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Abstract

The recent introduction of 3D shape analysis frameworks able to quantify the deformation of a shape into another
in terms of the variation of real functions yields a new interpretation of the 3D shape similarity assessment and
opens new perspectives. Indeed, while the classical approaches to similarity mainly quantify it as a numerical
score, map based methods also define (dense) shape correspondences. After presenting in detail the theoretical
foundations underlying these approaches, we classify them by looking at their most salient features, including
the kind of structure and invariance properties they capture, as well as the distances and the output modalities
according to which the similarity between shapes is assessed and returned. We also review the usage of these
methods in a number of 3D shape application domains, ranging from matching and retrieval to annotation and
segmentation. Finally, the most promising directions for future research developments are discussed.
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1. Introduction

For many years, researchers work on different aspects of
shape analysis and comparison. For instance, psychologists
have studied for many decades how humans perceive a
shape, and how perception affects the process of assessing
the similarity between shapes [SJ99, Tve77, AP88, Ash92,
Koe90]. Thanks to those studies, it is now well known that
formalizing the concept of shape similarity is a complex in-
teraction process involving the observer and his/her interpre-
tation of the geometric, structural and semantic properties of
shapes [SB11].

More recently, the development of computational models
and tools able to provide digital representations of shapes
opened the way to the development of 3D shape analysis,
thus making the problem of shape similarity a matter of
study also for applied mathematicians, computer scientists
and other researchers working in the fields of computer vi-

sion, computer graphics and pattern recognition, just to cite
a few.

Also in this context, modelling shape similarity is defini-
tively not an easy task: first of all, there is neither a single
bestshape representation nor a singlebestsimilarity mea-
sure to be used, and the comparison largely depends on the
type of shapes to be analysed and on the properties that are
considered relevant in the problem at hand. An intuition of
this is given by Figure1, showing some models belonging to
the same “humanoid” class of the SHREC’08 classification
benchmark [GM08]. Different notions of similarity might be
formulated in this case, by considering in turn functional (se-
mantic), structural or geometric criteria.
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Figure 1: Representative models of the humanoid class, SHREC’08 classification benchmark [GM08]. Models (a-d) have same
pose but (d) differs by scale, (e) is a human model in a different pose and (f-h) are isometric deformations of the same template,
(i-j) are two scans of the same model with a significant change of topologywhile (k-m) represent three virtual characters.

1.1. STAR focus and contribution

In this paper we review methods for the assessment of shape
similarity, by specifically targeting the 3D digital world sce-
nario. By shape similarity we meanquantifyinghow much
a shape resembles to another, through either some numeri-
cal score or by evaluating the distortion of a map between
shapes.

In the rapidly growing field of 3D shape analysis, a num-
ber of strategies have been proposed so far for shape similar-
ity assessment. While at the beginning the main efforts were
mainly devoted to the transposition of well-known metrics
into application domains [VH01,TV04,BKS∗05,FKMS05,
YLZ07,DP06,BKSS07,TV08], during the last years the fo-
cus is moving to the formalization of new paradigms that
allow a larger flexibility in the definition of similarity. In par-
ticular, the present work is mainly motivated by the recent in-
troduction, in the fields of computer vision, computer graph-
ics and pattern recognition, of four theoretical and computa-
tional frameworks for 3D shape similarity that measure how
much shape properties change while deforming one shape
into another one. We refer in particular to the minimum-
distortion shape embeddings, the Gromov-Hassdorff dis-
tance, the functional maps and the natural pseudo-distance
frameworks [EK03, MS05, OBCS∗12, DF04b]. As we will
see later, these approaches quantify similarity not only in
terms of a single score, but also define a map between shapes
so that, despite the increasing computational complexity, it
is possible to infer either a sparse or a dense shape corre-
spondence.

In this scenario, we aim at providing a reasoned overview
of the most recent advances in similarity assessment, driven
by the following guidelines:

• We discuss methods that extract the shape structure
through functionsor distances. On the one hand, real-
and vector-valued functions may be used to measure spe-
cific shape properties. Examples of such functions are

distances from relevant points, heat kernel signatures or
channel values in some colour space. On the other hand,
distances defined on the model representations provide in-
sights on the corresponding shape distributions, as in the
case of geodesics and diffusion distances;

• Among the above methods, special emphasis is given to
those techniques that quantify similarity in terms ofmaps
between spaces. Many of these approaches fall in well-
established mathematical frameworks, thus taking advan-
tage of theoretical results on stability, robustness and in-
variance to shape transformations;

• Finally, we restrict our attention on methods published
from 2008 on.

Methods will be presented by highlighting their salient
properties, the specific shape invariants they consider (e.g.
rigid and non-rigid transformations), the structure they cap-
ture and at which level (e.g., local or global, conformal or
diffusion structure) as well as the type of output they pro-
vide (e.g. full or partial similarity score, sparse or dense cor-
respondence).

Other surveys on shape similarity have appeared be-
fore, reviewing topics partially overlapped to those dis-
cussed here. We refer to 3D shape retrieval [TV04,BKS∗05,
FKMS05,DP06,YLZ07,BKSS07,TV08,LGB∗13] or other
specific aspects of similarity, such as shape registration
[TCL∗13], shape correspondence [vKZHCO11], symmetry
detection [MPWC13], partial matching [LBZ∗13, SPS14]
and non-metric distances [SB11]. Differently from those
works, this contribution is specifically focused on the pro-
cess itself of similarity assessment, which can be considered
a preparatory step for most of the above topics, clearly con-
ditioning them. We will provide a detailed discussion about
the mathematical foundations underlying similarity assess-
ment. This will allow us to present the most recent theoret-
ical developments in the field of 3D shape similarity under
an appropriate and rigorous viewpoint, which is indeed the
peculiar trait of this survey.
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In this view, the present paper can be seen as complemen-
tary in spirit to [BDF∗08, BFGS12, BCB12], in which the
focus is more on shape analysis and description rather than
similarity; it also updates and extends [BFF∗07] in the re-
viewed time-lapse, which have seen the introduction of a
number of innovative techniques, with particular reference
to the four aforementioned frameworks (cf. Section3).

1.2. Organization

To drive the reader through the bunch of approaches and
frameworks revised here, we first introduce the basic no-
tions of mathematical concepts such as topological space,
manifold, map, metric and transformation. We also provide
a brief overview on diffusion geometry and algebraic topol-
ogy, see Section2. Depending on his/her background, the
reader may skip this section or some of its parts.

Then, Section3 is about the problem of similarity assess-
ment and its mathematical modelling. We start by discussing
the basic properties of similarity measures, also describing
some representative methods for the algorithmic evaluation
of similarity (Section3.1). Then, we review the main theo-
retical and computational aspects of four formal frameworks
for similarity assessment which have been recently intro-
duced in 3D shape analysis (Sections from3.2.1to 3.2.4).

Section4 presents a taxonomy of the methods highlight-
ing the emerging shape structure, the distances concretely
used for similarity evaluation, and the invariance properties
captured along the process. The proposed taxonomy also
takes into account the type of input for each method, as well
as the the output modalities according to which the similar-
ity between shapes is returned. The aim is to give a multi-
faceted classification that might help the reader to compare
methods not only on the basis of their algorithmic aspects,
but also drive him/her in the choice of the method that better
fulfils his/her requirements.

In Section5, we review the available 3D retrieval bench-
marks, which are the key to quantitatively evaluate the per-
formance of the methods and help the reader to experiment
with the tools seen in the paper. Moreover, a detailed analy-
sis on the application domains for which methods have been
proposed is carried out.

Finally, Section6 is devoted to the discussion of the po-
tential of the methods proposed, also including perspectives,
open issues, and future developments.

We believe that organizing the comparison of the various
methods in this way may facilitate their analysis, possibly
suggesting interesting research directions for the develop-
ment of new approaches. In our opinion, the generality and
flexibility of some approaches may be of interest for part of
the research community involved in visualization and com-
putational geometry and topology, beyond people working
in shape analysis.

2. Mathematical Background

In this section we summarize the theoretical concepts which
are necessary to model the shape similarity problem as pre-
sented in the rest of the paper.

2.1. Topological spaces and maps

A topological spaceis a set of points along with atopol-
ogy, i.e. a collection of subsets that are referred to asopen
sets. Intuitively, a setU is open if, starting fromany point
in U and followingany direction, it is possible to move “a
little” and stay inside the set. It turns out that the notion of
open set provides a fundamental way to speak ofnearness
of points, although without explicitly having a concept of
distance defined on the considered topological space. Thus,
once a topology has been defined, we are allowed to intro-
duce properties such as continuity, connectedness, closeness,
which are all based on some notion of nearness. These prop-
erties are in turn key ingredients to model the shape of 3D
digital objects, as well as to reason about concepts like ro-
bustness and stability of shape analysis methods.

As for maps, they can by used to model spatial relations
between two (or more) shapes represented by suitable topo-
logical spaces. Also, real- or vector-valued maps provide a
means to encode measurements which are relevant to char-
acterize the shapes under study. Throughout the paper, we
will talk about functionsrather than maps whenever refer-
ring to real- or vector-valued maps, in accordance with a
quite common habit. Note, however, that the two concepts
are completely equivalent from the mathematical viewpoint.

Topological spaces. A topological space(X,τ) is a setX
on which atopologyτ has been defined, that is, a collection
of subsets ofX calledopen setsand satisfying the following
axioms:

• BothX and the empty set are open sets;
• Intersecting a finite number of open sets gives an open set;
• Any union of open sets is still an open set.

A Hausdorff spaceis a topological space in which every
pair of points can be separated by open sets.

In what follows, we will refer to a topological space(X,τ)
by simply mentioning the setX, omitting any reference toτ.

Maps. A map f between topological spaces is said to be
continuousif the inverse image of every open set is an open
set. Ahomeomorphismis a continuous bijection whose in-
verse is also continuous. Two topological spacesX, Y are
said to behomeomorphicif there exists a homeomorphism
f : X → Y. From the viewpoint of topology, homeomor-
phic spaces are essentially identical. Properties of topolog-
ical space which are preserved up to homeomorphisms are
said to betopological invariants.

An important property of maps, which will be useful in
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the sequel, issmoothness. Roughly, a continuous mapf is
smooth if it has continuous partial derivative of all orders†.
For X ⊆ R

n, Y ⊆ R
m, a smooth mapf : X→ Y is adiffeo-

morphismif it is bijective ant its inverse is smooth as well.
In this case,X andY are said to bediffeomorphic.

2.2. Metric spaces and transformations

Metric spaces can be seen as specifications of topological
spaces. Their definition relies on the concept ofmetric (or
distance), which describes a way to quantify the relative
closeness between different entities, such as points, spaces
or physical objects.

Metric spaces. A metric space(X,d) is a setX equipped
with a metric, that is, a functiond : X×X → R satisfying
the following properties for allx,y,z∈ X:

• d(x,y)≥ 0 (non-negativity);
• d(x,y) = 0 iff x= y (reflexivity);
• d(x,y) = d(y,x) (symmetry);
• d(x,y)+d(y,z)≥ d(x,z) (triangle inequality).

Every metric space is a topological space in a natural way,
by considering as open sets the open balls induced byd.

The Euclidean 3D space is an example of a metric space,
where the metric is given by the well knownEuclidean dis-
tance, that is, the distance between two points is the length of
the straight line that joins them. Thegeodesic distancegen-
eralizes the concept of “straight line” to an arbitrary metric
space(X,d): for two points inX, their geodesic distance is
the length, measured with respect tod, of the shortest path
between them, which is in turn referred to asa geodetic.
More formally, a geodetic is a curveγ : [a,b]→ X which
is locally a distance minimizer: everyt ∈ [a,b] has a neigh-
bourhoodJ⊆ [a,b] such that, for anyt1, t2 ∈ J, the equality
d(γ(t1),γ(t2)) = λ|t1− t2| holds for a constantλ≥ 0.

Transformations. By the term transformation, we refer
here tostructure-preservingmaps between spaces. Trans-
formations play an essential role in the process of assess-
ing the similarity between shapes, see Figure2 for an intu-
ition about this. As we will see later, relevant transforma-
tions from the viewpoint of shape similarity include isome-
tries, affine transformations and homeomorphisms.

Isometriesare distance-preserving maps, taking elements

† Note, however, that this definition of continuous function depends
on the notion of partial derivative, which is usually well-defined
only if the domain of f is an open set. Therefore, for an arbitrary
subsetX ⊆ R

n we need to adapt the above definition, stating that
a continuous functionf : X → R

m is smooth if it can be locally
extended to a smooth map on open sets; that is, around each point
x ∈ X we can find an open setU ⊆ R

n and a functionF : U → R
m

such thatF equalsf on X ∩U , and whose partial derivatives of all
orders are continuous.

Figure 2: Conceptual representation of invariant similarity:
the distance d(X,Y) between shapes X and Y is measured
based on some structure sX , sY extracted from them. The
structure remains invariant under the shape transformations
Ti ∈ T from classT , such that sX = sT1(X),sY = sT2(Y).
Consequently, the distance is invariant to transformations,
d(T1(X),T2(Y)) = d(X,Y).

of a metric space to elements of another metric space such
that the distance between the elements in the new metric
space is equal to the distance between the elements in the
original metric space. Formally, given two metric spaces
(X,dX), (Y,dY), a transformationφ : X → Y is called an
isometry if for anyx,y ∈ X, dY (φ(x),φ(y)) = dX(x,y). Ex-
amples of isometries in the usual Euclidean space arerigid
motions, that is, combinations of translations and rotations;
shape properties that are invariant to rigid motions are also
calledextrinsicbecause they are related on how the shape is
laid out in the Euclidean space.

