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Abstract

The recent introduction of 3D shape analysis frameworks able to quangifyeformation of a shape into another
in terms of the variation of real functions yields a new interpretation of the I3ipe similarity assessment and
opens new perspectives. Indeed, while the classical approachesitarisgnmainly quantify it as a numerical
score, map based methods also define (dense) shape correspesdAfter presenting in detail the theoretical
foundations underlying these approaches, we classify them by lookingiaitbst salient features, including
the kind of structure and invariance properties they capture, as well agligtances and the output modalities
according to which the similarity between shapes is assessed and retWieedlso review the usage of these
methods in a number of 3D shape application domains, ranging from matelnid retrieval to annotation and
segmentation. Finally, the most promising directions for future researecaldements are discussed.

Keywords: 3D shape distances, 3D shape matching, map-based correspendenc

Categories and Subject Descript@scording to ACM CCS) Computer Graphics [I.3.5]: Computational Geometry
and Object Modelling—Computer Graphics [I.3.6]: Methodology anchifeques—

1. Introduction sion, computer graphics and pattern recognition, just to cite

For many years, researchers work on different aspects of afew.

shape analysis and comparison. For instance, psychologists

have studied for many decades how humans perceive a

shape, and how perception affects the process of assessing

the similarity between shapeSJ99 Tve77 AP88 Ash92

Koe9(|].. jl'harr:ks to those stur:jles, 't. 'S,InO,W yvell knowln that Also in this context, modelling shape similarity is defini-
forma_lzmgt e co_ncept.of shape similarity 1S acompiexin- tively not an easy task: first of all, there is neither a single
teraction process involving the observer and his/her interpre- bestshape representation nor a singlestsimilarity mea-
tation of the geometric, structural and semantic properties of sure to be used, and the comparison largely depends on the

shapes$B11. type of shapes to be analysed and on the properties that are

More recently, the development of computational models considered relevant in the problem at hand. An intuition of
and tools able to provide digital representations of shapes this is given by Figurd, showing some models belonging to
opened the way to the development of 3D shape analysis, the same “humanoid” class of the SHREC'08 classification
thus making the problem of shape similarity a matter of benchmark@GMO08]. Different notions of similarity might be
study also for applied mathematicians, computer scientists formulated in this case, by considering in turn functional (se-
and other researchers working in the fields of computer vi- mantic), structural or geometric criteria.
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Figure 1: Representative models of the humanoid class, SHREC'08 classificatiohrbark [GM0§. Models (a-d) have same
pose but (d) differs by scale, (e) is a human model in a different pud¢fdn) are isometric deformations of the same template,
(i-j) are two scans of the same model with a significant change of topalbdg (k-m) represent three virtual characters.

1.1. STAR focusand contribution distances from relevant points, heat kernel signatures or
channel values in some colour space. On the other hand,
distances defined on the model representations provide in-
sights on the corresponding shape distributions, as in the
case of geodesics and diffusion distances;

e Among the above methods, special emphasis is given to
those techniques that quantify similarity in termswdps
between spaces. Many of these approaches fall in well-
In the rapidly growing field of 3D shape analysis, a num- established mathematical frameworks, thus taking advan-

ber of strategies have been proposed so far for shape similar- tage of theoretical results on stability, robustness and in-

ity assessment. While at the beginning the main efforts were  variance to shape transformations;

mainly devoted to the transposition of well-known metrics e Finally, we restrict our attention on methods published

into application domainsHO1, TV04, BKS*05, FKMS05, from 2008 on.

YLZ07,DP06 BKSS07 TV08], during the last years the fo-

cus is moving to the formalization of new paradigms that

allow a larger flexibility in the definition of similarity. In par-
ticular, the present work is mainly motivated by the recent in-
troduction, in the fields of computer vision, computer graph-
ics and pattern recognition, of four theoretical and computa-
tional frameworks for 3D shape similarity that measure how
much shape properties change while deforming one shape
into another one. We refer in particular to the minimum- Other surveys on shape similarity have appeared be-
distortion shape embeddings, the Gromov-Hassdorff dis- fore, reviewing topics partially overlapped to those dis-

tance, the functional maps and the natural pseudo-distancecussed here. We refer to 3D shape retrieV&iQ4, BKS* 05,

frameworks EK03, MS05 OBCS 12, DF04H. As we will FKMS05,DP06 YLZ07,BKSS07 TV08,LGB*13] or other

see later, these approaches quantify similarity not only in specific aspects of similarity, such as shape registration

terms of a single score, but also define a map between shape§TCL*13], shape correspondenceZHCO11], symmetry

so that, despite the increasing computational complexity, it detection MPWC13, partial matching [BZ*13, SPS1}

is possible to infer either a sparse or a dense shape corre-and non-metric distancesSB17. Differently from those

spondence. works, this contribution is specifically focused on the pro-

cess itself of similarity assessment, which can be considered

a preparatory step for most of the above topics, clearly con-

ditioning them. We will provide a detailed discussion about

the mathematical foundations underlying similarity assess-

e We discuss methods that extract the shape structure ment. This will allow us to present the most recent theoret-
through functionsor distances On the one hand, real- ical developments in the field of 3D shape similarity under
and vector-valued functions may be used to measure spe-an appropriate and rigorous viewpoint, which is indeed the
cific shape properties. Examples of such functions are peculiar trait of this survey.

In this paper we review methods for the assessment of shape
similarity, by specifically targeting the 3D digital world sce-
nario. By shape similarity we meajuantifyinghow much

a shape resembles to another, through either some numeri-
cal score or by evaluating the distortion of a map between
shapes.

Methods will be presented by highlighting their salient
properties, the specific shape invariants they consider (e.g.
rigid and non-rigid transformations), the structure they cap-
ture and at which level (e.g., local or global, conformal or
diffusion structure) as well as the type of output they pro-
vide (e.qg. full or partial similarity score, sparse or dense cor-
respondence).

In this scenario, we aim at providing a reasoned overview
of the most recent advances in similarity assessment, driven
by the following guidelines:
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In this view, the present paper can be seen as complemen-2. Mathematical Background
tary in spirit to BDF*08, BFGS12BCB17, in which the
focus is more on shape analysis and description rather than
similarity; it also updates and extendBHF*07] in the re-
viewed time-lapse, which have seen the introduction of a
number of innovative techniques, with particular reference
to the four aforementioned frameworks (cf. Sect®n 2.1. Topological spacesand maps

In this section we summarize the theoretical concepts which
are necessary to model the shape similarity problem as pre-
sented in the rest of the paper.

A topological spacés a set of points along with &pol-
1.2. Organization ogy, i.e. a collection of subsets that are referred tmpsn

sets Intuitively, a setU is open if, starting fromany point
To drive the reader through the bunch of approaches and jn U and followingany direction, it is possible to move “a
frameworks revised here, we first introduce the basic no- |ittle” and stay inside the set. It turns out that the notion of
tions of mathematical concepts such as topological space, open set provides a fundamental way to speakezfrness
manifold, map, metric and transformation. We also provide of points, although without explicitly having a concept of
a brief overview on diffusion geometry and algebraic topol- distance defined on the considered topological space. Thus,
ogy, see Sectio?. Depending on his/her background, the once a topology has been defined, we are allowed to intro-
reader may skip this section or some of its parts. duce properties such as continuity, connectedness, closeness,
which are all based on some notion of nearness. These prop-
erties are in turn key ingredients to model the shape of 3D
digital objects, as well as to reason about concepts like ro-
bustness and stability of shape analysis methods.

Then, Sectior8 is about the problem of similarity assess-
ment and its mathematical modelling. We start by discussing
the basic properties of similarity measures, also describing
some representative methods for the algorithmic evaluation
of similarity (Section3.1). Then, we review the main theo- As for maps they can by used to model spatial relations
retical and computational aspects of four formal frameworks hetween two (or more) shapes represented by suitable topo-
for similarity assessment which have been recently intro- |ogica| spaces. Also, real- or vector-valued maps provide a
duced in 3D shape analysis (Sections f312.1t0 3.2.4. means to encode measurements which are relevant to char-
acterize the shapes under study. Throughout the paper, we
will talk about functionsrather than maps whenever refer-
ring to real- or vector-valued maps, in accordance with a
quite common habit. Note, however, that the two concepts

Section4 presents a taxonomy of the methods highlight-
ing the emerging shape structure, the distances concretely
used for similarity evaluation, and the invariance properties
captured along the process. The proposed taxonomy also : , : .
takes into account the type of input for each method, as well are completely equivalent from the mathematical viewpoint.
as the the output modalities according to which the similar-
ity between shapes is returned. The aim is to give a multi-
faceted classification that might help the reader to compare
methods not only on the basis of their algorithmic aspects,
but also drive him/her in the choice of the method that better
fulfils his/her requirements. e Both X and the empty set are open sets;

e Intersecting a finite number of open sets gives an open set;
e Any union of open sets is still an open set.

Topological spaces. A topological spaceX,1) is a setX

on which atopologyt has been defined, that is, a collection
of subsets oK calledopen setsind satisfying the following
axioms:

In Section5, we review the available 3D retrieval bench-
marks, which are the key to quantitatively evaluate the per-
formance of the methods and help the reader to experiment A Hausdorff spacés a topological space in which every
with the tools seen in the paper. Moreover, a detailed analy- pair of points can be separated by open sets.
sis on the application domains for which methods have been

proposed is carried out In what follows, we will refer to a topological spac¥, 1)

by simply mentioning the set, omitting any reference to
Finally, Section6 is devoted to the discussion of the po-
tential of the methods proposed, also including perspectives, Maps. A map f between topological spaces is said to be
open issues, and future developments. continuousf the inverse image of every open set is an open
set. Ahomeomorphisns a continuous bijection whose in-
verse is also continuous. Two topological spake¥ are
said to behomeomorphidf there exists a homeomorphism
f : X — Y. From the viewpoint of topology, homeomor-
phic spaces are essentially identical. Properties of topolog-
ical space which are preserved up to homeomorphisms are
said to betopological invariants

We believe that organizing the comparison of the various
methods in this way may facilitate their analysis, possibly
suggesting interesting research directions for the develop-
ment of new approaches. In our opinion, the generality and
flexibility of some approaches may be of interest for part of
the research community involved in visualization and com-
putational geometry and topology, beyond people working
in shape analysis. An important property of maps, which will be useful in
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the sequel, ismoothnessRoughly, a continuous map is

smooth if it has continuous partial derivative of all ordérs

ForX C R", Y C R™ a smooth magd : X — Y is adiffeo-
morphismif it is bijective ant its inverse is smooth as well. SX
In this caseX andY are said to beliffeomorphic

2.2. Metric spaces and transfor mations

Metric spaces can be seen as specifications of topological
spaces. Their definition relies on the conceptradtric (or
distancg, which describes a way to quantify the relative
closeness between different entities, such as points, spaces
or physical objects.

Metric spaces. A metric space(X,d) is a setX equipped
with a metric, that is, a functiod : X x X — R satisfying
the following properties for ak,y,z € X: STy (X) d(T1(X),Ta(Y))

=
STa(Y)

d(x,y) > 0 (non-negativity);
d(x,y) = 0iff x=y (reflexivity);
d(x,y) = d(y,x) (symmetry); T1(X) Ta(Y)
d(x,y) +d(y,2) > d(x,2) (triangle inequality).

