Consiglio Nazionale delle Ricerche

RemUSINE:
a bridge between empirical and model-based evaluation

when evaluators and users are distant

Fabio Paternd, Giulio Ballardin

Technical Report
CNUCE - B4 - 1999 - 003

RemUSINE: a bridge between empirical and model-based
evaluation when evaluators and users are distant

F.Paternd, G.Ballardin
CNUCE-C.N.R.

Via §.Maria 36
Pisa, Italy

Abstract
There is a lack of computer-aided approaches able to provide a model-based usability
evaluation using empirical data. This paper proposes a solution which allows designers to
remotely evaluate usability of interactive software applications with the support of
automatic tools and the task model of the application.

Keywords: Usability engineering, automatic tools for usability evaluation, model-based design and evaluation.

1. introduction

While it is generally recognised the importance of usability engineering, ie. the usability
evaluation of interactive applications based on the use of structured methods, there is still a
lack of what Nielsen called (Nielsen, 1993) computer-aided usability engineering. Indeed,
despite the many tasks in the usability engineering life cycle that could be performed more
efficiently with computerised tools, a limited number of such automatic tools are available for
this purpose and usually they provide rather limited support. More precisely, work on
providing some tool support for measuring interactive use of an application has been
developed since various years ago (see for example Olsen and Halversen, 1988), however,
less attention has been paid on how to use such an automatic support to identify more
precisely errors in user interactions and, consequently, the problematic parts of a user
interface,

To decide what automatic support should be provided, in our method we started from the
assumption that both empirical data and relevant models can give useful information in
usability evaluation. In the former case it is possible to gather information concerning the real
use of an application whereas in the latter case task or user models provide meaningful
support to evaluate either the specification of a user interface design or the concrete
interactive software artefact. However, there is a lack of proposals able to integrate the
relevant information gathered by these two types of approaches.

Besides, interesting possibilities are created by the continuos penetration of Internet
connections in most working (and not only working) environments. This can have an impact
also on how to perform usability evaluation and give a support for overcoming one common
problem in empirical testing that is the cost required to move users or evaluators to allow
them to meet for performing a usability evaluation €Xperiment,

In this paper we present our solution to these issues which consists of a method, RemUSINE,
that is supported by a relative automatic tool and requires the development of the task model

corresponding to the application considered. This work is based on previous experiences in

this area (Lecerof and Paternd, 1998) and adds a substantial contribution with respect to it

because:

* it supports the possibility of remote usability evaluation (that was not considered in such
previous experiences),

it provides a new method, and a new related automatic tool, able to give richer set of
information, including that concerning a compared analysis of a group of sessions (an
introduction to these new possibilities was given in (Paterno and Ballardin, 1999)),

* it reports on experiences developed in the application of RemUSINE to a real case study
in a an industrial software development environment.

In the paper we first discuss the previous works developed in the usability evaluation area to
indicate where our contribution can be located and how it provides an original contribution
with respect to them, next we introduce the architecture of the environment associated with
RemUSINE, we describe its main phases and then provide examples of results taken from a
real case study, finally, we discuss the advantages of our method and give some concluding
remarks and indications for further work.

2. Related works

Usability engineering (Nielsen, 1993) concerns the development of systematic methods to
support usability evaluation. Various types of approaches have been proposed for this
purpose.

Model-based approaches to usability evaluation use some models, usually task or user
models, to support this evaluation. They often aim (John and Kieras, 1996) to produce
quantitative predictions of how well users will be able to perform tasks with a proposed
design. Usually the designer starts with an initial task analysis and a proposed first interface
design. The designer should then use an engineering model (like GOMS) to find the usability
problems of the interface. While model-based evaluation is useful to highlight relevant
aspects in the evaluation, it can be limiting not considering empirical information because the
possible predictions in some cases can be denied by the real user behaviour. Thus, it is
important to find methods that allow designers to apply ieaningful models to some empirical
information. An attempt in this direction is USAGE (Byrne et al., 1994) that provides a tool
supporting a method where the user actions, required to execute an application action in
UIDE, are analysed by the NGOMSL approach. However this information is still limited with
respect to that contained in the logs of the user actions performed during work sessions by
users. Recently, some work has been developed with the purpose to derive GOMS models
from analysis of user logs (Hudson et al., 1999) whereas our purpose is to use the logs to
analyse possible mismatches between the user behaviour and the application task model.

-In empirical testing the behaviour of real users is considered. It can be very expensive and it

can have some limitations too. It requires long observations of users’ behaviour. Often these
observations are supported by video that can be annotated by some tool. Even observing
video describing user behaviour, either in work places or in usability laboratory, can take a lot
of time to designers (a complete analysis can take more than five times the duration of the
video) and some relevant aspects can still be missed.
In inspection-based techniques to usability evaluation designers analyse a user interface or its
description. Several of these techniques, such as heuristic evaluation, cognitive walkthrough,
and software guidelines, have been found useful but limited because dependent on the ability
of the evaluator or requiring multiple evaluators, or missing some relevant problems (Jeffries
etal., 1991).