Affine transformations, or simply affinities, preserve
straight lines (i.e., all points initially lying on a line still lie
on a line after transformation) and ratios of distances be-
tween points lying on a straight line (e.g., the midpoint of
a line segment remains the midpoint after transformation).
They do not necessarily preserve angles or lengths, but do
have the property that sets of parallel lines will remain par-
allel to each other after being affinely transformed. In partic-
ular, a mapφ : X→Y is an affine transformation if and only
if for every family {(ai , λi)}i∈I of weighted pointsai ∈ X
such that∑i∈I λi = 1, we havef (∑i∈I λiai) = ∑i∈I λi f (ai).
Examples of affine transformations include translation, ge-
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ometric contraction, expansion, homothety, reflection, rota-
tion, scale and compositions of them.

A more flexible class of transformations, also including
isometries and affinities, is that of homeomorphisms, which
preserve topological properties of spaces such as compact-
ness, connectedness and Hausdorffness (the property of be-
ing Hausdorff). From the shape comparison point of view,
considering homeomorphisms allows one to deal with more
generic deformations, such as those in Figure3; however,
topological invariance is sometimes too coarse, admitting,
e.g., that a horse surface model is topologically equivalent to
a sphere and to a human surface model. This fact opened the
way to the development of theoretical frameworks to enrich
the topological analysis of spaces by taking into account the
additional information provided by real functions defined on
the spaces themselves, such as Morse theory [Mil63] and
other related frameworks [FM99, ELZ02] we will discuss
later in this paper.

(a) (b)

(c) (d)

Figure 3: A cat model(a) together with three homeomorphic
modifications(b−d). All models are from [BCA∗14].

2.3. Manifolds

To ease the analysis of a shape and look at it as if we lo-
cally were in “our” traditional Euclidean space, it is neces-
sary to consider the notion of manifold. A Hausdorff space
X is a n-dimensional manifoldif it is locally homeomor-
phic to R

n; that is, each pointx ∈ X admits a neighbour-
hoodV ⊆ X homeomorphic to an open set ofR

n. Such local
homomorphism is calleda coordinate system on V, and al-
lows for identifying any pointv ∈ V with a n-tuple ofRn.
X is an-dimensional manifold with boundaryif every point
has a neighbourhood homeomorphic to an open set of either
R

n or the half-spaceHn = {u= (u1, . . . ,un) ∈ R
n|un ≥ 0}.

The boundary ofX, namely∂X, consists of those points of
X which only have neighbourhoods locally homeomorphic
to Hn. Note that, according to the above definitions, any

manifold is also a manifold with (possibly empty) boundary,
while the converse does not hold in general.

A manifold X is smoothif it is equipped with a notion
of differentiability. We prefer here to skip the technicalities
needed to formally define such a notion, referring the reader
to [Hir97] for further details. We rather point out that, having
a notion of differentiability at a hand, we can do differential
calculus onX and talk about concepts like tangent vector,
vector field and inner product. All of these are functional to
introduceRiemannian manifolds.

Riemannian manifold. If X is a smooth manifold of di-
mensionn, at each pointx ∈ X we can consider thetan-
gent space Tx(X), a vector space that intuitively contains
all possible vectors passing tangentially throughx, see Fig-
ure4 for an intuition. If we glue together all tangent spaces
Tx(X), thus considering

⋃
x∈X Tx(X), we get thetangent bun-

dle T(X). A vector fieldonX is then a section ofT(M), that
is, a smooth mapF : X → T(M) which assigns each point
x∈ X to a tangent vectorF(x) = v∈ Tx(X). On each tangent
spaceTx(X) we can define an inner product (i.e. a symmet-
ric, positive definite bilinear form)gx : Tx(X)×Tx(X)→ R.
A Riemannian metric gis a collection of inner products
{gx}x∈X that smoothly vary point by point, in the sense that
if F andG are vector fields onX, thenx 7→ gx(F(x),G(x))
is a smooth map.

v

x
Tx(X)

X

Figure 4: Tangent plane Tx(X) in x. The vector v∈ Tx(X) is
a tangent vector.

Note that, in practice, a Riemannian metric is a positive
definite, symmetric tensor. Indeed, once a local system of
coordinates is fixed for a pointx, we can completely de-
fine eachgx by the inner productsgi j (x) = gx(vi ,v j ), with
{v1,v2, . . . ,vn} a basis inRn. The collection{gi j (x)} is thus
made of real symmetric and positive-definiten×n matrices,
smoothly varying inx: It is calleda metric tensor gi j .

A Riemannian manifoldis an-dimensional differentiable
manifoldX equipped with a Riemannian metricg of metric
tensorgi j . Endowing a manifold with a Riemannian metric
makes it possible to define various geometric notions on the
manifold, such as angles, lengths of curves, curvature and
gradients. The Riemannian metric on the surface does not
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depend on the particular embedding of the surface; proper-
ties that preserves this metric structure are calledintrinsic
propertiesof the surface.

2.4. Basics of diffusion geometry

In [CL06], Coifman and Lafon proposed the framework of
diffusion geometry as a method for data parametrization,
embedding, and dimensionality reduction. We summarize
here some key ingredients of this framework, with partic-
ular reference to theheat kernel signature[SOG09], also
known as theautodiffusion function[GBAL09], and thedif-
fusion distance. Informally, diffusion geometry is related to
the heat diffusion on the data (hence the name), which is in
turn closely connected with the notion ofLaplace operator.

2.4.1. Laplace operator

The Laplace operator∆, briefly Laplacian, is a differential
operator given by the divergence of the gradient of a real-
valued functionf defined on the Euclidean spaceEn:

∆ f (x) := div(gradf (x)) =∇·∇ f (x) = ∑
i

∂2 f

∂x2
i

(x),

where grad and div are the gradient and divergence on the
space, and the pointx ∈ E

n is represented by the Carte-
sian coordinatesx = (x1, . . . ,xn). Therefore, the Laplacian
requires that the functionf is at least twice-differentiable.

Intuitively, the Laplace operator generalizes the second
order derivative to higher dimensions, and is a characteris-
tic of the irregularity of a function, indeed∆ f (x) measures
the difference betweenf (x) and its average in a small neigh-
bourhood ofx∈ E

n.

The generalization of the Laplace operator to manifolds
equipped with a Riemannian metric is called theLaplace-
Beltrami operatorof f and its computation requires complex
calculations, that can be greatly simplified by the so-called
exterior calculus (EC)[GDP∗05].

The Laplace-Beltrami operator admits an eigendecompo-
sition with non-negative eigenvaluesλi and corresponding
orthonormal eigenfunctionsφi satisfying∆φi =−λiφi . Here
orthonormality is meant in the sense of the inner product
〈 f ,g〉 = ∫

X f · g dµ, induced on a Riemannian manifoldX
by the associated Riemannian metric. Moreover, if we fur-
ther assume thatX is compact‡, we have that the spectrum
is discrete, 0≤ λ1 ≤ λ2 ≤ . . . . In general, the eigenbasis of
the Laplace-Beltrami operator is referred to as the harmonic
basis of the manifold, and the functionsφi as manifold har-
monics [VL08, WZL∗10]. The use of Laplacian eigenbasis

‡ A compact manifold is a manifold that is compact as a topological
space. A topological spaceX is compact if, from any union of open
sets givingX, it is possible to extract a finite subfamily whose union
is still X.

has been shown to be fruitful in many computer graphics
applications and several techniques in shape analysis, syn-
thesis, and correspondence. For a detailed discussion on the
main properties of the Laplace-Beltrami operator, we refer
the reader to [Reu06,Ros97,WMKG07].

Several discrete Laplace-Beltrami operators exist [VL08],
allowing for practical computation on a manifold discretiza-
tion. For example, suppose to have a triangulationT with
set of verticesP := {pi , i = 1, . . . ,n}. A function f on T
is defined by linearly interpolating the valuesf (pi) of f
at the vertices ofT. This is done by choosing a base of
piecewise-linearhat-functionsϕi , each one with value 1 at
vertex pi and 0 at all the other vertices. Thenf is given as
f = ∑n

i=1 f (pi)ϕi . Discrete Laplace-Beltrami operators are
usually represented as:

∆ f (pi) :=
1
di

∑
j∈N(i)

wi j
[

f (pi)− f (p j )
]

,

whereN(i) denotes the index set of the 1-ring of the ver-
tex pi , i.e. the indices of all neighbors connected topi by an
edge. The massesdi are associated topi and thewi j are the
symmetric edge weights. IfV = diag(v1, . . . ,vn) is the diag-
onal matrix whose elements arevi = ∑ j∈N(i) wi j , W = (wi j )
andD = diag(d1, . . . ,dn), then we can setA := V−W and
finally represent the discrete Laplacian-Beltrami operator on
T as then× n matrix given byL := D−1A (generally not
symmetric).

Depending on the different choices of the edge weights
and masses, discrete Laplacian operators are distinguished
betweengeometric operatorsand finite-element operators
[RBG∗09]. A deep analysis of different discretizations of
the Laplace-Beltrami operator in terms of the correctness
of their eigenfunctions with respect to the continuous case
is shown in [RBG∗09]. Unless some special cases (see,
for example, [BSW08,BS07,Sin06,HAvL05]), the discrete
Laplace-Beltrami operator would not converge to the con-
tinuous one. In addition, when dealing with intrinsic shape
properties, it should be independent or at least minimally
dependent on the triangular mesh and thus the discrete ap-
proximation has to preserve the geometric properties of the
Laplace-Beltrami operator. Unfortunately, Wardetzky et al.
in [WMKG07] showed that for a general mesh, it is theo-
retically impossible to satisfy all properties of the Laplace-
Beltrami operator at the same time, and thus the ideal dis-
cretization does not exist. This result also explains why there
exists such a large diversity of discrete Laplacians, each hav-
ing a subset of the properties that make it suitable for certain
applications and unsuitable for others [BBK08].

2.4.2. Heat kernel and diffusion distance

Formally, the heat kernel signature and the diffusion distance
can be expressed in terms of theheat equation. For a com-
pact Riemannian manifoldX, the diffusion process onX is
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described by the partial differential equation:
(

∂
∂t

+∆
)

u(t,x) = 0, (1)

where∆ denotes the Laplace-Beltrami operator associated
with the Riemannian metric ofX. The heat equation gov-
erns the distribution of heatu from a source pointx∈ X. The
initial condition of the equation is some initial heat distribu-
tion u(0,x) at timet = 0; if X has a boundary, appropriate
boundary conditions must be added.

Theheat kernel ht(x,y) is a fundamental solution of equa-
tion (1), with heat source point atx, and heat value aty after
time t: it represents the amount of heat transferred fromx to
y in time t due to the diffusion process (Figure5). By the
eigendecomposition of∆, the heat kernel can be written as

ht(x,y) = ∑
i≥0

e−λi tφi(x)φi(y).

Since coefficientsλi rapidly decay, the heat kernel is gener-
ally approximated by the truncated sum:

ht(x,y) =
N

∑
i=1

e−λi tφi(x)φi(y).

The heat kernel has many nice properties, among which in-
variance to isometries; being related to the Riemannian met-
ric of X, this means that the heat kernel is an intrinsic prop-
erty of the manifold. Also, the heat kernel is multi-scale: for
small vales oft, ht(x, ·) only reflects local properties of the
manifold around the base pointx, while for large values oft
it captures the global structure ofX from the point of view of
x. Finally, the heat kernel is stable under small perturbations
of the underlying manifold. All these properties make the
heat kernel a good candidate for the definition of informa-
tive functions and distances to be used for shape description,
such as the heat kernel signature (HKS) [SOG09,GBAL09]
and the diffusion function. The HKS at a timet, denoted by
HKSt , is defined as

HKSt(x) = ht(x,x),

for anyx∈ X; the diffusion distancedt between two points
x,y∈ X at timet is given by

d2
t (x,y) = ht(x,x)+ht(y,y)−2ht(x,y).

The computation of the spectrum of the discrete Laplacian
is the main computational bottleneck for the evaluation of
the heat kernel, and hence ofHKSt anddt ; in fact, it takes
from O(n) to O(n3) operations, according to the sparsity of
the Laplacian matrix. Recently, a discrete and spectrum-free
computation of the diffusion kernel on a 3D shape (either
represented as a triangulation or a point cloud) has been pro-
posed in [PS13], based on the computation of the full spec-
trum via the Chebyshev approximation [CMV69,ML03] of
the weighted heat kernel matrix.

time

Figure 5: The heat kernel represents the amount of heat
transferred from a source point in time t.

2.5. Basics of algebraic and differential topology

A fundamental issue in Shape Analysis is the study of basic
models and methods for representing and generating. Since
discretization strategies play a fundamental role in the way
the results stated in a smooth context can be achieved in dis-
crete ones, in this section we briefly review some basic con-
cepts that are at the bases of 3D shape representations.

2.5.1. Basics of Homology

The approach adopted by algebraic topology is the transla-
tion of topological problems into an algebraic language, in
order to solve them more easily. A typical case is the con-
struction of algebraic structures to describe topological prop-
erties, which is the core of homology theory, one of the main
tools of algebraic topology.

