
Caching Historical Embeddings in Conversational Search

OPHIR FRIEDER, Georgetown University

IDA MELE, IASI-CNR
CRISTINA IOANA MUNTEAN, ISTI-CNR
FRANCO MARIA NARDINI, ISTI-CNR
RAFFAELE PEREGO, ISTI-CNR
NICOLA TONELLOTTO, University of Pisa

Rapid response, namely low latency, is fundamental in search applications; it is particularly so in interactive search sessions,

such as those encountered in conversational settings. An observation with a potential to reduce latency asserts that conver-

sational queries exhibit a temporal locality in the lists of documents retrieved. Motivated by this observation, we propose

and evaluate a client-side document embedding cache, improving the responsiveness of conversational search systems. By

leveraging state-of-the-art dense retrieval models to abstract document and query semantics, we cache the embeddings of

documents retrieved for a topic introduced in the conversation, as they are likely relevant to successive queries. Our document

embedding cache implements an eicient metric index, answering nearest-neighbor similarity queries by estimating the

approximate result sets returned. We demonstrate the eiciency achieved using our cache via reproducible experiments based

on TREC CAsT datasets, achieving a hit rate of up to 75% without degrading answer quality. Our achieved high cache hit rates

signiicantly improve the responsiveness of conversational systems while likewise reducing the number of queries managed

on the search back-end.

CCS Concepts: · Information systems→ Specialized information retrieval; Search engine architectures and scala-

bility.

Additional Key Words and Phrases: conversational search, similarity search, caching, dense retrieval

1 INTRODUCTION

Conversational agents, fueled by language understanding advancements enabled by large contextualized language
models, are drawing considerable attention [1, 34]. Multi-turn conversations commence with a main topic and
evolve with difering facets of the initial topic or an abrupt shift to a new focus, possibly suggested by the content
of the answers returned [4, 19].

A user drives such an interactive information-discovery process by submitting a query about a topic followed
by a sequence of more speciic queries, possibly aimed at clarifying some aspects of the topic. Documents relevant
to the irst query are often relevant and helpful in answering subsequent queries. This suggests the presence of
temporal locality in the lists of results retrieved by conversational systems for successive queries issued by the
same user in the same conversation. In support of this claim, Figure 1 illustrates a t-SNE [27] bi-dimensional
visualization of dense representations for the queries and the relevant documents of ive manually rewritten

Authors’ addresses: Ophir Frieder, Georgetown University, ophir@ir.cs.georgetown.edu; Ida Mele, IASI-CNR, ida.mele@iasi.cnr.it; Cristina

Ioana Muntean, ISTI-CNR, cristina.muntean@isti.cnr.it; Franco Maria Nardini, ISTI-CNR, francomaria.nardini@isti.cnr.it; Rafaele Perego,

ISTI-CNR, rafaele.perego@isti.cnr.it; Nicola Tonellotto, University of Pisa, nicola.tonellotto@unipi.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2022 Association for Computing Machinery.

1559-1131/2022/12-ART $15.00

https://doi.org/10.1145/3578519

ACM Trans. Web

https://doi.org/10.1145/3578519
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578519&domain=pdf&date_stamp=2022-12-29

• FILL

conversations from the TREC 2019 CAsT dataset [4]. As illustrated, there is a clear spatial clustering among
queries in the same conversation, as well as a clear spatial clustering of relevant documents for these queries.

We exploit locality to improve eiciency in conversational systems by caching the query results on the client
side. Rather than caching pages of results answering queries likely to be resubmitted, we cache documents about
a topic, believing that their content will be likewise relevant to successive queries issued by the user involved in
the conversation. Topic caching is efective in Web search [20] but, as yet, was never explored in conversational
search.

Topic caching efectiveness rests on topical locality. Speciically, if the variety of search domains is limited, the
likelihood that past, and hence potentially cached, documents are relevant to successive searches is greater. In
the Web environment, search engines respond to a wide and diverse set of queries, and yet, topic caching is still
efective [20]; thus, in the conversational search domain where a sequence of searches often focuses on a related
if not on the same speciic topic, topical caching, intuitively, should have even greater appeal than in the Web
environment, motivating our exploration.

Topic 31

Topic 32

Topic 33

Topic 34

Topic 37

Fig. 1. 2D visualization of conversational queries (•) and corresponding relevant documents (×) for 5 CAsT 2019 topics.

To capitalize on the deep semantic relationship between conversation queries and documents, we leverage
recent advances in Dense Retrieval (DR) models [10, 12, 29, 33, 35]. In our DR setting, documents are represented
by low-dimension learned embeddings stored for eicient access in a specialised metric index, such as that
provided by the FAISS toolkit [11]. Given a query embedded in the same multi-dimensional space, online ranking
is performed by means of a top-� nearest neighbor similarity search based on a metric distance. In the worst-
case scenario, the computational cost of the nearest neighbor search is directly proportional to the number of
documents stored in the metric index. To improve end-to-end responsiveness of the system, we insert a client-side
metric cache [6, 8] in front of the DR system aimed at reusing documents retrieved for previous queries in the
same conversation. We investigate diferent strategies for populating the cache at cold start and updating its
content as the conversation topic evolves.
Our metric cache returns an approximate result set for the current query. Using reproducible experiments

based on TREC CAsT datasets, we demonstrate that our cache signiicantly reduces end-to-end conversational
system processing times without answer quality degradation. Typically, we answer a query without accessing the
document index since the cache already stores the most similar documents. More importantly, we can estimate the
quality of the documents present in the cache for the current query, and based on this estimate, decide if querying

ACM Trans. Web

Caching Historical Embeddings in Conversational Search •

the document index is potentially beneicial. Depending on the size of the cache, the hit rate measured on the
CAsT conversations varies between 65% and 75%, illustrating that caching signiicantly expedites conversational
search by drastically reducing the number of queries submitted to the document index on the back-end.

Our contributions are as follows:

• Capitalizing on temporal locality, we propose a client-side document embedding cache C for expediting
conversational search systems;
• We innovate means that assess current cache content quality necessitating document index access only
needed to improve response quality;
• Using the TRECCAsT datasets, we demonstrate responsiveness improvement without accuracy degradation.

The remainder of the paper is structured as follows: Section 2 introduces our conversational search system
architecture and discusses the proposed document embedding cache and the associated update strategies. Section 3
details our research questions, introducing the experimental settings and the experimental methodology. Results
of our comprehensive evaluation conducted to answer the research questions are discussed in Section 4. Section 5
contextualizes our contribution in the related work. Finally, we conclude our investigation in Section 6.

Conversational Search

Back-end

FAISS Index

Conversational

Client

Cache

Conversational

Client

Cache

Fig. 2. Architecture of a conversational search system with client-side caching.

2 A CONVERSATIONAL SYSTEM WITH CLIENT-SIDE CACHING

A conversational search system enriched with our client-side caching is depicted in Figure 2. We adopt a typical
client-server architecture where a client supervises the conversational dialogue between a user and a search
back-end running on a remote server.
We assume that the conversational back-end uses a dense retrieval model where documents and queries are

both encoded with vector representations, also known as embeddings, in the same multi-dimensional latent
space; the collection of document embeddings is stored, for eicient access, in a search system supporting
nearest neighbor search, such as a FAISS index [11]. Each conversational client, possibly running on a mobile
device, deals with a single user conversation at a time, and hosts a local cache aimed at reusing, for eiciency
reasons, the documents previously retrieved from the back-end as a result of the previous utterances of the
ongoing conversation. Reusing previously retrieved, namely cached, results eliminates the additional index access,

ACM Trans. Web

• FILL

reducing latency and resource load. Speciically, the twofold goal of the cache is: 1) to improve user-perceived
responsiveness of the system by promptly answering user utterances with locally cached content; 2) to reduce
the computational load on the back-end server by lowering the number of server requests as compared to an
analogous solution not adopting client-side caching.

In detail, the client handles the user conversation by semantically enriching those utterances that lack context
[19] and encoding the rewritten utterance in the embedding space. Online conversational search is performed in
the above settings by means of top � nearest neighbor queries based on a metric distance between the embedding
of the utterance and those of the indexed documents. The conversational client likewise queries the local cache or
the back-end for the most relevant results answering the current utterance and presents them to the requesting
user. The irst query of a conversation is always answered by querying the back-end index, and the results
retrieved are used to populate the initially empty cache. For successive utterances of the same conversation, the
decision of whether to answer by leveraging the content of the cache or querying the remote index is taken
locally as explained later. We begin by introducing the notation used, continuing with a mathematical background
on the metric properties of queries and documents, and with a detailed speciication of our client-side cache
together with an update policy based on the metric properties of query and document embeddings.

2.1 Preliminaries

Each query or document is represented by a vector in R� , hereinafter called an embedding. LetD = {�1, �2, . . . , ��}

be a collection of � documents represented by the embeddings Φ = {�1, �2, . . . , ��}, where �� = L(��) and
L : D → R� is a learned representation function. Similarly, let �� be a query represented by the embedding
�� = L(��) in the same multi-dimensional space R� .