In the last years there has been an increasing interest in remote usability evaluation (Hartson

et al., 1996). It has been defined as usability evaluation where evaluators are separated in time

and/or space from users,

This approach has been introduced for many reasons:

© the increasing availability and improvement of network connections, all kind of work
environments are going to be connected to Internet and this implies the use of software
applications and the possibility to exchange information on their use by remote
connections; .

© the cost and the rigidity of traditional laboratory-based usability evaluation, a well
equipped usability laboratory costs a considerable amount of money for the equipment
required and there is the problem that it requires users to move to the laboratory which can
be time-consuming for the users, especially when extensive testing has to be performed,
and in some cases users do not like to move or their time is particularly costly;

© a need for decreasing costs of usability evaluation to make it more affordable, usability
cvaluation should be a fundamental issue in measuring the software quality because if
users have problems than they are not likely to use it even if it is functionally correct.
However, it is not yet in the current practise of most software industries and so such an
introduction is likely to occur only if the use of cheap methods, not requiring expensive
tools (such as eye-gazing tools) is proposed.

‘There are various approaches in remote usability evaluation. One interesting approach is
instrumented or automated data collection for remote evaluation, where tools are used to
collect and return a journal or log of data containing indication of the interactions performed
by the user. These data are analysed later on, for example using pattern recognition
techniques, however usually the results obtained are rather limited for the evaluation of an
interactive application,

We think that task models can provide additional support for analysing such data. However to
this end it is necessary that task models are powerful, non-prescriptive, and flexible. This
means they should be able to describe dynamic and concurrent activities with the possibility
of interruptions among them. To support this analysis, task models should be refined to
indicate precisely how tasks should be performed following the design of the application
considered,

3. The RemUSINE Method

If we consider current approaches, briefly summarised in the introduction, we can notice a

lack of methods that are able at the same time:

 to give designers the possibility to support the evaluation of many users without requiring
a heavy involvement of designers;

¢ to support the evaluation gathering information on the users’ behaviour at their work place
without using expensive equipment;

¢ to apply powerful and flexible task models in the evaluation of logs of user events, thus:
linking model-based and empirical evaluations. Current automatic tools, such as
ErgoLight (Harel, 1999), that support usability evaluation by task models, use simple
notations to specify such models, thus still requiring a strong effort from the evaluator to
identify problematic parts.

These three relevant results are obtained by our RemUSINE method following an approach
that is described in this paragraph.

We aim to evaluate applications that can be used by many users located in different places.
The users’ behaviour can be detected by using automatic logging tools that are able to store in
files all the user-generated events during the work sessions. Logging tools are able to get this
information without disturbing users during their work. This information is analysed with the
support of the task model to identify deviations in users’ behaviours and to understand
whether they are motivated by usability problems.

In order to perform the automatic analysis RemUSINE requires the following input:

the log files with the user interactions, by the support of a logging tool it is possible to
automatically generate a file storing all the events performed by a user during a work
session. One or more of these files have an additional use that is the creation of the log-
task table;

the log-task association table, the purpose of this table is to create an association between
the physical events, that are generated by the user while interacting with the application
considered, and the basic interaction tasks (the tasks that cannot be further decomposed in
the task model and require only one action to be performed). This association is a key
point in our method because through it we can use the task model to analyse the user
behaviour.

the task model, it is specified using the ConcurTaskTrees notation (Paternd, 1999) for
specifying task models.

In our method we can distinguish three phases:

the preparation part, that is mainly the development of the task model (there is an editor
publicly available at hitp:/giove.cnuce.cnrit/ctte.html for this purpose) and the
associalion between physical user-generated events, exiracted by log files, and the basic
interaction tasks of the task model;

the execution of the evaluation tool, during which the tool first elaborates for cach task the
related precondition (if any) from the temporal relationships defined in the task model,
and next uses this information to elaborate its results: the errors performed, task patterns,
duration of the performance of the tasks and so on;

the analysis of the resulis of the evaluation tool, in this phase the designer can provide
suggestions to improve the user interface by using the information generated by the
RemUSINE tool. '

Designer/

ConcurTaskTrees | @ Results
Editor \
. T RemUSINE -

Designer ——# (Preparation) Log-task table Evaluation Method

(RemUSINE)

sern logs

Logging tool

"""""" Application

Usern

Logging tool

Application

User!

Figure 1; The environment allowing evaluators to use RemUSINE.

By analysing the logs generated during users’ sessions, RemUSINE is able to identify user
errors. For example it can detect attempts to activate an interaction that was not allowed
because some precondition was not satisfied or the user selected elements of the user interface
that were not selectable.