The homology of a space is an algebraic object which re-
flects the topology of the space. Thehomologyof a spaceX
is denoted byH∗(X), and is defined as a sequence of groups
{Hq(X) : q= 0,1,2, . . .}, whereHq(X) is called theq-th ho-
mology groupof X. The homologyH∗(X) is a topological
invariant ofX. The rank ofHq(X), called theq-th Betti num-
ber of X and denoted byβq, is roughly a measurement of
the number of different holes inX. For three-dimensional
data the Betti numbersβ0, β1 andβ2 count the number of
connected components, tunnels and voids, respectively.

In the literature there are various types of homologies
[Spa66]. One of the most popular is (integer)simplicial ho-
mology, which relies on the concept ofsimplicial complex.
A simplicial complex is a topological space that can be ob-
tained by gluing together simple elements, calledsimplices,
in a structured way. Figure6 shows the simplest examples
of simplices:∆0 is a point,∆1 an interval,∆2 a triangle
(including its interior),∆3 a tetrahedron (including its inte-
rior). Triangulations are examples of simplicial complexes:
the vertices, edges and faces correspond to 0-, 1- and 2-
simplices, respectively. Thedimensionof a simplicial com-
plex is the maximum dimension of its simplices.

2.5.2. Basics of Morse theory

Morse theory can be seen as the investigation of the rela-
tion between functions defined on a manifold and the shape
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Figure 7: (a) The graph of f(x,y) = x2− y2. The point(0,0) is a non-degenerate critical point. (b) and (c) The graphs of
f (x,y) = x3−3xy2 (a “monkey saddle”) and f(x,y) = x3−y2. In both cases the point(0,0) is a degenerate critical point.
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Figure 6: Examples of 0-, 1-, 2- and 3-simplices.

of the manifold itself. The key feature in Morse theory is
that information on the topology of the manifold is derived
from the information about the critical points of real func-
tions defined on the manifold. In particular, Morse theory
provides the mathematical background underlying several
descriptors, such as Reeb graphs, size functions, persistence
diagrams and Morse shape descriptors. A basic reference for
Morse theory is [Mil63].

Let X be a smooth, compactn-dimensional manifold
without boundary, andf : X→ R a smooth function defined
on it. Then, a pointx of X is a critical point of f if all the
first order partial derivatives vanish atx, that is,

∂ f
∂x1

(x) = 0, . . . ,
∂ f
∂xn

(x) = 0,

with respect to a local coordinate system(x1, . . . ,xn) at x. A
real number is acritical value of f if it is the image of a
critical point. Points (values) which are not critical are said
to beregular. A critical point x is non-degenerateif the de-
terminant of theHessianmatrix of f at x,

H f (x) =

(

∂2 f
∂xi∂x j

(x)

)

is not zero; otherwise the critical point isdegenerate. Fig-
ure7 shows some examples of non-degenerate and degener-
ate critical points. For a non-degenerate critical pointp, the
number of negative eigenvalues of the HessianH f (x) of f at

x is referred to as theindexof x. Then, f : M→R is aMorse
functionif all its critical points are non-degenerate.

An important property is that a Morse function defined on
a compact manifold admits only finitely many critical points,
each of which is isolated. This means that, for each critical
point x, it is always possible to find a neighbourhood ofx
not containing other critical points. Moreover, Morse the-
ory asserts that changes in the topology of a manifold en-
dowed with a Morse function occur in the presence of criti-
cal points, and according to their index; these changes in the
topology can be interpreted in terms of homology.

On the basis of these results, it is possible to choose regu-
lar valuest0 < t1 < · · · < tm bracketing them critical values
for f , and consider thesublevel sets Xi = {x∈ X| f (x)≤ ti}.
Moreover, if λ is the index of thei-th critical point, when
sweeping fromXi−1 to Xi there are two possibilities for
how homology can change: eitherβλ(Xi) = βλ(Xi−1) + 1
or βλ−1(Xi) = βλ−1(Xi−1)− 1. The analogous approach
to study the changes in the level sets{x ∈ X| f (x) = t},
t ∈ R, is proposed in [Mil65]. We will discuss later on (Sec-
tion 3.2.4) how this ideas have led to the introduction of ge-
ometric/topological descriptors for shape analysis.

3. Evaluating similarity between shapes

Assessing the similarity between shapes can be posed as the
problem of defining a suitable functiond : X ×X :→ R,
taking a pair of input objects from a universeX to a real
number that represents a similarity score for the two ob-
jects [SB11]. Such a functiond is called apairwise similar-
ity function. Often the inverse concept is required, namely a
dissimilarity function δ, where a higher dissimilarity score
stands for a lower similarity score, and vice versa. Hence,
a dissimilarity δ equivalent to a similarityd must fulfill
d(X,Y)≥ d(X,Z) ⇐⇒ δ(X,Y)≤ δ(X,Z), ∀ X,Y,Z ∈ X .

The choice between similarity and dissimilarity function
mainly depends on the application domain; however there
exist many situations where the formula/algorithm defining
the function is available in just one of the two forms, while
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its manual transformation into the inverse is not straightfor-
ward [SB11]. The application scenario is also strongly re-
lated to the properties that the chosen (dis)similarity function
is required to satisfy, such as being a metric or not. Being
a metric means to fulfill all the postulates listed in Section
2.2. Assuming, e.g, that a dissimilarity functionδ has been
fixed, reflexivitypermits zero dissimilarity just for identical
objects whilenon-negativityguarantees that every two dis-
tinct objects are somehow positively dissimilar. In addition,
the triangle inequality is a kind of transitivity property that
is really useful for indexing a database [ZADB06]: if (X,Y)
and(X,Z) are close with respect toδ (that is, small dissimi-
larity), also(X,Z) are.

A number of (dis)similarity functions exist in the liter-
ature, which do not fulfil one or more of the metric ax-
ioms. Such functions are generally referred to asnon-metrics
[SB11], presenting more specific names according to the
particular metric axiom they miss. In case reflexivity is not
guaranteed, then we have apseudometric; a quasi-metricif
symmetry is not satisfied, asemi-metricif triangle inequality
is missing. The paradigm here is that, being not constrained
by metric postulates, non-metrics offers a larger freedom of
problem modelling. Indeed, several psychological theories
suggest that the metric axioms could substantially limit the
expressive power of (dis)similarity functions [SJ99,Tve77].
In particular, reflexivity and non-negativity have been re-
futed by claiming that different objects could be differently
self-similar [Kru78, Tve77]. The triangle inequality is the
most attacked property. Some theories point out that simi-
larity does not have to be transitive [AP88,TG82], as shown
by a well-known example: a man is similar to a centaur, the
centaur is similar to a horse, but the man is completely dis-
similar to the horse.

Beyond (a subset of) metric axioms, a notion of continu-
ity is often required for a (dis)similarity function, such as
robustness with respect to different discretizations of spaces
and small perturbations in the input measurements. Last but
not least, invariance to some classes (groups) of transfor-
mations may be required, thus allowing the similarity as-
sessment to be independent, e.g, to orientation, scaling or
rigid movements of the considered objects. Formally, a sim-
ilarity function d (a dissimilarity functionδ, respectively)
is invariant under a chosen group of transformationsG if
for all transformationsg ∈ G and all X,Y ∈ X , we have
d(g(X),Y)) = d(X,Y) (resp.δ(g(X),Y)) = δ(X,Y)).

A common strategy in shape (dis)similarity assessment is
to associate the shape of an object with a compact codifi-
cation of its most salient features, which is usually referred
to asa shape descriptor. In this way, shape descriptors can
be used in place of the whole model representations to de-
rive some (dis)similarity score between the original objects.
Nevertheless, a single descriptor might not be enough to get
a sufficiently detailed shape characterization. Therefore, bat-
teries of descriptors can be used separately to produce multi-

ple (dis)similarity scores that would be merged a posteriori.
This is roughly the rationale behind classical approaches to
similarity assessment, and it is exemplified in Section3.1.

More recently, new emphasis has been given to assess the
dissimilarity between shapes by modelling them as suitable
spaces, and to formally quantify similarity in terms of the
distortion needed to deform one space into the other. The
added value in this approach is that similarity can be ex-
pressed not only in terms of a single score, but also trough
a map between shapes. Despite of the increasing compu-
tational complexity, this makes possible to derive either
a sparse or a dense shape correspondence, which is par-
ticularly useful when analysing variability among shapes.
Minimum-distortion embeddingsand theGromov-Hausdorff
frameworks apply the above paradigm by modelling shapes
as metric spaces, and measuring the metric distortion when
transforming one space into the other. These frameworks are
flexible to the choice of the metric, and therefore can handle
different invariance requirements. Their output is typically
a point-to-point correspondence between samplings of the
considered metric spaces, producing a (dis)similarity mea-
sure as a by-product.Functional mapsgeneralize the point-
to-point shape correspondence, which can be computation-
ally expensive for a high number of points, into that between
real-valued functions defined on shapes. The main advantage
is that a correspondence obtained in this way can be seen as
a linear map in the space of functions: hence, a number of
tools and techniques from linear algebra can be applied to
couple shapes. Methods related to thenatural-pseudo dis-
tancemay take advantage of a mathematically sound notion
of stability, although the final output is usually only in terms
of a (dis)similarity score. Nevertheless, the intrinsic mod-
ularity of the framework allows for comparing shapes ac-
cording to different notions of invariance, which are directly
inherited from the functions used to describe the considered
shape properties. These four frameworks are detailed in Sec-
tion 3.2.

3.1. Similarity estimation through shape descriptors

While designing a shape descriptor, the first challenge is to
identify the shape properties that better characterize the ob-
ject under study and are highly discriminative; in all the set-
tings discussed below, this translates in the selection of the
functions used to detect the main shape features [BDF∗08].
A good shape descriptor should be robust and endowed with
adequate invariance properties. Indeed, robustness guaran-
tees that small changes in the input data, such as noise or
non-relevant details, do not result in substantial changes in
the associated shape descriptors. Invariance properties are
related to the application domain; for instance, rotations and
translations in case of shape alignment.

Having a good shape descriptor at hand, the problem of
assessing the similarity between two shapes can be recast
into the comparison of the associated descriptors, as shown
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d d, ,

Figure 8: The (dis)similarity between two objects is com-
puted as a suitable distance between their descriptors.

in Figure8, according to a suitable (dis)similarity measure
taking into account the above remarks.

The use of shape descriptors is largely acknowledged in
the literature and a variety of methods has been proposed
so far [BKS∗05,TV04,DP06,TV08,BDF∗08,vKZHCO11,
WZL∗10,TCL∗13]. During years, the situation has evolved
from 3D descriptors heuristically introduced [BKS∗05], mo-
tivated by techniques and practices inherited from vision
(projection-based descriptions), geometry (statistics of sur-
face curvature or geodesic distances), or signal processing
(object samples in the frequency domains), to more sophis-
ticated and mathematically sound frameworks leading to de-
tect salient shape’s feature yet showing robustness to noise
and different group of transformations.

Remarks, examples, and applications. Among the num-
ber of methods proposed in the literature, we selected some
representative ones that are meant to give an overall idea
of the variety of descriptions (histograms, matrices, graphs,
etc.) and type of information stored (punctual, surface or vol-
umetric, possibly with attributes). What all these methods
have in common is that they extract shape information in the
form of functions, and use that information to derive shape
descriptors. Similarity assessment is then performed by di-
rectly comparing descriptors through the use of suitable dis-
tances.

An example of descriptor that encodes rigid shape prop-
erties is the one proposed by Mademlis et al [MDTS09]
in which the potential of a Newtonian field defined in the
space outside the shape is adopted. The 3D descriptor is the
combination of independent histograms (36 in the paper) re-
lated to surface proximity, field intensity and curvature while
comparison is performed with ad-hoc distances. The robust-
ness of the method to small shape variations derives from
the preprocessing step (voxels simplify small shape details)
and from the stability of the volumetric function while the
scale-invariance is achieved through a pre-processing step in
which all shapes are normalized and voxelized.

Towards intrinsic invariance, Smeets et al. in [SHVS12]
adopt geodesic distances between surface samples. These
values are stored in ageodesic distance matrix(GDM) that
is used to derive further shape histograms to be compared
using classical metrics (e.g.χ2, Lp and Jensen-Shannon di-
vergence). The method is shown to be robust under nearly
isometric deformations (examples are provided on articu-

lated objects and faces) although the use of geodesics make
it sensitive to topological changes (e.g., open/close mouth,
two fingers that touching each other).

The scale-invariant HKS (SI-HKS) was proposed by
Bronstein et al. [BK10b] to overcome the scale dependence
of the standard HKS and inherits its autodiffusion-related
structure. Indeed, scale independence is done in terms of
scaling and shift in time: scale is obtained from the log-
arithm of HKSt and its discrete derivative with respect to
time, while the shift is seen as a different phase that is
discarded through a complex representation of the discrete
Fourier transform. The SI-HKS at each point of the shape is
approximated through soft quantization by the closest geo-
metric words in a precomputed vocabulary of 48 elements
that is compared using theL1 distance. The SI-HKS fully
satisfies intrinsic invariance and scale independence. More-
over, the choice of the discretization scheme for the Laplace-
Beltrami operator (e.g. point wise or mesh-based) makes this
signature available for different inputs such as point clouds
or meshes.

