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Abstract  
Traumatic brain injury is one of the main causes of mortality and disability worldwide. Traumatic 
brain injury is characterized by a primary injury directly induced by the impact, which progresses 
into a secondary injury that leads to cellular and metabolic damages, starting in the first few 
hours and days after primary mechanical injury. To date, traumatic brain injury is not targetable 
by therapies aimed at preventing and/or limiting the outcomes of secondary damage but only by 
palliative therapies. Nerve growth factor is a neurotrophin targeting neuronal and non-neuronal 
cells, potentially useful in preventing/limiting the outcomes of secondary damage in traumatic 
brain injury. This potential has further increased in the last two decades since the possibility of 
reaching neurotrophin targets in the brain through its intranasal delivery has been exploited. Indeed, 
molecules intranasally delivered to the brain parenchyma may easily bypass the blood-brain barrier 
and reach their therapeutic targets in the brain, with favorable kinetics, dynamics, and safety profile. 
In the first part of this review, we aimed to report the traumatic brain injury-induced dysfunctional 
mechanisms that may benefit from nerve growth factor treatment. In the second part, we then 
exposed the experimental evidence relating to the action of nerve growth factor (both in vitro and 
in vivo, after administration routes other than intranasal) on some of these mechanisms. In the last 
part of the work, we, therefore, discussed the few manuscripts that analyze the effects of treatment 
with nerve growth factor, intranasally delivered to the brain parenchyma, on the outcomes of 
traumatic brain injury.
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Introduction 
Traumatic brain injury (TBI) is sudden damage to the brain resulting from 
external mechanical force, such as impact, severe acceleration/deceleration, 
and blunt force. The global highest incidence rates of TBI between 1990 and 
2006 were in Central Europe, Eastern Europe, and Central Asia. Incidence, 
prevalence, and years of life lived with disability estimate for every cause 
of injury by age, sex, and location for 1990–2016 are available through the 
tool at http://ghdx.healthdata.org/gbd-results-tool. To date, there are no 
pharmaceutical therapies aimed at treating the multiple outcomes of TBI. 
Only palliative care are available that, according to the definition of the 
World Health Organization (https://www.who.int/health-topics/palliative-
care), improves the quality of life of patients, facing the problem associated 
with life-threatening illness, through the prevention and relief of suffering 
by employing early identification, assessment and treatment of pain and 
physical, psychosocial and spiritual problems. 

Nerve growth factor (NGF) is a neurotrophic peptide primarily discovered 
for its ability in regulating the growth and survival of peripheral sensory, 
sympathetic, and central cholinergic neurons. Fifty years of studies have then 
shown that NGF also targets non-neuronal cell populations in the central 
nervous system (CNS), modulating their behavior. This NGF peculiarity 
has laid the foundation for a broad line of pre-clinical and clinical studies 
aimed to investigate its pharmacological potential for the treatment of 
neurodegenerative and neurotraumatic diseases (Manni et al., 2021). This 
potential has further increased in the last two decades since it has been 
demonstrated the possibility of reaching neurotrophin targets in the brain 
through its intranasal delivery, which allows bypassing the blood-brain barrier 
and ensures rapid and extensive spreading of the drug through the brain 
parenchyma (Manni et al., 2021).

This review summarized the current knowledge about specific molecular 
mechanisms that are dysregulated in TBI and may be targeted and modulated 
by NGF treatment, highlighting the possible role that intranasal NGF could 
play in the prevention and/or recovery of acute and chronic TBI outcomes.

Search Strategy
The articles included in this review were retrieved by an electronic search 
of the PubMed database, up to 2021, for literature describing the role of 
NGF on TBI. Dozens of search sessions were conducted, using the phrases 
“traumatic brain injury” and/or “nerve growth factor” combined with one or 
more of following keywords (principal among others): neuroinflammation, 
microglia, astrocyte, beta-amyloid, tau, mitochondria, oxidative stress, 
excitotoxicity, energy metabolism, protein aggregation, protein misfolding, 
intranasal delivery, intra-cerebroventricular, intra-parenchyma, therapeutic 
target. Articles were included if they were deemed to contribute to the 
understanding of the link between TBI and NGF and the therapeutic potential 
of the latter in counteracting or overcoming the disabling outcomes of TBI.

Molecular Mechanisms Involved in Primary and 
Secondary Traumatic Brain Injury
TBI is made up of two closely connected phases. Primary injury occurs at the 
moment of trauma and is directly induced by the force of the impact which 
mechanically destroys blood vessels and cellular membranes, produces axonal 
sharing, and may damage the blood-brain barrier and meninges. Secondary 
injury is the direct result of primary injury and leads to cellular and metabolic 
damages triggered in the first few hours and days by primary mechanical 
injury (Ng and Lee, 2019). 