] ) . . Figure 2: Conceptual representation of invariant similarity:
Every metric space is a topological space in a natural way, the distance @X,Y) between shapes X and Y is measured
by considering as open sets the open balls induceti by based on some structure ssy extracted from them. The
The Euclidean 3D space is an example of a metric space, Structure remains invariant under the shape transformations

where the metric is given by the well knovifuclidean dis- Ti € T from classT , such that § = s, (x),Sy = Sr,()-
tance that is, the distance between two points is the length of Consequently, the distance is invariant to transformations,
the straight line that joins them. Tlyodesic distancgen- d(To(X), T2(Y)) = d(X,Y).

eralizes the concept of “straight line” to an arbitrary metric
space(X,d): for two points inX, their geodesic distance is
the length, measured with respectdoof the shortest path
between them, which is in turn referred to agyeodetic

More formally, a geodetic is a curvg: [a,b] — X which of a metric space to elements of another metric space such
is locally a distance minimizer: evetye [a,b] has a neigh- that the distance between the elements in the new metric
bourhood] C [a,b] such that, for any;,t, € J, the equality space is equal to the distance between the elements in the
d(y(t1),Y(t2)) = Aty —t2| holds for a constarit > 0. original metric space. Formally, given two metric spaces
(X,dx), (Y,dy), a transformationp: X — Y is called an
Transformations. By the term transformation we refer isometry if for anyx,y € X, dy (9(x),@(y)) = dx (x,y). Ex-

here tostructure-preservingnaps between spaces. Trans- amples of isometries in the usual Euclidean spaceigie
formations p|ay an essential role in the process of assess- motions that iS, combinations of translations and rotations;
ing the similarity between shapes, see Fig2ifer an intu- shape properties that are invariant to rigid motions are also
ition about this. As we will see later, relevant transforma- calledextrinsichecause they are related on how the shape is
tions from the viewpoint of shape similarity include isome- laid out in the Euclidean space.

tries, affine transformations and homeomorphisms. ) . . o
Affine transformations or simply affinities preserve

Isometriesare distance-preserving maps, taking elements straight lines (i.e., all points initially lying on a line still lie

on a line after transformation) and ratios of distances be-
tween points lying on a straight line (e.g., the midpoint of
T Note, however, that this definition of continuous functi@pends a line segment remains the midpoint after transformation).
on th_e notion of_ partla_l derivative, which is usually Weﬂfm(_ed They do not necessarily preserve angles or lengths, but do
only if the domain off is an open set. Therefore, for an arbitrary have the property that sets of parallel lines will remain par-

subsetX C R" we need to adapt the above definition, stating that lel t h oth fter bei ffinely t f d.l "
a continuous functiorf : X — R™ is smooth if it can be locally allelto each other arter being aitinely transformed. In partic-

extended to a smooth map on open sets; that is, around each pointUIar’ amapp: X — Y is an affine transformation if and only

x € X we can find an open set C R" and a functiorF : U — RM if for every family {(aj, Ai) }ici of weighted pointsy € X
such thaf equalsf on X NU, and whose partial derivatives of all ~ such thaty;c Aj = 1, we havef (3 Aig)) = Sic) Ai f (&).
orders are continuous. Examples of affine transformations include translation, ge-
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ometric contraction, expansion, homothety, reflection, rota-
tion, scale and compositions of them.

A more flexible class of transformations, also including

manifold is also a manifold with (possibly empty) boundary,
while the converse does not hold in general.

A manifold X is smoothif it is equipped with a notion

isometries and affinities, is that of homeomorphisms, which of differentiability. We prefer here to skip the technicalities
preserve topological properties of spaces such as compact-needed to formally define such a notion, referring the reader
ness, connectedness and Hausdorffness (the property of beto [Hir97] for further details. We rather point out that, having
ing Hausdorff). From the shape comparison point of view, a notion of differentiability at a hand, we can do differential
considering homeomorphisms allows one to deal with more calculus onX and talk about concepts like tangent vector,
generic deformations, such as those in FigBréowever, vector field and inner product. All of these are functional to
topological invariance is sometimes too coarse, admitting, introduceRiemannian manifolds

e.g., that a horse surface model is topologically equivalent to

a sphere and to a human surface model. This fact opened theRiemannian manifold. If X is a smooth manifold of di-
way to the development of theoretical frameworks to enrich  mensionn, at each poink € X we can consider théan-
the topological analysis of spaces by taking into account the gent space J(X), a vector space that intuitively contains
additional information provided by real functions defined on  all possible vectors passing tangentially throxgkee Fig-
the spaces themselves, such as Morse thedils3] and ure4 for an intuition. If we glue together all tangent spaces
other related frameworkd=M99, ELZ02] we will discuss Tx(X), thus considerintyx Tx(X), we get theangent bun-
later in this paper. dle T(X). A vector fieldon X is then a section of (M), that

is, a smooth mag- : X — T(M) which assigns each point
x € X to a tangent vectdf (x) = v € Tx(X). On each tangent
spaceTx(X) we can define an inner product (i.e. a symmet-
ric, positive definite bilinear formgx : Tx(X) x Tx(X) — R.

A Riemannian metric gs a collection of inner products
{gx}xex that smoothly vary point by point, in the sense that
if F andG are vector fields oiX, thenx — gx(F (x), G(x))

is a smooth map.

Tx(X)

‘_
(©)

Figure3: A cat mode(a) together with three homeomorphic
modificationgb — d). All models are fromBCA"14].

Figure 4: Tangent plane (X) in x. The vector & Tx(X) is
a tangent vector.

2.3. Manifolds

To ease the analysis of a shape and look at it as if we lo-
cally were in “our” traditional Euclidean space, it is neces-
sary to consider the notion of manifold. A Hausdorff space
X is a n-dimensional manifoldf it is locally homeomor-
phic to R"; that is, each poink € X admits a neighbour-
hoodV C X homeomorphic to an open set&f. Such local
homomorphism is called coordinate system on,\and al-
lows for identifying any pointy € V with a n-tuple of R".

X is an-dimensional manifold with boundaifyevery point A Riemannian manifolds an-dimensional differentiable
has a neighbourhood homeomorphic to an open set of either manifold X equipped with a Riemannian metgoof metric

R" or the half-spacéi” = {u= (u,...,un) € R"|un > 0}. tensorg;;. Endowing a manifold with a Riemannian metric
The boundary oK, namelyoX, consists of those points of = makes it possible to define various geometric notions on the

Note that, in practice, a Riemannian metric is a positive
definite, symmetric tensor. Indeed, once a local system of
coordinates is fixed for a point, we can completely de-
fine eachgx by the inner productsjj (x) = gx(Vi,Vvj), with
{V1,V2,...,vn} a basis ifR". The collection{g;j (x)} is thus
made of real symmetric and positive-definite n matrices,
smoothly varying irx: It is calleda metric tensor g.

X which only have neighbourhoods locally homeomorphic
to H". Note that, according to the above definitions, any
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depend on the particular embedding of the surface; proper-
ties that preserves this metric structure are caifdnsic
propertiesof the surface.

2.4. Basics of diffusion geometry

In [CLO€], Coifman and Lafon proposed the framework of
diffusion geometry as a method for data parametrization,
embedding, and dimensionality reduction. We summarize
here some key ingredients of this framework, with partic-
ular reference to théeat kernel signatur§SOGO09, also
known as theautodiffusion functiofiGBALO9], and thedif-
fusion distancelnformally, diffusion geometry is related to
the heat diffusion on the data (hence the name), which is in
turn closely connected with the notion loéiplace operatar

2.4.1. Laplace operator

The Laplace operatak, briefly Laplacian, is a differential
operator given by the divergence of the gradient of a real-
valued functionf defined on the Euclidean spagg:

Af(x) :=div(gradf (x)) = V-V f(x) = z 327;()()’

where grad and div are the gradient and divergence on the
space, and the point € E" is represented by the Carte-
sian coordinateg = (xy,...,Xn). Therefore, the Laplacian
requires that the functiof is at least twice-differentiable.

Intuitively, the Laplace operator generalizes the second
order derivative to higher dimensions, and is a characteris-
tic of the irregularity of a function, indeefif (x) measures
the difference betweefi(x) and its average in a small neigh-
bourhood ofk € E".

The generalization of the Laplace operator to manifolds
equipped with a Riemannian metric is called theplace-
Beltrami operatoof f and its computation requires complex
calculations, that can be greatly simplified by the so-called
exterior calculus (ECJGDP*05].

The Laplace-Beltrami operator admits an eigendecompo-
sition with non-negative eigenvaluas and corresponding
orthonormal eigenfunctiong satisfyingAg = —Ai@. Here
orthonormality is meant in the sense of the inner product
(f,9) = [x f-g dy induced on a Riemannian manifoid
by the associated Riemannian metric. Moreover, if we fur-
ther assume thaX is compa&, we have that the spectrum
is discrete, < A1 < A, < .... In general, the eigenbasis of
the Laplace-Beltrami operator is referred to as the harmonic
basis of the manifold, and the functiogsas manifold har-
monics VL08, WZL*10]. The use of Laplacian eigenbasis

Ia compact manifold is a manifold that is compact as a topological
space. A topological spaceis compact if, from any union of open
sets givingX, it is possible to extract a finite subfamily whose union
is still X.

S. Biasotti et. al. / Trends in 3D shape similarity assessmen

has been shown to be fruitful in many computer graphics
applications and several techniques in shape analysis, syn-
thesis, and correspondence. For a detailed discussion on the
main properties of the Laplace-Beltrami operator, we refer
the reader toReu0§R0s97WMKGO7].

Several discrete Laplace-Beltrami operators exi&)8],
allowing for practical computation on a manifold discretiza-
tion. For example, suppose to have a triangulafiowith
set of verticesP := {p;,i = 1,...,n}. A function f on T
is defined by linearly interpolating the valud$p;) of f
at the vertices ofT. This is done by choosing a base of
piecewise-lineahat-functionsd;, each one with value 1 at
vertex p; and O at all the other vertices. Théns given as
f =5, f(pi)di. Discrete Laplace-Beltrami operators are
usually represented as:

M) =5 3wy [T~ ()]

' jeN()

whereN(i) denotes the index set of therihg of the ver-

tex pj, i.e. the indices of all neighbors connecteditdy an
edge. The massekh are associated tp; and thew;; are the
symmetric edge weights. \f = diag(vy, ..., Vn) is the diag-
onal matrix whose elements are=y jeni) Wij, W = (wij)
andD = diag(ds,...,dn), then we can seéA:=V —W and
finally represent the discrete Laplacian-Beltrami operator on
T as then x n matrix given byL := DA (generally not
symmetric).

Depending on the different choices of the edge weights
and masses, discrete Laplacian operators are distinguished
betweengeometric operatorand finite-element operators
[RBG*09]. A deep analysis of different discretizations of
the Laplace-Beltrami operator in terms of the correctness
of their eigenfunctions with respect to the continuous case
is shown in RBG*09]. Unless some special cases (see,
for example, BSWO08 BS07, Sin06 HAvLO05]), the discrete
Laplace-Beltrami operator would not converge to the con-
tinuous one. In addition, when dealing with intrinsic shape
properties, it should be independent or at least minimally
dependent on the triangular mesh and thus the discrete ap-
proximation has to preserve the geometric properties of the
Laplace-Beltrami operator. Unfortunately, Wardetzky et al.
in [WMKGO7] showed that for a general mesh, it is theo-
retically impossible to satisfy all properties of the Laplace-
Beltrami operator at the same time, and thus the ideal dis-
cretization does not exist. This result also explains why there
exists such a large diversity of discrete Laplacians, each hav-
ing a subset of the properties that make it suitable for certain
applications and unsuitable for otheBEKO08].

2.4.2. Heat kernel and diffusion distance

Formally, the heat kernel signature and the diffusion distance
can be expressed in terms of theat equationFor a com-
pact Riemannian manifol¥, the diffusion process oX is
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described by the partial differential equation:

(%‘FA) u(t,x) =0, 1)

=i
whereA denotes the Laplace-Beltrami operator associated
with the Riemannian metric oK. The heat equation gov-
erns the distribution of heatfrom a source point € X. The
initial condition of the equation is some initial heat distribu-
tion u(0,x) at timet = 0; if X has a boundary, appropriate
boundary conditions must be added.

time

Figure 5: The heat kernel represents the amount of heat
transferred from a source point in time t.
Theheat kernel f(x,y) is a fundamental solution of equa-
tion (1), with heat source point a and heat value atafter
timet: it represents the amount of heat transferred fxcim 2.5. Basics of algebraic and differential topology
y in timet due to the diffusion process (Figug. By the

eigendecomposition df, the heat kernel can be written as A fundamental issue in Shape Analysis is the study of basic

models and methods for representing and generating. Since
—Ait i izati i i
he(X,y) = z e M@ (y). discretization strategies play a fundamental role_ln the_ way
) the results stated in a smooth context can be achieved in dis-
crete ones, in this section we briefly review some basic con-

Since coefficient3, rapidly decay, the heat kernel is gener-  cepts that are at the bases of 3D shape representations.
ally approximated by the truncated sum:

2.5.1. Basics of Homology

N
he(x,y) = ZG_A'IQ(X)Q (¥)- The approach adopted by algebraic topology is the transla-
i= tion of topological problems into an algebraic language, in
The heat kernel has many nice properties, among which in- order to solve them more easily. A typical case is the con-
variance to isometries; being related to the Riemannian met- Struction of algebraic structures to describe topological prop-
ric of X, this means that the heat kernel is an intrinsic prop- erties, which is the core of homology theory, one of the main
erty of the manifold. Also, the heat kernel is multi-scale: for tools of algebraic topology.

small vales ot, h(x, ) only reflects local properties of the The homology of a space is an algebraic object which re-
_manlfold around the base poixtwhile for Iarge valu_es off flects the topology of the space. Themologyof a spaceX
it captures the global structure ¥ffrom the point of view of is denoted byH..(X), and is defined as a sequence of groups

x. Finally, the heat kernel is stable under small perturbations {Hq(X):q=0,1,2,...}, whereHq(X) is called they-th ho-
of the underlying manifold. All these properties make the mology groupof X. The homologyH. (X) is a topological
heat kernel a good candidate for the definition of informa- j,yariant ofX. The rank oMHg(X), called theg-th Betti num-
tive functions and distances to be used for shape description, per of X and denoted bq, is roughly a measurement of

such as the heat kernel signature (HKSPIG09GBALO9)] the number of different holes iX. For three-dimensional

and the diffusion function. The HKS at a timedenoted by data the Betti numbero, B1 andB, count the number of