A user action is considered an error if it is not useful to support the current task. One problem
is how to identify automatically the tasks that the user intends to perform. To this end the
knowledge of the actions performed by the user can be useful because, for example, if the
user tries to submit an electronic form and s/he does not fill all the mandatory fields, it is
possible to understand what the current user intention is (submitting a form) by detecting the
related action, for example the selection of a Send button. Besides, a similar precondition
error highlights that there is a problem with the user interface, as it probably does not
highlight sufficiently what the mandatory fields of the form are.

4. The preparation part

There are various tools available to collect automatically data on the user-generated events
during an interactive session, for example, JavaStar (http://www.sun.com/suntest/JavaStar/
JavaStar.html) or QCReplay (http://www.centerline.com/productline/qcreplay/qereplay.hitml).
They are able to provide files that indicate the events occurred and when they occurred. The
events considered are mouse click, text input, mouse movements, and similar. When
interaction techniques such as menu, pull-down menu are selected they are able also to
indicate what menu element was selected. The resulting files are editable text files.

Similarly, using the ConcurTaskTrees editor it is possible to save the task model specification
in a file for further modifications and analysis.

In RemUSINE there is a part of the tool that is dedicated to the preparation phase whose main
purpose is to create the association between logs of user events and the basic interaction tasks
of the task model. This association is then used to analyse the user interactions with the
support of the task model.

ype Environment of Securlty] ¢

Sel Operation-Environmant of Securlly Iookug (' Bolk

Click Socurily-set up Environmenl lookup('Panel21 ™) mousefressed(

Click Farward_Taskl |pokup('PaneiZ1") mnuseRaleasad)
loakup("Panel 21" mulliClickd
leokup("Scherma*y menubar).menuf Sicy
toekup(Immaging”).mousePrassed)

ah_tedFieid1 F; Jockup(lmmagine’). mouseReloased)

Click Fleld2de logkup(Immagine'} multiClick(

Click Fleld2se ¢ lookupdWizardQenarazionsChiawi’).destro

nser text_Field2 5 lookup('Scherme").menubar).menufAiul
laokup{'Button2).buttonPress0 b
ookupd'BHelp").butlenPrese(*
iookupWizardGenerazioneChlavi.soulhClan;
inckup{WizardGenerazionaChlsyl).souh{lan

ak_teCF dnokup{"WizardGenerazioneChlavi’).soulh(’]

EClck text_Placedc lnokup("BAvantii").bullonPrassg

Click lext_Placest "

nseH taxt_Place

ah teyiPlacs

Figure 2: The tool support for the preparation part.

In the preparation phase (as you can see in Figure 2) the evaluator can load one log file and
one file with the task model. The lists of elements contained in the two files appear in two
different, parallel columns. In the task-related part only the basic interaction tasks appear, as
they are the only elements that can be associated with logged events. While in the list of basic
tasks each of them is indicated only once, the number of times that one specific event can
appear on the related list depends on the session considered and the number of times the user
performed it during such a session.

The designer then has to select one physical event, and the corresponding basic task, and add
this association to the table containing all of them by the related button. Once a basic task has
been associated with the relative event, it will disappear from the list of tasks that thus
indicates only those tasks that still need to be associated with the relative event. The
associations performed can be displayed by the Associations pull-down menu. In case of
mistakes the designer can remove elements from this list by the Remove button. The
associations can be saved in a file and loaded later on for further expansions or for the

evaluation phase.

This association can be made only once to evaluate as many user sessions with the considered
application as desired. Indeed, the log/task table contains the information required by the
evaluation tool by mapping all the possible interaction basic tasks with the corresponding
user-generated events. Each session is associated with one trace of events belonging to the set
of input events that can be generated interacting with the interactive application considered.
Thus, to evaluate a new session it is sufficient to provide the relative log file and, exploiting
the log/task association table previously created, the tool can analyse such a session with the
support of the task model. This is possible because, for each event in the log, the tool, by

analysing the association table, can immediately indicate whether there is a task associated
with it and, in the positive case, what task it is.

5. The execution of the evaluation tool

Our method can generate a wide variety of resulis that can be useful for the evaluator. There

are two main types of information that RemUSINE provides:

e interactive analysis of a log of events, it is possible to interactively execute the log of
events with RemUSINE. For each event the tool is able to indicate what task is associated
with it, what other tasks were available when it occurred, if the task associated had
preconditions verified when the event occurred, and, in case such preconditions were not
satisfied, what tasks had to be performed before in order to satisfy them.

Re! valuation Part

ok tevt_PasswWerdsc, Insert taxi_PassWord, Click 7_Recardieyl, Cllck Cancel_Recordkey!, Click Back, 4

a7} Cuirent log : J8.joskup(‘TextFislds) typestring{clain”, 0, O);

The task Insert iext_PassWord COMPLETEDI

Tagks enabled after this action were:

tab_texPassWord, Click 1ext_CPaseWorddc, Click text_CPassWordse, Click ?_Recordkayi, Click Cancel_RecordKeyl, Click Ba

88) Cument log : JS loakup(TextField).action;
Tha svent JS.lookup{"TextFie!d6").acllonQ; is not assaciated with anylask

98} Gument log : J5Jookup(TextField7").mousePrassad(12,13,16);

The lask Clicktext_CPsss\Wordde COMPLETED!