Similarity functions to compare embeddings exist including inner product [12, 24, 29, 35] and euclidean
norm [13]. We use STAR [35] to encode queries and documents. Since STAR embeddings are ine-tuned for
maximal inner-product search, they cannot natively exploit the plethora of eicient algorithms developed for
searching in Euclidean metric spaces.

To leverage nearest neighbor search and all the eicient tools devised for it, maximum inner product similarity
search between embeddings can be adapted to use the Euclidean distance. Given a query embedding �� ∈ R

�

and a set of document embeddings Φ = {�� } with �� ∈ R
� , we apply the following transformation from R� to

R
�+1 [2, 22]:

�̄� =

[

��
� /∥�� ∥ 0

]�
, �̄� =

[

��� /�
︁

1 − ∥�� ∥2/�2
]�
, (1)

where � = max� ∥�� ∥. In doing so, the maximization problem of the inner product ⟨��, ��⟩ becomes exactly
equivalent to the minimization problem of the Euclidean distance ∥�̄� − �̄� ∥. In fact, we have:

min ∥�̄� − �̄� ∥
2
= min

(

∥�̄� ∥
2 + ∥�̄� ∥

2 − 2⟨�̄�, �̄�⟩
)

= min
(

2 − 2⟨��, ��/�⟩
)

= max⟨��, ��⟩.

Hence, hereinafter we consider the task of online ranking with a dense retriever as a nearest neighbor search task
based on the Euclidean distance among the transformed embeddings �̄ and �̄ in R�+1. Intuitively, assuming � = 2,
the transformation (1) maps arbitrary query and document vectors in R2 into unit-norm query and document

vectors in R3, i.e., the transformed vectors are mapped on the surface of the unit sphere in R3.
To simplify the notation we drop the bar symbol from the embeddings �̄ → � and �̄ → � , and assume that the

learned function L encodes queries and documents directly in R�+1 by also applying the above transformation.

2.2 Nearest neighbor queries and metric distances

Let � be ametric distance function, � : R�+1×R�+1 → R, measuring the Euclidean distance between two embeddings
in R�+1 of valid documents and queries; the smaller the distance between the embeddings, the more similar the
corresponding documents or queries are.

ACM Trans. Web

Caching Historical Embeddings in Conversational Search •

Given a query �� , we are interested in retrieving NN(��, �), i.e., the � Nearest Neighbor documents to �� query
according to the distance function � (·, ·). In the metric space R�+1, NN(��, �) identiies an hyperball B� centered
on�� = L(��) and with radius �� , computed as:

�� = max
�� ∈NN(��,�)

� (��,L(��)) . (2)

The radius �� is thus the distance from �� of the least similar document among the ones in NN(��, �)
1.

We now introduce a new query �� . Analogously, the set NN(��, �) identiies the hyperball B� with radius ��
centered in�� and including the � embeddings closest to�� . If�� ≠ �� , the two hyperballs can be completely
disjoint, or may partially overlap. We introduce the quantity:

�̂� = �� − � (��,��), (3)

to detect the case of a partial overlap in which the query embedding �� falls within the hyperball B� , i.e.,
� (��,��) < �� , or, equivalently, �̂� > 0, as illustrated2 in Figure 3.

<latexit sha1_base64="4lfmj7uPocdUH3GUT6tRDPxupyc=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrJRBJSRaCiDRB5SYkXryyYcOT90t0YKVv6BFio6RMvfUPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP+iYMNYC2yJUoe55YFDJANskSWEv0gi+p7DrTa8yv/uA2sgwuKVZhK4Pk0COpQBKpc4gMnIIw2rNrts5+DJxClJjBVrD6tdgFIrYx4CEAmP6jh2Rm4AmKRTOK4PYYARiChPspzQAH42b5Gnn/CQ2QCGPUHOpeC7i740EfGNmvpdO+kB3ZtHLxP+8fkzjSzeRQRQTBiI7RFJhfsgILdMakI+kRiLIkiOXAReggQi15CBEKsZpL5W0D2fx+2XSOas75/XGTaPWtItmyuyIHbNT5rAL1mTXrMXaTLB79sSe2Yv1aL1ab9b7z2jJKnYO2R9YH99ILpOa</latexit>

ψa

<latexit sha1_base64="Ke+vaM+lAJUfgI1gSpTEVpOKzo4=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJKrIRAsoIGsogkYeUWNH6sgmnnB/crZEiKwVfQQsVHaLlUyj4F2zjAhKmGs3samfHi5Q0ZNufVmlpeWV1rbxe2djc2t6p7u61TRhrgS0RqlB3PTCoZIAtkqSwG2kE31PY8SZXmd95QG1kGNzSNELXh3EgR1IApZLb94HuBKjkcjaAQbVm1+0cfJE4BamxAs1B9as/DEXsY0BCgTE9x47ITUCTFApnlX5sMAIxgTH2UhqAj8ZN8tAzfhQboJBHqLlUPBfx90YCvjFT30sns5Bm3svE/7xeTKMLN5FBFBMGIjtEUmF+yAgt0zaQD6VGIsiSI5cBF6CBCLXkIEQqxmk9lbQPZ/77RdI+qTtn9dOb01rDLpopswN2yI6Zw85Zg12zJmsxwe7ZE3tmL9aj9Wq9We8/oyWr2Nlnf2B9fAO6U5ao</latexit>

Ba

<latexit sha1_base64="9+ip/UhH/hoCgHUz9YOoDV/pkbI=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJKrIRAsoIGsogkYeUWNH6sgmnnB/crZEiKwVfQQsVHaLlUyj4F2zjAhKmGs3samfHi5Q0ZNufVmlpeWV1rbxe2djc2t6p7u61TRhrgS0RqlB3PTCoZIAtkqSwG2kE31PY8SZXmd95QG1kGNzSNELXh3EgR1IApZLb94HuBKjkcjbwBtWaXbdz8EXiFKTGCjQH1a/+MBSxjwEJBcb0HDsiNwFNUiicVfqxwQjEBMbYS2kAPho3yUPP+FFsgEIeoeZS8VzE3xsJ+MZMfS+dzEKaeS8T//N6MY0u3EQGUUwYiOwQSYX5ISO0TNtAPpQaiSBLjlwGXIAGItSSgxCpGKf1VNI+nPnvF0n7pO6c1U9vTmsNu2imzA7YITtmDjtnDXbNmqzFBLtnT+yZvViP1qv1Zr3/jJasYmef/YH18Q274pap</latexit>

Bb
<latexit sha1_base64="DmVU//4OAGCFgWs4xDndsx//B3M=">AAAB+HicbVC7TsNAEDyHVwivACXNiQiJKrJRBJSRaCiDRB5SYkXnyyYcOZ9Pd2ukYOUfaKGiQ7T8DQX/gm1cQMJUo5ld7ewEWgqLrvvplFZW19Y3ypuVre2d3b3q/kHHRrHh0OaRjEwvYBakUNBGgRJ62gALAwndYHqV+d0HMFZE6hZnGvyQTZQYC84wlToDbcUwGFZrbt3NQZeJV5AaKdAaVr8Go4jHISjkklnb91yNfsIMCi5hXhnEFjTjUzaBfkoVC8H6SZ52Tk9iyzCiGgwVkuYi/N5IWGjtLAzSyZDhnV30MvE/rx/j+NJPhNIxguLZIRQS8kOWG5HWAHQkDCCyLDlQoShnhiGCEZRxnopx2ksl7cNb/H6ZdM7q3nm9cdOoNd2imTI5IsfklHjkgjTJNWmRNuHknjyRZ/LiPDqvzpvz/jNacoqdQ/IHzsc3Sb2Tmw==</latexit>