HKS, is defined as connected components, tunnels and voids, respectively.
HKS(x) = hy(x,X), In the literature there are various types of homologies

[Spa66. One of the most popular is (integesimplicial ho-
for anyx € X; the diffusion distancek between two points  mology which relies on the concept sfmplicial complex
X,y € X at timet is given by A simplicial complex is a topological space that can be ob-
2 tained by gluing together simple elements, caliedplices
d(xY) = he(xX) +he(y.y) — 2 (xy). in a structured way. Figuré shows the simplest examples
The computation of the spectrum of the discrete Laplacian Of Simplices:Ao is a point, Ay an interval,A; a triangle
is the main computational bottleneck for the evaluation of (including its interior) A3 a tetrahedron (including its inte-
the heat kernel, and hence K S andd: in fact, it takes rior). Triangulations are examples of simplicial complexes:
from O(n) to O(n®) operations, according to the sparsity of ~the vertices, edges and faces correspond to 0-, 1- and 2-
the Laplacian matrix. Recently, a discrete and spectrum-free Simplices, respectively. Theimensiorof a simplicial com-
computation of the diffusion kernel on a 3D shape (either Pl€x is the maximum dimension of its simplices.
represented as a triangulation or a point cloud) has been pro-
posed in PS13, based on the computation of the full spec-
trum via the Chebyshev approximatio@N1V69, ML03] of Morse theory can be seen as the investigation of the rela-
the weighted heat kernel matrix. tion between functions defined on a manifold and the shape

2.5.2. Basicsof Morsetheory
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@ (b) (©)

Figure 7: (a) The graph of fx,y) = x*> —y2. The point(0,0) is a non-degenerate critical point. (b) and (c) The graphs of
f(x,y) = x° — 3xy? (a “monkey saddle”) and fx,y) = x> —y?. In both cases the poiri0,0) is a degenerate critical point.

xis referred to as thmdexof x. Then,f : M — R is aMorse
functionif all its critical points are non-degenerate.

A% A%
An important property is that a Morse function defined on
. a compact manifold admits only finitely many critical points,
TA%) TAS] each of which is isolated. This means that, for each critical

point x, it is always possible to find a neighbourhoodxof
not containing other critical points. Moreover, Morse the-
ory asserts that changes in the topology of a manifold en-
dowed with a Morse function occur in the presence of criti-
cal points, and according to their index; these changes in the
topology can be interpreted in terms of homology.

Figure 6: Examples of 0-, 1-, 2- and 3-simplices.

On the basis of these results, it is possible to choose regu-

of the manifold itself. The key feature in Morse theory is |5, valuesty < t; < --- < tm bracketing them critical values

that information on the topology of the manifold is derived ¢, f, and consider theublevel setsX= {x € X|f(x) < t;}.
from the information about the critical points of real func- Moreover, ifA is the index of the-th critical point,_when
tions defined on the manifold. In particular, Morse theory sweeping fromX,_; to X; there are two possibilities for
provides the mathematical background underlying several o, homology can change: eithgf (X) = B (Xi_1) + 1
descriptors, such as Reeb graphs, size functions, persistence,, Br_1(X) = Br_1(Xi_1) — 1. The analogous approach
diagrams and.Morse shape descriptors. A basic reference for;, study the changes in the level sdts e X|f(x) = t},
Morse theory is Mil63]. t € R, is proposed inNil65]. We will discuss later on (Sec-
Let X be a smooth, compaat-dimensional manifold tion 3.2.4) how this ideas have led to the introduction of ge-
without boundary, and : X — R a smooth function defined ~ Ometric/topological descriptors for shape analysis.
on it. Then, a poink of X is acritical point of f if all the

first order partial derivatives vanishxtthat is, 3. Evaluating similarity between shapes

ﬂ(x) =0 _.,7ﬂ(x) =0, Assessing the similarity between shapes can be posed as the
ox1 0Xn problem of defining a suitable functioth: X x X :— R,
with respect to a local coordinate systéxg,...,xn) atx. A taking a pair of input objects from a universé to a real
real number is aritical value of f if it is the image of a number that represents a similarity score for the two ob-
critical point. Points (values) which are not critical are said jects [SB11]. Such a functiord is called apairwise similar-
to beregular. A critical pointx is non-degeneraté the de- ity function. Often the inverse concept is required, namely a
terminant of theHessianmatrix of f atXx, dissimilarity function 8, where a higher dissimilarity score
) stands for a lower similarity score, and vice versa. Hence,
Hi (x) = < o°f (x)) a dissimilarity & equivalent to a similarityd must fulfill
0%i0x; d(X,Y) >d(X,Z) <= 8(X,Y) <&(X,2),¥VX,Y,Z€ X.
is not zero; otherwise the critical point degenerateFig- The choice between similarity and dissimilarity function
ure7 shows some examples of non-degenerate and degener-mainly depends on the application domain; however there
ate critical points. For a non-degenerate critical p@nthe exist many situations where the formula/algorithm defining
number of negative eigenvalues of the Hes$ia(x) of f at the function is available in just one of the two forms, while
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its manual transformation into the inverse is not straightfor-
ward [SB11. The application scenario is also strongly re-
lated to the properties that the chosen (dis)similarity function
is required to satisfy, such as being a metric or not. Being
a metric means to fulfill all the postulates listed in Section
2.2 Assuming, e.g, that a dissimilarity functidnhas been
fixed, reflexivity permits zero dissimilarity just for identical
objects whilenon-negativityguarantees that every two dis-
tinct objects are somehow positively dissimilar. In addition,
the triangle inequality is a kind of transitivity property that
is really useful for indexing a databaseADBO06]: if (X,Y)
and(X,Z) are close with respect ®(that is, small dissimi-
larity), also(X,Z) are.

A number of (dis)similarity functions exist in the liter-
ature, which do not fulfil one or more of the metric ax-
ioms. Such functions are generally referred to@s-metrics
[SB11, presenting more specific names according to the
particular metric axiom they miss. In case reflexivity is not
guaranteed, then we havepaeudometrica quasi-metricif
symmetry is not satisfied,semi-metridf triangle inequality

ple (dis)similarity scores that would be merged a posteriori.
This is roughly the rationale behind classical approaches to
similarity assessment, and it is exemplified in Sec8ah

More recently, new emphasis has been given to assess the
dissimilarity between shapes by modelling them as suitable
spaces, and to formally quantify similarity in terms of the
distortion needed to deform one space into the other. The
added value in this approach is that similarity can be ex-
pressed not only in terms of a single score, but also trough
a map between shapes. Despite of the increasing compu-
tational complexity, this makes possible to derive either
a sparse or a dense shape correspondence, which is par-
ticularly useful when analysing variability among shapes.
Minimume-distortion embeddingsd theGromov-Hausdorff
frameworks apply the above paradigm by modelling shapes
as metric spaces, and measuring the metric distortion when
transforming one space into the other. These frameworks are
flexible to the choice of the metric, and therefore can handle
different invariance requirements. Their output is typically
a point-to-point correspondence between samplings of the

is missing. The paradigm here is that, being not constrained considered metric spaces, producing a (dis)similarity mea-

by metric postulates, non-metrics offers a larger freedom of
problem modelling. Indeed, several psychological theories
suggest that the metric axioms could substantially limit the
expressive power of (dis)similarity functionSJ99Tve77.

In particular, reflexivity and non-negativity have been re-
futed by claiming that different objects could be differently
self-similar [Kru78, Tve77. The triangle inequality is the
most attacked property. Some theories point out that simi-
larity does not have to be transitivAaP88 TG82, as shown

by a well-known example: a man is similar to a centaur, the
centaur is similar to a horse, but the man is completely dis-
similar to the horse.

Beyond (a subset of) metric axioms, a notion of continu-
ity is often required for a (dis)similarity function, such as

sure as a by-produdtunctional mapgeneralize the point-
to-point shape correspondence, which can be computation-
ally expensive for a high number of points, into that between
real-valued functions defined on shapes. The main advantage
is that a correspondence obtained in this way can be seen as
a linear map in the space of functions: hence, a number of
tools and techniques from linear algebra can be applied to
couple shapes. Methods related to treural-pseudo dis-
tancemay take advantage of a mathematically sound notion
of stability, although the final output is usually only in terms

of a (dis)similarity score. Nevertheless, the intrinsic mod-
ularity of the framework allows for comparing shapes ac-
cording to different notions of invariance, which are directly
inherited from the functions used to describe the considered
shape properties. These four frameworks are detailed in Sec-

robustness with respect to different discretizations of spaces tjon 3.2.

and small perturbations in the input measurements. Last but
not least, invariance to some classes (groups) of transfor-
mations may be required, thus allowing the similarity as-
sessment to be independent, e.g, to orientation, scaling orwhile designing a shape descriptor, the first challenge is to
rigid movements of the considered objects. Formally, a sim- jdentify the shape properties that better characterize the ob-
ilarity function d (a dissimilarity functiond, respectively)  ject under study and are highly discriminative; in all the set-

3.1. Similarity estimation through shape descriptors

is invariant under a chosen group of transformati@&
for all transformationgy € G and all X,Y € X, we have
d(g(X),Y)) =d(X,Y) (resp.3(g(X),Y)) = 3(X,Y)).

tings discussed below, this translates in the selection of the
functions used to detect the main shape featuB&H 08].
A good shape descriptor should be robust and endowed with

adequate invariance properties. Indeed, robustness guaran-
tees that small changes in the input data, such as noise or
non-relevant details, do not result in substantial changes in
the associated shape descriptors. Invariance properties are
related to the application domain; for instance, rotations and
translations in case of shape alignment.

A common strategy in shape (dis)similarity assessment is
to associate the shape of an object with a compact codifi-
cation of its most salient features, which is usually referred
to asa shape descriptoin this way, shape descriptors can
be used in place of the whole model representations to de-
rive some (dis)similarity score between the original objects.
Nevertheless, a single descriptor might not be enough to get Having a good shape descriptor at hand, the problem of
a sufficiently detailed shape characterization. Therefore, bat- assessing the similarity between two shapes can be recast
teries of descriptors can be used separately to produce multi- into the comparison of the associated descriptors, as shown
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lated objects and faces) although the use of geodesics make
it sensitive to topological changes (e.g., open/close mouth,
two fingers that touching each other).

Il
o

H
i
t

The scale-invariant HKS (SI-HKS) was proposed by
Bronstein et al. BK10b] to overcome the scale dependence
of the standard HKS and inherits its autodiffusion-related
structure. Indeed, scale independence is done in terms of
scaling and shift in time: scale is obtained from the log-
arithm of HKS and its discrete derivative with respect to
in Figure8, according to a suitable (dis)similarity measure time, while the shift is seen as a different phase that is
taking into account the above remarks. discarded through a complex representation of the discrete
Fourier transform. The SI-HKS at each point of the shape is
approximated through soft quantization by the closest geo-
metric words in a precomputed vocabulary of 48 elements
that is compared using tHe' distance. The SI-HKS fully
satisfies intrinsic invariance and scale independence. More-
over, the choice of the discretization scheme for the Laplace-
Beltrami operator (e.g. point wise or mesh-based) makes this
signature available for different inputs such as point clouds
or meshes.

Figure 8: The (dis)similarity between two objects is com-
puted as a suitable distance between their descriptors.