Tasks enabled atter this actlon were;

Insert tex_CPassword, Click 7_RecardKey!, Click Canegl_Recordkey!, Click Back_Recordiey?, Press Cross, Set Operatlon-E

100) Cumrerd log :JS.lookup{"TextFiald7").mouseReleased(13,13,18)

Figure 3: An example of interactive analysis of a log.

o summary and statistical information on the user sessions, such as duration, number of
tasks failed and completed, number of errors, number of scrollbar or windows moved (see
Figure 4), more detailed information for the tasks considered, and some graphical
representations of such results. When tasks are counted we consider all the tasks in the
ConcurTaskTrees specification thus including both basic and high levels tasks.

12 RamUSINE - Evaluation Part

fymber of logs= & Average Stand. Devialion

otal log Tima (sac) 2313.174 B717788
198 8717768
66.4 33.B9E864
58.6 32904844
Pracong, Enors 18 4472138
iscro(!Bar Movad 0e 0.6
indows Movad id 0.4B285797

Figure 4: An example of general information of a set of user sessions.

The more detailed information about the tasks include:

®

the display of the accomplished tasks and how many times they are performed. The
display of the tasks the user tried to perform but failed because their preconditions were
not satisfied, and how many times each task failed.

the display of the tasks the user never tried to perform, this information can be useful to
identify parts of the user interface that are either useless or difficult to achieve for the
users; this result is more difficult to obtain with other approaches based on observations.
display of all the errors divided into precondition errors and others.

the display of the task patterns found (specific sequences of tasks) among the
accomplished tasks (see Figure 5). The presentation shows first the frequency and next the
pattern, and orders them by frequency. Patterns are useful to identify sequence of tasks
frequently performed by users. This information can be useful to try to improve the design
so as to speed-up the performances of such sequences of tasks

the display of the entire result from the evaluation in temporal order. It is also possible to
save this result in a file and load at a later moment.

B 132 RemUSINE - Evaluation Pori

ATTERNS FOURD

umber of Tasks ~ Frequanty Task patiern

2 Insen e CF | Insed lext_Field2
Foung In griottict.log(2)

2 ngentex_Fleld2 | Inser text_CF
Found in groilic1.1oa(2)

Figure 5: An example of task patterns detected

The different graphs, showing the data from the evaluation in different manners, are:

(see for exa_mp_ie Figure 7).

the Tasks/Time chart graph with the tasks on the x-scale and how long they took to
perform on the y-scale (see Figure 6). To make such a representation more readable we
split it into two parts: that related to basic tasks and that related to high level tasks. In case
of analysis of a group of sessions, for each task the related bar chart highlights the fastest,
the slowest and the average performance in the group of sessions considered.

the Errors/Time graph with the number of errors on the y-scale and the time on the x-
scale.

the Tasks/Errors chart graph containing the number of precondition errors associated with
each task.

the Tasks/Completed chart graph containing the number of times the tasks were
performed.

the Errors & Tasks pie chart containing the different types of errors and their percentage,
and another containing the number of tasks accomplished, missed and never attempted

—— 1 Sal Seeuiity Emirona k] K - 1 Gengrate keys
1 Clhek Saury-selup |77 2 apnerate Emil
3 Click forward_Taskl £} i) Ingari PINCODE
N Cliek Fleldde 4 wngan Fllad!
5 Ingur berl_Fletdt 5 insertFiledd
b Click Fleiaze 5 insen C.F
i Insard towt, Fleld? il insed Palce.
& itk texl_CFac s Insei User Trpa
9 Insant 1ex_CF £ Genetale Extvie?
10 Giiex tav_Placade 10 i BT 1_GAnE:
" insed led_Flare 1 Record hevl
12 CRrkter,_Tusc 12 Hanaps passwar
13 Insarles_jU 13 Insert Passward
14 Clirk Forvrard, Oen 1 Contim Passwan
15 Inser Yest_GlvaEniiz 15 End
i ilck Farward_QenE)
17 meertfa_Paseiord
13 Click fex_CPaseWior
19 Insertied_GFassvre
10 Click Forward_Retor
H H i:1 Cliek End
[H [am) M
7 3

T
] d 1 X
e i
Bresionts) Rossl Sevalonis} Aossi
oate 2701992] Dl UnSed

E ity
Tire 094505 i Bl !&@%? Tima 05:45:05

Figure 6: A diagram indicating task performances.