ψb
<latexit sha1_base64="b42Tacdao5k8PYPk48dFTbRwbFY=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrJRBJSRaCiDIA8psaLzZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP+iYMNYC2yJUoe553KCSAbZJksJepJH7nsKuN73K/O4DaiPD4I5mEbo+nwRyLAWnVLrVQ29Yrdl1OwdbJk5BalCgNax+DUahiH0MSChuTN+xI3ITrkkKhfPKIDYYcTHlE+ynNOA+GjfJo87ZSWw4hSxCzaRiuYi/NxLuGzPzvXTS53RvFr1M/M/rxzS+dBMZRDFhILJDJBXmh4zQMu0A2UhqJOJZcmQyYIJrToRaMi5EKsZpKZW0D2fx+2XSOas75/XGTaPWtItmynAEx3AKDlxAE66hBW0QMIEneIYX69F6td6s95/RklXsHMIfWB/f8rSSRw==</latexit>

rb

<latexit sha1_base64="xOr8xoGVhnXoNPOU4Dz8c7ZWOcE=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrJRBJSRaCiDIA8psaL1ZRNOOT90twZFVj6BFio6RMv3UPAv2MYFJEw1mtnVzo4XKWnItj+t0srq2vpGebOytb2zu1fdP+iYMNYC2yJUoe55YFDJANskSWEv0gi+p7DrTa8yv/uA2sgwuKNZhK4Pk0COpQBKpVs9hGG1ZtftHHyZOAWpsQKtYfVrMApF7GNAQoExfceOyE1AkxQK55VBbDACMYUJ9lMagI/GTfKoc34SG6CQR6i5VDwX8fdGAr4xM99LJ32ge7PoZeJ/Xj+m8aWbyCCKCQORHSKpMD9khJZpB8hHUiMRZMmRy4AL0ECEWnIQIhXjtJRK2oez+P0y6ZzVnfN646ZRa9pFM2V2xI7ZKXPYBWuya9ZibSbYhD2xZ/ZiPVqv1pv1/jNasoqdQ/YH1sc38SWSRg==</latexit>

ra

<latexit sha1_base64="Bp/AsmUhkTU0S1A24auQC2Si41E=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrJRBJSRaCiDRB4oiaL1ZZOccn7obo0UWf4KWqjoEC0fQ8G/YBsXkDDVaGZXOztuqKQh2/60SmvrG5tb5e3Kzu7e/kH18KhjgkgLbItABbrngkElfWyTJIW9UCN4rsKuO7/J/O4jaiMD/54WIQ49mPpyIgVQKj0MZkCxTkbuqFqz63YOvkqcgtRYgdao+jUYByLy0CehwJi+Y4c0jEGTFAqTyiAyGIKYwxT7KfXBQzOM88AJP4sMUMBD1Fwqnov4eyMGz5iF56aTHtDMLHuZ+J/Xj2hyPYylH0aEvsgOkVSYHzJCy7QJ5GOpkQiy5MilzwVoIEItOQiRilFaTSXtw1n+fpV0LurOZb1x16g17aKZMjthp+ycOeyKNdkta7E2E8xjT+yZvViJ9Wq9We8/oyWr2Dlmf2B9fAPeaJUU</latexit>

r̂b

<latexit sha1_base64="50Arh7bcF/Vd0G4unMvWIeTaTas=">AAACB3icbVC7TsNAEDyHVwivQEqaExESVWSjCCgjaCiDRB5SbEXryyY55fzQ3RopsvIBfAUtVHSIls+g4F+wQwpImGo0s6udHT9W0pBtf1qFtfWNza3idmlnd2//oHx41DZRogW2RKQi3fXBoJIhtkiSwm6sEQJfYcef3OR+5wG1kVF4T9MYvQBGoRxKAZRJ/XLFHQOlbgA0FqDS69ms7/fLVbtmz8FXibMgVbZAs1/+cgeRSAIMSSgwpufYMXkpaJJC4azkJgZjEBMYYS+jIQRovHQefsZPEwMU8Rg1l4rPRfy9kUJgzDTws8k8pVn2cvE/r5fQ8MpLZRgnhKHID5FUOD9khJZZK8gHUiMR5MmRy5AL0ECEWnIQIhOTrKZS1oez/P0qaZ/XnIta/a5ebdiLZorsmJ2wM+awS9Zgt6zJWkywKXtiz+zFerRerTfr/We0YC12KuwPrI9vOmmZpw==</latexit>

B̂b

Fig. 3. Overlapping hyperballs for NN(��, 10) and NN(�� , 6) with embeddings in R2. Grey squares represent the embeddings

of the 10 nearest neighbor documents to �� .

In this case, there always exists a hyperball B̂� , centered on�� with radius �̂� such that B̂� ⊂ B� . As shown in
the igure, some of the documents in NN(��, �), retrieved for query �� , may belong also to NN(��, �). Speciically,

these documents are all those within the hyperball B̂� . Note that there can be other documents in B� whose

embeddings are contained in B� , but if such embeddings are in B̂� , we have the guarantee that the corresponding
documents are the most similar to �� among all the documents in D [6]. Our experiments will show that the
documents relevant for successive queries in a conversation overlap signiicantly. To take advantage of such
overlap, we now introduce a cache for storing historical embeddings that exploits the above metric properties of
dense representations of queries and documents. Given the representation on the current utterance, the proposed
cache aims at reusing the embeddings already retrieved for previous utterances of the same conversation for

1Without loss of generality, we assume that the least similar document is unique, and we do not have two or more documents at distance ��
from �� .
2The igure approximates the metric properties in a local neighborhood of�� on the (�+1)-dimensional unit sphere, i.e., in its locally-Euclidean

�-dimensional tangent plane.

ACM Trans. Web

• FILL

improving the responsiveness of the system. In the simplistic example depicted in Figure 4, our cache would
answer query �� by reusing the embeddings in B� already retrieved for �� .

2.3 A metric cache for conversational search

Since several queries in a multi-turn conversation may deal with the same broad topic, documents retrieved for
the starting topic of a conversation might become useful also for answering subsequent queries within the same
conversation. The properties of nearest neighbor queries in metric spaces discussed in the previous subsection
suggest a simple, but efective way to exploit temporal locality by means of a metric cache C deployed on the
client-side of a conversational DR system.

Algorithm 1: The CACHE pseudo-code

Input :a metric indexM, a metric cache C, a query cutof � , a cache cutof �� , a query embedding�
Output :a results set R

1 if Empty(C) or Lowuality(� , C) then

2 R ← NN(M,�, ��)

3 Insert(C,R)

4 R ← NN(C,�, �)

5 return R

Our system for CAChing Historical Embeddings (CACHE) is speciied in Algorithm 1. The system receives a
sequence of queries belonging to a user conversation and answers them returning � documents retrieved from
the metric cache C or the metric indexM containing the document embeddings of the whole collection.
When the conversation is initiated with a query �, whose embedding is � , the cache is empty (line 1). The

main indexM, possibly stored on a remote back-end server, is thus queried for top NN(M,�, ��) documents,
with cache cutof �� ≫ � (line 2). Those �� documents are then stored in the cache (line 3). The rationale of using
a cache cutof �� much larger than the query cutof � is that of illing the cache with documents that are likely to
be relevant also for the successive queries of the conversation, i.e., possibly all the documents in the conversation
clusters depicted in Figure 1. The cache cutof �� relates in fact with the radius �� of the hyperball B� illustrated
in Figure 3: the larger �� the larger �� and the possibility of having documents relevant to the successive queries
of the conversation in the hyperball B� . When a new query of the same conversation arrives, we estimate the
quality of the historical embeddings stored in the cache for answering it. This is accomplished by the function
Lowuality(�, C) (line 1). If the results available in the cache C are likely to be of low quality, we issue the query
to the main indexM with cache cutof �� and add the top �� results to C (line 2-3). Eventually, we query the
cache for the � nearest neighbor documents (line 4), and return them (line 5).

Cache quality estimation. The quality of the historical embeddings stored in C for answering a new query is
estimated heuristically within the function Lowuality(�, C) called in line 1 of Algorithm 1. Given the embedding
� of the new query, we irst identify the query embedding�� closest to� among the ones present in C, i.e.,

�� = argmin
�� ∈C

� (�� ,�) (4)

Once�� is identiied, we consider the radius �� of the hyperball B� , depicted in Figure 1, and use Eq. 3 to check if
� falls within B� . If this happen, it is likely that some of the documents previously retrieved for�� and stored in
C are relevant even for � . Speciically, our quality estimation heuristics considers the value �̂ = �� − � (��,�)

introduced in Eq. 3. If �̂ > � , with � ≥ 0 being a hyperparameter of the cache, we answer� with the � nearest

ACM Trans. Web

Caching Historical Embeddings in Conversational Search •

neighbor documents stored in the cache, i.e., theNN(C,�, �) documents; otherwise, we query the main embedding
index in the conversational search back-end and update the cache accordingly. This quality test has the advantage
of eiciency; it simply requires computing the distances between � and the embeddings of the few queries
previously used to populate the cache for the current conversation, i.e., the ones that caused a cache miss and
were answered by retrieving the embeddings from the back-end (lines 2 and 3 of Algorithm 1).

In addition, by changing the single hyperparameter � that measures the distance of a query from the internal
border of the hyperball containing the closest cached query, we can easily tune the quality-assessment heuristic
for the speciic needs. In the experimental section, we propose and discuss a simple but efective technique for
tuning � to balance the efectiveness of the results returned and the eiciency improvement introduced with
caching.

3 RESEARCH QUESTIONS AND EXPERIMENTAL SETTINGS

We now present the research questions and the experimental setup aimed at evaluating the proposed CACHE

system in operational scenarios. That is, we experimentally assess both the accuracy, namely not hindering
response quality, and eiciency, namely a reduction of index request time, of a conversational search system
that includes CACHE. Our reference baseline is exactly the same conversational search system illustrated in
Figure 2 where conversational clients always forward the queries to the back-end server managing the document
embedding index.