The use of shape descriptors is largely acknowledged in
the literature and a variety of methods has been proposed
so far BKS*05, TV04, DP06 TV08,BDF*08,vKZHCO11,
WZL*10, TCL*13]. During years, the situation has evolved
from 3D descriptors heuristically introduceB{S* 05], mo-
tivated by techniques and practices inherited from vision
(projection-based descriptions), geometry (statistics of sur-
face curvature or geodesic distances), or signal processing
(object samples in the frequency domains), to more sophis-
ticated and mathematically sound frameworks leading to de-  Heat kernels of the Laplace-Beltrami operator are also at
tect salient shape’s feature yet showing robustness to noisethe basis of the approach proposed®B{z011], in which

and different group of transformations. they are used to derive local feature descriptors for each
considered shape. Then, thag-of-featureparadigm is de-
Remarks, examples, and applications. Among the num- ployed for aggregating local (point-wise) descriptors into

ber of methods proposed in the literature, we selected someglobal (shape-wise) one. Roughly, local features are first
representative ones that are meant to give an overall ideaused to construct a vocabulary of “geometric words”. Then,
of the variety of descriptions (histograms, matrices, graphs, local shape descriptors are represented by geometric words
etc.) and type of information stored (punctual, surface or vol- from the above vocabulary using vector quantization, so that
umetric, possibly with attributes). What all these methods each shape is represented through a “bag of features” by
have in common is that they extract shape information in the counting the frequency of occurrence (histogram) of vocab-
form of functions, and use that information to derive shape ulary words. Finally, similarity-sensitive hashing is applied
descriptors. Similarity assessment is then performed by di- to the bags of features.

rectly comparing descriptors through the use of suitable dis-

Besides the use of histograms, graph-based signatures are
tances.

well suited when structure and shape parts are relevant for
An example of descriptor that encodes rigid shape prop- the application. The basic assumption behind this type of
erties is the one proposed by Mademlis et MID{TS09 methods is that a shape can be decomposed into significant
in which the potential of a Newtonian field defined in the parts, each one described by a local description, and that also
space outside the shape is adopted. The 3D descriptor is thethe relation between parts is relevant. Then, the compari-
combination of independent histograms (36 in the paper) re- son is done with graph matching approaches that take into
lated to surface proximity, field intensity and curvature while account both local geometrical features and the part hier-
comparison is performed with ad-hoc distances. The robust- archies. As a representative example of this class of meth-
ness of the method to small shape variations derives from ods we highlight the technique for finding corresponding
the preprocessing step (voxels simplify small shape details) parts in structurally different objects proposed by Shapira et
and from the stability of the volumetric function while the al. [SSS10]. The robustness of the method with respect to
scale-invariance is achieved through a pre-processing step insmall deformations depends on the robustness of the parti-
which all shapes are normalized and voxelized. tion technique. Being based on a hierarchical representation,
this method tackles the problem of comparing parts from

Towards intrinsic invariance, Smeets et al. 8HVS173 ) i . )
adopt geodesic distances between surface samples. ThesecY different shapes, even with different topology; how-

values are stored in geodesic distance matr{xsDM) that ever, the use of the shape diameter function (SS5GO0%

is used to derive further shape histograms to be compared makes it particularly suitable for articulated shapes.

using classical metrics (e.g.z, LP and Jensen-Shannon di- Zaharescu et al.ZBVHO09, ZBH12] treated the case of
vergence). The method is shown to be robust under nearly textured 3D shapes. Their method builds upon a scale-
isometric deformations (examples are provided on articu- space derived from different normalized Gaussian deriva-

submitted to COMPUTER GRAPHICBrum(8/2015).



S. Biasotti et. al. / Trends in 3D shape similarity assessmen 11

tives through the Difference-of-Gaussians (DoG) operator (the elements of the isometry group q&?,dka) are rigid
[Low04], and incorporates in a unique paradigm geometric motions including rotations, translations, and reflections).
and photometric information. The operator is computed on a The metric spacéX,drs) is a subset of the metric space
scalar function defined on the manifold, which in the original ~ (R3 dg:). Given two shape$X,dgz) and (Y,dgs) and re-
paper is either the mean curvature, the Gaussian curvaturegarding them as subsets (dR37dR3), their similarity can be

or the photometric appearance of a vertex (the mean of the quantified using the Hausdorff distance

RGB channels). The computation of the scale-space does not

alter the surface geometry (differently from the similar ap- dy (X,Y) = max{ supinf d(x,y), supinf d(x,y) } ,
proach in CCFMO08§). Invariance to the mesh sampling (i.e. XEXYEY yey xeX

the selection of the feature points) is obtained with the nor- \\nicp expresses the similarity between two subsets of a met-
malization of the histograms througﬁ norm, that is also ric space with metrid [HKR93]. Since the shapes are de-

used for their comparison. Depending on the choice of the fiqq up to Euclidean isometry, one minimizas over all
function (mean curvature, Gaussian, etc.) isometric invari- the possible rigid motions

ance is satisfied, while the scale-space description guaran-

tees robustness to noisegH17). ielsg&ggd 3)dH (i(X),Y),
»Og

Finally, a very recent trend in shape analysis, borrowed
from the image processing and computer vision commu-
nity, is learning invariant structure rather than trying to
hand-craft them. The main advantage of learning meth-
ods is that, instead of trying to model the noise or shape
variability axiomatically, one learns them from examples.
In particular, learning methods allow for creating class-
specific descriptors that address fine-grained differences be- ~ IN @ more general setting, we are given two shdpesly )

parametrized by a small number of degrees of freedom (three
rotation angles and three translation coordinates). This op-
timization problem can be regarded as best possible rigid
alignment ofX andY in R3, and is solved efficiently using
iterative closest point (ICP) algorithms (provided that good
initialization parameters are knowrB192, CM92).

tween shapes in the class. Litman and Bronst&iR1H] and(Y,dy) with some generic metriody, dy (for example,
proposed a parametric spectral descriptor generalizing the the gepdesm or diffusion metrics |nvar|a.nt to isometric de-
heat and wave kernel signatur&JG0O9GBAL09,ASC11. formations of the shapes) that do not arise from a common

Masci et al. MBBV15, BMM *15] proposed a generaliza- ~ Metric space. In this case, one can either try to compare the
tion of the popular convolutional neural networks (CNN) Metric directly as described in the next section, or alterna-
[LBD*89] paradigm to manifolds. Litman et alLBBC14] tively, reduce the problem to the aforementioned setting. For
proposed a supervised version of the bag-of-features frame- this purpose, one tries to represent the medic(respec-
work for local descriptor aggregation, allowing to achieve tively, dv) in some fixed metric spac,dz) by means of
state-of-the-art performance on fine-grained shape classifi- & isometric embedding: X — Z (respectivelyg: Y — Z)
cation PSR 14] and large-scale retrievaBBS' 15] tasks. satisfyingdx = dz o (f x f) (respectivelygy = dzo(gxg)).

The imagesf (X) andg(Y), referred to azanonical forms

by Elad and Kimmel EKO3], can be compared as subsets of

3:2. Frameworksfor similarity assessment (Z,dz) using the Hausdorff distance under the isometries in
Recently, the 3D shape analysis community has assisted to (Z,dz),

the emerging of new frameworks for similarity assessment. min  du (i((X)),g(Y)),

The peculiarity of these approaches is to rely on a solid i€lso(Z,dz)

mathematical basement: as a consequence, the associatedee figure for a graphical intuition. The choice of the em-
computational _met_hods may count ona numb_er of formally bedding spacéZ,dz) should be such that its isometries can
proven properties involving, e.g., stability against functions e easily parametrized and searched over. In particular, when

(that s to say, shape properties) perturbations and invariance 7 — g3, the comparison of canonical forms boils down to the
under group of transformations. We revise in what follows  yigig alignment problem.

the essential traits of such frameworks. . ) . .
Unfortunately, isometric embeddings of general metrics

into a Euclidean space typically do not exist. It is however

possible to find the best possible approximate isometry, by
Generally speaking, approaches for shape similarity through minimizing some error criterion

the metric geometry framework model the shapes as metric
spaces equipped with some metric. The degree of similarity
is quantified as the degree of isometry of the two respective
metrics, and the choice of the metric prescribes the invari- Remarks, examples, and applications. Elad and Kimmel
ance of the shape similarity. The simplest choice is the Eu- [EKO3] used thd_, (least-squares) error, finding the approx-
clidean metric arising from the spa@ in which the shape imately isometric embedding by solving theultidimen-
X is embedded, which is invariant to Euclidean isometries sional scaling(MDS) problem Bor05. Embeddings into

3.2.1. Minimum-distortion embeddings

(min_fjdx—dzo (> f)].
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X f(X)  (Zd) 9Y) Y

Figure 9: The canonical forms approach: shapes,dx ) and (Y, dy) are (approximately) isometrically embedded into a fixed
metric spaceZ,dz) by means of maps f, g. The resulting canonical forr)f g(Y) are compared using the Hausdorff
distance ¢ over all the isometries 1@, dz).

other metric spaces such as the sphere of hyperbolic space dxuyxxy
were studied inBBK05,WR0Z. More recently [GX13], a N
feature-preserved approach has been proposed for non-rigid

3D watertight meshes. The basic idea is to consider MDS

embedding results as references and then naturally deform

the original meshes against them. In this way, the obtained dxuy|xxx
canonical forms not only have the isometry-invariant prop-

erty, but also preserve important details on the original sur-

faces.

It should be noted that the general idea of represent-
ing the shape in a space where matching can be described
using a small number of degrees of freedom is a com-
mon trait to other shape similarity frameworks, such as
the line of works of Gu et al.JWYGO04 and Lipman et J -
al. [BLC*11,LD11, LPD13, where instead of looking for Rl =
an (approximately) isometric embedding, one looks for an
angle-preserving (conformal) embedding of the shape into
the disk (for shapes with boundary) or sphere (for genus- ) ) )
0 shapes). Such conformal embeddings are known to exist F19ure 10: Gromov-Hausdorff distance as metric coupling:
by virtue of theuniformization theorenjPoi0g. For two illustratively, the metric g,y on the disjoint union of X
isometric shapes, such conformal maps are defined up to a@1d Y can be thought of as a matrix consisting of the

Mdbius transformation. blocks g jy|xxx = dx (red), d¢ |y <y = dv (blue) and the
unknown blocks d 1y |x xy, dxLy|yxx (green). Computing
3.2.2. Gromov-Hausdor ff distance the Gromov-Hausdorff distance amounts to determining the

. . reen blocks that would result in the smallegt d
The Gromov-Hausdorff distanceasts the comparison (and g .

therefore the quantification of the similarity) of two shapes
as a problem of comparing pairwise distances on metric
spaces used to model the shapes themselves, see E@ure

Equivalently, the computation of the Gromov-Hausdorff dis- g ] :
tance can be posed as the evaluation of how much the metric'” fact we have thaipcy is an isometry. As for mappings

structure is preserved while mapping a space into the other. Prx:Y — X, we can define digyx) in the same way as in
Eqg. @), by exchanging the roles of andY. Additionally,

The idea is to represent the comparison of two shapes asye consider th¢oint distortiondis(gxy, @y x) given by
that between two metric spacéX,dx) and(Y,dy). For a
map @xy : X — Y, we measure thelistortion induced by dis(@xy, @rx) = sup |dx (X, @rx(y)) —dv(@xv(x),Y)l,
@xy on the metriady as XEX,yeY

. o hich roughly measures how faky and@y x are from be-
d - d - . w _ .
Is(@xv) Xi},g’(' X(%Y) = v (v (X) oy ()] (2) ing one the inverse of the other. The Gromov-Hausdorff dis-

Obviously, if diggxy) = 0 there is no distortion fody, and
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tancedgy betweenX andY is then defined as: a bijective mapping : X — Y between the shape¢ and

Y, and letf € F(X) be some real-valued function ox,
with F(X) denoting a space of real-valued functions on
X. Then, the function ofY corresponding td is given by
g=for le F(Y). This correspondence can be represented
by means of a linear operatdr: F7(X) — F(Y) mapping
functions between shapes, such that T (f). Foregoing the
bijective correspondence, one can consider Juak a more
generic functional correspondence (the point-wise bijective
correspondence is a particular choiceloivhereby a delta-
function onX is mapped to a delta-function of).

deH(X,Y) = inf max{dis(@xy),dis(@yx),dis(@xy, Prx) }-
Pxy,Prx

The combination of the metric approach with the Gromov-
Hausdorff framework does not require any particular met-
ric to be defined on spaces. Indeed, by choosing different
metrics between points, we get different notions of distances
between space$f099 M12,M11]. However, two possible
choices appear quite natural here. The first one is td ast

the geodesic metricthus defining the intrinsic geometry of
X: In this cased measures the length of the shortest path
on X between two of its points. The second choicedas Suppose now that we are given two orthonormal bases
theEuclidean metricwhich relates to the extrinsic geometry  {@}i>1 C F(X) and{y;};>1 C F(Y) onX andY, respec-

of X: For two points inX, their distance is measured as the tively. Any function f € F(X) can be represented through
length of their connecting segment. the Fourier series a$ = zi21<f,(n>ﬂx>(g = Yi>1a0.

Due to the linearity ofT, we haveT f = T(Jj>1a@) =

Extrinsic geometry is invariant to rigid transformations of Sis1aT@. The functiond @ € F(Y) can be then expanded

the shape (rotation, translation, and reflection), which pre- : . . <. _ o
serve Euclidean distances. However, nonrigid deformations |n_ thi.'kﬁssi{eﬁi}n’zl asTe = 3i=1(T@. W) rmW¥; =
may change the extrinsic geometry. As a result, the Eu- 221G,y 9

clidean metric is not suitable for the comparison of non- Tf= 2 quCji<f7(ﬂ>]-'(x)~

rigid shapes. On the other hand, intrinsic geometry is invari- ij>1

ant to inelastic shape deformations, which indeed are metric
preserving. Therefore, the geodesic metric is a good choice
for comparing non-rigid shapes, as has been confirmed by
several contributions. However, other invariance classes can
be relevant in applications, for example topological defor-
mations or scaling. To this aim, more sophisticated choices
are possible, such as the diffusion or the commute-time dis-
tance WBBP12.