It is possible to provide all this information related to a single user session or to groups of user
sessions. To apply the tool to groups of sessions is useful also to identify if in any session
there was some abnormal behaviour. For example, a task that was performed in a long time
just because the user was interrupted by external factors during its accomplishment.

Eﬂemusms'—ﬁnur'séna'rsua R T e

‘ Remnbsine Pracendition atibis

Insert lax_GlvaEn

Tasks never lned (53%)
8 Tasks fallsd (%)
B Tastks campeitad (38%)

Insedt lexd_Fleld!
Ingart lex_TU
Clitk Print_Visuatlz
Click Fizld1dc
Click Fiel15¢
Click Fipigise
Click Fisld2sc
Clitklexi_CFde
Click e _CF 5¢
Cllek OK_M: Enors (5%)

Gther Errors (85%)

Session(s) Rassi
esglon(s) Rassl BELLI VERD] TONCELL 3 Dala 2700 888

11 2RJul998 200uRIG98 ZIUtI998 18WuNI998
tme 09:4506 DE:I907 10475 O7IMSY B

Time 09:45.06

Figure 7: Representation of errors performed in a session.

The tool allows evaluators also to identify situations where the user shows difficulties on how
to progress in the interaction for example by sclecting the on-line help.

6. The analysis of the tool results

Identifying errors in the analysis of the logs indicates a mismatch between the user behaviour
and the task model associated with the application.

The reasons for this mismatch can be various: in some cases the user interface imposes
constraints that are not motivated from a logical point of view so it has to be changed in order
to support a more flexible task model closer to that of the user. In other cases the task model
associated with the interactive application describes the desired behaviour but the design of
the user interface is not sufficiently effective and the user has problems in understanding how
to perform the desired task, thus changes have to be introduced, for example using labels
more explicative.

We found useful for each error identified to prepare a short report structured in four fields:

o the problem: an indication of the problem highlighted by the error identified;

e the identification: a description of how the error has been identified;

e the cognitive motivation: a description of the possible cognitive problems that can have
generated the problem;

o the solution proposed: an indication for improving the user interface design so as to avoid
new occurrences of the problem detected.

The cognitive cause of the error can be identified by analysing the possible phases of a user
interaction according to the Norman’s model (Norman, 1988).

10

e [Intention, the user intended to perform the wrong task,

e Aciion, the task the user intended to perform was correct but the actions supporting it were
wrong,

e Perception, the user perceived the wrong information,

e Interpretation, the use misinterpreted the information provided by the application.

An example of intention problem is when the user tries to send an electronic form without
filling all the mandatory fields. So, the intention was wrong according to the state of the
application. An example of action error is when the user wants to answer positively to a
question but instead of pressing the y key s/he selects the t key which is just beside. A
perception problem is when the user selects an image which is not interactive whereas a
comprehension problem is when there is a More Info button but the user misunderstands for
what topic more information is available.

7. The Case Study and its task model

In this section we introduce a case study where we applied the RemUSINE approach to parts
of an application developed by a software industry. The purpose of this application is to
provide a web interface to companies that have to electronically register to a national centre to
be authorised in their activities.

The final task model included 107 tasks structured into 8 levels with 69 basic tasks. We
considered only a part of the application: that implemented in Java to support some user
interactions. We did not evaluate the final application but an advanced prototype where some
features were not completely included. We used JavaStar to log user events during their
sessions,

The application supported various features: there was a Security Environment allowing a fast
and safe registration by Internet, it supported exchange of documents and requests in a
protected way, and some documentation on the application was available for the users.

The part of the application that we considered was mainly structured in a set of presentations
linearly ordered with the possibility for the user to go backward and forward in such a linear
order. At each presentation the user had to provide some information. To help the user in the
navigation a diagram representing all the phases, and highlighting the current phase in such a
representation, was included in the various user interface presentations.

In the session tests all the users received the same goal to achieve: to register a company
having some predefined data for the company that were provided to them initially by the
evaluator,

In the first levels of the task model relative to the application considered it is described that
first the application presents some general information, next there is a choice among three
possibilities: accessing the part of the application supporting set up of a secure access or other
parts of the national centre web site or general documents. At any time the session can be
disabled by either a window manager command or a dedicated button. More detailed
descriptions of parts of the task model of the application will be described in the next section.

8. Examples of usability problems found

To explain how our method works we can consider some examples gathered from our case
study. By these simple examples we can show how our method works once it has calculated

11

the preconditions for all the tasks. Given a task model specified in ConcurTaskTrees the tool
is able to automatically identify the preconditions for each task. In this context the
preconditions of a task are those tasks that have to be performed beforehand to allow its
correct accomplishment.

We show the part of the log where an error was identified, then we discuss how the error
occurred and was found by showing the corresponding user interface and the relative part of
the task model. In the part of the log that we show we have removed the information useless
for our tool.

