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Foreword

Dear Delegate,

the Osservatorio Etneo, Catania section of the Istituto Nazionale di Geofisica e Vulcanologia, in collabora-

tion with the Università di Catania, is delighted to host the 16th SPHERIC International Workshop.

SPHERIC, the ERCOFTAC Special Interest Group that represents the community of researchers and in-

dustrial users of Smoothed Particle Hydrodynamics, has made outstanding efforts to support and foster the

development of SPH with online and hybrid events in these difficult times, finding new and creative ways

to bring people together and keep the interest for SPH alive inside and outside the community. The choice

between a virtual and an on-site event for the 16th edition of the SPHERIC International Workshops has

been a difficult one to make. On the one hand, the still problematic international situation would have ob-

structed participation; on the other, the kind and level of inter-personal exchange that can only be achieved

by meeting in-person remains an important aspect of the scientific growth of the community. We have taken

a gamble of sorts, and we appreciate the effort of all of you, those that have had the opportunity to come, as

well as those that could not make it, in supporting our choice.

In the now well-established tradition of the SPHERIC International Workshops, the programme of this edi-

tion offers a Training Day for researchers and users that are starting their work on SPH, and two challenging

keynotes. As usual, the Libersky Prize will be awarded for the best contribution from student delegates; the

16th SPHERIC International Workshop also presents for the third time the Joe Monaghan Prize, a recogni-

tion to the most important work published on the SPHERIC Grand Challenges between 2013 and 2018.

The contributions that you can find in these Proceedings were selected by our Scientific Committee from

over 80 high-level proposed abstracts. They are a testament to the excellent quality of the research being

conducted both on the fundamentals of the SPH method and on its application to a wide variety of fields,

from engineering to medicine, from geophysics to material sciences.

New and exciting times await Smoothed Particle Hydrodynamics and the SPHERIC community, and it is a

great pleasure and honour to share these moments with you.

Come for the science, stay for the food!

Welcome to Catania,

Giuseppe Bilotta

Chair, Local Organizing Committee

16th SPHERIC International Workshop
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Crespo, Vasiliki Stratigaki, Tomohiro Suzuki, Moncho Gómez-Gesteira, Peter Troch

14.2 Thin Film Flow Dynamics in Gas-Liquid Contact Reactors · · · · · · · · · · · · · · · · 406

Cihan Ates, Karthik Vigneshwaran Muthukumar, Max Okraschevski, Niklas Bürkle, Daniel M.

Aguirre Bermudez, Matthias Haber, Rainer Koch, Hans-Jörg Bauer

14.3 Detecting Laminar Mixing Patterns in Twin-screw Extruder Elements via Lagrangian Coherent

Structures · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 414

Hannes Bauer, Johannes Khinast

viii



Lagrangian methods in SPH for complex systems

Antonio Souto-Iglesias

CEHINAV, DACSON, ETSIN,

Universidad Politécnica de Madrid,

Madrid, Spain,

antonio.souto@upm.es

Josep Bonet Avalos

Dep. d’Enginyeria Química, ETSEQ,

Universitat Rovira i Virgili,

Tarragona, Spain,

josep.bonet@urv.cat

Matteo Antuono & Andrea Colagrossi

CNR-INM Institute of marine engineering

National Research Council

Rome, Italy,

matteo.antuono@cnr.it, andrea.colagrossi@cnr.it

Abstract—The application of Lagrangian mechanics in com-
bination with the definition of the dissipative function concept,
first introduced by Rayleigh, to the construction of Smoothed
Particle Hydrodynamics (SPH) equations for complex systems
and situations is reviewed in this article. To illustrate the method,
we have addressed the non-trivial problem of a micropolar fluid
for which we have derived the most general expression for the
friction forces related to particle velocities coupled to particle
spin, for translational as well as for the rotational motion of
the SPH particles. For the latter we have also discussed the
scaling of the moment of inertia in SPH with the range of
the weight function, and also with regards to the microscopic
moment of inertia. The comparison of the SPH results with
known solutions of the dynamics of micropolar fluids yields an
excellent agreement.

I. Introduction

Recently, we have addressed the application of Smoothed

Particle Hydrodynamics (SPH) to complex situations in a

series theoretical works, which involve the analysis of the

Stokes hypothesis [5], modification of SPH to include arbitrary

bulk viscosity contributions [3], and the construction of the

SPH equations for a general micropolar fluid [19]. The

difficulties of defining the appropriate SPH equations of

motion beyond the standard ones are overcome using a

Lagrangian formulation of an ensemble of particles rather than

the customary discretization of the field equations, notably,

the Navier-Stokes equation. While there are precedents of

the use of Lagrangians in SPH, [24], we have exploited the

introduction of a Dissipation Function(DF), which gives a

great flexibility for the modelling of the dissipation terms to be

included in the equations of motion. In this way, Lagrangian

symmetries, such as Galilean and rotational invariance that

lead to total momentum and angular momentum conservation,

for instance, are imposed to the DF with the result of SPH

equations of motion which also conserve these properties,

regardless the complex form of the dissipative forces. Some

of the most remarkable outcomes are the model for bulk

viscosity modelled independently of shear viscosity, which

is relevant for hypersonic flow, as well as to construct the

SPH equations for the most general micropolar fluid model.