This way, the functional correspondence is encoded through
the coefficientscji, which determine how Fourier coeffi-
cients in the basi§@ }i>1 are translated into Fourier co-
efficients in the basig;};>1. It is readily approximated

by taking the firstK coefficients in the expansiof, f =

TRi—1WiCii (@) £(x)-

Discretization. In the discrete setting, the shap¢sandY

are represented as discrete spaces widmd m points, re-
spectively, and the functional spac&gX) and F(Y) can

be identified withR" andR™, respectively. The functional
correspondence is represented as anx n matrix. Denot-

ing by ® = (@1,...,¢9¢) andW¥W = (Y1,...,Pk) thenx K
andm x K matrices of basis vectors, respectively, we have
T~wWC ", whereC is theK x K matrix of coefficients
encoding the correspondence. Thus, finding the correspon-
dence boils down to finding the mati@ which, in turn, ap-
pears to be a simple algebraic problem: given a setaufr-
responding function§& = (fy,..., fq) andG = (91,...,0q)
(such thaG ~ TF), C is computed by solving the system of
gK linear equations

Remarks, examples, and applications. The Gromov-
Hausdorff distance was first proposed for deformable shape
analysis by Mémoli and SapirdV[S05 with a probabilis-

tic approximation scheme for discrete spaces. Bronstein et
al. [BBKO6] proposed the generalized MDS (GMDS) ap-
proach, based on a continuous optimization w.r.t. point co-
ordinates on triangular meshes. GMDS allows for comput-
ing the distortion terms in a manner similar to MDS in
Euclidean spaces, with two main differences: first, the dis-
tances have no closed-form expression but are interpolated;
and second, the points are represented in local (barycentric)
rather than global (Euclidean) coordinates. WHEBP12,

the Gromov-Hausdorff distance was computed in a hierar-
chical manner using graph labeling methods. MérrMIi[L] c'w=fFToc (3)
generalized the Gromov-Hausdorff construction to metric- =, ) )

measure spaces, introducing the Gromov-Wasserstein dis-" K* variables. Assuming the columns &f and G are
tance which generalizes the Wasserstein (earth mover's) inearly-independent, the system has a unique solution when
distance RTGOQ. An extension of the Gromov-Hausdorff ~ 9= K, is under-determined ifj < K and over-determined
framework to the setting of partial shape matching was pro- wheng > K. In the latter case, itis solved in the least-squares

posed in BBO8, BBBK09]. sense,

min [|G"W—FTaC|?. 4)
3.2.3. Functional maps CeRKX
Ovsijanikov et al. PBCS 12 proposed a functional repre- Figure11 shows an example of a bijective map between

sentation of maps between shapes. Suppose we are givertwo nearly isometric dog shapes, and the corresponding
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functional representation in the form of a 20 matrixC,
computed according to equatiof) (As shown in the Figure,

functional maps between near-isometric shapes are repre-

sented by nearly-diagonal matrices in the Laplace-Beltrami
eigenbases.

““““ — 12

zzzzzzzzzz

Figure 11: Two shapes and the isometric mapping between
them in the form of its functional representation.

Choice of F and G. As corresponding functions andG

one may choose any function that can be independently com-
puted onX andY satisfying at least approximateGy~ TF.
Ovsjanikov et al. DBCS'12] used the wave kernel signa-
tures ASC11; Kovnatsky et al. KBB*13] and Pokrass et al.
[PBB*13] used indicator functions of stable regions (shape
MSERs LBB11]) which turn out to be very robust. Pokrass
et al. PBB*13 also used point-wise correspondences.

Choice of the basis. It is important to note that C depends
on the choice of the bases. Ovsjanikov et @BCS 12] use

as the basis functionp }i>1 and{y;};>1 the first eigen-
functions of the Laplace-Beltrami operators>findY, re-
spectively. Due to analogy with frequency analysis, taking
the firstk elements of such bases can be interpreted as “low-
pass filtering”, thus restricts the functional maps to a subset
of smooth maps. Using more basis functions (laiggrl-
lows more accurate maps; however, at the same time it re-
quires more corresponding functions to be available (larger
), which in many cases might be difficult to provide.

Kovnatsky et al. KBB* 13 EKB™*15] introduced the joint

approximate eigenbases, computed as an orthonormal trans-

formation of the Laplacian eigenbases of the fabm= OP

and ¥ = YQ, whereP and Q are orthonormal matrices
(Q' Q=P P=1). The matrice® andQ are found to make
sure that the Fourier coefficients of corresponding functions
F andG in the respective bas&sand ¥ are approximately
equal, making sure at the same time tfeand ¥ approxi-
mately diagonalize the respective Laplacians, by solving the
optimization problem of the form

rggn IGTWQ—F T ®P||2 + pioff(P T AxP) + p20ff(QT AvyQ)
stP'TP=QTQ=1I,

where offA) = zi#jaﬁ- is a penalty on a non-diagonal
structure, andAx, Ay are diagonal matrices containing

S. Biasaotti et. al. / Trends in 3D shape similarity assessmen

[KGB15]. If X andY are nearly isometric, the correspon-
dence matrixC represented in the joint basis is approxi-
mately diagonal, allowing to reduce the systedh ¢f gK
equations inK? variables toK variables considering only
the diagonal elements @

One of the disadvantages of Laplace-Beltrami eigenbasis
is poor localization properties, making it hard, in particular,
to represent correspondence between shapes with missing
parts. As a remedy, Neumann et &IMT *14] used the re-
cently introduceccompressed mod¢®LCO14.

Shape similarity through functional maps. The joint di-
agonalizability of the Laplacians under functional corre-

spondence was used by Kovnatsky et €BB*13] as a cri-
terion for shape similarity (see Figui®).

I SERLECT
i

Figure 12: Quantifying shape similarity using joint diag-
onalization. Darker colors represent more similar shapes.
One can clearly distinguish blocks of isometric shapes. Also,
two classes of two- and four-legged shapes (marked with
green and blue) are visible. Small figures show representa-
tive shapes from each class.

A framework for capturing fine-grained shape differences
was proposed by Rustamov et aRQA*13]. The authors
notice that typically(f,g) x) # (T £, Tg) () for some
choice of the inner products oA (X) and F(Y), a pair of
functionsf, g € F(X), and a functional map. However, by
the Riesz representation theorem, there exists a unique self-
adjoint linearshape difference operators :DF (X) — F(X)
“equalizing” the inner products, in the sense

(£.09) rx) = (T £.TQ) 7(v)-

the first Laplacian eigenvalues. This optimization is car- The shape difference operator represents the change of inner
ried out efficiently using manifold optimization techniques product from one shape to another under the functional map
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and describes local shape differences (see Fi@jBreRus- DFO07, DF0Y. The starting point is to model a shape as a
tamov et al. use the shape difference operator for the analy- pair (X, f), whereX is a topological space equipped with a
sis of shape collections, taking the advantage of their linear continuous real-valued functioh: X — R encoding a shape
structure, allowing to perform basic operations such as PCA property of interest. To compare two pafp$, f) and(Y,g),
on shape differences. with X andY homeomorphic, we can imagine to transform
D one space into the other trough a homeomorpliisi — Y,
and check how much the properties of the original shape
m have been preserved/distorted lmythis problem amounts
; to measure the difference between the functibasdgo h.
‘ spect to certain properties if there exists a homeomorphism
that preserves the functions conveying those properties.
T X f g
the topological space that best fits with the problem at hand.
For example, we might want to fiX = S with S a 2-
dimensional manifold modelling the shape surface, but also
‘ ’ < the Cartesian produ&x Sin case the functiori to be stud-
ied is a metric defined o0& Other possible choices might be
D1 D the tangent space & or a projection ofS onto a plane, or
g

In other words, shapes are supposed to be similar with re-
Note that to represent a given shape it is possible to choose
Y

the boundary ofS, or the skeleton of§ and so on. Such a

choice is driven by the set of properties that one wishes to
Figure 13: Shape difference operator allows to representthe capture.

difference between two shapes under a functional correspon-

dence. More formally, thenatural pseudo-distanceetween two

pairs(X, f) and(Y,g) is defined by setting

. . dnp((x,f) ) (Y7g)): inf sup|f(X)—goh(X)|7

Remarks, examples, and applications. Conceptually, heH xeX

functional maps are related toft mapfSNB*12], a prob-  with h varying in the set H of homoeomorphisms frofrto
abilistic relaxation of point-to-point shape correspondence. . If X andY are not homeomorphic the pseudo-distance is
Soft maps can be represented as probability matrices, thusset equal tax. Note however that the existence of a home-
allowing linear algebra tools for their analysis and manipu- omorphism is not required for the shapes under study, but
lation. These concepts appears to be one of the leading direc-rather for the associated spacésandY. In this way, two

tions of research in the field of shape analysis, with several gbjects are considered as sharing the same shape properties

important follow-up works. In@BCCG13, the quality of if the natural pseudo-distance between the associated size
functional maps is related to the singular vectors and val- pairs vanishes.

ues of the matrixC. In [PBB*13], the problem of finding

the matrixC was generalized to the setting when the cor-
respondence between the columng=oind G is unknown,
leading to the permuted sparse coding problem. Extension
of the functional maps to the setting of partial correspon- -
dences was proposed iREB*15]. Ovsjanikov et al. stud- a modular setting fostered the Qe\(elopment of a tppology-
ied the use of functional maps in the presence of symme- Paseéd approach to shape description and comparison based
tries [OMPG13. Huang et al. HWG144 showed the ap- on t_he_use of _dlffgrgnt classe§ of functions, describing both
plication of functional maps to the analysis of shape collec- E€Xtrinsic and intrinsic properties of shapes. Some of them
tions. Shapira and Ben-CheSBC14 showed how to use hgve bee_n_ singled out as better sun_egl th_an o_thers to deal
shape difference operators to find correspondence across dif-With specific problems, such as obtaln*lng invariance under
ferent collections of shapes. Synthesis of shape analogies by9roups of transformationsDfFP04 DLL "10], or working

reconstructing a shape embedding from the shape difference With particular classes of object€FGO6FS1Q. Neverthe-
operator was studied iBEKB15]. less, the choice of the most appropriate functions for a par-

ticular application is not fixed a priori and, as observed for
the Gromov-Hausdorff framework, has to be carefully car-
ried out up to the specific application/problem at hand.

The natural pseudo-distance offers a framework in
which different shape properties can be plugged-in in the
form of different real functions, so as to measure shape
(dis)similarity up to different notions of invariance. Such

3.2.4. Thenatural pseudo-distance

If we push further the idea of measuring the distortion of

properties while transforming a shape into another, i.e. con- Lower boundsfor the natural pseudo-distance. The com-
sidering topological spaces instead of metric spaces, we getputational issues related to the practical evaluation of the
the concept behind theatural pseudo-distancéDF04h natural pseudo-distance are still an algorithmic bottleneck.
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Indeed, a direct computation would require to check all pos-
sible homeomorphisms between two spaXemndY, which
is intractable in practice. For this reason, no algorithms have

been proposed so far for this task, and the efforts have beenMorse theory,

rather focused on the definition of computationally efficient
approximations of the natural pseudo-distance.

The above issues led to the introductiorsife functions
shape descriptors providing a lower bound for the natural
pseudo-distanceDF044. Interestingly, the same result can
be read as a stability property under functions’ perturba-
tions [dFL1Q. Size functions were afterwards included in
the framework ofTopological Persistencéhereafter sim-
ply persistencg[ELZ02 EH1(, whose family of theoretical
and computational tools, with particular referenceptr-
sistence diagramfCSEHO0T, can be used to derive lower
bounds for the natural pseudo-distan€SEHO7CDF" 13
and the Gromov-Hausdorff distanc@ CSG'09]; in the lat-

S. Biasotti et. al. / Trends in 3D shape similarity assessmen

the input functionf produces only small changes in the as-
sociated persistence diagram dgm[CSEHO07dFL10.

Similarly to persistence, ald®eeb graphfRee4groot in

but track the evolution of the level sets of a
function f rather than its sub-level seBGSF08aDW13].
From the mathematical point of view, Reeb graphs can be
defined as the quotient space induced by the equivalence re-
lation that identifies the points belonging to the same con-
nected component of level setsfofRee4§. The parametric
nature of Reeb graphs with respect to the funcfiemshown

in Figure14, where the Reeb graphs of a closed surface with
respect to two different functions are depicted. Recently, sta-
bility results for Reeb graphs underfanctional distortion
distance[BGW14] and anediting distanceéhave been pro-
posed PL12b,DFL14], leading to lower bounds for the nat-
ural pseudo-distance.

Thanks to their modularity, persistence diagrams and

ter case, topological spaces are replaced by metric spacesReeb graphs provides different shape descriptions simply by

All these signatures are able to naturally combine the clas-
sifying power of topology with the descriptive power of ge-
ometry.