3.1 Research uestions

Speciically, in the following we address the following research questions:

• RQ1: Does CACHE provide efective answers to conversational utterances by reusing the embeddings retrieved
for previous utterance of the same conversation?
A. How efective is the quality assessment heuristic used to decide cache updates?
B. To what extent does CACHE impact on client-server interactions?
C. How much memory CACHE requires in the worst case?
• RQ2: How much does CACHE expedite the conversational search process?
A. What is the impact of the cache cutof �� on the eiciency of the system in case of cache misses?
B. How much faster is answering a query from the cache rather than from the remote index?

3.2 Experimental setings

Our conversational search system uses STAR [35] to encode CAsT queries and documents as embeddings with 769
dimensions3. The document embeddings are stored in a dense retrieval system leveraging the FAISS library [11]
to eiciently perform similarity searches between queries and documents. The nearest neighbor search is exact,
and no approximation/quantization mechanisms are deployed.

Datasets and dense representation. Our experiments are based on the resources provided by the 2019, 2020,
and 2021 editions of the TREC Conversational Assistant Track (CAsT). The CAsT 2019 dataset consists of 50
human-assessed conversations, while the other two datasets include 25 conversations each, with an average of 10
turns per conversation. The CAsT 2019 and 2020 include relevance judgements at passage level, whereas for
CAsT 2021 the relevance judgments are provided at the document level. The judgments, graded on a three-point
scale, refer to passages of the TREC CAR (Complex Answer Retrieval), and MS-MARCO (MAchine Reading

3STAR encoding uses 768 values but we added one dimension to each embedding by applying the transformation in Eq. 1.

ACM Trans. Web

• FILL

COmprehension) collections for CAsT 2019 and 2020, and to documents of MS-MARCO, KILT, Wikipedia, and
Washington Post 2020 for CAsT 20214.

Regarding the dense representation of queries and passages/documents, our caching strategy is orthogonal
w.r.t. the choice of the embedding. The state-of-the-art single-representation models proposed in the literature
are: DPR [12], ANCE [29], and STAR [35]. The main diference among these models is how the ine-tuning
of the underlying pre-trained language model, i.e., BERT, is carried out. We selected for our experiments the
embeddings computed by the STAR model since it employs hard negative sampling during ine-tuning, obtaining
better representations in terms of efectiveness w.r.t. ANCE and DPR. For CAsT 2019 and 2020, we generated a
STAR embedding for each passage in the collections, while for CAsT 2021, we encoded each document, up to the
maximum input length of 512 tokens, in a single STAR embedding.

Given our focus on the eiciency of conversational search, we strictly use manually rewritten queries, where
missing keywords or mentions to previous subjects, e.g., pronouns, are resolved by human assessors.

CACHE Conigurations. To answer our research questions, we measure the end-to-end performance of the
proposed CACHE system on the three CAsT datasets. We compare CACHE against the eiciency and efectiveness
of a baseline conversational search system with no caching, always answering the conversational queries by using
the FAISS index hosted by the back-end (hereinafter indicated as no-caching). The efectiveness of no-caching on
the assessed conversations of the three CAsT datasets represents an upper bound for the efectiveness of our
CACHE system. Analogously, we consider the no-caching baseline always retrieving documents via the back-end
as a lower bound for the responsiveness of the conversational search task addressed.

We experiment with two diferent versions of our CACHE system:

• a static-CACHE: a metric cache populated with the �� nearest documents returned by the index for the irst
query of each conversation and never updated for the remaining queries of the conversations;
• a dynamic-CACHE: ametric cache updated at query processing time according toAlg. 1, where Lowuality(��, C)
returns false if �̂� ≥ � (see Eq. 3) for at least one of the previously cached queries, and true otherwise.

We vary the cache cutof �� in {1�, 2�, 5�, 10�} and assess its impact. Additionally, since conversations are
typically brief, e.g., from 6 to 13 queries for the three CAsT datasets considered, for eiciency and simplicity of
design, we forgo implementing any space-freeing, eviction policy should the client-side cache reach maximum
capacity. We assess experimentally that, even without eviction, the amount of memory needed by our dynamic-
CACHE to store the embeddings of the documents retrieved from the FAISS index during a single conversation
suices and does not present an issue. In addition to the document embeddings, we recall that to implement the
Lowuality(·, ·) test, our cache records also the embeddings�� and radius �� of all the previous queries �� of the
conversation answered on the back-end.

Efectiveness Evaluation. The efectiveness of the no-caching system, the static-CACHE, and the dynamic-
CACHE are assessed by using the oicial metrics used to evaluate CAsT conversational search systems [4]:
mean average precision at query cutof 200 (MAP@200), mean reciprocal rank at query cutof 200 (MRR@200),
normalized discounted cumulative gain at query cutof 3 (nDCG@3), and precision at query cutofs 1 and 3
(P@1, P@3). Our experiments report the statistically signiicant diferences w.r.t. the baseline system for � < 0.01

according to the two-sample t-test.
In addition to these standard IR measures, we introduce a new metric to measure the quality of the approximate

answers retrieved from the cache w.r.t. the correct results retrieved form the FAISS index. We deine the coverage
of a query � w.r.t. a cache C and a given query cutof value � , as the intersection, in terms of nearest neighbor
documents, between the top � elements retrieved for the cache C and the exact top � elements retrieved from the

4https://www.treccast.ai/

ACM Trans. Web

https://www.treccast.ai/

Caching Historical Embeddings in Conversational Search •

−0.050 −0.025 0.000 0.025 0.050 0.075 0.100 0.125 0.150

r̂b

0.0

0.2

0.4

0.6

0.8

1.0

co
v
1
0
(q
)

Fig. 4. Correlation between �̂� vs. cov10 (�) for the CAsT 2019 train queries, using static-CACHE, � = 10 and �� = 1� . The

vertical black dashed line corresponds to �̂� = 0.04, the tuned cache update threshold value � used in our experiments.

whole indexM, divided by � :

cov� (�) =
|NN(C,�, �) ∩ NN(M,�, �) |

�
, (5)

where� is the embedding of query �. We report on the quality of the approximate answers retrieved from the
cache by measuring the coverage cov� , averaged over the diferent queries. The higher cov� at a given query
cutof � is, greater is the quality of the approximate � nearest neighbor documents retrieved from the cache. Of
course cov� (�) = 1 for a given cutof � and query � means that we retrieve from the cache or the main index
exactly the same set of answers. Moreover, these answers come out to be ranked in the same order by the distance
function adopted. Besides measuring the quality of the answers retrieved from the cache vs the main index, we
use the metric cov� also to tune the hyperparameter � .
To this end, Figure 4 reports the correlation between �̂� vs. cov10 (�) for the CAsT 2019 train queries, using

static-CACHE and �� = 1� . The queries with cov10 ≤ 0.3, i.e., those with no more than three documents in the
intersection between the static-CACHE contents and their actual top 10 documents, correspond to �̂� ≤ 0.04.
Hence, in our initial experiments, we set the value of � to 0.04 to obtain good coverage igures at small query
cutofs. In answering RQ1.A we will also discuss a diferent tuning of � aimed at improving the efectiveness of
dynamic-CACHE at large query cutofs.

Eiciency Evaluation. The eiciency of our CACHE systems is measured in terms of: i) hit rate, i.e., the
percentage of queries, over the total number of queries, answered directly by the cache without querying the
dense index; ii) average query response time for our CACHE conigurations and the no-caching baseline. The hit
rate is measured by not considering the irst query in each conversation since each conversation starts with an
empty cache, and the irst queries are thus compulsory cache misses, always answered by the index. Finally, the
query response time, namely latency, is measured as the amount of time from when a query is submitted to the
system to the time it takes for the response to get back. To better understand the impact of caching, for CACHE
we measure separately the average response time for hits and misses. The eiciency evaluation is conducted
on a server equipped with an Intel Xeon E5-2630 v3 CPU clocked at 2.40GHz and 192 GiB of RAM. In our tests,
we employ the FAISS5 Python API v1.6.4. The experiments measuring query response time are conducted by

5https://github.com/facebookresearch/faiss

ACM Trans. Web

• FILL

using the low-level C++ exhaustive nearest-neighbor search FAISS APIs. We perform this choice to avoid possible
overheads introduced by the Python interpreter that comes into play when using the standard FAISS high-level
APIs. Moreover, as FAISS is a library designed and optimized for batch retrieval, our eiciency experiments are
conducted by retrieving results for a batch of queries instead of a single one. The rationale of doing this relies
in the fact that, on a back-end level, we can easily assume that queries coming from diferent clients can be
batched together before being submitted to FAISS. The reported response times are obtained as an average of
three diferent runs.

Available Software. The source code used in our experiments is made publicly available to allow the repro-
ducibility of the results6.

4 EXPERIMENTAL RESULTS

We now discuss the results of the experiments conducted to answer the research questions posed in Section 3.

4.1 RQ1: Can we provide efective cached answers?

The results of the experiments conducted on the three CAsT datasets with the no-caching baseline, static-CACHE,
and dynamic-CACHE are reported in Table 1. For each dataset, the static, and dynamic versions of CACHE, we
vary the value of the cache cutof �� as discussed in Sec. 3.2, and highlight with symbol ▼ the statistical signiicant
diferences (two-sample t-test with � < 0.01) w.r.t. the no-caching baseline. The best results for each dataset and
efectiveness metric are shown in bold.