These two examples clearly show the importance of the use

of the DF in producing SPH descriptions of complex fluids

and fluxes for applications to complex micorstructured fluids

and extreme flows. In this communication we will present the

general principles of our approach exemplified in the isotropic

micropolar fluid. We show how the continuum equations of

motion of the latter [6] can be reproduced by an array of SPH

particles with rotational degrees of freedom, which interact

with each other through appropriate frictional forces derived

from the DF, in a general way. The micropolar SPH equations

have been validated by comparing our 3D simulations with

analytical solutions as well as numerical results for different

geometries, such as the lid-driven cavity [23], among others,

with excellent agreement.

II. Equations of motion for fluids with spin

A. The SPH approximation to the hydrodynamic fields

Let us consider an ensemble of N isotropic particles

representing fluid elements located at positions ri, i = 1, . . . ,N

with velocities ui, masses mi, and associated volumes Vi.

Since the particles are considered as macroscopic objects,

representative of a large quantity of microscopic particles of

the physical fluid, we can define the internal energy per unit

of mass ei along with the particle entropy per unit of mass

si. To model micropolar fluids, we assume that the particles

are isotropic but that they can rotate, thus bearing angular

momentum. In SPH, fields are associated to corresponding

physical properties carried by particles, or defined from the

immediate neighborhood. The main example of the latter is

the particle mass density:

ρi = mi

N
∑

j=1

W(ri j; h), (1)

where W is a weight function referred to as kernel. Here,

ri j = ri − r j and ri j = |ri j|. The particle volume Vi is estimated

as

Vi =
mi

ρi

=
1

∑N
j=1 W(ri j; h)

. (2)

The kernel W is a positive-definite monotonously decreasing

integrable function with a characteristic length h (see [25] for

a recent discussion on the choice of kernels’ characteristic

length), which will be omitted in the notation where no

confusion could occur. In this article, this kernel is isotropic

and its volume integral is normalized, i.e.
∫

dr W(r) = 1. (3)
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The spatial gradient of the kernel satisfies

∇iW(ri j) = ei j

dW

dri j

= −ri jF(ri j) = −∇ jW(ri j), (4)

where ei j = ri j/ri j is a unit vector, and F is defined from this

equation, being a positively definite function by construction.

In SPH, to reproduce smooth fields, insensitive to the

underlying particulate nature of the description, it is required

that Vi ≪ hn (n is the dimensionality of the space), i.e. that

the number of particles ν in a given particle environment,

determined by the range of the kernel h, must be large

enough. Moreover, to recover the hydrodynamic behavior,

as described by the Navier-Stokes equation, the so-called

hydrodynamic limit must be invoked [12]. The latter states

that the characteristic wavelengths of the fields must be much

larger than h so that spatial variations of the fields up to O(k2)

are sufficient to describe the dynamics, k being the field wave

number. Hence, if L ∼ 1/k is the characteristic length for

the variation of a hydrodynamic field, the continuous limit

description should be reached when h/L ∼ kh → 0 with

Vi/h
n → 0 [7], [14], [18].

Following the approach of [5], the conservative dynamics

of the system can be derived from the Lagrangian

L[ṙi, ri, θ̇i, θi] =
∑

i

[

1

2

(

mi ṙ 2
i + mi Ii θ̇i

2
)

− mi U(t, ri)−

− miV(t, θi) − mi e(ρi, si)
]

, (5)

where the first term on the right hand side of this equation

is the kinetic energy of the particles, which includes a

translational and a rotational term. The rotational term is

computed considering an additional rotational degree of

freedom, θi, representing the angular displacement, and the

particle inertia per unit mass, Ii. In equation 5, U is a general

external potential field such as gravity, V is an external

potential field leading to a body torque. In addition, we define

the velocity ṙi = ui, and we denote Ωi = θ̇i, referring to it

as the spin, from now on. Finally, e is the internal energy,

which is considered to be a function only on the particle

thermodynamic state properties density, ρi, and entropy, si,

in the present model.

To introduce the dissipative forces for rotating particles, let

us first consider that the viscous dissipation is generated due

to friction at the contact point of the volume occupied by

the particles, defined as the mid point between the centers of

the two interacting particles i, and j. The composition of the

translational velocity and the velocity induced by the spin (see

Fig. 1) at such contact point leads to the following velocity

difference at contact

u∗i j = ui j −Ωi j × ri j, (6)

with ui j = ui − u j and Ωi j := (Ωi +Ω j)/2.