TBI excitotoxicity and neuroinflammation
The development of neuroinflammation is one of the main effects of 
secondary injury that encompass the activation of two types of glial cells, 
microglia (Eyolfson et al., 2020) and astrocytes  (Zhou et al., 2020). These cells 
possess the peculiar characteristic of playing a role in both reparative and 
neurodegenerative processes (Kwon and Koh, 2020). This characteristic is due 
to the potential to assume different phenotypes, in response to environmental 
stimuli and the animal’s ability to adapt to the evolution of the early response 
to injury (Kwon and Koh, 2020). In acute post-damage phases, rupture of 
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membranes results in the release of damage-associated molecular patterns, 
priming the brain resident microglia (Simon et al., 2017). Microglia cells are 
the primary mediators of the brain’s innate immune response and react to 
TBI within minutes (Mira et al., 2021). Microglia are highly plastic cells that 
can quickly switch from anti-inflammatory (M2-like) to pro-inflammatory (M1-
like) phenotype and vice-versa depending on the different pathophysiological 
conditions of the microenvironment. Under physiological conditions, microglia 
exist in a surveillance state with branched morphology. In response to TBI, 
microglial cells are activated and assume the pro-inflammatory phenotype, 
with amoeboid morphology (Eyolfson et al., 2020), which has the primary 
function to eradicate cellular and molecular debris. In addition to pro-
inflammatory cytokines (such as interferon-γ, tumor necrosis factor-α, and 
interleukin-1β), activated microglia also produce other neurotoxic products 
after an injury such as nitric oxide and superoxide free radicals that generate 
reactive oxygen species (ROS) and reactive nitrogen species (Mannix and 
Whalen, 2012). In microglia, ROS are generated primarily by NADPH oxidase 
2 which is associated with damage-associated molecular pattern signaling, 
inflammation, and amyloid plaque deposition (Simpson and Oliver, 2020). 
Indeed, although microglia play a pivotal role in the clearance of amyloid-beta 
(Aβ)-plaque, after TBI it is involved in Aβ-plaque deposition both directly, as 
the active microglia exhibit increased expression of γ-secretase (Nadler et al., 
2008), and indirectly, as the microglia-released pro-inflammatory cytokines 
can specifically stimulate γ-secretase activity, concomitant with increased 
production of Aβ (Liao et al., 2004).

In healthy individuals, astrocytes accomplish many structural and support 
functions. They regulate the cerebral perfusion, maintain the brain blood flow 
(Marina et al., 2020), preserve the blood-brain barrier integrity (Kadry et al., 
2020), and regulate neurotransmitter homeostasis, uptaking and metabolizing 
synaptically-released neurotransmitters and releasing their precursors back 
to neurons (Mahmoud et al., 2019). Astrocytes respond to TBI by a process 
commonly referred to as reactive astrogliosis, which involves their structural 
and functional alterations, including hypertrophy and increased expression of 
the intermediate filaments (nestin, vimentin, and glial fibrillary acidic protein) 
(Zhou et al., 2020). In response to TBI, astrocytes not only proliferate but also 
increase their size and form an astroglial scar that is a protective physiological 
mechanism to avoid the spreading of secondary damage to other brain 
regions (Mira et al., 2021). However, astroglial scar often exacerbates 
negative outcomes such as excitotoxicity and neuroinflammation (Zbesko et 
al., 2018). Following TBI, astrocytes are responsible for spontaneous seizure 
and epileptiform activity (Shandra et al., 2019). They strongly contribute to 
the extracellular accumulation of excitatory amino acids, both by increasing 
their release due to cell breakdown and intracellular calcium accumulation 
and by decreasing the glutamate reuptake, which was found downregulated 
in postmortem astrocytes from TBI patients (van Landeghem et al., 2006) 
and TBI animal models (Goodrich et al., 2013). Glutamate accumulation 
also interferes with the physiologic neuronal function, which relies on the 
constant orchestration and integration of excitatory and inhibitory potentials. 
In astrocytes, glutamate is converted to glutamine and returned to its 
presynaptic cell or neighboring γ-aminobutanoic acid (GABA) interneuron for 
conversion back to glutamate and then to GABA, respectively (Guerriero et al., 
2015). The TBI-induced impaired glutamine traveling to GABA interneurons 
may decrease GABA synthesis and impact local inhibition (Guerriero et al., 
2015). Astrocytes also play a pivotal role in the dynamic regulation of cerebral 
circulation (Takahashi, 2022). Having processes whose ends surround blood 
vessels, astrocytes create contact with vascular smooth muscle and vessel 
endothelium and create a physical barrier known as the blood-brain barrier 
(Gollihue and Norris, 2020). Signaling between astrocytes and vascular 
smooth muscle controls the muscle tone regulating the cerebral blood flow 
while signaling between astrocytes and endothelium regulates angiogenesis, 
transport across the blood-brain barrier, and maintenance of tight junctions 
(Takahashi, 2022).