By looking at the igures in the table, we see that static-CACHE returns worse results than no-caching for all
the datasets, most of the metrics, and cache cutofs �� considered. However, in a few cases, the diferences are
not statistically signiicant. For example, we observe that static-CACHE on CAsT 2019 with �� = 10� does not
statistically difer from no-caching for all metrics but MAP@200. The reuse of the embeddings retrieved for the
irst queries of CAsT 2019 conversations is thus so high that even the simple heuristic of statically caching the top
10� embeddings of the irst query allows to answer efectively the following queries without further interactions
with the back-end. As expected, we see that by increasing the number �� of statically cached embeddings from
1� to 10� , we improve the quality for all datasets and metrics. Interestingly, we observe that static-CACHE
performs relatively better at small query cutofs since in column P@1 we have, for 5 times out of 12, results not
statistically diferent from those of no-caching. We explain such behavior by observing again Figure 3: when an
incoming query �� is close to a previously cached one, i.e., �̂� ≥ 0, it is likely that the relevant documents for ��
present in the cache are those most similar to �� among all those in D. The larger is query cutof � , the lower is
the probability of the least similar documents among the ones in NN(��, �) residing in the cache.
When considering dynamic-CACHE, based on the heuristic update policy discussed earlier, efectiveness

improves remarkably. Independently of the dataset and the value of �� , we achieve performance igures that
are not statistically diferent from those measured with no-caching for all metrics but MAP@200. Indeed, the
metrics measured at small query cutofs result in some cases to be even slightly better than those of the baseline
even if the improvements are not statistically signiicant: since the embeddings relevant for a conversation are
tightly clustered, retrieving them from the cache rather than from the whole index in some case reduces noise
and provides higher accuracy. MAP@200 is the only metrics for which some conigurations of dynamic-CACHE
result to perform worse than no-caching. This is motivated by the tuning of threshold � performed by focusing
on small query cutofs, i.e., the ones commonly considered important for conversational search tasks [4].

RQ1.A: Efectiveness of the quality assessment heuristic. The performance exhibited by dynamic-CACHE demon-
strates that the quality assessment heuristic used to determine cache updates is highly efective. To further

6https://github.com/hpclab/caching-conversational-search

ACM Trans. Web

https://github.com/hpclab/caching-conversational-search

Caching Historical Embeddings in Conversational Search •

Table 1. Retrieval performance measured on CAsT datasets with or without document embedding caching. We highlight

with symbol ▼ statistical significant diferences w.r.t. no-caching for � < 0.01 according to the two-sample t-test. Best values

for each dataset and metric are shown in bold.

�� MAP@200 MRR@200 nDCG@3 P@1 P@3 ���10 Hit Rate

CAsT 2019

no-caching ś 0.194 0.647 0.376 0.497 0.495 ś ś

static-CACHE

1K 0.101▼ 0.507▼ 0.269▼ 0.387▼ 0.364▼ 0.40 100%
2K 0.112▼ 0.567▼ 0.304▼ 0.428 0.414▼ 0.47 100%
5K 0.129▼ 0.588 0.316▼ 0.451 0.426▼ 0.56 100%
10K 0.140▼ 0.611 0.338 0.486 0.459 0.62 100%

dynamic-CACHE

1K 0.180▼ 0.634 0.365 0.474 0.482 0.91 67.82%
2K 0.183▼ 0.631 0.366 0.480 0.487 0.93 70.69%
5K 0.186▼ 0.652 0.375 0.503 0.499 0.94 74.14%
10K 0.190 0.655 0.380 0.509 0.505 0.96 75.29%

CAsT 2020

no-caching ś 0.212 0.622 0.338 0.471 0.473 ś ś

static-CACHE

1K 0.112▼ 0.421▼ 0.215▼ 0.312▼ 0.306▼ 0.35 100%
2K 0.120▼ 0.454▼ 0.236▼ 0.351▼ 0.324▼ 0.41 100%
5K 0.139▼ 0.509▼ 0.267▼ 0.394 0.370▼ 0.48 100%
10K 0.146▼ 0.518▼ 0.270▼ 0.394▼ 0.380▼ 0.52 100%

dynamic-CACHE

1K 0.204▼ 0.624 0.339 0.481 0.478 0.91 56.02%
2K 0.203▼ 0.625 0.336 0.481 0.470 0.93 60.73%
5K 0.208 0.622 0.341 0.476 0.479 0.94 62.83%
10K 0.210 0.625 0.339 0.476 0.476 0.96 63.87%

CAsT 2021

no-caching ś 0.109 0.584 0.340 0.449 0.411 ś ś

static-CACHE

1K 0.068▼ 0.430▼ 0.226▼ 0.323▼ 0.283▼ 0.38 100%
2K 0.072▼ 0.461▼ 0.240▼ 0.348▼ 0.300▼ 0.42 100%
5K 0.079▼ 0.508▼ 0.270▼ 0.386 0.338▼ 0.51 100%
10K 0.080▼ 0.503▼ 0.272▼ 0.367▼ 0.338▼ 0.56 100%

dynamic-CACHE

1K 0.106 0.577 0.335 0.443 0.409 0.89 61.97%
2K 0.107 0.585 0.338 0.456 0.411 0.91 63.38%
5K 0.106 0.584 0.334 0.449 0.407 0.92 66.67%
10K 0.107 0.584 0.336 0.449 0.409 0.94 67.61%

corroborate this claim, the ���10 column of Table 1 reports for static-CACHE and dynamic-CACHE the mean
coverage for � = 10 measured by averaging Eq. (5) over all the conversational queries in the datasets. We recall
that this measure counts the cardinality of the intersection between the top 10 elements retrieved from the
cache and the exact top 10 elements retrieved from the whole index, divided by 10. While the ���10 values for
static-CACHE range between 0.35 to 0.62, justifying the quality degradation captured by the metrics reported in
the table, with dynamic-CACHE we measure values between 0.89 and 0.96, showing that, consistently across
diferent datasets and cache conigurations, the update heuristics proposed successfully trigger when the content
of the cache needs refreshing to answer a new topic introduced in the conversation.

To gain further insights about RQ1.A, we conducted other experiments aimed at understanding if the hyperpa-
rameter � driving the dynamic-CACHE updates can be ine-tuned for a speciic query cutof. Our investigation is

ACM Trans. Web

• FILL

−0.050 −0.025 0.000 0.025 0.050 0.075 0.100 0.125 0.150

r̂b

0.0

0.2

0.4

0.6

0.8

1.0

co
v
2
0
0
(q
)

Fig. 5. Correlation between �̂� vs. cov200 (�) for the CAsT 2019 train queries, using static-CACHE and �� = 1� . The vertical

black dashed line corresponds to �̂� = 0.07, the tuned cache update threshold value � used in the experiments.

motivated by the MAP@200 results reported in Table 1 that are slightly lower than the baseline for 5 out of 12
dynamic-CACHE conigurations. We ask ourselves if it is possible to tune the value of � to achieve MAP@200
results statistically equivalent to those of no-caching without losing all the eiciency advantages of our client-side
cache.
Similarly to Figure 4, the plot in Figure 5 shows the correlation between the value of �̂� vs. cov200 (�) for the

CAsT 2019 train queries with static-CACHE, � = 200 and �� = 1� . Even at query cutof 200, we observe a strong
correlation between �̂� and the coverage metrics of Eq. 5: most of the train queries with coverage cov200 ≤ 0.3

have a value of �̂� smaller than 0.07, with a single query for which this rule of thumb does not strictly hold.
Hence, we set � = 0.07 and we run again our experiments with dynamic-CACHE by varying the cache cutof
�� in {1�, 2�, 5�, 10�}. The results of these experiments, conducted with the CAsT 2019 dataset, are reported in
Table 2. As we can see from the igures reported in the table, increasing from 0.04 to 0.07 the value of � improves
the quality of the results returned by the cache at large cutofs. Now dynamic-CACHE returns results that are
always, even for MAP@200, statistically equivalent to the ones retrieved from the whole index by the no-caching
baseline (according to a two-sample t-test for � < 0.01). The improved quality at cutof 200 is of course paid with
a decrease in eiciency. While for � = 0.04 (see Table 1) we measured on CAsT 2019 hit rates ranging from 67.82

to 75.29, by setting � = 0.07 we strengthen the constraint on cache content quality and correspondingly increase
the number of cache updates performed. Consequently, the hit rate now ranges from 46.55 to 58.05, witnessing a
likewise strong eiciency boost with respect to the no-caching baseline.