The assumption that the contact point can be considered as

the mid point is the result of assuming that the boundaries

between two adjacent particles are placed at the mid point,

and therefore there is where the friction is located. Other

particle i
particle j

Fig. 1. Schematic representation of two interacting particles, with internal
rotation, including all the variables necessary to define u∗

i j
.

options could be considered but one expects they would

not significantly affect the long-wavelength behavior of the

system.

Together with the Lagrangian, following [3], [5], [8]

we define the dissipation function, often referred to as

Rayleighian, as a positive-definite bilinear form of the velocity

difference at contact,

ΦD =
∑

i, j>i

u∗i j · �i j(ri j) · u
∗
i j , (7)

where the tensor �i j(ri j) is given by

�i j(ri j) = F(ri j) (ζ1 ei j ⊗ ei j + ζ2 I) ViV j, (8)

in which the coefficients ζ1, ζ2 have dimensions of dynamic

viscosities. The right hand side of (8) is the most general

second rank isotropic objective tensor, constructed from

particle coordinates [21]. So defined, and considering the form

of the u∗
i j

, this dissipation function is as general as it can be in

regards to being invariant to translations and rigid rotations.

These imposed symmetries in the dissipation function are

analogous to the symmetries of the Lagrangian. Effectively,

if the dissipation function is invariant under translations and

solid body rotations, the total momentum as well as the total

angular momentum of the system will be unaffected by the

dissipative forces derived from the former.

In view of (7) and (8), the DF takes the form,

ΦD =
ζ1

2

∑

i, j,i

F(ri j) (ei j · ui j)
2 ViV j +

+
ζ2

2

∑

i, j,i

F(ri j)

(

ui j −Ωi j × ri j

)2

ViV j ,

(9)

where the summation takes now each pair twice, a convention

which is possible due to the symmetry of the interactions, and

that facilitates some of the deductions later on. Since F(0) = 0

for common kernels, the restriction j , i in the summation in

this equation, and in the ones that follow in the rest of the

paper, could ultimately be removed.

The second term in (9) is the new contribution proposed, and

represents the friction between two particles due to the velocity

difference in the mid point between the particles, induced by

the translational velocities and the spin induced ones.

Notice that in eqs. (5) and (9) we have made the distinction
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between the independent variables in the Lagrangian ṙi, ri,

θ̇i, θi and the ones in the Rayleighian ui, Ωi, although one

assumes that ṙi = ui and θ̇i = Ωi, at the end. Moreover,

the dissipation function must be a quadratic function of the

velocities. Under these conditions, the dynamics of the system

is given by



































d

dt

(

∂L

∂ ṙi

)

−
∂L

∂ ri

= QV
i ,

d

dt

(

∂L

∂ θ̇i

)

−
∂L

∂ θi

= T V
i ,

(10)

where QV
i

, T V
i

are, respectively, the generalized dissipative

forces and torques acting among the particles, which are

obtained from differentiation of ΦD with respect to ui and

Ωi, respectively, i.e.

QV
i = −

∂

∂ui

ΦD = − ζ1

∑

j

F(ri j)
(

ui j · ei j

)

ei jViV j

− ζ2

∑

j

F(ri j)

(

ui j −Ωi j × ri j

)

ViV j, (11)

T V
i = −

∂

∂Ωi

ΦD =
ζ2

2

∑

j

F(ri j) ri j ×

(

ui j −Ωi j × ri j

)

ViV j.

(12)

Eq (11) can be written as

QV
i = −

∂

∂ui

ΦD = − ζ1

∑

j

F(ri j)
(

ui j · ei j

)

ei jViV j

− ζ2

∑

j

F(ri j) ui jViV j

+ ζ2

∑

j

F(ri j) (Ωi j × ri j) ViV j,

(13)

Notice that, by construction, the dissipative forces and torques

can be split into pairwise contributions, i.e. QV
i
=

∑

j,i Q
V
i j

and

T V
i
=

∑

j,i T
V
i j

, with

QV
i j = − Q

V
ji

T V
i j = T

V
ji

(14)

With this notation, as discussed in [5], the first contribution in

(13) corresponds to the Monaghan and Gingold’s viscous term

[15], and the second to the Morris et al. viscous term [16].

However, the first term conserves angular momentum while

the second does not. As will be seen later in the paper, the

third term, the contribution due to the spin and the related spin

derivative equation, will allow to correct this matter.