The human brain is a high-energy consuming organ that uses glucose as 
its main source of energy. Glucose reaches different brain areas through 
facilitated diffusion and can be metabolized in the glycolytic pathway or 
stored as glycogen. The anatomical peculiarities and the direct access to 
the vasculature make the astrocytes prone to the uptake of glucose directly 
from the bloodstream supporting energy supply to neurons under conditions 
of a high-energy demand (Deitmer et al., 2019), especially since astrocytes 
represent the major glycogen stores (Deitmer et al., 2019). The final product 
of the glycolytic pathway is pyruvate which is metabolized in the citric acid 
cycle when oxygen is present and alternatively converted to lactate when 
oxygen is lacking. According to the “Astrocyte-to-Neuron Lactate Shuttle” 
hypothesis, lactate is primarily produced by astrocytes in a manner sensitive 
to excitatory neuronal activity. Following TBI, the lactate concentration 
increases in the brain extracellular fluid due to high glycolytic activity 
indicative of hypoxia or mitochondrial dysfunction (Carpenter et al., 2015). 
Furthermore, the injured neurons early following severe TBI are unable to 
pick up and metabolize the increased lactate, resulting in a lactate storm in 
the environment that can be toxic and incompatible with life (Lama et al., 
2014).

TBI and energy metabolism
Mitochondria are important organelles in the life-death balance. Mitochondria 
not only synthesize adenosine 5′-triphosphate (ATP) supporting cellular 
energy needs but also play an important role in cellular calcium buffering, 
ROS regulation, and activation of the apoptotic cascade. Mitochondria 
are dynamic organelles capable of changing shape, size, and organization 
in response to external stimuli (Simmons et al., 2020). A growing body of 

literature from both clinical and experimental brain injury research has shown 
that structural and functional damage to mitochondria is an early event 
after TBI that contributes to cell death and poor cognitive outcome (Fischer, 
2017) and that TBI is characterized by altered mitochondrial dynamics and 
bioenergetics pattern (Simmons et al., 2020). In a physiological system, the 
loss of mitochondrial functions triggers a selective neuroprotective mitophagy 
process, which ensures the clearance of the dysfunctional mitochondria 
through the lysosomal pathway. In neurodegenerative diseases, the 
mitophagy process is hindered by a defective autophagosomal/endosomal/
lysosomal system (Simmons et al., 2020). TBI results in alternate equilibrium 
among mitophagy and increased ROS production, calcium accumulation, 
and release of cytochrome C that can start, drive, or accelerate the cell 
death process (Zhu et al., 2022). The morphological changes of mitochondria 
ensure tethering and joining of two mitochondria through the mechanism 
known as fusion and division and cleavage of mitochondria in the process 
of fission. Functional fusion/fission processes ensure normal mitochondrial 
homeostasis maintaining cell stability and survival. Fission is essential to 
maintain the number and location of mitochondria in case of altered cellular 
energy requirement and clearance of dead mitochondria and is mediated 
by dynamin-related proteins, in particular Drp1, that trigger a signaling 
pathway resulting in mitochondria fragmentation. TBI causes a decrease 
in mitochondrial size and increased Drp1 translocation to mitochondria, 
indicating an increase in fission events (Simmons et al., 2020). Mitochondrial 
fusion requires both outer and inner mitochondrial components, such 
as mitofusin 1 and 2 and optical atrophy protein 1 (Opa1). TBI brains are 
characterized by reduced fusion marker Opa1 (Zakarya et al., 2020). Di Pietro 
et al. (2017) deepen this evidence by showing that mild TBI is characterized 
by increased fusion and concomitantly decreased fission and mitophagy 
processes, while severe TBI is more prone to activate fission and mitophagy, 
paralleled to a remarkable downregulation of fusion.