Heat kernels of the Laplace-Beltrami operator are also at
the basis of the approach proposed in [BBGO11], in which
they are used to derive local feature descriptors for each
considered shape. Then, thebag-of-featuresparadigm is de-
ployed for aggregating local (point-wise) descriptors into
global (shape-wise) one. Roughly, local features are first
used to construct a vocabulary of “geometric words”. Then,
local shape descriptors are represented by geometric words
from the above vocabulary using vector quantization, so that
each shape is represented through a “bag of features” by
counting the frequency of occurrence (histogram) of vocab-
ulary words. Finally, similarity-sensitive hashing is applied
to the bags of features.

Besides the use of histograms, graph-based signatures are
well suited when structure and shape parts are relevant for
the application. The basic assumption behind this type of
methods is that a shape can be decomposed into significant
parts, each one described by a local description, and that also
the relation between parts is relevant. Then, the compari-
son is done with graph matching approaches that take into
account both local geometrical features and the part hier-
archies. As a representative example of this class of meth-
ods we highlight the technique for finding corresponding
parts in structurally different objects proposed by Shapira et
al. [SSS∗10]. The robustness of the method with respect to
small deformations depends on the robustness of the parti-
tion technique. Being based on a hierarchical representation,
this method tackles the problem of comparing parts from
very different shapes, even with different topology; how-
ever, the use of the shape diameter function (SDF) [SSCO08]
makes it particularly suitable for articulated shapes.

Zaharescu et al. [ZBVH09, ZBH12] treated the case of
textured 3D shapes. Their method builds upon a scale-
space derived from different normalized Gaussian deriva-
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tives through the Difference-of-Gaussians (DoG) operator
[Low04], and incorporates in a unique paradigm geometric
and photometric information. The operator is computed on a
scalar function defined on the manifold, which in the original
paper is either the mean curvature, the Gaussian curvature
or the photometric appearance of a vertex (the mean of the
RGB channels). The computation of the scale-space does not
alter the surface geometry (differently from the similar ap-
proach in [CCFM08]). Invariance to the mesh sampling (i.e.
the selection of the feature points) is obtained with the nor-
malization of the histograms throughL2 norm, that is also
used for their comparison. Depending on the choice of the
function (mean curvature, Gaussian, etc.) isometric invari-
ance is satisfied, while the scale-space description guaran-
tees robustness to noise [ZBH12].

Finally, a very recent trend in shape analysis, borrowed
from the image processing and computer vision commu-
nity, is learning invariant structure rather than trying to
hand-craft them. The main advantage of learning meth-
ods is that, instead of trying to model the noise or shape
variability axiomatically, one learns them from examples.
In particular, learning methods allow for creating class-
specific descriptors that address fine-grained differences be-
tween shapes in the class. Litman and Bronstein [LB14]
proposed a parametric spectral descriptor generalizing the
heat and wave kernel signatures [SOG09,GBAL09,ASC11].
Masci et al. [MBBV15, BMM∗15] proposed a generaliza-
tion of the popular convolutional neural networks (CNN)
[LBD∗89] paradigm to manifolds. Litman et al. [LBBC14]
proposed a supervised version of the bag-of-features frame-
work for local descriptor aggregation, allowing to achieve
state-of-the-art performance on fine-grained shape classifi-
cation [PSR∗14] and large-scale retrieval [SBS∗15] tasks.

3.2. Frameworks for similarity assessment

Recently, the 3D shape analysis community has assisted to
the emerging of new frameworks for similarity assessment.
The peculiarity of these approaches is to rely on a solid
mathematical basement: as a consequence, the associated
computational methods may count on a number of formally
proven properties involving, e.g., stability against functions
(that is to say, shape properties) perturbations and invariance
under group of transformations. We revise in what follows
the essential traits of such frameworks.

3.2.1. Minimum-distortion embeddings

Generally speaking, approaches for shape similarity through
the metric geometry framework model the shapes as metric
spaces equipped with some metric. The degree of similarity
is quantified as the degree of isometry of the two respective
metrics, and the choice of the metric prescribes the invari-
ance of the shape similarity. The simplest choice is the Eu-
clidean metric arising from the spaceR3 in which the shape
X is embedded, which is invariant to Euclidean isometries

(the elements of the isometry group Iso(R3
,dR3) are rigid

motions including rotations, translations, and reflections).
The metric space(X,dR3) is a subset of the metric space
(R3

,dR3). Given two shapes(X,dR3) and (Y,dR3) and re-
garding them as subsets of(R3

,dR3), their similarity can be
quantified using the Hausdorff distance

dH(X,Y) = max

{

sup
x∈X

inf
y∈Y

d(x,y), sup
y∈Y

inf
x∈X

d(x,y)

}

,

which expresses the similarity between two subsets of a met-
ric space with metricd [HKR93]. Since the shapes are de-
fined up to Euclidean isometry, one minimizesdH over all
the possible rigid motions,

min
i∈Iso(R3,d

R3)
dH(i(X),Y),

parametrized by a small number of degrees of freedom (three
rotation angles and three translation coordinates). This op-
timization problem can be regarded as best possible rigid
alignment ofX andY in R

3, and is solved efficiently using
iterative closest point (ICP) algorithms (provided that good
initialization parameters are known) [BM92,CM92].

In a more general setting, we are given two shapes(X,dX)
and(Y,dY) with some generic metricsdX , dY (for example,
the geodesic or diffusion metrics invariant to isometric de-
formations of the shapes) that do not arise from a common
metric space. In this case, one can either try to compare the
metric directly as described in the next section, or alterna-
tively, reduce the problem to the aforementioned setting. For
this purpose, one tries to represent the metricdX (respec-
tively, dY) in some fixed metric space(Z,dZ) by means of
an isometric embeddingf : X→ Z (respectively,g : Y→ Z)
satisfyingdX = dZ◦( f × f ) (respectively,dY = dZ◦(g×g)).
The imagesf (X) andg(Y), referred to ascanonical forms
by Elad and Kimmel [EK03], can be compared as subsets of
(Z,dZ) using the Hausdorff distance under the isometries in
(Z,dZ),

min
i∈Iso(Z,dZ)

dH(i( f (X)),g(Y)),

see figure9 for a graphical intuition. The choice of the em-
bedding space(Z,dZ) should be such that its isometries can
be easily parametrized and searched over. In particular, when
Z=R

3, the comparison of canonical forms boils down to the
rigid alignment problem.

Unfortunately, isometric embeddings of general metrics
into a Euclidean space typically do not exist. It is however
possible to find the best possible approximate isometry, by
minimizing some error criterion

min
f :X→Z

‖dx−dZ ◦ ( f × f )‖.

Remarks, examples, and applications. Elad and Kimmel
[EK03] used theL2 (least-squares) error, finding the approx-
imately isometric embedding by solving themultidimen-
sional scaling(MDS) problem [Bor05]. Embeddings into
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f (X) g(Y)X Y

dH
←→

f
−→

g
←−

(Z,dZ)

Figure 9: The canonical forms approach: shapes(X,dX) and(Y,dY) are (approximately) isometrically embedded into a fixed
metric space(Z,dZ) by means of maps f , g. The resulting canonical forms f(X), g(Y) are compared using the Hausdorff
distance dH over all the isometries Iso(Z,dZ).

other metric spaces such as the sphere of hyperbolic space
were studied in [BBK05,WR02]. More recently [LGX13], a
feature-preserved approach has been proposed for non-rigid
3D watertight meshes. The basic idea is to consider MDS
embedding results as references and then naturally deform
the original meshes against them. In this way, the obtained
canonical forms not only have the isometry-invariant prop-
erty, but also preserve important details on the original sur-
faces.

It should be noted that the general idea of represent-
ing the shape in a space where matching can be described
using a small number of degrees of freedom is a com-
mon trait to other shape similarity frameworks, such as
the line of works of Gu et al. [JWYG04] and Lipman et
al. [BLC∗11, LD11, LPD13], where instead of looking for
an (approximately) isometric embedding, one looks for an
angle-preserving (conformal) embedding of the shape into
the disk (for shapes with boundary) or sphere (for genus-
0 shapes). Such conformal embeddings are known to exist
by virtue of theuniformization theorem[Poi08]. For two
isometric shapes, such conformal maps are defined up to a
Möbius transformation.

3.2.2. Gromov-Hausdorff distance

The Gromov-Hausdorff distancecasts the comparison (and
therefore the quantification of the similarity) of two shapes
as a problem of comparing pairwise distances on metric
spaces used to model the shapes themselves, see Figure10.
Equivalently, the computation of the Gromov-Hausdorff dis-
tance can be posed as the evaluation of how much the metric
structure is preserved while mapping a space into the other.

The idea is to represent the comparison of two shapes as
that between two metric spaces(X,dX) and (Y,dY). For a
map φXY : X → Y, we measure thedistortion induced by
φXY on the metricdX as

dis(φXY) = sup
x,y∈X

|dX(x,y)−dY(φXY(x),φXY(y))|. (2)

Figure 10: Gromov-Hausdorff distance as metric coupling:
illustratively, the metric dX⊔Y on the disjoint union of X
and Y can be thought of as a matrix consisting of the
blocks dX⊔Y|X×X = dX (red), dX⊔Y|Y×Y = dY (blue) and the
unknown blocks dX⊔Y|X×Y, dX⊔Y|Y×X (green). Computing
the Gromov-Hausdorff distance amounts to determining the
green blocks that would result in the smallest dH .

Obviously, if dis(φXY) = 0 there is no distortion fordX , and
in fact we have thatφXY is an isometry. As for mappings
φYX : Y→ X, we can define dis(φYX) in the same way as in
Eq. (2), by exchanging the roles ofX andY. Additionally,
we consider thejoint distortiondis(φXY,φYX) given by

dis(φXY,φYX) = sup
x∈X,y∈Y

|dX(x,φYX(y))−dY(φXY(x),y)|,

which roughly measures how farφXY andφYX are from be-
ing one the inverse of the other. The Gromov-Hausdorff dis-
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tancedGH betweenX andY is then defined as:

dGH(X,Y) = inf
φXY,φYX

max{dis(φXY),dis(φYX),dis(φXY,φYX)}.

The combination of the metric approach with the Gromov-
Hausdorff framework does not require any particular met-
ric to be defined on spaces. Indeed, by choosing different
metrics between points, we get different notions of distances
between spaces [Gro99,M1́2,M1́1]. However, two possible
choices appear quite natural here. The first one is to setd as
thegeodesic metric, thus defining the intrinsic geometry of
X: In this case,d measures the length of the shortest path
on X between two of its points. The second choice ford is
theEuclidean metric, which relates to the extrinsic geometry
of X: For two points inX, their distance is measured as the
length of their connecting segment.

Extrinsic geometry is invariant to rigid transformations of
the shape (rotation, translation, and reflection), which pre-
serve Euclidean distances. However, nonrigid deformations
may change the extrinsic geometry. As a result, the Eu-
clidean metric is not suitable for the comparison of non-
rigid shapes. On the other hand, intrinsic geometry is invari-
ant to inelastic shape deformations, which indeed are metric
preserving. Therefore, the geodesic metric is a good choice
for comparing non-rigid shapes, as has been confirmed by
several contributions. However, other invariance classes can
be relevant in applications, for example topological defor-
mations or scaling. To this aim, more sophisticated choices
are possible, such as the diffusion or the commute-time dis-
tance [WBBP12].

Remarks, examples, and applications. The Gromov-
Hausdorff distance was first proposed for deformable shape
analysis by Mémoli and Sapiro [MS05] with a probabilis-
tic approximation scheme for discrete spaces. Bronstein et
al. [BBK06] proposed the generalized MDS (GMDS) ap-
proach, based on a continuous optimization w.r.t. point co-
ordinates on triangular meshes. GMDS allows for comput-
ing the distortion terms in a manner similar to MDS in
Euclidean spaces, with two main differences: first, the dis-
tances have no closed-form expression but are interpolated;
and second, the points are represented in local (barycentric)
rather than global (Euclidean) coordinates. In [WBBP12],
the Gromov-Hausdorff distance was computed in a hierar-
chical manner using graph labeling methods. Mémoli [M1́1]
generalized the Gromov-Hausdorff construction to metric-
measure spaces, introducing the Gromov-Wasserstein dis-
tance which generalizes the Wasserstein (earth mover’s)
distance [RTG00]. An extension of the Gromov-Hausdorff
framework to the setting of partial shape matching was pro-
posed in [BB08,BBBK09].

3.2.3. Functional maps

Ovsjanikov et al. [OBCS∗12] proposed a functional repre-
sentation of maps between shapes. Suppose we are given

a bijective mappingτ : X → Y between the shapesX and
Y, and let f ∈ F(X) be some real-valued function onX,
with F(X) denoting a space of real-valued functions on
X. Then, the function onY corresponding tof is given by
g= f ◦τ−1∈F(Y). This correspondence can be represented
by means of a linear operatorT : F(X)→ F(Y) mapping
functions between shapes, such thatg= T( f ). Foregoing the
bijective correspondence, one can consider suchT as a more
generic functional correspondence (the point-wise bijective
correspondence is a particular choice ofT whereby a delta-
function onX is mapped to a delta-function onY).

Suppose now that we are given two orthonormal bases
{φi}i≥1 ⊂F(X) and{ψ j} j≥1 ⊂F(Y) on X andY, respec-
tively. Any function f ∈ F(X) can be represented through
the Fourier series asf = ∑i≥1〈 f ,φi〉F(X)φi = ∑i≥1 aiφi .
Due to the linearity ofT, we haveT f = T(∑i≥1 aiφi) =

∑i≥1 aiTφi . The functionsTφi ∈F(Y) can be then expanded
in the basis{ψ j} j≥1 as Tφi = ∑ j≥1〈Tφi ,ψ j〉F(Y)ψ j =

∑ j≥1 c ji ψ j , yielding

T f = ∑
i, j≥1

ψ jc ji 〈 f ,φi〉F(X).