RQ1.B: Impact of CACHE on client-server interactions. The last column of Table 1 reports the cache hit rate, i.e.,
the percentage of conversational queries over the total answered with the cached embeddings without interacting
with the conversational search back-end. Of course, static-CACHE results in a trivial 100% hit rate since all the
queries in a conversation are answered with the embeddings initially retrieved for answering the irst query. The
lowest possible workload on the back-end is however paid with a signiicant performance drop with respect
to the no-caching baseline. With dynamic-CACHE, instead, we achieve high hit rates with the optimal answer
quality discussed earlier. As expected, the greater the value of �� , the larger the number of cached embeddings
and the higher the hit rate. With �� = 1� , hit rates range between 56.02% to 67.82%, meaning that even with
the lowest cache cutof experimented more than half of the conversation queries in the 3 datasets are answered

ACM Trans. Web

Caching Historical Embeddings in Conversational Search •

Table 2. Retrieval performance on CAsT 2019 of the no-caching baseline and dynamic-CACHE with � = 0.07.

�� MAP@200 MRR@200 nDCG@3 P@1 P@3 ���200 Hit Rate

no-caching ś 0.194 0.647 0.376 0.497 0.495 ś ś

dynamic-CACHE

1K 0.193 0.645 0.374 0.497 0.491 0.83 46.55%
2K 0.193 0.644 0.375 0.497 0.493 0.91 51.15%
5K 0.194 0.645 0.375 0.497 0.493 0.93 54.02%
10K 0.194 0.648 0.375 0.497 0.493 0.94 58.05%

directly by the cache, without forwarding the query to the back-end. For �� = 10� , the hit rate value is in the
interval [63.87% − 75.29%], with more than 3/4 of the queries in the CAsT 2019 dataset answered directly by the
cache. If we consider the hit rate as a measure correlated to the amount of temporal locality present in the CAsT
conversations, we highlight the highest locality present in the 2019 dataset: on this dataset dynamic-CACHE with
�� = 1� achieves a hit rate higher that the ones measured for �� = 10� conigurations on CAsT 2020 and 2021.

RQ1.C: Worst-case CACHE memory requirements. The memory occupancy of static-CACHE is limited, ixed
and known in advance. The worst-case amount of memory required by dynamic-CACHE depends instead on the
value of �� and on the number of cache updates performed during a conversation. The parameter �� establishes
the number of embeddings added to the cache after every cache miss. Limiting the value of �� can be necessary to
respect memory constraints on the client hosting the cache. Anyway, the larger �� is, the greater the performance
of dynamic-CACHE thanks to the increased likelihood that upcoming queries in the conversation will be answered
directly, without querying the back-end index. In our experiments, we varied �� in {1�, 2�, 5�, 10�} always
obtaining optimal retrieval performances thanks to the efectiveness and robustness of the cache-update heuristic.
Regarding the number of cache updates performed, we consider as exemplary cases the most diicult con-

versations for our caching strategy in the three CAsT datasets, namely topic 77, topic 104, and topic 117 for
CAsT 2019, 2020, and 2021, respectively. These conversations require the highest number of cache updates: 6, 7, 6
for �� = 1� and 5, 6, 5 for �� = 10� , respectively. Consider topic 104 of CAsT 2020, the toughest conversation
for the memory requirements of dynamic-CACHE. At its maximum occupancy, after the last cache update,
dynamic-CACHE system stores at most 8 · 1� + 8 ≈ 8� embeddings for �� = 1� and 7 · 1� + 7 ≈ 70� embeddings
for �� = 10� . In fact, at a given time, dynamic-CACHE stores the �� embedding retrieved for the irst query in
the conversation plus �� new embeddings for every cache update performed. Indeed, the total number is lower
due to the presence of embeddings retrieved multiple times from the index on the back-end. The actual number
of cache embeddings for the case considered is 7.5� and 64� for �� = 1� and �� = 10� , respectively. Since each
embedding is represented with 769 loating point values, the maximum memory occupation for our largest cache
is 64� × 769× 4 bytes ≈ 188MB. Note that if we consider the case dynamic-CACHE, �� = 1� , achieving the same
optimal performance of dynamic-CACHE, �� = 10� on CAsT 2020 topic 104, the maximum occupancy of the
cache decreases dramatically to about 28 MB.

4.2 RQ2: How much does CACHE expedite the conversational search process?

We now answer RQ2 by assessing the eiciency of the conversational search process in presence of cache misses
(RQ2.A) or cache hits (RQ2.B).

RQ2.A: What is the impact of the cache cutof �� on the eiciency of the system in case of cache misses? We irst
conduct experiments to understand the impact of �� on the latency of nearest-neighbor queries performed on
the remote back-end. To this end, we do not consider the costs of client-server communications, but only the

ACM Trans. Web

• FILL

retrieval time measured for answering a query on the remote index. Our aim is understanding if the value of ��
impacts signiicantly or not the retrieval cost. In fact, when we answer the irst query in the conversation or
dynamic-CACHE performs an update of the cache in case of a miss (lines 1-3 of Algorithm 1), we retrieve from the
remote index a large set of �� embeddings to increase the likelihood of storing in the cache documents relevant
for successive queries. However, the query cutof � commonly used for answering conversational queries is very
small, e.g., 1, 3, 5, and � ≪ �� . Our caching approach can improve eiciency only if the cost of retrieving from the
remote index �� embeddings is comparable to that of retrieving a much smaller set of � elements. Otherwise,
even if we reduce remarkably the number of accesses to the back-end, every retrieval of a large number of results
for illing or updating the cache would jeopardize its eiciency beneits.

We conduct the experiment on the CAsT 2020 dataset by reporting the average latency (in msec.) of performing
NN(�, ��) queries on the remote index. Due to the peculiarities of the FAISS library implementation previously
discussed, the response time is measured by retrieving the top-�� results for a batch of 216 queries, i.e., the CAsT
2020 test utterances, and by averaging the total response time (Table 3). Experimental results show that the
back-end query response time is approximately 1 second and is almost not afected by the value of �� . This is
expected as exhaustive nearest-neighbor search requires the computation of the distances from the query of all
indexed documents, plus the negligible cost of maintaining the top-�� closest documents in a min-heap. The
result thus conirms that large �� values do not jeopardize the eiciency of the whole system when cache misses
occur.

Table 3. Average response time (msec.) for querying the FAISS back-end (no-caching) or the static-CACHE and dynamic-

CACHE in case of cache hit.

��

1K 2K 5K 10K

no-caching 1,060 1,058 1,061 1,073

static-CACHE 0.14 0.30 0.78 1.59
dynamic-CACHE 0.36 0.70 1.73 3.48

RQ2.B: How much faster is answering a query from the local cache rather than from the remote index? The second
experiment conducted aims at measuring the average retrieval time for querying the client-side cache (line
4 of Algorithm 1) in case of hit. We run the experiment for the two caches proposed, i.e., static-CACHE and
dynamic-CACHE. While the irst one stores a ixed number of documents, the latter employs cache updates that
add document embeddings to the cache during the conversation. We report, in the last two rows of Table 3, the
average response time of top-3 nearest-neighbor queries resulting in cache hits for diferent conigurations of
static-CACHE and dynamic-CACHE. As before, latencies are measured on batches of 216 queries, i.e., the CAsT
2020 test utterances, by averaging the total response time. The results of the experiment show that, in case of a
hit, querying the cache requires on average less than 4 milliseconds, more than 250 times less than querying the
back-end. We observe that, as expected, hit time increases linearly with the size of the static-CACHE. We also
note that dynamic-CACHE shows slightly higher latency than static-CACHE. This is due to the updates of the
cache performed during the conversation that add embeddings to the cache. This result shows that the use of a
cache in conversational search allows to achieve a speedup of up to four orders of magnitude, i.e., from seconds
to few tenths of milliseconds, between querying a remote index and a local cache.
We can now inally answer RQ2, how much does CACHE expedite the conversational search process, by

computing the average overall speedup achieved by our caching techniques on an entire conversation. Assuming

ACM Trans. Web

Caching Historical Embeddings in Conversational Search •

that the average conversation is composed of 10 utterances, the no-caching baseline that always queries the
back-end leads to a total response time of about 10× 1.06 = 10.6 seconds. Instead, with static-CACHE we perform
only one retrieval from the remote index for the irst utterance while the remaining queries are resolved by
the cache. Assuming the use of static-CACHE with 10K embeddings, i.e., the one with higher latency, the total
response time for the whole conversation is 1.06 + (9 · 0.00159) = 1.074 seconds, with an overall speedup of about
9.87× over no-caching. Finally, the use of dynamic-CACHE implies possible cache updates that may increase the
number of queries answered using the remote index. In detail, dynamic-CACHE with 10K embeddings obtains a
hit rate of about 64% on CAsT 2020 (see Table 1). This means that, on average, we forward 1 + (9 · 0.36) = 4.24

queries to the back-end that cost in total 4.24 · 1.06 = 4.49 seconds. The remaining cost comes from cache hits.
Hits are on average 5.76 and require 5.76 · 0.00348 = 0.002 seconds accounting for a total response time for the
whole conversation of 4.242 seconds. This leads to a speedup of 2.5× with respect to the no-caching solution.

The above igures conirm the feasibility and the computational performance advantages of our client-server
solution for caching historical embeddings for conversational search.

