
3 = [1, 1.28, 1].

We could not find out why this is happening, and we do not
know if this is a theoretical or numerical problem, or a bug in the
implementation.

D EFFECT OF δ ON THE INTERVAL-BASED METHODS

UIRF, IRF, and our method have a single parameter δ to control the
size of the interval. Increasing δ will introduce more false positive,
while making the algorithms faster (Figure 15). Note that we limit
the total running time to 24 hours, thus UIRF does not have result
for δ > 10−6 (for δ = 10−6 it takes 1ms per query in average). δ
has a similar effect on the number of false positives for the three
interval based methods, while it has a more significant impact on
the running time for UIRF and IRF.

Fig. 15. Log plot of the effect of the tolerance δ on the running time (top)

and false positives (bottom) for the three (Ours, UIRF, and IRF) interval

based methods on the simulation dataset.

E MINIMUM SEPARATION WITH FPRF

In Table 3, we compare our method with FPRF by changing the
parameter η that mimics minimum separation.
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