8.1 The user forgot to fill a mandatory field

As it is described in the task model relative to the part of the application considered in this
paragraph, users can handle some information concerning their enterprise. This task can be
disabled ([> operator) when the user wants to cancel the editing performed and go back to the
starting presentation or when s/he closes the session ([] is the choice operator). Once the user
has provided the requested information s/he can go forward in the application. Editing
information means selecting some fields (code, identifier, address, user type) and then (>> is
the sequential operator) providing the relative information. The editing of the various fields
can be done in any order (Il is the concurrent operator). The help task is optional {optional

tasks have their name in squared bracktes).
@

sarintol

—_——

/«ﬂ%
//»mﬁmmm\ Egmx Close
[e {5
f@\svﬂmncul SoToSterl
7 1 i 4 e 3 —)
%}'3{ MIFDI\‘H‘W GoTofresText
— e — B B —

Saladdress Editaddress SelUserTyps EdilliserType

11! n

) +
SelHelp ProvidaHelp SalldentifyNumber EdiidentifyNurmbar
ﬁv—-—» ﬁ

SelCodeFiisiFleld EdiFksi®anCode SelCod erict anCode

Figure 8: A part of the task model.

>>

In the excerpt of log that we consider the user had to fill all the fields of “User Information”
Frame (see figure 9). More precisely, the user types the first part of the code (action 1).
Between each couple of user actions the logging tool provides information on the amount of
time passed (action 2), we will not show the other similar information for sake of brevity.
Then the user selects the Identify Number field (action 3) and provides the identify number
(action 4). Similarly then the user selects address and user type fields and provides the relative
values (actions 5-6-7-8) and, finally, selects the forward button (action 9) and s/he gets an
error message (action 10).

1 JS.lookup{“Code’).typeString(™501de36”, 0, 0);

2 JS.delay(5569C);

3 JS.1ookup(“Identify_Number").multiClick(4,12,16,1};

4 JS.lookup{“Identify_Number *).typeString(*BPLL-Q01-HMF", 0, 0};

5 J8.loockup{"Address”) .multiclick(3,10,16,1);

6 J9.lockup{"Address”).typeString(*Street H. Smith, 111 London”, 0, 0);

7 J8.lockup{“User_Type”) .multiClick{3,11,16,1};

8 JS.lookup(“User_Type *).typeString(*dlo*, 0, 0};

9 JS.lockup{“*Forward”} .buttenPress();

10 J8.lockup{“"Screenl”)}.dialeog{*cli..”, “Error”).putton(“0K*) .buttonPress();

Table 1: Example of log.

12

Security Environment - User Infermation

Fre= Text

Record Key

Copy Kay

Varify copy key

Generate Request

Figure 9: The layout of the example 1.

To summarise the problem was the user did not fill the second field of the code highlighted in
Figure 9. RemUSINE detected the error because the user selected the Forward button without
first filling both the fields associated with the code as indicated in the task model. This was an
interpretation problem. The user did not understand that both fields should have been filled. A
possible solution is to add a label indicating that it is mandatory to fill both fields of the code.

8.2 The user selects a wrong key to perform a task

In this second example of excerpt of log, the user had to fill both text fields in the frame “Key
Password”. S/he wrote his/her password “abc123” (action 1) in the field “Password”, and then
s'he pressed the ArrowDown key (action 2) to select the second field. But this was a wrong
operation, so s/he had to select with the mouse the “R_Password” field (action 3 and 4) and
re-write the password “abc123” (action 5).

JS. lookup (" Password") . typeString {*abcl23\n", 0, 0);
JS, lookup ("Pagsword") .fkey (40,0); /* Down */
JS. lockup ("R_Password") .mousePressed{4,%,16);
JS. lookup ("R_Password") .mouseReleased(4,12,16);
JS. leokup ("R_Password") . typeString("abcl23", 0, 0};
Js.lookup ("Forward"} .buttonPress() ;

Table 2: Second example of log.

Oy U s W N

t3

— i
Hand|eKeyFassword ncef Closa
gw—_>>_v@ .—>>~—@

&S - &y SelBack GoToEdiinformation SelCancel GoToStan

rwa
B —

SelForward GoToRecordKey

[AccéssiRealp]

= Bl

Inp Fastword sword gelHelp NavigateHelp
)‘ —_— —‘ m{ 3

SelPassword TypePassword gg|ConfirmPassword TypeConfirmPassword

Figure 10: The task model of the second part of the application considered.

The user attempted to select the next field by using the ArrowDown key. Thus in this session
s/he performed a wrong action to perform the SelConfirmPassword task. RemUSINE detected
the error. The user intention was wrong because s/he thought s/he was allowed to use such
key. Here there are two possible solutions to improve the user interface: either adding a label
indicating that it is mandatory to select a field by mouse before filling it or allowing the use of
additional keys such as ArrowDown.