TBI and protein aggregation
TBI is characterized by the rapid and long-term accumulation of proteins 
which probably reflects the disruption of axonal transport following 
extensive axonal damage (Smith et al., 2003). Although many proteins are 
found accumulating after TBI, amyloid precursor protein and its proteolytic 
products, Aβ peptides, neurofilament proteins, and synuclein proteins have 
aroused greater interest as their accumulation highlights the role of TBI as an 
adjuvant factor in the development of neurodegenerative disorders, such as 
Alzheimer’s disease (AD) and Parkinson’s disease (Smith et al., 2003). Tau is a 
microtubule-associated binding protein that, under physiological conditions, 
provides cytoskeletal support allowing axonal transport dependent on its 
post-translational phosphorylation state. Hyper-phosphorylated tau (hp-
tau) molecules dissociate from microtubules in the axon, translocate to the 
cell body and proximal dendrites, and aggregate into intracellular inclusions 
termed neurofibrillary tangles that are considered the pathological hallmark 
of tauopathies including AD and chronic traumatic encephalopathy among 
others (Edwards et al., 2020). After TBI, hp-tau, and neurofibrillary tangles 
can be detected as early as 6  hours (Smith et al., 2003), especially in the brain 
areas close to the impacted region (Edwards et al., 2020). 

Alpha-synuclein (α-Syn) aggregation is a hallmark of Parkinson’s disease but 
is also a common feature in patients and animal models experiencing the 
outcomes of TBI (Brown and Goldman, 2020; Delic et al., 2020). Physiological 
functions of α-Syn are poorly understood, but evidence has suggested its 
role in synaptic plasticity, dopamine regulation, and membrane trafficking. A 
strict interplay and relationship between aggregated α-Syn and hp-tau has 
been reported and related in general to the establishment of a deleterious 
feed-forward loop responsible for the development and spreading of 
neurodegeneration (Moussaud et al., 2014; Yan et al., 2020), through 
mechanisms such as the generation of severe mitochondrial dysfunctions 
(Feng et al., 2021). 

Extracellular Aβ deposits in the brain are a hallmark of AD. Autopsies of 
young TBI patients show diffuse Aβ plaques similar to those found in AD 
patients close to the impacted region in both grey and white matter regions 
(Ramos-Cejudo et al., 2018). Aβ is released by sequential cleavage in the cell 
membrane of the amyloid precursor protein (APP), physiologically involved 
in synaptogenesis and synaptic plasticity. First, β-secretase removes the 
ectodomain of APP, and then γ-secretase cleaves the remaining C-terminal 
fragment of APP’s transmembrane domain, favoring the translocation of Aβ 
from the cellular membrane to the extracellular space. Aβ plaques enhance 
inflammation, oxidative stress, and the development of cerebral microvascular 
disease, also promoting the loss of microglial cells and the senescence 
of neural stem/progenitor cells by affecting forebrain and hippocampal 
neurogenesis and eliciting a senescence response in associated astrocytes 
(Johnson et al., 2010). Microglia play a central role in Aβ accumulation after 
TBI (Mannix and Whalen, 2012), contributing to the phagocytic clearance of 
Aβ but can also promote its formation through the activation of γ-secretase, 
boosted by the microglial secretion of inflammatory cytokines (Mannix and 
Whalen, 2012).

Nerve Growth Factor for Traumatic Brain Injury 
Management 
The delivery of NGF in clinical studies has been pursued since 1980 for the 
treatment of diseases such as peripheral neuropathies or AD, to provide 
trophic support to damaged, NGF-responsive neurons of the peripheral 
and central nervous system (Aloe et al., 2012). Despite the relative failures 
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of these attempts, mainly related to the invasiveness of pharmacological 
delivery methods and the development of potentially harmful side effects, 
NGF has been studied, in more recent times, for its pharmacological potential, 
first on ophthalmic pathologies (Eftimiadi et al., 2021), and therefore on the 
outcomes of neurotraumas (Manni et al., 2021). For the latter, the rationale 
for the development of NGF-based treatment protocols was founded on: the 
action of NGF on cellular targets in the CNS other than central cholinergic 
neurons (i.e. glial cells, immune cells, and the vascular endothelium) (Manni 
et al., 2021); preclinical and clinical evidence for a neuroprotective action of 
endogenous NGF after TBI (Da Silva Meirelles et al., 2017; Lin et al., 2021); 
the possibility of using delivery methods, namely intranasal inoculation, for 
targeting of CNS structures, which guarantees low invasiveness associated 
with satisfactory safety profiles (Manni et al., 2021). 