5 RELATED WORK

Our contribution relates to two main research areas. The irst, attracting recently signiicant interest, is Conver-
sational Search. Speciically, our work focuses on the ability of neural retrieval models to capture the semantic
relationship between conversation utterances and documents, and, more centrally, with eiciency aspects of neu-
ral search. The second related area is Similarity Caching that was initially investigated in the ield of content-based
image retrieval and contextual advertisement.

Neural approaches for conversational search. Conversational search focuses on retrieving relevant documents
from a collection to fulill user information needs expressed in a dialogue, i.e., sequences of natural-language
utterances expressed in oral or written form [9, 36]. Given the nature of speech, these queries often lack context
and are grammatically poorly formed, complicating their processing. To address these issues, it is natural to exploit
past queries and their system response, if available, in a given conversation to build up a context history, and use
this history to enrich the semantic contents of the current query. The context history is typically used to rewrite
the query in a self-contained, decontextualized query, suitable for ad-hoc document retrieval [15, 17, 19, 28, 31].
Lin et al. propose two conversational query reformulation methods based on the combination of term importance
estimation and neural query rewriting [17]. For the latter, authors reformulate conversational queries into natural
and human-understandable queries with a pretrained sequence-to-sequence model. They also use reciprocal
rank fusion to combine the two approaches yielding state-of-the-art retrieval efectiveness in terms of NDCG@3
compared to the best submission of Text REtrieval Conference (TREC) Conversational Assistant Track (CAsT)
2019. Similarly, Voskarides et al. focus on multi-turn passage retrieval by proposing QuReTeC (Query Resolution
by Term Classiication), a neural query resolution model based on bidirectional transformers and a distant
supervision method to automatically generate training data by using query-passage relevance labels [28]. Authors
incorporate QuReTeC in a multi-turn, multi-stage passage retrieval architecture and show its efectiveness on the
TREC CAsT dataset.

Others approach the problem by leveraging pre-trained generative language model to directly generate the
reformulated queries [18, 26, 32]. Some other studies combine approaches based on term selection strategies
and query generation methods [14, 17]. Xu et al. propose to track the context history on a diferent level, i.e., by
exploiting user-level historical conversations [30]. They build a structured per-user memory knowledge graph to
represent users’ past interactions and manage current queries. The knowledge graph is dynamically updated and
complemented with a reasoning model that predicts optimal dialog policies to be used to build the personalized
answers.

ACM Trans. Web

• FILL

Pre-trained language models, such as BERT [5], learn semantic representations called embeddings from the
contexts of words and, therefore, better capture the relevance of a document w.r.t. a query, with substantial
improvements over the classical approach in the ranking and re-ranking of documents [16]. Recently, several
eforts exploited pre-trained language models to represent queries and documents in the same dense latent vector
space, and then used inner product to compute the relevance score of a document w.r.t. a query.
In conversational search, the representation of a query can be computed in two diferent ways. In one case,

a stand-alone contextual query understanding module reformulates the user query � into a rewritten query
�̂, exploiting the context history � [9], and then a query embedding L(�̂) is computed. In the other case, the
learned representation function is trained to receive as input the query � together with its context history �� ,
and to generate a query embedding L(�, ��) [23]. In both cases, dense retrieval methods are used to compute
the query-document similarity, by deploying eicient nearest neighbor techniques over specialised indexes, such
as those provided by the FAISS toolkit [11].

Similarity caching. Similarity caching is a variant of classical exact caching in which the cache can return
items that are similar, but not necessarily identical, to those queried. Similarity caching was irst introduced
by Falchi et al., where the authors proposed two caching algorithms possibly returning approximate result sets
for k-NN similarity queries [6]. The two caching algorithms difer in the strategies adopted for building the
approximate result set and deciding its quality based on the properties of metric spaces discussed in Section
2. The authors focused on large-scale content-based image retrieval and conducted tests on a collection of one
million images observing a signiicant reduction in average response time. Speciically, with a cache storing
at most 5% of the total dataset, they achieved hit rates exceeding 20%. In successive works, the same authors
analyzed the impact of similarity caching on the retrieval from larger collections with real user queries [7, 8].
Chierichetti et al. propose a similar caching solution that is used to eiciently identify advertisement candidates
on the basis of those retrieved for similar past queries [3]. Finally, Neglia et al. propose an interesting theoretical
study of similarity caching in the oline, adversarial, and stochastic settings [21], aimed at understanding how to
compute the expected cost of a given similarity caching policy.

We capitalize on these seminal works by exploiting the properties of similarity caching in metric spaces
for a completely diferent scenario, i.e., dense retrievers for conversational search. Diferently from image and
advertisement retrieval, our use case is characterized by the similarity among successive queries in a conversation,
enabling a novel solution based on integrating a small similarity cache in the conversational client. Our client-side
similarity cache answers most of the queries in a conversation without querying the main index hosted remotely.
A similar work to our own is the one by Sermpezis et al., where authors propose a similarity-based system for
recommending alternative cached content to a user when their exact request cannot be satisied by the local
cache [25]. The contribution is related because it proposes a client-side cache where similar content is looked for,
although their focus is on how statically ill the local caches on the basis of user proiles and content popularity.

6 CONCLUSION

We introduced a client-side, document-embedding cache for expediting conversational search systems. Although
caching is extensively used in search, we take a closer look at how it can be efectively and eiciently exploited
in a novel and challenging setting: a client-server conversational architecture exploiting state-of-the-art dense
retrieval models and a novel metric cache hosted on the client-side.
Given the high temporal locality of the embeddings retrieved for answering utterances in a conversation, a

cache can provide a great advantage to expedite conversational systems. We initially prove that both queries and
documents in a conversation lie close together in the embedding space and that given this speciic interaction
and query properties, we can exploit the metric properties of distance computations in a dense retrieval context.

ACM Trans. Web

Caching Historical Embeddings in Conversational Search •

We propose two types of caching and compare the results in terms of both efectiveness and eiciency with
respect to a no-caching baseline using the same back-end search solution. The irst is a static-CACHE which
populates the cache with documents retrieved based on the irst query of a conversation only. The second,
dynamic-CACHE, proposes also an update mechanism that comes in place when we determine, via a precise and
eicient heuristic strategy, that the current contents of the cache might not provide relevant results.

The results of extensive and reproducible experiments conducted on CAsT datasets show that dynamic-CACHE
achieves hit rates up to 75% with answers quality statistically equivalent to that of the no-caching baseline. In
terms of eiciency, the response time varies with the size of the cache, nevertheless queries resulting in cache hit
are three orders of magnitude faster than those processed on the back-end (accessed only for cache misses by
dynamic-CACHE and for all queries by the no-caching baseline).

We conclude that our CACHE solution for conversational search is a viable and efective solution, also opening
the door for signiicant further investigation. Its client-side organization permits, for example, to efectively
integrate models of user-level contextual knowledge. Equally interesting is the investigation of user-level,
personalized query rewriting strategies and neural representations.

ACKNOWLEDGMENTS

This work is supported, in part, by the European Union ś Horizon 2020 Program under the scheme łINFRAIA-
01-2018-2019 ś Integrating Activities for Advanced Communitiesž, Grant Agreement n.871042, łSoBigData++:
European Integrated Infrastructure for Social Mining and Big Data Analyticsž (http://www.sobigdata.eu), the
scheme łWorld Leading Data and Computing Technologies 2022ž, Grant Agreement n. 101093026, łEFRA: Extreme
Food Risk Analyticsž, and by the Italian government in the framework of the Progetto PNRR łCN1 - Simulazioni,
calcolo e analisi dei dati ad alte prestazioni - Spoke 1 - Future HPC & Big Dataž.

REFERENCES

[1] Avishek Anand, Lawrence Cavedon, Hideo Joho, Mark Sanderson, and Benno Stein. 2020. Conversational search. In Dagstuhl Reports,

Vol. 9.

[2] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam Koenigstein, Nir Nice, and Ulrich Paquet. 2014. Speeding

up the Xbox Recommender System Using a Euclidean Transformation for Inner-Product Spaces. In Proceedings of the 8th ACM Conference

on Recommender Systems (Foster City, Silicon Valley, California, USA) (RecSys ’14). Association for Computing Machinery, New York,

NY, USA, 257ś264. https://doi.org/10.1145/2645710.2645741

[3] Flavio Chierichetti, Ravi Kumar, and Sergei Vassilvitskii. 2009. Similarity Caching. In Proceedings of the Twenty-Eighth ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems (Providence, Rhode Island, USA) (PODS ’09). Association for Computing

Machinery, New York, NY, USA, 127ś136. https://doi.org/10.1145/1559795.1559815

[4] Jefrey Dalton, Chenyan Xiong, Vaibhav Kumar, and Jamie Callan. 2020. CAsT-19: A Dataset for Conversational Information Seeking. In

Proc. SIGIR. 1985ś1988.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. In Proc. NAACL.