Copy Key

Varily copy key

Generate Reguest

8.3 The user selects non interactive part of the user interface

In this example the user starts the insertion of the user information. If we look at the log in
Table 3 we can note that then s/he starts to select the image on the left side of the frame to
find some information (actions 1-6). But this is not possible. So, using the window manager

14

command in the top-right side of the frame, s/he destroys it (action 7), and asks help in the
main menu (action 8).

1 JS.lookup ("Image") .mousePressed(65,82,16) ;

2 JS.lookup("Image") .mouseReleasad{69,81,16);

3 JS.lookup("Image") .multiClick(45,78,16,1);

4 JE.lookup("Image") .multiClick (45,78,16,1);

5 JS.lookup("Image") .multiClick(45,78,16,1);

6 J5.lockup("Image”) .multiClick{45,78,16,1);JS.lookup("Image"]) .
multiClick(45,78,16,1);

7 JS.lookup ("WizardUserInformation") .destroy();

8 JS.lookup("Security").menubar().menu("Help").item("UsefulInformation“

).action();
Table 3: the third example of the log.

In the log the Multiclick event is associated with double-clicking. In this example the problem
was that the user tried to interact with the left panel (see Figure 9 and 11) that was not
interactive. RemUSINE detected the problem because there were various events not
associated with any task. This was a user interpretation problem. The user saw the area with
the various phases and s/he probably thought that it could have been used to move to the next
one. A solution is to add a label indicating that the panel is used only to give feedback on the
state of the application and that the back and forward buttons should be used to move to
different parts of the application.

9. Comparing RemUSINE with empirical video-based evaluation

Tt can be interesting to compare our approach with an approach often used such as empirical
video-based evaluation. The software company where we performed our experiment applied
also such a technique to analyse the sessions evaluated with RemUSINE. They had an
equipped usability laboratory where performing user testing. The sessions were video-
recorded for later analysis using MUSIC (Bevan, 1995) tools.

The time required for applying our usabi

tremusing) can be divided in five parts:

1. Record of logs using a logging tool such as JavaStar o QCReplay. It will be indicated as
thgging;

2. Developing of the task model, indicated as tguia;

3. Solution of problems in using RemUSINE, problems can be caused by incomplete task
models, or incomplete association between logs and basic tasks, or other problems,
tproblems;

4. Generation of the results tresuitss

5. Analysis of the results provided by RemUSINE, indicated as taqaysis-

Consequently we have that:
{RemUSINE = thgging + tguild T tProbiems tResuits + tAnalysis

Now we can consider each of this time. The trggng time is only the time required by the
operator to petform the tasks, it does not require effort from the evaluator but only from the
user and the test designer (if any). The users sessions can be run in parallel whereas with
video-based evaluation evaluators have to observe the users and so if only one evaluator is
available then s/he has to run sequentially the tests.

15

The tyyqa depends on the designer/evaluator {often the same person has the two roles). It has
to be spent only once to build the task model of the application considered. It is independent
from the number of users that will be used in the test phase. It depends on the complexity of
the application, the knowledge of the application that has the person developing it and the
experience in task modelling of such a person. In some cases the task model can be built
before the evaluation phase to support the design phase. In these cases it does not require new
additional time. In our experience having the application available (we consider medium-large
applications) the time requested for developing 95% of the corresponding task models can
vary between half day or a week. We say 95% of the model because often during the
evaluation of the applications evaluators may discover that some small refinements are
NECcessary.

It is difficult to give a quantitative indication of tpygpems. In our experience all the problems
are removed after an analysis of 2-4 sessions that lasts as long as the 2-4 sessions.

tresuts can be neglected as RemUSINE can give its results in a few minutes.

tanalysis depends on the ability of the evaluator and it is proportional to the number of users. In
average it has the same duration than the session because the tool helps in identifying the
problematic parts.

Thus, we can conclude that:

tRemUSINE = tbuild + tprovlems + tAnalysis

As we can see the total time depends only in a limited way on the number of users, only for
the third factor.

Now we can compare the time required by our method and that required by video-based
analysis. In (Nielsen, 1993) the time required for video-based analysis is between 3 and 10
times the session duration. We can indicate with K (3< K £ 10) these factor. In our case study
it was 5 times.

Indicating with Treg the time required for the evaluation we obtain the evaluation time is:
TVideoAnalysis =K* tLogging * number of sessions

Note that we do not report any fixed time to compare our method with the best case of the
video-based method. Figure 12 gives a qualitative description that there is a certain number of

user sessions after that our method is better in terms of time,

If we assume to analyse session whose average duration is 30 minutes. We can assume that
one complete session analysis requires 2.5 hour, thus in one day (7.5 hours) three sessions are
analysed, and in one week (37.5 hours) 15 sessions are analysed with video based analysis.
Consequently, 10 sessions would require 25 hours,

If we consider the same sessions, assuming three days to develop the task model (22.5 hours)
and 2 hours to solve the problems then we would have that 1 session analysis with
RemUSINE requires 25 hours, 3 sessions require 26 hours, 10 sessions require 29.5 hours and
15 sessions require 32 hours. Thus, RemUSINE starts to be convenient, from a time point of
view, after 10-15 sessions to analyse.