There is both preclinical and clinical evidence, which indicates how 
treatment with NGF can positively influence the evolution of clinical pictures 
secondary to TBI (Manni et al., 2021). In recent years, the intranasal route 
of NGF administration has become increasingly important, so much so 
that it is currently the subject not only of preclinical studies but also of 
clinical trials in patients suffering from the outcomes of TBI (EudraCT 
N. 2019-002282-35, https://www.clinicaltrialsregister.eu/ctr-search/
trial/2019-002282-35/IT; NCT01212679, https://www.clinicaltrials.gov/ct2/
show/NCT01212679?term=intranasal+NGF&draw=2&rank=2) (Chiaretti et 
al., 2017). Table 1 summarizes all the manuscripts in which the effect of 
intranasally delivered NGF on the outcomes of TBI has been studied. These 
data have been discussed in the successive chapter “Intranasal NGF and TBI”. 
NGF administered intranasally effectively diffuses into the brain parenchyma, 
via an anterior pathway following the olfactory nerve and a posterior pathway 
through the trigeminal nerve. For details regarding the pharmacological 
characterization of intranasal NGF, the reader is referred to the seminal work 
of the Thorne and Frey group and to a more recent review of our group (Thorne 
and Frey, 2001; Manni et al., 2021). Recent studies have already shown how 
through the intranasal delivery of NGF it is possible to act effectively on 
some of the molecular dysfunctions described up to now and related to the 
progression of brain damage after trauma (Cattaneo and Capsoni, 2019; Manni 
et al., 2021; Figure 1). For some others, it is still necessary to develop an 
adequate preclinical research path, which however is founded on solid rational 
assumptions that will be exposed immediately below.

NGF and neuroinflammation
The first possible benefit deriving from the delivery of NGF to the brain for 
the therapy of TBI entails the reduction of neuroinflammation. NGF itself 
is an anti-inflammatory molecule, capable of modulating the synthesis of 
inflammation mediators and the phenotype of immune cells, during chronic 
inflammation in the peripheral field (Minnone et al., 2017). In the central 
nervous system, it partakes in the regulation of the metabolism and function 
of astrocytes and microglia, both cell populations being involved in the 
generation and deleterious maintenance of neuroinflammation (Colombo 
and Farina, 2016; Kwon and Koh, 2020). NGF regulates the phenotypes 
and functions of astrocytes and microglia (Pöyhönen et al., 2019). In vitro 
studies have shown that NGF stops the cell cycle of astrocytes in the G1 
phase, inhibiting the induction of cyclins and the activation of cyclin-
dependent kinases (Cragnolini et al., 2012; Figure 1), an effect that limits the 
phenomenon of astrogliosis and the formation of the glial scar. 

Intranasal administration of NGF in patients with TBI outcomes induces a 
significant increase in energy metabolism, as demonstrated by the increased 
uptake of the fluorodeoxyglucose tracer shown in the PET-CT scans (Chiaretti 
et al., 2017). Thus, an effect of NGF in the regulation of the metabolic 
interplay between astrocytes and neurons, dysregulated after TBI (Carpenter 
et al., 2015), should not be excluded, even if not yet directly demonstrated. 
Furthermore, the prevalent expression of the p75NTR but not of TrkA was 
demonstrated in the primary culture of astrocytes (Cragnolini et al., 2012). 
Exogenous NGF could therefore compete with endogenous proNGF for the 
activation of this receptor on astrocytes, positively modulating astrocytic 
functions related to neuroreparative processes (Pöyhönen et al., 2019). 
Additionally, NGF directs microglia toward a neuroprotective phenotype (Rizzi 

et al., 2018). Its regulation of the inflammatory response of primary mouse 
microglia was obtained via the activation of the high-affinity receptor TrkA 
(Fodelianaki et al., 2019). In this in vitro model, NGF downregulates LPS-
induced production of pro-inflammatory cytokines and nitric oxide, inhibits 
TLR4-mediated activation of the NF-κB and JNK pathways, and reduces 
microglial glycolysis (Fodelianaki et al., 2019; Figure 1). In primary microglia 
cultures, the regulation of the neuroprotective microglial phenotype by NGF 
also pertains to the increase in membrane dynamics and macropinocytosis 
and the increase in motility (De Simone et al., 2007; Rizzi et al., 2018).  
Moreover, NGF intranasal treatment in AD transgenic mice modulates 
inflammatory proteins such as the soluble tumor necrosis factor-α receptor II 
and the chemokine CXCL12 (Capsoni et al., 2017; Figure 1).