[6] Fabrizio Falchi, Claudio Lucchese, Salvatore Orlando, Rafaele Perego, and Fausto Rabitti. 2008. A Metric Cache for Similarity Search. In

Proc. LSDS-IR. 43ś50.

[7] Fabrizio Falchi, Claudio Lucchese, Salvatore Orlando, Rafaele Perego, and Fausto Rabitti. 2009. Caching Content-Based Queries for

Robust and Eicient Image Retrieval. In Proceedings of the 12th International Conference on Extending Database Technology: Advances

in Database Technology (Saint Petersburg, Russia) (EDBT ’09). Association for Computing Machinery, New York, NY, USA, 780ś790.

https://doi.org/10.1145/1516360.1516450

[8] Fabrizio Falchi, Claudio Lucchese, Salvatore Orlando, Rafaele Perego, and Fausto Rabitti. 2012. Similarity Caching in Large-Scale Image

Retrieval. Inf. Process. Manage. 48, 5 (2012), 803ś818.

[9] Jianfeng Gao, Chenyan Xiong, Paul Bennett, and Nick Craswell. 2022. Neural Approaches to Conversational Information Retrieval.

https://doi.org/10.48550/ARXIV.2201.05176

[10] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin, Janani Padmanabhan, Giuseppe Ottaviano, and Linjun

Yang. 2020. Embedding-Based Retrieval in Facebook Search. In Proc. SIGKDD. 2553ś2561.

[11] J. Johnson, M. Douze, and H. Jegou. 2021. Billion-Scale Similarity Search with GPUs. IEEE Trans. Big Data 7, 03 (2021), 535ś547.

ACM Trans. Web

https://doi.org/10.1145/2645710.2645741
https://doi.org/10.1145/1559795.1559815
https://doi.org/10.1145/1516360.1516450
https://doi.org/10.48550/ARXIV.2201.05176

• FILL

[12] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense

Passage Retrieval for Open-Domain Question Answering. In Proc. EMNLP. 6769ś6781.

[13] Omar Khattab and Matei Zaharia. 2020. ColBERT: Eicient and Efective Passage Search via Contextualized Late Interaction over BERT.

In Proc. SIGIR. 39ś48.

[14] Vaibhav Kumar and Jamie Callan. 2020. Making Information Seeking Easier: An Improved Pipeline for Conversational Search. In

Findings of the Association for Computational Linguistics: EMNLP 2020. Association for Computational Linguistics, Online, 3971ś3980.

https://doi.org/10.18653/v1/2020.indings-emnlp.354

[15] Yongqi Li, Wenjie Li, and Liqiang Nie. 2022. Dynamic Graph Reasoning for Conversational Open-Domain Question Answering. ACM

Trans. Inf. Syst. 40, 4, Article 82 (jan 2022), 24 pages. https://doi.org/10.1145/3498557

[16] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2020. Pretrained Transformers for Text Ranking: BERT and Beyond. arXiv:2010.06467

[17] Sheng-Chieh Lin, Jheng-Hong Yang, Rodrigo Nogueira, Ming-Feng Tsai, Chuan-Ju Wang, and Jimmy Lin. 2021. Multi-Stage Conversa-

tional Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting. ACM Trans. Inf. Syst. 39, 4,

Article 48 (aug 2021), 29 pages. https://doi.org/10.1145/3446426

[18] Hang Liu, Meng Chen, Youzheng Wu, Xiaodong He, and Bowen Zhou. 2021. Conversational Query Rewriting with Self-Supervised

Learning. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 7628ś7632. https:

//doi.org/10.1109/ICASSP39728.2021.9413557

[19] Ida Mele, Cristina Ioana Muntean, Franco Maria Nardini, R. Perego, Nicola Tonellotto, and Ophir Frieder. 2021. Adaptive utterance

rewriting for conversational search. Inf. Process. Manag. 58 (2021), 102682.

[20] Ida Mele, Nicola Tonellotto, Ophir Frieder, and Rafaele Perego. 2020. Topical result caching in web search engines. Inf. Proc. & Man. 57,

3 (2020).

[21] Giovanni Neglia, Michele Garetto, and Emilio Leonardi. 2022. Similarity Caching: Theory and Algorithms. IEEE/ACM Transactions on

Networking 30, 2 (2022), 475ś486. https://doi.org/10.1109/TNET.2021.3126368

[22] Behnam Neyshabur and Nathan Srebro. 2015. On Symmetric and Asymmetric LSHs for Inner Product Search. In Proc. ICML. 1926ś1934.

[23] Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W. Bruce Croft, and Mohit Iyyer. 2020. Open-Retrieval Conversational Question Answering.

Association for Computing Machinery, New York, NY, USA, 539ś548. https://doi.org/10.1145/3397271.3401110

[24] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proc. EMNLP.

3980ś3990.

[25] Pavlos Sermpezis, Theodoros Giannakas, Thrasyvoulos Spyropoulos, and Luigi Vigneri. 2018. Soft Cache Hits: Improving Performance

Through Recommendation and Delivery of Related Content. IEEE Journal on Selected Areas in Communications 36, 6 (2018), 1300ś1313.

https://doi.org/10.1109/JSAC.2018.2844983

[26] Svitlana Vakulenko, Shayne Longpre, Zhucheng Tu, and Raviteja Anantha. 2021. Question Rewriting for Conversational Question

Answering. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (Virtual Event, Israel) (WSDM ’21).

Association for Computing Machinery, New York, NY, USA, 355ś363. https://doi.org/10.1145/3437963.3441748

[27] Laurens van der Maaten and Geofrey Hinton. 2008. Visualizing Data using t-SNE. Journal of Machine Learning Research 9, 86 (2008),

2579ś2605.

[28] Nikos Voskarides, Dan Li, Pengjie Ren, Evangelos Kanoulas, and Maarten de Rijke. 2020. Query Resolution for Conversational Search with

Limited Supervision. Association for Computing Machinery, New York, NY, USA, 921ś930. https://doi.org/10.1145/3397271.3401130

[29] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold Overwijk. 2021. Approximate

Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval. In Proc. ICLR.

[30] Hu Xu, Seungwhan Moon, Honglei Liu, Bing Liu, Pararth Shah, Bing Liu, and Philip Yu. 2020. User Memory Reasoning for Conversa-

tional Recommendation. In Proceedings of the 28th International Conference on Computational Linguistics. International Committee on

Computational Linguistics, Barcelona, Spain (Online), 5288ś5308. https://doi.org/10.18653/v1/2020.coling-main.463

[31] Jheng-Hong Yang, Sheng-Chieh Lin, Chuan-Ju Wang, Jimmy J. Lin, and Ming-Feng Tsai. 2019. Query and Answer Expansion from

Conversation History. In TREC.

[32] Shi Yu, Jiahua Liu, Jingqin Yang, Chenyan Xiong, Paul Bennett, Jianfeng Gao, and Zhiyuan Liu. 2020. Few-Shot Generative Conversational

Query Rewriting. Association for Computing Machinery, New York, NY, USA, 1933ś1936. https://doi.org/10.1145/3397271.3401323

[33] Shi Yu, Zhenghao Liu, Chenyan Xiong, Tao Feng, and Zhiyuan Liu. 2021. Few-Shot Conversational Dense Retrieval. In Proc. SIGIR.

829ś838.

[34] Hamed Zamani, Johanne R Trippas, Jef Dalton, and Filip Radlinski. 2022. Conversational Information Seeking. arXiv:2201.08808 (2022).

[35] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma. 2021. Optimizing Dense Retrieval Model Training with

Hard Negatives. In Proc. SIGIR. 1503ś1512.

[36] Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and W. Bruce Croft. 2018. Towards Conversational Search and Recommendation:

System Ask, User Respond. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (Torino,

Italy) (CIKM ’18). Association for Computing Machinery, New York, NY, USA, 177ś186. https://doi.org/10.1145/3269206.3271776

ACM Trans. Web

https://doi.org/10.18653/v1/2020.findings-emnlp.354
https://doi.org/10.1145/3498557
https://arxiv.org/abs/2010.06467
https://doi.org/10.1145/3446426
https://doi.org/10.1109/ICASSP39728.2021.9413557
https://doi.org/10.1109/ICASSP39728.2021.9413557
https://doi.org/10.1109/TNET.2021.3126368
https://doi.org/10.1145/3397271.3401110
https://doi.org/10.1109/JSAC.2018.2844983
https://doi.org/10.1145/3437963.3441748
https://doi.org/10.1145/3397271.3401130
https://doi.org/10.18653/v1/2020.coling-main.463
https://doi.org/10.1145/3397271.3401323
https://doi.org/10.1145/3269206.3271776

	Abstract
	1 Introduction
	2 A Conversational system with client-side caching
	2.1 Preliminaries
	2.2 Nearest neighbor queries and metric distances
	2.3 A metric cache for conversational search

	3 Research questions and Experimental Settings
	3.1 Research Questions
	3.2 Experimental settings

	4 Experimental Results
	4.1 RQ1: Can we provide effective cached answers?
	4.2 RQ2: How much does CACHE expedite the conversational search process?

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