16

TV':LEeo Analysis

y | time
TremUsINE
Cpuitatteroblems —
s
V.
s
p
—
0 X Num. Sessions

Figure 12: comparison of time requested in the two usability methods.

The time requested is not the only parameter to take into account when comparing evaluation
methods. Different methods may found different problems. In our case we found a good
overlapping among the issues raised by the two methods even if some user clicking were
detected by RemUSINE but not in video-based analysis because the user movements in
performing them were very minimal.

Besides, the video-based analysis is also more expensive in terms of money as it requires a
usability laboratory with the relative equipment and the commercial software for supporting
analysis of videos.

10. Conclusions and Future Work

We have described our method to support usability evaluation with the relative automatic
tool. We have seen that it is not required to have the final complete application because the
method can be applied on prototypes of part of an application.

Future work will be dedicated to integrate screen dumps, automatically taken (not by cameras
but directly from the screen) when some types of events occur, with the logs of events. This
visual information can be helpful during the identification and analysis of the errors detected.
In our method when we compute the time requested to the user to perform tasks we do not
distinguish between time spent by the system and that spent by the user either in internal
cognitive activities or in interacting with applications. This was because the system time was
very small in the application considered as both client and server were running on the same
host during the test phase and also the system reaction was very fast. However, especially if
our method is used to evaluate remote web applications where the time spent because of
network delay can be considerable then it becomes important to consider it. Thus, we plan to
integrate techniques to identify the time spent in network (an example is in Fuller and
Rodney, 1996} or system delay in our method.

17

REFERENCES

Badre A. N,, Guzdial M., Hudson S. E. and Santos P. J., “A user interface evaluation environment using
synchronized video, visualizations and event trace data”, Software Quality Journal 4, 101-113 (1995).

Bevan N. (1995). Measuring usability as quality of use. Software Quality Journal 4, pp 115-130. Chapman &
Hall.

Byrne M., Wood S., Noi Sukaviriya P., Foley [, Kieras D., (1994) Automating Interface Evaluation,
Proceedings of CHI'94, pp.232-237.

Card, S., Moran, T., Newell A., (1983} "The Psychology of Human-Computer Interaction”, Lawrence Erlbaum,
Hillsdale, N.J., 1983

Fuller, Rodney (1996), Measuring User Motivation from Server Log Files, Paper presented at the conference
Designing for the Web: Empirical Studies, Microsoft ~ Campus, available at
hitpi//www. micorsoft.com/usability/webconf/fuller/fuller.htm

Harel, A., (1999), Automatic Operation Logging and Usability Evaluation, Proceedings HCI International,
Munich, August 1999.

Hartson, R., Gray, P., (1992} “Temporal Aspects of Tasks in the User Action Notation”, Human Computer
Interaction, Vol.7, pp.1-43.

Hartson R., Castille J., Kelso 1., Kamler 1., Neale W., (1996) The Network as an extension of the Usability
Laboratory, Proceedings of CHI'96, pp.228-235

Scott Hudson, Bonnie John, Keith Knudsen, Michael Byrne, (1999) "A Tool for Creating Predictive
Performance Models from User Interface Demonstrations”, to appear in CHI Letters, v1, nl, November 1999,

Jeffries, R., Miller, J.R., Wharton C., and Uyeda K.M,, (1991) User interface evaluation in the real world: A
comparison of four techniques. In Proceedings CHI'91 Conference, ACM Press, pp. 119-124,

Tohn, B., Kieras, D., (1996} Using GOMS for User Interface Design and Evaluation: Which Technique?, ACM
Transactions on Computer-Human Interaction, Vol.3, N.4, December 1996, pp.287-319.

Lecerof A., Paternd F., (1998) Automatic Support for Usability Evaluation, IEEE Transactions on Software
Engineering, Vol.24, N.10, October’98.

Nielsen J., (1993) Usability Engineering. Boston: Academic Press, 1993,

Norman D., (1988} The Psychology of everyday things, Basic Books, New York.

QOlsen D.R., Halversen B.W., (1988) interface Usage Measurements in a User Interface Management System,
Proceedings UIST' 88, pp.102-108.

Paiernd F. (1999) Model-Based Design of Interactive Applications, Springer Verlag, 1999,

Paternd F., Ballardin G., (1999) Model-Aided Remote Usability Evaluation, Proceedings INTERACT’99,
Edinburgh, September 1999.

Wilson S., Johnson P., Kelly C., Cunningham J. and Markopoulos P. (1993). Beyond Hacking: A Model-based
Approach to User Interface Design. Proceedings HCI'93. In: People and Computers VIII, Proc. of HCI'93
Conf., Cambridge: CUP.

18