Table 1 ｜ Traumatic brain injury and intranasal nerve growth factor

Citations Species/age Trauma IN-NGF treatment Effects

Tian et al., 2012 Adult rat Modified Feeney’s weight-drop 
model

50 mg/die starting 6 h post-TBI for 14 d Decreased TBI-induced Aβ deposits
Improved TBI-induced functional impairment
Reduced risk of developing AD

Lv et al., 2013 Adult rat Modified Feeney’s weight-drop 
model

5 mg/die starting 6 h post-TBI for 12, 24 
and 72 h

Decreased TBI-increased aquaporin-4 content and brain edema
Reduced apoptosis by up-regulation of Bcl-2 and down-regulation 
of caspase-3

Lv et al., 2014 Adult rat Modified Feeney’s weight-drop 
model

5 mg/die for 3 d before TBI Attenuated TBI-induced Tau hyperphosphorylation
Decreased IL-1β secretion

Young et al., 2015 Adult rat Controlled Cortical Impact 5 mg/die every other day for 7 d, 24 h 
post-TBI

No effects on functional motor recovery after TBI

Chiaretti et al., 2017 Human (4 yr 
old)

Cardiac arrest following a 
severe TBI secondary to a car 
accident

4 cycles of 100 mg/kg with 1-mon inter-
treatment interval through a mucosal 
atomiser device, 6 mon after TBI

Improved functional PET/CT, SPECT/CT and MRI
Enhanced voluntary movements, facial mimicry, phonation, 
attention and verbal comprehension, ability to cry, cough reflex, 
oral motility, feeding capacity, and bowel and urinary functions

Aβ: Amyloid-beta; IN-NGF: intranasal NGF; MRI: magnetic resonance imaging; NGF: nerve growth factor; PET/CT: positron emission tomography/computed tomography; SPECT/CT: 
Single-photon emission computed tomography/computed tomography; TBI: traumatic brain injury.

Figure 1 ｜ Intranasal NGF for TBI management.
Intranasal NGF performs its functions by modulating different nervous cell types: 
microglia (green cells), astrocytes (blue cells), and neurons (yellow cell). (A) TrkA 
challenge by NGF on microglia cells (black solid lines) promotes clearance of Aβ peptides 
reducing Aβ accumulation and plaques-mediated cytotoxic effects. Moreover, TrkA/
NGF signaling (black solid lines) inhibits TLR4-mediated activation of the NF-κB pathway 
(gray dotted lines), thereby downregulating the release of proinflammatory cytokines. 
(B) NGF-mediated activation of p75NTR interferes with astrocyte proliferation by blocking 
(black solid lines) cyclin D1-mediated cell cycle progression to the S phase (gray dotted 
lines). (C) NGF has a pro-angiogenic activity, stimulating the production and the release 
of VEGF. (D) Cell membrane TrkA challenge by NGF promotes upregulation of Bcl-2 and 
downregulation of caspase-3 limiting the mitochondria-mediated apoptosis (black solid 
lines). Furthermore, the challenge of TrkA receptors exposed to mitochondrial membrane 
negatively affects Ca2+ mitochondrial entry and ROS production/release. (E) NGF signaling 
limits tau hyper-phosphorylation, inhibiting aggregation in neurofibrillary tangles (NFTs). 
Furthermore, NGF regulates the levels of APP phosphorylation, thus controlling APP/
TrkA binding, which in turn, by masking the β- and α-secretase cleavage sites, limits the 
formation of Aβ plaques. Black solid lines indicate direct action of the receptor challenge 
by NGF; gray dotted lines show pathways altered by the action of NGF. Aβ: Amyloid beta; 
APP: amyloid precursor protein; Bcl2: B-cell lymphoma 2; NFT: neurofibrillary tangles; 
NGF: nerve growth factor; p75NTR: p75 neurotrophin receptor; ROS: reactive oxygen 
species; TLR4: Toll-like receptor 4; TrkA: tropomyosin receptor kinase A; VEGF: vascular-
endothelial growth factor. 
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NGF and protein aggregation
A further mechanism through which the acute and chronic outcomes of TBI 
can benefit from treatment with NGF pertains to the action of neurotrophin 
on the metabolism, misfolding, and aggregation of proteins such as Aβ, 
tau, and α-Syn. NGF, dampening pro-inflammatory cytokine production by 
microglia in the injured brain, is effective in reducing Aβ accumulation and 
cytotoxic effects by promoting its clearance by microglia (Capsoni et al., 2017). 
Furthermore, a direct interaction between APP and TrkA was demonstrated, 
which may route APP metabolism toward a non-amyloidogenic fate. TrkA 
receptor binding to APP relies on a 20 amino acids long portion of APP, 
located in the juxtamembrane/extracellular domain and comprised between 
β- and α-secretase cleavage sites (Canu et al., 2017a, b). This interaction 
occurs in the plasma membrane, endoplasmic reticulum (ER), Golgi, and 
endocytic vesicles where NGF controls the level of APP/TrkA association, by 
regulating the phosphorylation state of APP (Canu et al., 2017a, b; Figure 
1). Thus, increasing NGF concentration and TrkA activation in the injured 
brain may shift the balance between amyloidogenic and non-amyloidogenic 
metabolism of APP toward the latter, as has been already described in a 
mouse model of AD (Cattaneo and Capsoni, 2019).