This way, the functional correspondence is encoded through
the coefficientsc ji , which determine how Fourier coeffi-
cients in the basis{φi}i≥1 are translated into Fourier co-
efficients in the basis{ψ j} j≥1. It is readily approximated
by taking the firstK coefficients in the expansion,T f =
∑K

i, j=1 ψ jc ji 〈 f ,φi〉F(X).

Discretization. In the discrete setting, the shapesX andY
are represented as discrete spaces withn andm points, re-
spectively, and the functional spacesF(X) andF(Y) can
be identified withRn andRm, respectively. The functional
correspondenceT is represented as anm×n matrix. Denot-
ing by Φ = (φ1, . . . ,φK) and Ψ = (ψ1, . . . ,ψK) the n×K
andm×K matrices of basis vectors, respectively, we have
T ≈ ΨC⊤Φ⊤, whereC is theK×K matrix of coefficients
encoding the correspondence. Thus, finding the correspon-
dence boils down to finding the matrixC, which, in turn, ap-
pears to be a simple algebraic problem: given a set ofq cor-
responding functionsF = ( f1, . . . , fq) andG = (g1, . . . ,gq)
(such thatG≈ TF), C is computed by solving the system of
qK linear equations

G⊤Ψ = F⊤ΦC (3)

in K2 variables. Assuming the columns ofF and G are
linearly-independent, the system has a unique solution when
q = K, is under-determined ifq < K and over-determined
whenq>K. In the latter case, it is solved in the least-squares
sense,

min
C∈RK×K

‖G⊤Ψ−F⊤ΦC‖2F . (4)

Figure11 shows an example of a bijective map between
two nearly isometric dog shapes, and the corresponding
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functional representation in the form of a 20×20 matrixC,
computed according to equation (4). As shown in the Figure,
functional maps between near-isometric shapes are repre-
sented by nearly-diagonal matrices in the Laplace-Beltrami
eigenbases.

Figure 11: Two shapes and the isometric mapping between
them in the form of its functional representation.

Choice of F and G. As corresponding functionsF andG
one may choose any function that can be independently com-
puted onX andY satisfying at least approximatelyG≈ TF.
Ovsjanikov et al. [OBCS∗12] used the wave kernel signa-
tures [ASC11]; Kovnatsky et al. [KBB∗13] and Pokrass et al.
[PBB∗13] used indicator functions of stable regions (shape
MSERs [LBB11]) which turn out to be very robust. Pokrass
et al. [PBB∗13] also used point-wise correspondences.

Choice of the basis. It is important to note that C depends
on the choice of the bases. Ovsjanikov et al. [OBCS∗12] use
as the basis functions{φi}i≥1 and{ψ j} j≥1 the first eigen-
functions of the Laplace-Beltrami operators ofX andY, re-
spectively. Due to analogy with frequency analysis, taking
the firstK elements of such bases can be interpreted as “low-
pass filtering”, thus restricts the functional maps to a subset
of smooth maps. Using more basis functions (largerK) al-
lows more accurate maps; however, at the same time it re-
quires more corresponding functions to be available (larger
q), which in many cases might be difficult to provide.

Kovnatsky et al. [KBB∗13,EKB∗15] introduced the joint
approximate eigenbases, computed as an orthonormal trans-
formation of the Laplacian eigenbases of the formΦ̂ = ΦP
and Ψ̂ = ΨQ, where P and Q are orthonormal matrices
(Q⊤Q= P⊤P= I ). The matricesP andQ are found to make
sure that the Fourier coefficients of corresponding functions
F andG in the respective baseŝΦ andΨ̂ are approximately
equal, making sure at the same time thatΦ̂ andΨ̂ approxi-
mately diagonalize the respective Laplacians, by solving the
optimization problem of the form

min
P,Q

‖G⊤ΨQ−F⊤ΦP‖2
F +µ1off(P⊤ΛXP)+µ2off(Q⊤ΛYQ)

s.t.P⊤P= Q⊤Q= I ,

where off(A) = ∑i 6= j a2
i j is a penalty on a non-diagonal

structure, andΛX , ΛY are diagonal matrices containing
the first Laplacian eigenvalues. This optimization is car-
ried out efficiently using manifold optimization techniques

[KGB15]. If X andY are nearly isometric, the correspon-
dence matrixC represented in the joint basis is approxi-
mately diagonal, allowing to reduce the system (3) of qK
equations inK2 variables toK variables considering only
the diagonal elements ofC.

One of the disadvantages of Laplace-Beltrami eigenbasis
is poor localization properties, making it hard, in particular,
to represent correspondence between shapes with missing
parts. As a remedy, Neumann et al. [NVT∗14] used the re-
cently introducedcompressed modes[OLCO14].

Shape similarity through functional maps. The joint di-
agonalizability of the Laplacians under functional corre-
spondence was used by Kovnatsky et al. [KBB∗13] as a cri-
terion for shape similarity (see Figure12).

Figure 12: Quantifying shape similarity using joint diag-
onalization. Darker colors represent more similar shapes.
One can clearly distinguish blocks of isometric shapes. Also,
two classes of two- and four-legged shapes (marked with
green and blue) are visible. Small figures show representa-
tive shapes from each class.

A framework for capturing fine-grained shape differences
was proposed by Rustamov et al. [ROA∗13]. The authors
notice that typically〈 f ,g〉F(X) 6= 〈T f,Tg〉F(Y) for some
choice of the inner products onF(X) andF(Y), a pair of
functions f ,g∈F(X), and a functional mapT. However, by
the Riesz representation theorem, there exists a unique self-
adjoint linearshape difference operators D: F(X)→F(X)
“equalizing” the inner products, in the sense

〈 f ,Dg〉F(X) = 〈T f,Tg〉F(Y).

The shape difference operator represents the change of inner
product from one shape to another under the functional map
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and describes local shape differences (see Figure13). Rus-
tamov et al. use the shape difference operator for the analy-
sis of shape collections, taking the advantage of their linear
structure, allowing to perform basic operations such as PCA
on shape differences.

X

Y

T

D

f

D f

g

Dg

Figure 13: Shape difference operator allows to represent the
difference between two shapes under a functional correspon-
dence.

Remarks, examples, and applications. Conceptually,
functional maps are related tosoft maps[SNB∗12], a prob-
abilistic relaxation of point-to-point shape correspondence.
Soft maps can be represented as probability matrices, thus
allowing linear algebra tools for their analysis and manipu-
lation. These concepts appears to be one of the leading direc-
tions of research in the field of shape analysis, with several
important follow-up works. In [OBCCG13], the quality of
functional maps is related to the singular vectors and val-
ues of the matrixC. In [PBB∗13], the problem of finding
the matrixC was generalized to the setting when the cor-
respondence between the columns ofF andG is unknown,
leading to the permuted sparse coding problem. Extension
of the functional maps to the setting of partial correspon-
dences was proposed in [RCB∗15]. Ovsjanikov et al. stud-
ied the use of functional maps in the presence of symme-
tries [OMPG13]. Huang et al. [HWG14a] showed the ap-
plication of functional maps to the analysis of shape collec-
tions. Shapira and Ben-Chen [SBC14] showed how to use
shape difference operators to find correspondence across dif-
ferent collections of shapes. Synthesis of shape analogies by
reconstructing a shape embedding from the shape difference
operator was studied in [BEKB15].

3.2.4. The natural pseudo-distance

If we push further the idea of measuring the distortion of
properties while transforming a shape into another, i.e. con-
sidering topological spaces instead of metric spaces, we get
the concept behind thenatural pseudo-distance[DF04b,

DF07, DF09]. The starting point is to model a shape as a
pair (X, f ), whereX is a topological space equipped with a
continuous real-valued functionf : X→R encoding a shape
property of interest. To compare two pairs(X, f ) and(Y,g),
with X andY homeomorphic, we can imagine to transform
one space into the other trough a homeomorphismh : X→Y,
and check how much the properties of the original shape
have been preserved/distorted byh; this problem amounts
to measure the difference between the functionsf andg◦h.
In other words, shapes are supposed to be similar with re-
spect to certain properties if there exists a homeomorphism
that preserves the functions conveying those properties.

Note that to represent a given shape it is possible to choose
the topological space that best fits with the problem at hand.
For example, we might want to fixX = S, with S a 2-
dimensional manifold modelling the shape surface, but also
the Cartesian productS×S in case the functionf to be stud-
ied is a metric defined onS. Other possible choices might be
the tangent space ofS, or a projection ofS onto a plane, or
the boundary ofS, or the skeleton ofS, and so on. Such a
choice is driven by the set of properties that one wishes to
capture.

More formally, thenatural pseudo-distancebetween two
pairs(X, f ) and(Y,g) is defined by setting

dnp((X, f ) , (Y,g)) = inf
h∈H

sup
x∈X
| f (x)−g◦h(x)|,

with h varying in the set H of homoeomorphisms fromX to
Y. If X andY are not homeomorphic the pseudo-distance is
set equal to∞. Note however that the existence of a home-
omorphism is not required for the shapes under study, but
rather for the associated spacesX andY. In this way, two
objects are considered as sharing the same shape properties
if the natural pseudo-distance between the associated size
pairs vanishes.

The natural pseudo-distance offers a framework in
which different shape properties can be plugged-in in the
form of different real functions, so as to measure shape
(dis)similarity up to different notions of invariance. Such
a modular setting fostered the development of a topology-
based approach to shape description and comparison based
on the use of different classes of functions, describing both
extrinsic and intrinsic properties of shapes. Some of them
have been singled out as better suited than others to deal
with specific problems, such as obtaining invariance under
groups of transformations [DFP04, DLL∗10], or working
with particular classes of objects [CFG06,FS10]. Neverthe-
less, the choice of the most appropriate functions for a par-
ticular application is not fixed a priori and, as observed for
the Gromov-Hausdorff framework, has to be carefully car-
ried out up to the specific application/problem at hand.

Lower bounds for the natural pseudo-distance. The com-
putational issues related to the practical evaluation of the
natural pseudo-distance are still an algorithmic bottleneck.
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Indeed, a direct computation would require to check all pos-
sible homeomorphisms between two spacesX andY, which
is intractable in practice. For this reason, no algorithms have
been proposed so far for this task, and the efforts have been
rather focused on the definition of computationally efficient
approximations of the natural pseudo-distance.

The above issues led to the introduction ofsize functions,
shape descriptors providing a lower bound for the natural
pseudo-distance [DF04a]. Interestingly, the same result can
be read as a stability property under functions’ perturba-
tions [dFL10]. Size functions were afterwards included in
the framework ofTopological Persistence(hereafter sim-
ply persistence) [ELZ02,EH10], whose family of theoretical
and computational tools, with particular reference toper-
sistence diagrams[CSEH07], can be used to derive lower
bounds for the natural pseudo-distance [CSEH07,CDF∗13]
and the Gromov-Hausdorff distance [CCSG∗09]; in the lat-
ter case, topological spaces are replaced by metric spaces.
All these signatures are able to naturally combine the clas-
sifying power of topology with the descriptive power of ge-
ometry.

Having modelled a given shape as a pair(X, f ), with
f : X → R, according to persistence we can consider the
sublevel sets off to define a collection of subspacesXu =
{x ∈ X| f (x) ≤ u}, u ∈ R, nested by inclusion, i.e.a filtra-
tion of X. Homology may then be applied to derive some
topological information about the filtration ofX. More pre-
cisely, the idea is to track how topological features vary in
passing from a set of the filtration into a larger one, taking
inspiration from Morse theory (see Section2.5.2). From the
homological viewpoint, this can be done in terms of the evo-
lution of the Betti numbers along the filtration, which gives
insights, e.g., on thebirth and thedeathof connected com-
ponents, tunnels or voids.

The topological evolution of the sublevel sets off is fi-
nally encoded in a persistence diagram dgm( f ). This is a
collection of points in the half-plane{(u,v) ∈ R

2 : u < v}.
For each point, theu-coordinate represents the birth, in terms
of the values of the functionf , of a topological feature,
whereas thev-coordinate represents its death. A persistence
diagram provides a multi-scale description of the shape un-
der study. Indeed, points far from the diagonalu = v repre-
sent long-lived features, while points close to the diagonal –
they are characterized by a shorter life – stand for noise and
details. The paradigm is that long-lived features are more
meaningful or coarse for shape description, while short-lived
ones stand for noise and details. Examples of persistence di-
agrams, describing the evolution of connected components
along different filtrations, are shown in Figure14. The (red)
vertical line in the four diagrams can be seen as a point at
infinity, and represents a topological feature thatwill never
die. Persistence diagrams are stable under the Hausdorff and
bottleneck distance, which in turn provide lower bounds for
the natural pseudo-distance. In particular, small changes in

the input functionf produces only small changes in the as-
sociated persistence diagram dgm( f ) [CSEH07,dFL10].