Having modelled a given shape as a p@f, f), with
f : X — R, according to persistence we can consider the
sublevel sets of to define a collection of subspacks =
{x € X|f(x) <u}, ueR, nested by inclusion, i.a filtra-
tion of X. Homology may then be applied to derive some
topological information about the filtration &f. More pre-
cisely, the idea is to track how topological features vary in
passing from a set of the filtration into a larger one, taking
inspiration from Morse theory (see Secti®rb.2. From the
homological viewpoint, this can be done in terms of the evo-
lution of the Betti numbers along the filtration, which gives
insights, e.g., on thbirth and thedeathof connected com-
ponents, tunnels or voids.

The topological evolution of the sublevel setsfofs fi-
nally encoded in a persistence diagram d@m This is a
collection of points in the half-plang(u,v) € R? : u < v}.

For each point, the-coordinate represents the birth, in terms
of the values of the functiorf, of a topological feature,
whereas the-coordinate represents its death. A persistence
diagram provides a multi-scale description of the shape un-
der study. Indeed, points far from the diagonat v repre-

changing the considered function. Interestingly, they inherit
the invariance properties directly form the considered func-
tions.

Remarks, examples, and applications. A large portion of

the persistence applications proposed so far fall in the field
of shape matching and retrieval: persistence diagrams play
the role of shape descriptors, while similarity is derived
from a stable distance between them. For example, diame-
ter function, eccentricity function and higher-order eccen-
tricity functions are used inQCSG'09] to build persis-
tence diagrams on Rips filtrations of finite metric spaces,
so to derive stable signatures providing a lower bound for
the Gromov-Hausdorff distance, whilBGSFO8B uses size
functions, which are roughly the persistence diagrams study-
ing the evolution of connected components, to compare at-
tributed skeletal graphs derived from functions that code ex-
trinsic and intrinsic shape properties. Recently, persistence
diagrams have been used in combination with the bag of
feature approach, to address shape retrieval and recognition
tasks LOC14.

As for Reeb graphs, they have been introduced in Com-
puter Graphics in the 90’s by Shinagawa et &K1,
SKK91] while their use for shape matching dates back to
2001 HSKKO01] with the definition of the Multiresolution

sent long-lived features, while points close to the diagonal — Reeb graph (MRG). Since then, several variations of the
they are characterized by a shorter life — stand for noise and Reeb graph have been introduced to couple the topological
details. The paradigm is that long-lived features are more information stored in the graph with geometric attributes of
meaningful or coarse for shape description, while short-lived the shape parts corresponding to nodes and arcs, the most
ones stand for noise and details. Examples of persistence di-popular being the augmented Multiresolution Reeb graph
agrams, describing the evolution of connected components [TS04 TS09, the Extended Reeb grapB§IM *03] and the
along different filtrations, are shown in Figutd. The (red) Discrete Reeb grapiXEWO03, more details can be found
vertical line in the four diagrams can be seen as a point at in the survey papel§GSF08& Also, several graph match-
infinity, and represents a topological feature tvét never ing methods have been introduced, ranging from global sim-
die. Persistence diagrams are stable under the Hausdorff andilarity measuresfiISKK01, LMM13] to approximated sub-
bottleneck distangevhich in turn provide lower bounds for ~ graph matching techniqueBMSFO0§ and graph kernel ap-
the natural pseudo-distance. In particular, small changes in proachesiBB13aBB14].

submitted to COMPUTER GRAPHICBrum(8/2015).



S. Biasotti et. al. / Trends in 3D shape similarity assessmen 17

(@) (b) (© (d) (€) (f) (9)

Figure 14: Persistence diagram@ — c) and Reeb graph&e — f) related to different choices of the function f (color coded,
increasing values from blue to red).

4. Taxonomy of the methods are simplicial meshes (e.g. triangular or tetrahedral meshes)
[RBBK10h Rus1QBLC*11,GL12 DP13LB14] or regular
grids BCF*08,MDTS09. 3D grids (voxel) representations,

in particular, are mainly used in medical applications.

In what follows, we propose a “practical” classification of
the surveyed methods, according to key characteristics that
are important in applications:
On the other hand, in the computer vision community it
o ) is common to se@oint cloudrepresentations for 3D data
Type of invarianceThe class(es) of transformations ac-  gptained in shape-from-X problems. The recent emergence
cording to which the method is invariant; of 3D acquisition hardware has made these representations
Type of outputThe modality used to return the shape sim- popular in rigid matching problemd CL*13], which play
ilarity assessment: either a numerical score, or a shape cor-an essential role in multi-view data fusion. In the analysis
respondence, or both; of deformable shapes, such representations are less common

Type of structureThe particular kind of shape structure [MHK"08 MS09aNBPF1].
that is captured from the chosen shape description method;  In many situations, additional information can be avail-
able in additional to the geometric structure of the shape. A

Type of distance.The criterion used to assess the ) .
(dis)similarity between shape structures. It may refer to ei- g/glgélle:;(ample we report heretixture[KBBK12,ZBH12

ther the chosen distance between shape descriptors, or the
selected framework to compare shape structures;

Type of inputThe shape representation format;

Computational costWe distinguish between the extrac- 4.2. Typeof invariance

tion of shape descriptions and the subsequent comparison. The type of invariance is strictly interlinked to the infor-
mation the method captures. For instance, extrinsic geomet-

Obviously, these criteria are inter-related: for example, the . - . : . h
ric shape descriptions are invariantrtgid transformations

input type may put limitations on the kind of the structures . ) .
that can be computed, and, in turn, the choice of the structure (rotations, translations, and reflections)TS09 GDZ10
! . ] . .. BK104d.

would usually determine the invariance (e.g. if one uses dif-

fusion geometric structures to find correspondence between Intrinsic shape descriptions (such as those based on

shapes, such a correspondence would be invariant to isomet-geodesics and diffusion processes) are invarianiste

ric deformations). metric shape deformations, which are in general non-

rigid but preserve distances computed over the shape sur-

face BBK09, SSS10,WZL*10,BLC*11, BB11, BBK*10,

RBB*11, BBGO11 FSR11. Examples of isometric defor-

cal” perspective we have chosen for the proposed taxonomy, matlons are §hape bendings. Recently, isometric deforma-
tions preserving volume have been taken onto account, as

and as a convention in this survey, we will stick to the infor- they better represent shape deformations associated with
mation related to th ifi lication settin ri in
ation related to the specific application setting described many natural phenomenRBBK10b Rus10BHKH13].

the respective paper, though in some cases generalizations
might be possible. Other classes of deformations which are relevant for ap-
plications include certain classes of non-isometric transfor-
mations, which do not preserve the Rienmannian structure of

) ) o the shapeBCFG11. Typical examples are shape stretching,
The input type is related both to the application from scaling and affine transformatiorRBB* 11, RK14].
which shapes come and the mathematical model of the

shape similarity or correspondendg@F*08]. In the com-
puter graphics community, shapes are traditionally modelle
as surface models (two-dimensional manifolds represent- The process of comparing two shapes may result in either
ing boundaries of physical 3D objects) oradumemod- a numerical assessment of theimilarity, or acorrespon-

els. The most common discretizations of such structures dencebetween the two shapes, or both.

In what follows, different methods are discussed on the
basis of the proposed taxonomy, which is then summarized
in Tablesl and2. Have in mind that, in line with the “practi-

4.1. Typeof input

q 43 Type of output
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Algorithms aiming at the computation of correspondence
usually produce a quantitative measure of similarity as a by-
product (e.g., metric distortion irBBK*10]). On the other

D shape similarity assessmen

tures Examples of methods dealing with this kind of in-
formation include curve skeletond Hi13], Reeb graphs
[BGSF084 and persistence-based techniquésCIF*08,

hand, numerous shape retrieval approaches based on holisticCCSG'09, DLL *10,DL124d. Some of these approaches in-

descriptors produce similarity only. The measure of similar-
ity itself can be eithefull or partial: the former is a global
similarity score between shapes, the latter comes from com-
paring only some of their parts.

Methods computing correspondence can be further sub-
divided into those finding full or partial correspondence.
Both cases can be classified ssarse(correspondence is
computed only between a small subset of feature points de-
tected on the shapes being matchedilemsgtypically rep-
resented by providing for each vertex or each triangle on
one shape its image under the correspondence on the other)
Dense correspondences can be alternatively represented by
smooth approximation of the continuous map in some basis
using the functional correspondence formalism. Such corre-
spondences are usually referred tsat Methods comput-
ing fuzzy correspondence abandon the representation of the
latter as a function, allowing a single point on one shape to
be mapped to a distribution on the othKtM *12]. Despite
the superficial similarity to the functional representation, the
underlying details differ substantially.

4.4. Typeof structure

A first classification for shape structures may be done ac-
cording to the associated invariance. Structures invariant to
rigid transformations are referred to astrinsic Simple
rotation- and translation invariant-structures include those
based on Euclidean distances (e.g. from the object centre of
mass BCF*08], other points or regions of intereK10a,
BCFGL1] including shape boundariedIDTS09, LH13)]).
Extrinsic structures can be extended to cope with global
scale or affine transformations.

Structures invariant to transformations preserving the lo-
cal metric of the underlying manifold are referred toias
trinsic; this type of invariance is sought in applications in-
volving deformable shapes. Intrinsic structures can be fur-
ther made invariant to global scale and affine transforma-
tions [BK10b, RBB*11]. Among the possible variations in
the class of intrinsic structures, we distinguish betweam
formal structures by referring to those based on Gaussian
curvature and geodesic distancelffusion structures for
those relying on diffusion processes and spectral properties
of the Laplace-Beltrami operatobDK10, WZL*10]; autod-
iffusion structures for those built on various types of local

spectral descriptors such as the heat and wave kernel signha-

tures SFOGO9GBAL09,ASC11.

Some methods allow for analysing shapes according to
the topological exploration of the functions which are used
to represent shape properties of interest. Referring to the
emerging structures, we will talk abotdpological struc-

herit invariance properties directly from the considered func-
tions, thus leading to intrinsic or extrinsic topological struc-
tures.

Structures can be al$ocal or global. Local structures re-
flect the properties of the shape in the vicinity of a point
of interest and are usually unaffected by the geometry or
the topology outside that neighbourhood. For this reason,
local structures are typically used for partial similarity as-
sessment. Global structures, on the other hand, capture the
properties of the entire shape.

A local structure may be captured in the form of local de-

Z%criptors. Recent works proposed a plethora of descriptors

such as those based on conformal facB€{G04, autodif-
fusion [GBALOQ9Y] or the heat kernel signatur&G09 and
its scale- BK10b] and affine-invariant versiondRBB*11,
RK14], and the wave kernel signaturd$C11.

Global structures can be obtained by integrating local
structure over the entire shape, typically in the form of a
single- or multi-dimensional histogralBBGO11, BB134.

This is a standard approach in retrieval applications where
a holistic description of the entire shape is required. Other
inherently global structures include distance functions and
their distributions FSR1], as well as global spectral prop-

erties such as the Laplace-Beltrami spectrum and eigenfunc-

ons.

Some methods combine both local and global proper-
ties of the shape producingemi-localstructures such as
the maximally stable extremal regions (MSERsBB11].
These structures arise in the form of hierarchies of stable
regions, and are guided both by the behaviour of a local
descriptor (e.g., heat kernel signature) and the coarse-scale
properties of the shape. Similarly, bilateral mapkZH13]
provide a medium scale description that depends on the
closeness of the base points.

Other methods allows for dealing with shape information
at different scales, thus providing a unifying interpretation
of local and global shape description. We refer to the related
structures asulti-scale

Finally, in case of additionaphotometricinformation
(texture), structure is usually captured by embedding shapes
in both the Euclidean space and in a colour-based one (such
as the RGB or the CIELab colour space) or possibly in a
larger one somehow combining the above two. Examples of
related methods include those based on colour-aware gener-
alizations of purely geometric approaches such as heat ker-
nel signaturesBBK12], geodesic distancBCGS13 and
spin-images PZC13; other methods take inspiration from
techniques initially conceived for 2D images, as in the case
of [TSDS11ZBH12] with the SIFT algorithm Low04].
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4.5. Type of distance

The criteria used to compare shapes depend on both the

information enclosed in the emerging structures, and how
this information is coded (e.g. histograms, graphs, point-
correspondences, etc.). As discussed in SecHprsev-

19

In our case, extracting and comparing shape descriptions are
the two computational issues that each method needs to face.

Table2 summarizes the computational complexity of the
methods listed in this survey. Since the running time com-
plexity is not specified by several of the authors, we classify

eral frameworks have been introduced for comparing shape the methods on the basis of considerations about their the-

structures.