On the other hand, both endogenous and exogenous NGFs have been proven 
effective in regulating tau metabolism and post-translational modifications. 
Exogenous NGF regulates tau turnover in PC12 cells (Sadot et al., 1996) and its 
deprivation induces hp-tau (a prodromal of its aggregation in neurofibrillary 
tangle) in the same in vitro model (Nuydens et al., 1997). Pharmacological 
stimulation of endogenous NGF or exogenous NGF delivery was effective in 
reducing tau phosphorylation in the brain of animal models of AD (Congdon 
and Sigurdsson, 2018). Interestingly, the relationship between proNGF 
and NGF in the nervous system plays a central role in the regulation of tau 
metabolism. ProNGF induces hp-tau in vitro, challenging p75NTR and activating 
glycogen synthase kinase-3β (Shen et al., 2018). The increased production 
of proNGF by reactive astrocytes after trauma in the nervous system has 
been demonstrated (Cheng et al., 2020). Moreover, the interaction between 
proNGF and p75NTR participates in the development of the secondary 
brain damage after trauma (Sebastiani et al., 2015), while counteracting 
the activation of p75NTR or blocking proNGF provides neuroprotection 
and preserves sensorimotor function in a mouse model of cortical impact 
(Montroull et al., 2020). Thus, it is conceivable that the exogenous delivery of 
NGF in TBI may shift the proNGF/NGF balance in favor of the mature form of 
neurotrophin, attenuating, among others, the effects of proNGF on hp-tau.

Less is known about the relationship between NGF and α-Syn in TBI. The gene 
expression and protein production of the rat homolog of human α-Syn is up-
regulated after NGF treatment of PC12 cells (Stefanis et al., 2001), indicating 
a possible mechanism for NGF participation in presynaptic plasticity. An 
indirect relationship between normal NGF production in the brain and α-Syn 
metabolism is suggested by the evidence that NGF gene expression, as well as 
NGF-TrkA signaling, are reduced in diseases, such as Parkinson’s disease and 
dementia with Lewy bodies, characterized by the neurotoxic accumulation of 
α-Syn aggregates (Tong et al., 2009). However, to the best of our knowledge, 
a direct relationship between NGF/NGF-signaling deficiency and the 
pathological aggregation of α-Syn has not yet been demonstrated.

NGF and energy metabolism
NGF regulates several mitochondrial functions, thus it can positively affect 
the mitochondrial dysfunction generated by TBI (Simmons et al., 2020). NGF 
receptors are expressed in the mitochondrial compartment and TrkA activation 
protects isolated mitochondria of rat brain cortex from mitochondrial 
permeability transition induced by [Ca2+] (Carito et al., 2012). Moreover, 
NGF activates glutathione redox cycling and suppresses mitochondrial ROS 
production in cultured neurons (Kirkland et al., 2007). Continuous infusion 
of NGF in a rat model of TBI stimulates the activity of antioxidant enzymes 
in brain tissues, attenuating the neuronal damage induced by oxygen-free 
radicals, reducing the severe overload of [Ca2+], and stabilizing its homeostasis 
(Zhou et al., 2003; Figure 1). NGF also protects against neuronal death caused 
by mitochondrial toxins, regulating the gene expression of the transcriptional 
coactivator PGC-1α, a modulator of mitochondrial-related gene expression 
(Chen et al., 2012). Furthermore, a disruption of the cAMP response element-
binding protein activity, such as that described in rat brain after TBI (Atkins et 
al., 2009), decreases the expression of a subset of mitochondrial genes and 
down-regulate mitochondrial respiration (Lee et al., 2005). Improving NGF-
signalling induces, in turn, the phosphorylation of cAMP response element-
binding protein (Sofroniew et al., 2001) with a subsequent decrease in the 
intracellular content of ROS and increased expression of the mitochondrial 
antioxidant enzyme manganese superoxide dismutase (Bedogni et al., 2003). 
It is also worth noting that NGF boosts mitochondrial remodeling in PC12 
cells, inducing higher levels of fission (P-Drp1) and fusion (Opa1 and Mfn2) 
proteins and upregulating Sirt3 and the transcription factors mtTFA and 
PPARγ, which in turn regulate mitochondria biogenesis and metabolism, 
sustaining mitochondrial mass, potential, and bioenergetics (Martorana et 
al., 2018). Such a mechanism, whether active after NGF delivery to the brain, 
may effectively counteract the TBI-induced dysfunctions in mitochondrial 
remodeling (Zakarya et al., 2020).