Similarly to persistence, alsoReeb graphs[Ree46] root in
Morse theory, but track the evolution of the level sets of a
function f rather than its sub-level sets [BGSF08a,DW13].
From the mathematical point of view, Reeb graphs can be
defined as the quotient space induced by the equivalence re-
lation that identifies the points belonging to the same con-
nected component of level sets off [Ree46]. The parametric
nature of Reeb graphs with respect to the functionf is shown
in Figure14, where the Reeb graphs of a closed surface with
respect to two different functions are depicted. Recently, sta-
bility results for Reeb graphs under afunctional distortion
distance[BGW14] and anediting distancehave been pro-
posed [DL12b,DFL14], leading to lower bounds for the nat-
ural pseudo-distance.

Thanks to their modularity, persistence diagrams and
Reeb graphs provides different shape descriptions simply by
changing the considered function. Interestingly, they inherit
the invariance properties directly form the considered func-
tions.

Remarks, examples, and applications. A large portion of
the persistence applications proposed so far fall in the field
of shape matching and retrieval: persistence diagrams play
the role of shape descriptors, while similarity is derived
from a stable distance between them. For example, diame-
ter function, eccentricity function and higher-order eccen-
tricity functions are used in [CCSG∗09] to build persis-
tence diagrams on Rips filtrations of finite metric spaces,
so to derive stable signatures providing a lower bound for
the Gromov-Hausdorff distance, while [BGSF08b] uses size
functions, which are roughly the persistence diagrams study-
ing the evolution of connected components, to compare at-
tributed skeletal graphs derived from functions that code ex-
trinsic and intrinsic shape properties. Recently, persistence
diagrams have been used in combination with the bag of
feature approach, to address shape retrieval and recognition
tasks [LOC14].

As for Reeb graphs, they have been introduced in Com-
puter Graphics in the 90’s by Shinagawa et al. [SK91,
SKK91] while their use for shape matching dates back to
2001 [HSKK01] with the definition of the Multiresolution
Reeb graph (MRG). Since then, several variations of the
Reeb graph have been introduced to couple the topological
information stored in the graph with geometric attributes of
the shape parts corresponding to nodes and arcs, the most
popular being the augmented Multiresolution Reeb graph
[TS04,TS05], the Extended Reeb graph [BMM∗03] and the
Discrete Reeb graph [XSW03], more details can be found
in the survey paper [BGSF08a]. Also, several graph match-
ing methods have been introduced, ranging from global sim-
ilarity measures [HSKK01, LMM13] to approximated sub-
graph matching techniques [BMSF06] and graph kernel ap-
proaches [BB13a,BB14].
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Figure 14: Persistence diagrams(b− c) and Reeb graphs(e− f ) related to different choices of the function f (color coded,
increasing values from blue to red).

4. Taxonomy of the methods

In what follows, we propose a “practical” classification of
the surveyed methods, according to key characteristics that
are important in applications:

Type of input.The shape representation format;

Type of invariance.The class(es) of transformations ac-
cording to which the method is invariant;

Type of output.The modality used to return the shape sim-
ilarity assessment: either a numerical score, or a shape cor-
respondence, or both;

Type of structure.The particular kind of shape structure
that is captured from the chosen shape description method;

Type of distance.The criterion used to assess the
(dis)similarity between shape structures. It may refer to ei-
ther the chosen distance between shape descriptors, or the
selected framework to compare shape structures;

Computational cost.We distinguish between the extrac-
tion of shape descriptions and the subsequent comparison.

Obviously, these criteria are inter-related: for example, the
input type may put limitations on the kind of the structures
that can be computed, and, in turn, the choice of the structure
would usually determine the invariance (e.g. if one uses dif-
fusion geometric structures to find correspondence between
shapes, such a correspondence would be invariant to isomet-
ric deformations).

In what follows, different methods are discussed on the
basis of the proposed taxonomy, which is then summarized
in Tables1 and2. Have in mind that, in line with the “practi-
cal” perspective we have chosen for the proposed taxonomy,
and as a convention in this survey, we will stick to the infor-
mation related to the specific application setting described in
the respective paper, though in some cases generalizations
might be possible.

4.1. Type of input

The input type is related both to the application from
which shapes come and the mathematical model of the
shape similarity or correspondence [BDF∗08]. In the com-
puter graphics community, shapes are traditionally modelled
as surfacemodels (two-dimensional manifolds represent-
ing boundaries of physical 3D objects) or asvolumemod-
els. The most common discretizations of such structures

are simplicial meshes (e.g. triangular or tetrahedral meshes)
[RBBK10b,Rus10,BLC∗11,GL12,DP13,LB14] or regular
grids [BCF∗08,MDTS09]. 3D grids (voxel) representations,
in particular, are mainly used in medical applications.

On the other hand, in the computer vision community it
is common to seepoint cloudrepresentations for 3D data
obtained in shape-from-X problems. The recent emergence
of 3D acquisition hardware has made these representations
popular in rigid matching problems [TCL∗13], which play
an essential role in multi-view data fusion. In the analysis
of deformable shapes, such representations are less common
[MHK∗08,MS09a,NBPF11].

In many situations, additional information can be avail-
able in additional to the geometric structure of the shape. A
typical example we report here istexture[KBBK12,ZBH12,
BCGS13].

4.2. Type of invariance

The type of invariance is strictly interlinked to the infor-
mation the method captures. For instance, extrinsic geomet-
ric shape descriptions are invariant torigid transformations
(rotations, translations, and reflections) [MDTS09, GDZ10,
BK10a].

Intrinsic shape descriptions (such as those based on
geodesics and diffusion processes) are invariant toiso-
metric shape deformations, which are in general non-
rigid but preserve distances computed over the shape sur-
face [BBK09, SSS∗10, WZL∗10, BLC∗11, BB11, BBK∗10,
RBB∗11, BBGO11, FSR11]. Examples of isometric defor-
mations are shape bendings. Recently, isometric deforma-
tions preserving volume have been taken onto account, as
they better represent shape deformations associated with
many natural phenomena [RBBK10b,Rus10,BHKH13].

Other classes of deformations which are relevant for ap-
plications include certain classes of non-isometric transfor-
mations, which do not preserve the Rienmannian structure of
the shape [BCFG11]. Typical examples are shape stretching,
scaling and affine transformations [RBB∗11,RK14].

4.3. Type of output

The process of comparing two shapes may result in either
a numerical assessment of theirsimilarity, or a correspon-
dencebetween the two shapes, or both.
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Algorithms aiming at the computation of correspondence
usually produce a quantitative measure of similarity as a by-
product (e.g., metric distortion in [BBK∗10]). On the other
hand, numerous shape retrieval approaches based on holistic
descriptors produce similarity only. The measure of similar-
ity itself can be eitherfull or partial: the former is a global
similarity score between shapes, the latter comes from com-
paring only some of their parts.

Methods computing correspondence can be further sub-
divided into those finding full or partial correspondence.
Both cases can be classified assparse(correspondence is
computed only between a small subset of feature points de-
tected on the shapes being matched), ordense(typically rep-
resented by providing for each vertex or each triangle on
one shape its image under the correspondence on the other).
Dense correspondences can be alternatively represented by a
smooth approximation of the continuous map in some basis
using the functional correspondence formalism. Such corre-
spondences are usually referred to assoft. Methods comput-
ing fuzzy correspondence abandon the representation of the
latter as a function, allowing a single point on one shape to
be mapped to a distribution on the other [KLM ∗12]. Despite
the superficial similarity to the functional representation, the
underlying details differ substantially.

4.4. Type of structure

A first classification for shape structures may be done ac-
cording to the associated invariance. Structures invariant to
rigid transformations are referred to asextrinsic. Simple
rotation- and translation invariant-structures include those
based on Euclidean distances (e.g. from the object centre of
mass [BCF∗08], other points or regions of interest [BK10a,
BCFG11] including shape boundaries [MDTS09, LH13]).
Extrinsic structures can be extended to cope with global
scale or affine transformations.

Structures invariant to transformations preserving the lo-
cal metric of the underlying manifold are referred to asin-
trinsic; this type of invariance is sought in applications in-
volving deformable shapes. Intrinsic structures can be fur-
ther made invariant to global scale and affine transforma-
tions [BK10b, RBB∗11]. Among the possible variations in
the class of intrinsic structures, we distinguish betweencon-
formal structures by referring to those based on Gaussian
curvature and geodesic distances;diffusion structures for
those relying on diffusion processes and spectral properties
of the Laplace-Beltrami operator [DK10,WZL∗10]; autod-
iffusion structures for those built on various types of local
spectral descriptors such as the heat and wave kernel signa-
tures [SOG09,GBAL09,ASC11].

Some methods allow for analysing shapes according to
the topological exploration of the functions which are used
to represent shape properties of interest. Referring to the
emerging structures, we will talk abouttopological struc-

tures. Examples of methods dealing with this kind of in-
formation include curve skeletons [LH13], Reeb graphs
[BGSF08a] and persistence-based techniques [BCF∗08,
CCSG∗09,DLL∗10,DL12a]. Some of these approaches in-
herit invariance properties directly from the considered func-
tions, thus leading to intrinsic or extrinsic topological struc-
tures.

Structures can be alsolocal or global. Local structures re-
flect the properties of the shape in the vicinity of a point
of interest and are usually unaffected by the geometry or
the topology outside that neighbourhood. For this reason,
local structures are typically used for partial similarity as-
sessment. Global structures, on the other hand, capture the
properties of the entire shape.

A local structure may be captured in the form of local de-
scriptors. Recent works proposed a plethora of descriptors
such as those based on conformal factor [BCG08], autodif-
fusion [GBAL09] or the heat kernel signature [SOG09] and
its scale- [BK10b] and affine-invariant versions [RBB∗11,
RK14], and the wave kernel signature [ASC11].

Global structures can be obtained by integrating local
structure over the entire shape, typically in the form of a
single- or multi-dimensional histogram [BBGO11, BB13a].
This is a standard approach in retrieval applications where
a holistic description of the entire shape is required. Other
inherently global structures include distance functions and
their distributions [FSR11], as well as global spectral prop-
erties such as the Laplace-Beltrami spectrum and eigenfunc-
tions.

Some methods combine both local and global proper-
ties of the shape producingsemi-localstructures such as
the maximally stable extremal regions (MSERs) [LBB11].
These structures arise in the form of hierarchies of stable
regions, and are guided both by the behaviour of a local
descriptor (e.g., heat kernel signature) and the coarse-scale
properties of the shape. Similarly, bilateral maps [vKZH13]
provide a medium scale description that depends on the
closeness of the base points.

Other methods allows for dealing with shape information
at different scales, thus providing a unifying interpretation
of local and global shape description. We refer to the related
structures asmulti-scale.

Finally, in case of additionalphotometric information
(texture), structure is usually captured by embedding shapes
in both the Euclidean space and in a colour-based one (such
as the RGB or the CIELab colour space) or possibly in a
larger one somehow combining the above two. Examples of
related methods include those based on colour-aware gener-
alizations of purely geometric approaches such as heat ker-
nel signatures [KBBK12], geodesic distance [BCGS13] and
spin-images [PZC13]; other methods take inspiration from
techniques initially conceived for 2D images, as in the case
of [TSDS11,ZBH12] with the SIFT algorithm [Low04].
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4.5. Type of distance

The criteria used to compare shapes depend on both the
information enclosed in the emerging structures, and how
this information is coded (e.g. histograms, graphs, point-
correspondences, etc.). As discussed in Section3, sev-
eral frameworks have been introduced for comparing shape
structures.

Minimum-distortion embeddingsand the Gromov-
Hausdorff frameworks allow for comparing shapes in terms
of the metric distortion between two metric spaces when
transforming one into the other.Functional mapsextend the
similarity problem to the comparison of functions defined
on the shapes, returning a correspondence between shapes
in terms of a linear map in the space of functions. Methods
related to thenatural-pseudo distanceare usually endowed
with a mathematically sound notion of stability, and are
modular in the choice of functions and invariance properties
that are used to describe the considered shape properties.

Beyond the above frameworks, a number of methods con-
sidered here represent different interpretations of a standard
approach for similarity assessment, based on the computa-
tion of suitable distances between shape descriptors.

For instance, a simple, yet effective way of globally de-
scribing a shape is to usefeature vectors. Such a descrip-
tion is based on projecting in ak-dimensional vector of the
features detected. Feature vector distances are a well-known
issue in shape retrieval [BKS∗05, TV08]. Traditionally, so-
lutions to this item are provided by theMinkowski Lp fam-
ily of distances. Examples include the Manhattan distance
(p= 1); the usual Euclidean distance (p= 2); the maximum
distance (p=∞), also called Chebyshev or chessboard met-
ric. Other distances provided by statistics and information
theory areχ2-statistics, theHamming distance, the Jeffrey
divergence, theJensen-Shannon divergence, theWasserstein
distance also known as theEarth Mover’s distance (EMD)
in the discrete settings [LO07].

In case the structure is coded in a graph, many dis-
tances have been introduced, each one depending on the
type of information stored in the graph and its hierarchi-
cal nature. Examples are theapproximation of the maxi-
mum common subgraph[BMSF06,TVD09,BK10a,AK11],
path matching[SSS∗10,MBH12,RPSS10,LH13], Hungar-
ian distance [STP12, GDZ10] and graph kernels[BB13a,
BB13b,LMS13].

Many other distances may be listed, which in some cases
have been proposed asad-hocsimilarity measures between
shape descriptors, see [DD09] for more details.

4.6. Computational cost

Besides accuracy, the computational complexity of a method
is a fundamental aspect when dealing with real applications.

In our case, extracting and comparing shape descriptions are
the two computational issues that each method needs to face.