Minimum-distortion embeddingsand the Gromov-
Hausdorffframeworks allow for comparing shapes in terms
of the metric distortion between two metric spaces when
transforming one into the othdfunctional map®xtend the
similarity problem to the comparison of functions defined

oretical complexity rather than a real implementation. For
each method, we indicate the complexity of extracting and
comparing the considered shape descriptions. In doing this,
we use the ternfow to denote a computational complexity
that is sub-quadratic (e.g., strictly smaller tk@(nz) whit

n the number of vertices in the input point cloud or triangle
mesh),high if the complexity is higher than cubicpedium

on the shapes, returning a correspondence between Shapeﬁtherwise.

in terms of a linear map in the space of functions. Methods
related to thenatural-pseudo distancare usually endowed
with a mathematically sound notion of stability, and are
modular in the choice of functions and invariance properties
that are used to describe the considered shape properties.

Beyond the above frameworks, a number of methods con-

5. Applicationsand benchmarks

The explosive growth in the number of shape analysis tech-
nigues, including those for shape similarity assessment, has
made acute the need for a widely-accepted performance

sidered here represent different interpretations of a standard€valuation protocol. This has led to the introduction of
approach for similarity assessment, based on the computa-Penchmarks, whose variability in the type of 3D content

tion of suitable distances between shape descriptors.

For instance, a simple, yet effective way of globally de-
scribing a shape is to udeature vectorsSuch a descrip-
tion is based on projecting inkadimensional vector of the

features detected. Feature vector distances are a well-known

issue in shape retrievaBKS* 05, TV08]. Traditionally, so-
lutions to this item are provided by thdinkowski [P fam-

ily of distances. Examples include the Manhattan distance
(p=1); the usual Euclidean distange£ 2); the maximum
distance p = o), also called Chebyshev or chesshoard met-
ric. Other distances provided by statistics and information
theory arexz-statistics, theHamming distancethe Jeffrey
divergencetheJensen-Shannon divergentgeWasserstein
distance also known as tfigarth Mover’s distance (EMD)

in the discrete setting&.D07].

In case the structure is coded in a graph, many dis-

(medical, remote sensing, entertainment, cultural heritage
etc.) and its representation (triangle mesh, volume models,
point clouds etc.) in part reflects the increased availability of
3D data [GZL*14)].

Beyond evaluation purposes, the objective of benchmarks
is to provide environments in which methods can be tested
on the cutting-edge challenges arising from real-world ap-
plications. As for shape similarity assessment, such chal-
lenges include, e.g., browsing large-scale shape collections,
recognizing shapes in complex or cluttered scenes, dealing
with different shape representation formats. Another issue
is given by noise, usually introduced in the data acquisition
and/or processing phases. We can distinguish between multi-
ple kinds of noise, possibly affecting either the geometric or
the topological shape structure, or both. We mention short-
cuts, shot noise and missing parts, just to cite a few. Noise
may come also in the form of illumination changes, deco-

tances have been introduced, each one depending on therative pattern degradation or material deterioration, in case

type of information stored in the graph and its hierarchi-
cal nature. Examples are ttapproximation of the maxi-
mum common subgragBMSF06 TVDO09, BK10a AK11],
path matchindSS$'10, MBH12, RPSS10LH13], Hungar-
ian distance $TP12GDZ1(q and graph kernels[BB13a
BB13h LMS13].

additional texture information is considered.

In what follows we provide an overview of the application
domains involving the process of similarity assessment, and
the most popular benchmarks that have been released to train
and evaluate methods in these tasks.

Many other distances may be listed, which in some cases Applications. In the existing literature, we identify some

have been proposed ad-hocsimilarity measures between
shape descriptors, seBIP09] for more details.

4.6. Computational cost

Besides accuracy, the computational complexity of a method
is a fundamental aspect when dealing with real applications.

submitted to COMPUTER GRAPHICErum(8/2015).

(partially overlapping and sometimes used synonymously)
specific classes of applicative taskEXMSO05|.

Shape matchings usually referred to the task of estab-
lishing a correspondence between feature points or regions
of different shapesRBB*11, ASC11 LBB11, ZBVHO09].
Often, this is the result of minimizing the distortion of
some shape structure, while mapping one shape to another
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[KLF11,KBB*13,PBB*13,LB14]. Nevertheless, matching  sions MAD *11,BDP134, also in presence of partial occlu-
two shapes can be expressed in the form of a global similar- sions BDP13 and missing datajKkVvS13.

ity score BLC*11, LPD13 RBBK103 BBK*10, BCF*0g],
possibly (but not necessarily) obtained as the by-product of
a correspondence like in the frameworks discussed through-
out the paper.

Shape classificatiomims at finding the class the query
model belongs toBGM*06, GMO0§]. It is closely related to
shape retrieval as classification can be induced by a similar-
ity score between shapesCSG'09,Bial0BCA* 14]. How-

Partial matchingis a variant of the shape matching ever, arecenttrend is to use machine learning approaches for
problem LBZ*13, SPS14 according to which similar- this task BB13b BEGB13.
ity assessment is restricted to shape parts, still in terms
of correspondenceéSHCB11 vKZH13] or numerical score
[SSS10, DLL*10, TDVC11, WZL*10]. Partial matching
and the strictly related complementary matching problem
are key issues, e.g., for the reassembly and geometric auto-

completion of fragmented CH object&§P 14] and protein
P g : b | P all categorization and summarize their contebMB13].

docking [SAHBZ08 ADPH11]. _ ontel
The key challenge is that shapes can vary in different ways,
Symmetnyor self-similarity detection can be seen as an-  and users may be interested in different types of variations
other particular case of shape matching, in which a shape is [KI.M *12,KLM *13]. When a collection possesses rich vari-
matched to itselfQMMG10,RBBK10a LH13]. Also in this ation and highly dissimilar object$i{zG*12] a single mea-
case, we can distinguish betwegartial andfull problems. sure is not likely to provide a good organization and quanti-

Registrationrefers to the a"gnment of the components tative measures may be unreliable, or at least not informative
of two or more shapesTICL*13]. The problem originated enough: in this case it is possible to use qualitative informa-
from the need of rigidly aligning point clouds acquired tion derived from multiple quantitative measures or to build a
by multi-view 3D scanners, focusing in particular on the hetwork where shape correspondences are consistently pre-
computation of good alignment axe€\B09]. More re- served HWG144.
cent works considered finding differences between shapes  aqgitional application scenarios related to the above

[DP13 and non-rigid registration of deformable shapes (;cksare component detection and segmentatBEEO09
[LZSCOO09BHKH13]. LBB11], shape editindDP13 KBB*13], attribute transfer
Shape retrievatefers to the task of finding the models [OBCS'12] and semantic annotatioARSFO9LMS13].
in a database that best match a given qué&iy04, TV08].
Therefore, all method whose output is a similarity score be- Benchmarks. Among the firsts 3D shape benchmarks
tween couples of shapes, can be adopted for 3D contentis SHREC (http://www.aimatshape.net/event/SHREC) that
based retrievalfSR11DAL12,BB133 LJ13 BCGS13. A started as a shape retrieval contegtOB, VTHO09] and
variation of the retrieval problem consists in looking for grew over the years into additional tracks covering multi-
partial shape similarity, for example if some of the con- ple tasks such as shape correspondeB&C[ 104, feature
sidered shapes present missing parts or in case part of adetection BBB*11, GMP*14] and classification GMO0S,
shape has to be considered as background and hence disMVR*10, PSR 14]. Retrieval of textured shapes was stud-

Shape collection exploration and organizatiaim to de-
riving high-level information about objects from their re-
lation with the other objects in the collectio®[GM11,
HZG*12, KLM *12, ROA*13]. The goal is to facilitate ex-
ploration and content search so as to understand their over-

carded TVD09,DLL *10,AK11,Lav1Z. This is usually re-  ied in [MFP*13 BCA"14, GFF'15]. Robustness and sta-
ferred to agpartial shape retrieva[LBZ*13]. Following a bility issues were addressed in dedicated tratkSB* 10,
recent trend in shape analysis, great attention is currently BBC*10bBBB*12]. Scalability of algorithms was tested in
paid to the retrieval of deformable shap@él[Z10,APP* 10, [SBS 15]. Performance of different methods in fine-grained
BBGO11STP12LBH13,LGJ14. classification settings was assessed8R 14)].

Shape recognitioiis a particular case of retrieval. Given Other popular benchmarks devoted to 3D shape similarity

a query and a database, the problem is to determine if are thePrinceton Shape Benchmarkonceived at first for

the query is in that dataset or not and, in case the an- shape retrieval and now extended to shape correspondence
swer is affirmative, to identify the query. A popular appli- and segmentatiorSMKF04, CGF09; the McGill 3D Shape
cation is face recognitiorBDP1Q SHVS12 BWdBP13 for Benchmarkin part building on the Princeton Shape Bench-
security purposesdAP*09, BDP13l. Since facial defor- mark but specifically designed for non-rigid shape retrieval
mations are almost isometric and some landmarks may be [SZM*08]; the Toyohashi Shape BenchmdiA12], con-
easily identified (for instance, the tip of the nose), meth- sisting of 10,000 3D models grouped in 352 classes; the
ods for face recognition take advantage of the use of in- NTU 3D model databaseC[TSO03 consisting of 10,911
trinsic structures such as geodesic distances from featuremodels that can be used to create a 3D shape search engine;
points fHV10, RBB*11, SHVS13. The performance im- the 3D architecture shape benchmark (ASEHBKO09] made
provement in 3D face recognition has led to the applica- of 2257 objects classified in 42 classes and specifically de-
tion of 3D methods for the identification of facial expres- signed for architectural 3D models.
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In some cases, benchmarks offer also a number of plot- Among all possible non-rigid deformations, the efforts
based and scalar-based measures to asses the performance bive been mainly focused on (almost) isometric ones: the
the methods, such aSIMKFO04, Vt08]. An on-line content- Gromov-Hausdorff and the functional maps frameworks
based retrieval evaluation tool (RETRIEVAL 3HIPC15) have been successfully applied and are becoming the stan-
has been recently offered and is accessible through a dy- dardde factofor intrinsic similarity.

namic visualisation environment. L
On the other hand, the problem is still open when deal-

Besides benchmarks covering the need of general-purposeing with generic deformations that includes non-isometric
test-beds for different aspects of similarity assessment, it is changes or topological variations. In these case, we see the
worth to mention datasets targeting specific real-word ap- role of functions as crucial to convey the shape properties
plication scenarios, such as object recognition (e.g., PAS- that one wishes to take into account; however, while results
CAL [XMS14]), face recognition (e.g., the 3D face database and algorithms are well-established for real-valued func-
at the University of York and the Bosphorus dataset tions, it not always the same for the use of multi-variate ones.
[SAD*08]), RGB-D vision (e.g., the NYU DeptHKF13, ) )
the BigBIRD: (Big) Berkeley Instance Recognition Dataset In this context, we se_e the theoretical framework offered
[SSN'14]) and, in case of LIDAR data acquired with vehicle t_)y Fhe_ natural pse_u_do-dlstance asan thlon to overcome the
and airborne laser scanner, remote sensing (e.g., the isprdimitations of traditional methods relying on assumptions

Test Project on Urban Classification and 3D Building Re- of rigidity, isometry, or geometric similarity between corre-
constructio® and the iomulus Processin Confbst sponding parts; however, the direct evaluation of the natural
g pseudo-distance is still a computational bottleneck, although

some methods may be used to get computable lower bounds.

6. Discussions . . . .
Finally, there is a need for systematic comparative stud-

The ensemble of the reviewed approaches highlights that in ies, since several state-of-the-art methods have not yet been
the last years (since 2008) rigid-invariant comparison has compared with each other or their performances are exhib-
come to be considered a quite well established problem. In- ited on different benchmarks; far of thinking there exists the
deed, the few methods tackling this problem are mainly de- best method for all applications, we hope that further efforts
voted to the improvement of the accuracy and the compu- will be devoted to the clarification and evaluation of the per-
tational efficiency of existing methods. In the meanwhile, formance of the methods with a specific target to application
point clouds have decreased their popularity because strictly domains.

related to rigid registration and alignment problems and

there is a growing availability of 3D mesh generation al-  pytyre challenges. We conclude this survey by listing a se-
gorithms to convert point clouds to meshes, e JRB0Y]. ries of topics deserving, in our opinion, further research and
Conversely, analysing and comparing non-rigid shapes cur- gfforts:

rently emerge as extremely challenging and addressed is-

sues (involving almost the 90% of the reviewed methods).  First, the increasing complexity of the deformations con-
In this context, defining a suitable notion of similarity ap- ~ sidered in applications suggests the need of more general
pears to be more complicated as the variety of the deforma- techniques that can deal with larger groups of transfor-
tions evolve from rigid to non-rigid. For instance, the classic mMations. In spite of some progress in this seriR&14),

metric paradigm becomes less effective, and non metric dis- there is probably a long road ahead. For example, there is
tances come into the play. still no solid frameworks to compare shapes with differ-
. . ) ent structure or topology but same functionality; or to for-
In thls_sc_engrlo, we have focused our attention on methods 1, jate hybrid methods combining multiple methodological
fgr 3D §|mllar|ty assessment that abstrgct th.e. shape proper- paradigms. e.g. local and global descriptdr&l[*15], or
ties of interest as functions. We have identified four com- \;ian-based and spectral-based paradigh@JL4.

putational frameworks able to measure the variation of the

considered functions, i.e. shape properties, while transform- ~ Second, shape descriptions and representations are be-
ing one shape into another. Being rooted in well-established coming more and more sophisticated. This is due to a
mathematical theories, these techniques take advantage ofdeeper knowledge about properties and physical phenomena
results on stability against functions’ perturbation and in- that are meaningful for shape characterization. For exam-
variance under groups of transformations. Scalability of the ple, we are witnessing the consolidation of methods based
methods is still a computational bottleneck of many tech- on (auto)diffusion processe§&BAL09, SOG09, quantum
niques. mechanics ASC1] and gravitational lawsNIDTS09, as

well as the introduction of functions encoding shape prop-
erties BSCO08KBBK12, GL12] never considered before.