Positive effects on brain perfusion have been observed after administration 
of NGF to the brain of both laboratory animals and humans (Chiaretti et al., 
2017, 2020; Manni et al., 2021). It is known that NGF has a pro-angiogenic 
activity, regulating the production of vascular endothelial growth factor 
(Manni et al., 2005), a growth factor expressed either by neurons, glia and 
endothelial cells (Ogunshola et al., 2000; Nag et al., 2002) and promoting the 

proliferation and migration of endothelial cells (Graiani et al., 2004; Salis et 
al., 2004; Figure 1). Intranasal NGF is effective in stimulating neo-angiogenesis 
following cerebral infarction in rats, an effect linked to the activation of PI3k/
Akt signaling (Li et al., 2018). Moreover, NGF stimulates the production of 
vasodilating agents, such as nitric oxide (Nizari et al., 2021), promotes the 
innervation of the cerebral vasculature (Isaacson et al., 1990), and affects 
the glial regulation of brain perfusion and metabolism (Rasband, 2016). At 
least some of these possible mechanisms may reasonably be activated after 
intranasal administration of NGF to the brain parenchyma, underlying the 
observed positive effects on brain perfusion, reported after NGF delivery to 
the human brain (Chiaretti et al., 2017, 2020; Manni et al., 2021). 

Intranasal Nerve Growth Factor and Traumatic 
Brain Injury
Intranasal administration of NGF (IN-NGF) in preclinical models of TBI 
(Table 1) indicates that through this pharmacological tool it is possible to 
alter the course of the disease and probably avoid the development of the 
disabilities and suffering that afflict not only patients but also their families 
and caregivers. As summarized in Table 1, only one out of four preclinical 
studies find that IN-NGF is not effective in ameliorating TBI-induced deficits 
(Young et al., 2015). Conversely, IN-NGF in rats subjected to TBI can improve 
Aβ deposition, locomotor activity, and spatial memory (Tian et al., 2012), to 
attenuate the formation of cerebral edema, simultaneously decreasing both 
the production of inflammatory cytokines and the apoptosis mediated by the 
mitochondrial response to trauma (Lv et al., 2013), as well as to counteract 
the hyper-phosphorylation of tau through the inhibition of glycogen synthase 
kinase-3β activity (Lv et al., 2014). In all of these studies, NGF is administered 
in proximity to (immediately before or after) the trauma. The clinical data 
reported up to now (Chiaretti et al., 2017) are instead obtained by treating 
a stabilized and chronic picture, several months after the trauma. The study 
in question highlights how IN-NGF can improve parameters of perfusion, 
metabolism, and brain function (measured by analyzing the EEG), even after 
the chronicization of brain damage and the development of severe disabilities. 
It is however desirable that future NGF-based pharmacology for TBI will 
be developed as a tool for intensive care units, where the neuroprotective 
potential of NGF can be exploited to avoid the spread of injury from trauma 
and the consequent development of severe disabilities. The clinical data 
published so far show how IN-NGF can restore brain perfusion, as well as 
reactivate the metabolic activity of brain cells, which was blunted following 
trauma (Chiaretti et al., 2017). Despite these promising data, mere metabolic 
reactivation may not be sufficient for the recovery of the connectivity and 
therefore the functions of the circuits involved in the damage. It is, therefore, 
necessary to explore the effect of the association between intranasal NGF 
and therapies aimed at activating circuits that connect specific cortical areas 
with their sub-cortical counterparts (among others the cortical-striatal-
thalamic-cortical loop),  to avoid or recover the loss of motor and/or cognitive 
functions. Currently, stimulation through electrical currents (transcranial 
direct current stimulation) or magnetic currents (transcranial magnetic 
stimulation) appear to be promising, capable of modifying and/or stimulating 
the recovery of connectivity between the cortex and specific subcortical areas 
(Polanía et al., 2012; Carmi et al., 2018), an effect that could be facilitated 
by the recovery, promoted by NGF, of brain metabolism and perfusion, 
mitochondrial functions, glial phenotypes, and activity.
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