Table2 summarizes the computational complexity of the
methods listed in this survey. Since the running time com-
plexity is not specified by several of the authors, we classify
the methods on the basis of considerations about their the-
oretical complexity rather than a real implementation. For
each method, we indicate the complexity of extracting and
comparing the considered shape descriptions. In doing this,
we use the termlow to denote a computational complexity
that is sub-quadratic (e.g., strictly smaller thanO(n2) whit
n the number of vertices in the input point cloud or triangle
mesh),high if the complexity is higher than cubic,medium
otherwise.

5. Applications and benchmarks

The explosive growth in the number of shape analysis tech-
niques, including those for shape similarity assessment, has
made acute the need for a widely-accepted performance
evaluation protocol. This has led to the introduction of
benchmarks, whose variability in the type of 3D content
(medical, remote sensing, entertainment, cultural heritage
etc.) and its representation (triangle mesh, volume models,
point clouds etc.) in part reflects the increased availability of
3D data [GZL∗14].

Beyond evaluation purposes, the objective of benchmarks
is to provide environments in which methods can be tested
on the cutting-edge challenges arising from real-world ap-
plications. As for shape similarity assessment, such chal-
lenges include, e.g., browsing large-scale shape collections,
recognizing shapes in complex or cluttered scenes, dealing
with different shape representation formats. Another issue
is given by noise, usually introduced in the data acquisition
and/or processing phases. We can distinguish between multi-
ple kinds of noise, possibly affecting either the geometric or
the topological shape structure, or both. We mention short-
cuts, shot noise and missing parts, just to cite a few. Noise
may come also in the form of illumination changes, deco-
rative pattern degradation or material deterioration, in case
additional texture information is considered.

In what follows we provide an overview of the application
domains involving the process of similarity assessment, and
the most popular benchmarks that have been released to train
and evaluate methods in these tasks.

Applications. In the existing literature, we identify some
(partially overlapping and sometimes used synonymously)
specific classes of applicative tasks [FKMS05].

Shape matchingis usually referred to the task of estab-
lishing a correspondence between feature points or regions
of different shapes [RBB∗11, ASC11, LBB11, ZBVH09].
Often, this is the result of minimizing the distortion of
some shape structure, while mapping one shape to another
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[KLF11,KBB∗13,PBB∗13,LB14]. Nevertheless, matching
two shapes can be expressed in the form of a global similar-
ity score [BLC∗11, LPD13, RBBK10a, BBK∗10, BCF∗08],
possibly (but not necessarily) obtained as the by-product of
a correspondence like in the frameworks discussed through-
out the paper.

Partial matching is a variant of the shape matching
problem [LBZ∗13, SPS14], according to which similar-
ity assessment is restricted to shape parts, still in terms
of correspondence [SHCB11, vKZH13] or numerical score
[SSS∗10, DLL∗10, TDVC11, WZL∗10]. Partial matching
and the strictly related complementary matching problem
are key issues, e.g., for the reassembly and geometric auto-
completion of fragmented CH objects [GSP∗14] and protein
docking [SAHBZ08,ADPH11].

Symmetryor self-similaritydetection can be seen as an-
other particular case of shape matching, in which a shape is
matched to itself [OMMG10,RBBK10a,LH13]. Also in this
case, we can distinguish betweenpartial andfull problems.

Registrationrefers to the alignment of the components
of two or more shapes [TCL∗13]. The problem originated
from the need of rigidly aligning point clouds acquired
by multi-view 3D scanners, focusing in particular on the
computation of good alignment axes [CVB09]. More re-
cent works considered finding differences between shapes
[DP13] and non-rigid registration of deformable shapes
[LZSCO09,BHKH13].

Shape retrievalrefers to the task of finding the models
in a database that best match a given query [TV04, TV08].
Therefore, all method whose output is a similarity score be-
tween couples of shapes, can be adopted for 3D content
based retrieval [FSR11, DAL12, BB13a, LJ13, BCGS13]. A
variation of the retrieval problem consists in looking for
partial shape similarity, for example if some of the con-
sidered shapes present missing parts or in case part of a
shape has to be considered as background and hence dis-
carded [TVD09,DLL∗10,AK11,Lav12]. This is usually re-
ferred to aspartial shape retrieval[LBZ∗13]. Following a
recent trend in shape analysis, great attention is currently
paid to the retrieval of deformable shapes [WLZ10,APP∗10,
BBGO11,STP12,LBH13,LGJ14].

Shape recognitionis a particular case of retrieval. Given
a query and a database, the problem is to determine if
the query is in that dataset or not and, in case the an-
swer is affirmative, to identify the query. A popular appli-
cation is face recognition [BDP10,SHVS12,BWdBP13] for
security purposes [GAP∗09, BDP13b]. Since facial defor-
mations are almost isometric and some landmarks may be
easily identified (for instance, the tip of the nose), meth-
ods for face recognition take advantage of the use of in-
trinsic structures such as geodesic distances from feature
points [tHV10, RBB∗11, SHVS12]. The performance im-
provement in 3D face recognition has led to the applica-
tion of 3D methods for the identification of facial expres-

sions [MAD∗11,BDP13a], also in presence of partial occlu-
sions [BDP13b] and missing data [SKVS13].

Shape classificationaims at finding the class the query
model belongs to [BGM∗06,GM08]. It is closely related to
shape retrieval as classification can be induced by a similar-
ity score between shapes [CCSG∗09,Bia10,BCA∗14]. How-
ever, a recent trend is to use machine learning approaches for
this task [BB13b,BEGB13].

Shape collection exploration and organizationaim to de-
riving high-level information about objects from their re-
lation with the other objects in the collection [OLGM11,
HZG∗12, KLM ∗12, ROA∗13]. The goal is to facilitate ex-
ploration and content search so as to understand their over-
all categorization and summarize their content [LMS13].
The key challenge is that shapes can vary in different ways,
and users may be interested in different types of variations
[KLM ∗12,KLM ∗13]. When a collection possesses rich vari-
ation and highly dissimilar objects [HZG∗12] a single mea-
sure is not likely to provide a good organization and quanti-
tative measures may be unreliable, or at least not informative
enough: in this case it is possible to use qualitative informa-
tion derived from multiple quantitative measures or to build a
network where shape correspondences are consistently pre-
served [HWG14b].

Additional application scenarios related to the above
tasks are component detection and segmentation [LZSCO09,
LBB11], shape editing[DP13, KBB∗13], attribute transfer
[OBCS∗12] and semantic annotation [ARSF09,LMS13].

Benchmarks. Among the firsts 3D shape benchmarks
is SHREC (http://www.aimatshape.net/event/SHREC) that
started as a shape retrieval contest [Vt08, VTH09] and
grew over the years into additional tracks covering multi-
ple tasks such as shape correspondence [BBC∗10a], feature
detection [BBB∗11, GMP∗14] and classification [GM08,
MVR∗10, PSR∗14]. Retrieval of textured shapes was stud-
ied in [MFP∗13, BCA∗14, GFF∗15]. Robustness and sta-
bility issues were addressed in dedicated tracks [VGB∗10,
BBC∗10b,BBB∗12]. Scalability of algorithms was tested in
[SBS∗15]. Performance of different methods in fine-grained
classification settings was assessed in [PSR∗14].

Other popular benchmarks devoted to 3D shape similarity
are thePrinceton Shape Benchmark, conceived at first for
shape retrieval and now extended to shape correspondence
and segmentation [SMKF04,CGF09]; the McGill 3D Shape
Benchmark, in part building on the Princeton Shape Bench-
mark but specifically designed for non-rigid shape retrieval
[SZM∗08]; theToyohashi Shape Benchmark[TKA12], con-
sisting of 10,000 3D models grouped in 352 classes; the
NTU 3D model database [CTSO03] consisting of 10,911
models that can be used to create a 3D shape search engine;
the 3D architecture shape benchmark (ASB) [WBK09] made
of 2257 objects classified in 42 classes and specifically de-
signed for architectural 3D models.
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In some cases, benchmarks offer also a number of plot-
based and scalar-based measures to asses the performance of
the methods, such as [SMKF04,Vt08]. An on-line content-
based retrieval evaluation tool (RETRIEVAL 3D [KIPC15])
has been recently offered and is accessible through a dy-
namic visualisation environment.

Besides benchmarks covering the need of general-purpose
test-beds for different aspects of similarity assessment, it is
worth to mention datasets targeting specific real-word ap-
plication scenarios, such as object recognition (e.g., PAS-
CAL [XMS14]), face recognition (e.g., the 3D face database
at the University of York§ and the Bosphorus dataset
[SAD∗08]), RGB-D vision (e.g., the NYU Dept. [SHKF12],
the BigBIRD: (Big) Berkeley Instance Recognition Dataset
[SSN∗14]) and, in case of LIDAR data acquired with vehicle
and airborne laser scanner, remote sensing (e.g., the ISPRS
Test Project on Urban Classification and 3D Building Re-
construction¶ and the iQmulus Processing Contest‖).

6. Discussions

The ensemble of the reviewed approaches highlights that in
the last years (since 2008) rigid-invariant comparison has
come to be considered a quite well established problem. In-
deed, the few methods tackling this problem are mainly de-
voted to the improvement of the accuracy and the compu-
tational efficiency of existing methods. In the meanwhile,
point clouds have decreased their popularity because strictly
related to rigid registration and alignment problems and
there is a growing availability of 3D mesh generation al-
gorithms to convert point clouds to meshes, e.g., [MRB09].
Conversely, analysing and comparing non-rigid shapes cur-
rently emerge as extremely challenging and addressed is-
sues (involving almost the 90% of the reviewed methods).
In this context, defining a suitable notion of similarity ap-
pears to be more complicated as the variety of the deforma-
tions evolve from rigid to non-rigid. For instance, the classic
metric paradigm becomes less effective, and non metric dis-
tances come into the play.

In this scenario, we have focused our attention on methods
for 3D similarity assessment that abstract the shape proper-
ties of interest as functions. We have identified four com-
putational frameworks able to measure the variation of the
considered functions, i.e. shape properties, while transform-
ing one shape into another. Being rooted in well-established
mathematical theories, these techniques take advantage of
results on stability against functions’ perturbation and in-
variance under groups of transformations. Scalability of the
methods is still a computational bottleneck of many tech-
niques.

§ http://www-users.cs.york.ac.uk/∼nep/research/3Dface/tomh/3DFaceDatabase.html
¶ http://www2.isprs.org/commissions/comm3/wg4/results.html
‖ http://www.isprs-geospatialweek2015.org/workshops/geobigdata/iqpc.html

Among all possible non-rigid deformations, the efforts
have been mainly focused on (almost) isometric ones: the
Gromov-Hausdorff and the functional maps frameworks
have been successfully applied and are becoming the stan-
dardde factofor intrinsic similarity.

On the other hand, the problem is still open when deal-
ing with generic deformations that includes non-isometric
changes or topological variations. In these case, we see the
role of functions as crucial to convey the shape properties
that one wishes to take into account; however, while results
and algorithms are well-established for real-valued func-
tions, it not always the same for the use of multi-variate ones.

In this context, we see the theoretical framework offered
by the natural pseudo-distance as an option to overcome the
limitations of traditional methods relying on assumptions
of rigidity, isometry, or geometric similarity between corre-
sponding parts; however, the direct evaluation of the natural
pseudo-distance is still a computational bottleneck, although
some methods may be used to get computable lower bounds.

Finally, there is a need for systematic comparative stud-
ies, since several state-of-the-art methods have not yet been
compared with each other or their performances are exhib-
ited on different benchmarks; far of thinking there exists the
best method for all applications, we hope that further efforts
will be devoted to the clarification and evaluation of the per-
formance of the methods with a specific target to application
domains.

Future challenges. We conclude this survey by listing a se-
ries of topics deserving, in our opinion, further research and
efforts:

First, the increasing complexity of the deformations con-
sidered in applications suggests the need of more general
techniques that can deal with larger groups of transfor-
mations. In spite of some progress in this sense [RK14],
there is probably a long road ahead. For example, there is
still no solid frameworks to compare shapes with differ-
ent structure or topology but same functionality; or to for-
mulate hybrid methods combining multiple methodological
paradigms. e.g. local and global descriptors [LLL ∗15], or
view-based and spectral-based paradigms [LGJ14].

Second, shape descriptions and representations are be-
coming more and more sophisticated. This is due to a
deeper knowledge about properties and physical phenomena
that are meaningful for shape characterization. For exam-
ple, we are witnessing the consolidation of methods based
on (auto)diffusion processes [GBAL09, SOG09], quantum
mechanics [ASC11] and gravitational laws [MDTS09], as
well as the introduction of functions encoding shape prop-
erties [SSCO08, KBBK12, GL12] never considered before.
In this context, we wish for the development of “shape fil-
tering” theory, according to which suitable functions con-
cur to model shape properties of interest, playing at the
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some time the role of manifold harmonics in geometric filter-
ing [VL08], that is, enabling a progressive, “property-based”
shape representation.