§ http://www-users.cs.york.ac.ukhep/research/3Dface/tomh/3DFacelpathlzasentant, we wish for the development of “shape fil-

9 http://lwww2.isprs.org/commissions/comm3/wg4/results.html tering” theory, according to which suitable functions con-

I http:/Amwww.isprs-geospatialweek2015.org/workshopstggdata/igpe. ol to model shape properties of interest, playing at the
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Table 1: Classification of methods with respect to the type of input, type of invaremtéype of output (similarity score and/or
correspondence).

Method (refs.) Input Invariance Similarity Correspondence
. point surface volume texture rigid  isometry other full  part. sparse alensoft

Blended Intrinsic Maps{LF11] v v v non-isometric v Vv

Conformal similarity and correspondence&t C*11] v v v v Vv

Distances distributiondfS094 v v v v Vv

Volume GPS Rus1Q Vv v v scale Vv

Heat Kernel Signatures (HKS$DG09 Vv Vv v N Vv

Scale Invariant HKSBK10b] N v v scale N v

Shape Google§BGO1] N N N scale N N

Bag of Feature Graph$iHZQ12 N N N scale N N

Topology-Invariant GeometryBBK09] N N N scale N N

Topology-robust Diffusion GeometrnBBK*10] N N N scale N N

Spectral Distance$3B11] N N N scale N N

Minimum Distortion Correspondenced/BBP17 N N v scale N Vv

Soft Maps BNB*12,HZG"12] N N N non-isometric vV v N N

(Quasi-)harmonic correspondence8B* 13, PBB*13] Vi N Vv scale Vv Vi Vv N

Equi-affine Invariant GeometryRBB*11] Vv Vv N Vv scale, affinity Vv Vi

One-point isometric matchingdMMG10] Vv Vv N Vv Vv

Topologically-robust matchinggHCB11 Vv Vv N Vv v N

Volumetric HKS RBBK10H N Vv N scale v v

Contextual part analogieS§S 10] v Vv N scale v v

Geodesic Distance MatriceSHVS13 v Vv N scale v

Intrinsic Shape DifferenceRDA*13] vV v Vv vV N v

Mutual Distance MatricesHial(] vV v v vV

Wave Kernel SignatureSC11] vV v v vV vV

3D MSERs [BB1]] v/ v v VY V/

Spectral descriptord B14] vV v v scale, affinity vV vV

Spectral graph wavelets BH13] vV v v scale vV

Part-aware metrid[ZSCO09 vV v v vV N N

3D shape impactMIDTS09 vV v v scale v

Spatial circular descriptor§§DZ10 vV v scale vV

meshSIFT MFK*10,SKVS13 v/ v v v v

Salient Points matchingJCFMO0g N v v scale N N

Salient spectral featureslH09] N v v scale N

Local spectral descriptor&fviZ N v v scale N v vV

Intrinsic spin imagesWLZ10] v v v vV vV

Reduced Laplace-Beltrami eigenfunctio®10] vV v v v N Vv

Spectral isometric matchin(RPSS1D v v v scale vV Vv

Semantic best view selectiobgg1( v Vv v N

Facial sparse Matching@dDP13H v v v scale N Vv

Facial expression recognitioBDP134 v Vv v Vv

Isogeodesic stripe8DP1( N v v scale N v

Bilateral mapsYKZH13] N N N scale N N N

Persistence-based GH signatut€€pG 09 N N N scale N N

Persistence-based heat signatuBd[*10] N v Vv v v

Multidimensional size functions8CF*08] N N N N scale N N

Extended Reeb graphBB13h N N v scale N

Laplacian eigenfunctions for point registratidvifik *08] N v N

Skeleton pathsl[H13] Vi Vv N Vv scale Vv Vi

Point cloud graphsNBPF1] N Vv scale Vv Vi

Extended Reeb graphBEGB13EHB13 v N N scale Vv v

Topo-geometric model8K10g v Vv scale v Vi v

Skeletal Reeb graph#BH12] v Vv scale v vV vV

Reeb graphsAK11] N v v v _ N

Reeb graphs and unfolding signatur&¥p09] v Vv N scale v v v

Conformal factors$TP123 v Vv N v v

Graph-based representatiod®P* 10] vV v Vv vV vV

Reeb graphs & view[MM13] N v v vV

MeshHOG FBVH09,ZBH12] v/ v v/ v v/ v

Photometric HKSKBBK12,KBB*12] vV v vV vV scale, affinity vV vV

Multi-scale area projection transfor@[12] vV v v scale vV

PHOG BCGS13 vV v v v scale vV N

Non-rigid symmetry detectiorRBBK104 vV v v scale, affinity vV N N

Persistence-based recognition of occluded shepe$dd vV v vV N

Geometric histogram$83WdBP13 vV v v vV N v

Local facial patchesNIAD *11] vV v scale vV

Textured Spin Image$ZC13 N v v scale N

Scale-Invariant Spin ImageBK12] N v scale N vV

Geodesic/curvature based featuleGJ14 v v scale N vV

Hybrid features and class informationJfL3 v v scale vV vV
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Table 2: Classification of methods according to the type of captured shape steudtyre of distance and computational
complexity. In particular, computational cost refers to extracting shasedption/comparing descriptions.

Method (refs.) Structure Distance Computational cost
Blended Intrinsic Maps{LF11] Conformal Wasserstein-based medium/high
Conformal similarity and correspondenc@&t C*11] Conformal Minimum-distortion embeddings Low/high
Distances distributiondjS094 Diffusion L1, L2, X2, Jensen-Shannon divergence medium/low
Volume GPS Rus1Q Diffusion X medium/medium
Heat Kernel Signatures (HKSpPG09 Multi-scale autodiffusion [ medium/low
Scale Invariant HKSBK10b] Multi-scale autodiffusion WeightedL® medium/low
Shape Google§BGO1] Multi-scale autodiffusion Hamming distance medium/low
Bag of Feature Graph$iHZQ12] Multi-scale autodiffusion L-based medium/low
Topology-Invariant GeometryBBK09] Diffusion Joint similarity (Gromov-Hausdorff distance) medium/medium
Topology-Robust Diffusion Geometr8BK*10] Diffusion Gromov-Hausdorff distance medium/high
Spectral Distance®B11] Diffusion NormalizedL®, L2, xZ, Earth Mover's Distance medium/high
Minimum Distortion Correspondenced/BBP173 Multi-scale autodiffusion Gromov-Hausdorff distance medium/high
Soft Maps BNB*12,HZG*12] Local conformal Functional maps medium/high
(Quasi-)harmonic correspondencE8B * 13, PBB*13] Diffusion Functional maps medium/medium
Equi-Affine Invariant GeometryRBB*11] Diffusion Gromov-Hausdorff distance medium/high
One-point isometric matchin@MMG10] Multi-scale autodiffusion L?-based medium/low
Topologically-robust matchingdHCB11 Multi-scale autodiffusion L2, L°°-based medium/low
Volumetric HKS RBBK10kH Multi-scale autodiffusion [ medium/low
Contextual part analogieS5S 10] Semi-local conformal Bipartite graph matching medium/medium
Geodesic Distance MatriceSiHVS13 Conformal X medium/low
Intrinsic shape differenceRPA"13] Conformal Functional maps medium/medium
Mutual Distance MatricesHial(l Diffusion Soft Earth Mover’s Distance medium/medium
Wave Kernel SignatureSC11 Multi-scale autodiffusion LT medium/low
3D MSERs [BB11] Semi-local autodiffusion Local point & region distance medium/low
Spectral descriptord. B14] Multi-scale autodiffusion Metric learning medium/medium
Spectral graph wavelets BH13] Diffusion Intrinsic spatial pyramid matching medium/high
Part-aware metrid[ZSCO09 Conformal X2 medium/low
3D shape impact\IDTS09 Semi-local extrinsic NormalizedL? and diffusion distance low/low
Spatial circular descriptor€§DZ10 Extrinsic Hungarian distance low/medium
meshSIFT MFK*10,SKVS13 Multi-scale conformal Angle distance medium/low
Salient Points matchingdCFMO0g Multi-scale conformal Distance on Hidden Markov Models low/medium
Salient spectral featureslH09] Diffusion Ad-hocdistance medium/medium
Local spectral descriptor&fiviZ Local diffusion Bag of features medium/low
Intrinsic spin imagesWLZ10] Multi-scale intrinsic Eearth Mover’s Distance medium/medium
Reeuced Laplace-Beltrami eigenfunctioBs[L0] Diffusion Ad-hoc(quadratic optimization problem) medium/medium
Spectral isometric matchinqRPSS1D Diffusion Bipartite graph malching.l-based medium/medium
Semantic best view selectiohdg1d Conformal Ad-hocdistance medium/medium
Facial sparse Matchind3DP13H Multi-scale conformal Ad-hocdistance, RANSAC medium/low
Facial expression recognitioBPP133 Multi-scale extrinsic Distance on Hidden Markov Models medium/medium
Isogeodesic stripe8PP10 Conformal Weighted graph distance medium/medium
Bilateral mapsy{KZH13] Semi-local conformal Ad-hoc(functional optimization) low/high
Persistence-based GH signaturé€EG 09 Multi-scale topology Gromov-Hausdorff distance, natural pseudo-distapnce  low/medium
Persistence-based heat signatuBis[*10] Multi-scale autodiffusion & topology LI-based low/low
Multidimensional size functions§CF*08] Multi-scale topology Natural pseudo-distance low/medium-high
Extended Reeb graphBB13h Semi-local topology Kernel aggregation & learning low/high
Laplacian eigenfunctions for point registratidvifiK *08] Diffusion Hungarian distance medium/medium
Skeleton pathsl[H13] Extrinsic & topology Endpoint distance low/low
Point cloud graphsNBPF1] Semi-local topology Spectral graph distance low/medium
Extended Reeb graphBEGB13EHB13 Semi-local topology & topology Spectral graph distance low/medium
Topo-geometric model8K104 Extrinsic & topology Maximal sub-graph approximation low/medium
Skeletal Reeb graphBH12] Extrinsic topology Shortest path graph matching low/medium-high
Reeb graphsAK11] Conformal topology Maximal sub-graph approximation low/medium-high
Reeb graphs and unfolding signatur&yP09] Semi-local conformal & topology Maximal sub-graph approximation low/medium
Conformal factors$TP13 Semi-local conformal & topology Hungarian distance low/medium-high
Graph-based representatiod®P* 10] Semi-local conformal Earth Mover’s Distance low/high
Reeb graphs & viewl[MM13] Conformal & Multi-scale topology Earth Mover’s Distance medium/high
MeshHOG EBVH09,ZBH12] Multi-scale conformal & photometry K medium/low
Photometric HKSKBBK12,KBB*12] Multi-scale autodiffusion & photometry Bag of features medium/low
Multi-scale area projection transforre[12] Multi-scale extrinsic Jeffrey divergence medium/low
PHOG BCGS13 Conformal & photometry, multi-scale topolog LT, natural pseudo-distance medium/medium-high
Non-rigid symmetry detectiorRBBK10g Multi-scale autodiffusion Minimum-distortion embeddings medium/high
Persistence-based recognition of occluded shadpe$Za Multi-scale extrinsic & topology Hausdorff and Natural pseudo-distance low/low-medium
Geometric histogram8WdBP13 Multi-scale RANSAC medium/low
Local facial patches\IAD *11] Semi-local Geodesic in a scale space low/medium
Textured spin image$ZC13 Photometry Weighted statistical function medium/medium
Scale-Invariant Spin ImageBK12] Local extrinsic RANSAC medium/low
Geodesic/curvature based featureGJ14 Semi-local conformal Ad-hocdistance low/low
Hybrid features and class informationJf13 Semi-local conformal scaled.; and Canberra distance low/medium
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