Third, we are now aware that shape characterization
benefits from the analysis of semantics and functionality
[MS09b, CMSF11, LMS13, ZCOAM14, FAvK∗14]. A ma-
jor issue is then how to model such a knowledge and effec-
tively embed it in the similarity evaluation pipeline. Here,
an open and acute issue for research is how to directly en-
capsulate the implicit knowledge contained in a family of
shapes into the shape description. In general, the use of prior
knowledge might be inevitable to advance in the direction
of bridging the gap between geometrical attributes and high-
level semantic information. A possible way to automatically
infer knowledge is to introduce in the loop statistical meth-
ods such as learning techniques [DAL12,LBBC14] that have
achieved state-of-the-art performance in computer vision ap-
plications [CMS12]. These techniques represent a possible
solution to automatically determine the weights of the dif-
ferent shape features on the basis of context (e.g., the shape
classes of a database) [Lag10, BB13b, BSF13, TDVC13]
or design class- or application-specific shape descriptors
[LB14,MBBV15,BMM∗15]. Another solution might be to
consider meta-representations able to characterize the con-
figurations that are common across a family of 3D objects
and to consider this knowledge when storing the arrange-
ments among shape parts [FAvK∗14] thus making possible
to explore multiple shape configurations in parallel and to
collectively edit sets of shapes.

Finally, a critical issue to be tackled in the near future
is scalability: indeed we expect that methods for similarity
quantification will handle very large volumes of data, in the
form of parallel approaches or on-line applications. For ex-
ample, a difficulty we see in this step is that methods for
capturing the shape topology and deal with generic shape de-
formations are often time consuming, refer to quite complex
distances and depend on the overall structure of the shape.
A major issue is then how to adapt these approaches to deal
with large scale data.
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Table 1: Classification of methods with respect to the type of input, type of invarianceand type of output (similarity score and/or
correspondence).

Method (refs.)
Input Invariance Similarity Correspondence

point surface volume texture rigid isometry other full part. sparse dense soft
Blended Intrinsic Maps [KLF11]

√ √ √
non-isometric

√ √

Conformal similarity and correspondences [BLC∗11]
√ √ √ √ √

Distances distributions [MS09a]
√ √ √ √ √

Volume GPS [Rus10]
√ √ √

scale
√

Heat Kernel Signatures (HKS) [SOG09]
√ √ √ √ √

Scale Invariant HKS [BK10b]
√ √ √

scale
√ √

Shape Google [BBGO11]
√ √ √

scale
√ √

Bag of Feature Graphs [HHZQ12]
√ √ √

scale
√ √

Topology-Invariant Geometry [BBK09]
√ √ √

scale
√ √

Topology-robust Diffusion Geometry [BBK∗10]
√ √ √

scale
√ √

Spectral Distances [BB11]
√ √ √

scale
√ √

Minimum Distortion Correspondences [WBBP12]
√ √ √

scale
√ √

Soft Maps [SNB∗12,HZG∗12]
√ √ √

non-isometric
√ √ √ √

(Quasi-)harmonic correspondences [KBB∗13,PBB∗13]
√ √ √

scale
√ √ √ √

Equi-affine Invariant Geometry [RBB∗11]
√ √ √ √

scale, affinity
√ √

One-point isometric matching [OMMG10]
√ √ √ √ √ √

Topologically-robust matching [SHCB11]
√ √ √ √ √ √

Volumetric HKS [RBBK10b]
√ √ √

scale
√ √

Contextual part analogies [SSS∗10]
√ √ √

scale
√ √ √

Geodesic Distance Matrices [SHVS12]
√ √ √

scale
√

Intrinsic Shape Differences [ROA∗13]
√ √ √ √ √ √ √

Mutual Distance Matrices [Bia10]
√ √ √ √

Wave Kernel Signature [ASC11]
√ √ √ √ √

3D MSERs [LBB11]
√ √ √ √ √ √

Spectral descriptors [LB14]
√ √ √

scale, affinity
√ √

Spectral graph wavelets [LBH13]
√ √ √

scale
√

Part-aware metric [LZSCO09]
√ √ √ √ √ √

3D shape impact [MDTS09]
√ √ √

scale
√

Spatial circular descriptors [GDZ10]
√ √

scale
√

meshSIFT [MFK∗10,SKVS13]
√ √ √ √ √

Salient Points matching [CCFM08]
√ √ √

scale
√ √

Salient spectral features [HH09]
√ √ √

scale
√

Local spectral descriptors [Lav12]
√ √ √

scale
√ √ √

Intrinsic spin images [WLZ10]
√ √ √ √ √

Reduced Laplace-Beltrami eigenfunctions [DK10]
√ √ √ √ √ √

Spectral isometric matching [RPSS10]
√ √ √

scale
√ √

Semantic best view selection [Lag10]
√ √ √ √

Facial sparse Matching [BDP13b]
√ √ √

scale
√ √

Facial expression recognition [BDP13a]
√ √ √ √

Isogeodesic stripes [BDP10]
√ √ √

scale
√ √

Bilateral maps [vKZH13]
√ √ √

scale
√ √ √

Persistence-based GH signatures [CCSG∗09]
√ √ √

scale
√ √

Persistence-based heat signatures [DLL∗10]
√ √ √ √ √

Multidimensional size functions [BCF∗08]
√ √ √ √

scale
√ √

Extended Reeb graphs [BB13b]
√ √ √

scale
√

Laplacian eigenfunctions for point registration [MHK∗08]
√ √ √ √

Skeleton paths [LH13]
√ √ √ √

scale
√ √

Point cloud graphs [NBPF11]
√ √ √

scale
√ √

Extended Reeb graphs [BEGB13,EHB13]
√ √ √

scale
√ √

Topo-geometric models [BK10a]
√ √

scale
√ √ √

Skeletal Reeb graphs [MBH12]
√ √

scale
√ √ √

Reeb graphs [AK11]
√ √ √ √ √ √

Reeb graphs and unfolding signatures [TVD09]
√ √ √

scale
√ √ √

Conformal factors [STP12]
√ √ √ √ √

Graph-based representations [APP∗10]
√ √ √ √ √

Reeb graphs & view [LMM13]
√ √ √ √

MeshHOG [ZBVH09,ZBH12]
√ √ √ √ √ √

Photometric HKS [KBBK12,KBB∗12]
√ √ √ √

scale, affinity
√ √

Multi-scale area projection transform [GL12]
√ √ √

scale
√

PHOG [BCGS13]
√ √ √ √

scale
√ √

Non-rigid symmetry detection [RBBK10a]
√ √ √

scale, affinity
√ √ √

Persistence-based recognition of occluded shapes [DL12a]
√ √ √ √

Geometric histograms [BWdBP13]
√ √ √ √ √ √

Local facial patches [MAD∗11]
√ √

scale
√ √

Textured Spin Images [PZC13]
√ √ √

scale
√

Scale-Invariant Spin Images [DK12]
√ √

scale
√ √

Geodesic/curvature based features [LGJ14]
√ √

scale
√ √

Hybrid features and class information [LJ13]
√ √

scale
√ √
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Table 2: Classification of methods according to the type of captured shape structure, type of distance and computational
complexity. In particular, computational cost refers to extracting shape description/comparing descriptions.

Method (refs.) Structure Distance Computational cost

Blended Intrinsic Maps [KLF11] Conformal Wasserstein-based medium/high
Conformal similarity and correspondences [BLC∗11] Conformal Minimum-distortion embeddings Low/high
Distances distributions [MS09a] Diffusion L1, L2, χ2, Jensen-Shannon divergence medium/low
Volume GPS [Rus10] Diffusion χ2 medium/medium
Heat Kernel Signatures (HKS) [SOG09] Multi-scale autodiffusion L1 medium/low
Scale Invariant HKS [BK10b] Multi-scale autodiffusion WeightedL1 medium/low
Shape Google [BBGO11] Multi-scale autodiffusion Hamming distance medium/low
Bag of Feature Graphs [HHZQ12] Multi-scale autodiffusion L2-based medium/low
Topology-Invariant Geometry [BBK09] Diffusion Joint similarity (Gromov-Hausdorff distance) medium/medium
Topology-Robust Diffusion Geometry [BBK∗10] Diffusion Gromov-Hausdorff distance medium/high
Spectral Distances [BB11] Diffusion NormalizedL1

,L2
,χ2, Earth Mover’s Distance medium/high

Minimum Distortion Correspondences [WBBP12] Multi-scale autodiffusion Gromov-Hausdorff distance medium/high
Soft Maps [SNB∗12,HZG∗12] Local conformal Functional maps medium/high
(Quasi-)harmonic correspondences [KBB∗13,PBB∗13] Diffusion Functional maps medium/medium
Equi-Affine Invariant Geometry [RBB∗11] Diffusion Gromov-Hausdorff distance medium/high
One-point isometric matching [OMMG10] Multi-scale autodiffusion L2-based medium/low
Topologically-robust matching [SHCB11] Multi-scale autodiffusion L2-, L∞-based medium/low
Volumetric HKS [RBBK10b] Multi-scale autodiffusion L1 medium/low
Contextual part analogies [SSS∗10] Semi-local conformal Bipartite graph matching medium/medium
Geodesic Distance Matrices [SHVS12] Conformal χ2 medium/low
Intrinsic shape differences [ROA∗13] Conformal Functional maps medium/medium
Mutual Distance Matrices [Bia10] Diffusion Soft Earth Mover’s Distance medium/medium
Wave Kernel Signature [ASC11] Multi-scale autodiffusion L1 medium/low
3D MSERs [LBB11] Semi-local autodiffusion Local point & region distance medium/low
Spectral descriptors [LB14] Multi-scale autodiffusion Metric learning medium/medium
Spectral graph wavelets [LBH13] Diffusion Intrinsic spatial pyramid matching medium/high
Part-aware metric [LZSCO09] Conformal χ2 medium/low
3D shape impact [MDTS09] Semi-local extrinsic NormalizedL2 and diffusion distance low/low
Spatial circular descriptors [GDZ10] Extrinsic Hungarian distance low/medium
meshSIFT [MFK∗10,SKVS13] Multi-scale conformal Angle distance medium/low
Salient Points matching [CCFM08] Multi-scale conformal Distance on Hidden Markov Models low/medium
Salient spectral features [HH09] Diffusion Ad-hocdistance medium/medium
Local spectral descriptors [Lav12] Local diffusion Bag of features medium/low
Intrinsic spin images [WLZ10] Multi-scale intrinsic Eearth Mover’s Distance medium/medium
Reeuced Laplace-Beltrami eigenfunctions [DK10] Diffusion Ad-hoc(quadratic optimization problem) medium/medium
Spectral isometric matching [RPSS10] Diffusion Bipartite graph matching,L1-based medium/medium
Semantic best view selection [Lag10] Conformal Ad-hocdistance medium/medium
Facial sparse Matching [BDP13b] Multi-scale conformal Ad-hocdistance, RANSAC medium/low
Facial expression recognition [BDP13a] Multi-scale extrinsic Distance on Hidden Markov Models medium/medium
Isogeodesic stripes [BDP10] Conformal Weighted graph distance medium/medium
Bilateral maps [vKZH13] Semi-local conformal Ad-hoc(functional optimization) low/high
Persistence-based GH signatures [CCSG∗09] Multi-scale topology Gromov-Hausdorff distance, natural pseudo-distance low/medium
Persistence-based heat signatures [DLL∗10] Multi-scale autodiffusion & topology L1-based low/low
Multidimensional size functions [BCF∗08] Multi-scale topology Natural pseudo-distance low/medium-high
Extended Reeb graphs [BB13b] Semi-local topology Kernel aggregation & learning low/high
Laplacian eigenfunctions for point registration [MHK∗08] Diffusion Hungarian distance medium/medium
Skeleton paths [LH13] Extrinsic & topology Endpoint distance low/low
Point cloud graphs [NBPF11] Semi-local topology Spectral graph distance low/medium
Extended Reeb graphs [BEGB13,EHB13] Semi-local topology & topology Spectral graph distance low/medium
Topo-geometric models [BK10a] Extrinsic & topology Maximal sub-graph approximation low/medium
Skeletal Reeb graphs [MBH12] Extrinsic topology Shortest path graph matching low/medium-high
Reeb graphs [AK11] Conformal topology Maximal sub-graph approximation low/medium-high
Reeb graphs and unfolding signatures [TVD09] Semi-local conformal & topology Maximal sub-graph approximation low/medium
Conformal factors [STP12] Semi-local conformal & topology Hungarian distance low/medium-high
Graph-based representations [APP∗10] Semi-local conformal Earth Mover’s Distance low/high
Reeb graphs & view [LMM13] Conformal & Multi-scale topology Earth Mover’s Distance medium/high
MeshHOG [ZBVH09,ZBH12] Multi-scale conformal & photometry L2 medium/low
Photometric HKS [KBBK12,KBB∗12] Multi-scale autodiffusion & photometry Bag of features medium/low
Multi-scale area projection transform [GL12] Multi-scale extrinsic Jeffrey divergence medium/low
PHOG [BCGS13] Conformal & photometry, multi-scale topology L1, natural pseudo-distance medium/medium-high
Non-rigid symmetry detection [RBBK10a] Multi-scale autodiffusion Minimum-distortion embeddings medium/high
Persistence-based recognition of occluded shapes [DL12a] Multi-scale extrinsic & topology Hausdorff and Natural pseudo-distance low/low-medium
Geometric histograms [BWdBP13] Multi-scale RANSAC medium/low
Local facial patches [MAD∗11] Semi-local Geodesic in a scale space low/medium
Textured spin images [PZC13] Photometry Weighted statistical function medium/medium
Scale-Invariant Spin Images [DK12] Local extrinsic RANSAC medium/low
Geodesic/curvature based features [LGJ14] Semi-local conformal Ad-hocdistance low/low
Hybrid features and class information [LJ13] Semi-local conformal scaledL1 and Canberra distance low/medium
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