The equation of motion for the roto-translational dynamics

of the ensemble of particles obtained from (10) reads:































mi

dui

dt
= mi fC

i + mi gi + Q
V
i ,

mi Ii

dΩi

dt
= mi tC

i + mi Gi + T
V
i ,

(15)

where mi fC
i is the interparticle conservative force, gi the

acceleration due to the conservative body forces, i.e. gi =

−∂U/∂ri.The second equation of (15) governs the particle spin

dynamics. In analogy with the first equation, the terms on the

right-hand side are: mi tC
i

, the interparticle conservative torque,

Gi, the angular acceleration due to the body torque field linked

to the potential V, i.e. Gi = −∂V/∂θi.

Making use of the properties of internal energy e and

translational invariance, one can write mi f c
i in equation 15

(see [5] for details) as:

mi fC
i ≡ −

∑

j

m j

∂e j

∂ri

= −
∑

j

m j

∂e j

∂ρ j

∣

∣

∣

∣

∣

s

∂ρ j

∂ri

=

=
∑

j















p j V2
j
+ pi V2

i

Vi V j















ri jF(ri j) ViV j,

(16)

where we have used the fact that the particle pressure is linked

to the internal energy: p = ρ2 ∂e /∂ρ
∣

∣

∣

s
. In this derivation we

have considered that the entropy s is intrinsically carried by the

particles and is not a function of the environment, as the local

mass density ρ is. Considering that the density field is affected

by the particle positions and not by the spatial rotations, in the

present model tC
i

is assumed equal to zero.

Equations (15) are integrated in time to describe the

dynamics of the system, including the formulated dissipative

forces and torques.

B. Symmetries and conservation laws

The fact that the dissipative function has translational and

rotational invariance guarantees that both the total momentum

and the angular momentum is conserved in the particle-particle

interaction, in analogy with the purely conservative systems.

Following [20], one finds that the proposed dissipative

interactions satisfy,
∑

i, j,i

QV
i j =

∑

i, j<i

QV
i j +

∑

i, j>i

QV
i j =

∑

i, j<i

QV
i j +

∑

j,i< j

QV
i j =

=
∑

i, j<i

(

QV
i j + Q

V
ji

)

= 0
(17)

according to (14). Following the same procedure, the total

dissipative torque exerted on the system satisfies,
∑

i, j,i

(

ri × Q
V
i j + T

V
i j

)

=
∑

i, j<i

(

ri j × Q
V
i j + 2T V

i j

)

= 0 (18)

The null value of the total torque in the last equality is

obtained by introducing eqs. (11) and (12) into (18). The

proof that the same is valid for the conservative forces and

torques can be found in the textbooks [11] and will be omitted

here. Equations (17) and (18), together with the equivalent

expressions for conservative forces and torques, make possible

that the total system momentum
∑

i mi
dui

dt
= 0, as well as

angular momentum
∑

i(ri × mi
dui

dt
+ mi Ii

dΩi

dt
) = 0, which

therefore are conserved.

Secondly, the total energy is not conserved due to the

viscous forces and torques. However, we can verify that the
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variation of the total entropy of the system is entirely given

by the DF,

∑

i

[

mi Ti

dsi

dt

]

= −
∑

i

[

QV
i j · ui + T

V
i j ·Ωi

]

= ΦD ≥ 0 . (19)

Thus, the dissipative function must be positive-definite, which

imposes conditions on the allowed values of the coefficients

introduced in (9), namely,

ζ2 ≥ 0 , and ζ1 ≥ −ζ2 . (20)

C. A general isotropic micropolar fluid model in SPH.

Inspired by Condiff & Dahler [6], the following dissipation

function Φ′
D

is now proposed, extending ΦD defined in (7) to

account for other possible dissipation mechanisms based on

spin derivatives,

Φ′D = ΦD + Φ
Ω
D, (21)

with

ΦΩD =
∑

i, j>i

Ωi j · �i j(ri j) ·Ωi j , (22)

where Ωi j := Ωi −Ω j, and where � is an objective tensor of

second rank, with the same structure as � in (8):

�i j(ri j) = F(ri j) ( ξ1 ei j ⊗ ei j + ξ2 I) ViV j. (23)

This is the most general form that preserves translational and

solid-body rotational invariance of the dissipation function in

(22). It is noted that the dimensions of the viscosity coefficients

ζ1, ζ2, and ξ1, ξ2 are different.

From eqs. (22) and (23), the following expression for ΦΩ
D

is

obtained:

ΦΩD =
ξ1

2

∑

i, j,i

F(ri j) (ei j ·Ωi j)
2 ViV j

+
ξ2

2

∑

i, j,i

F(ri j)Ω
2
i j ViV j ,

(24)

Since ΦΩ
D

depends only on the spin derivatives, it impacts only

on the viscous torque mi tv
i
, as computed with (15), redefined

now as,

T V
i = −

∂

∂Ωi

ΦD −
∂

∂Ωi

ΦΩD =

=
ζ2

2

∑

j

F(ri j) ri j ×

(

ui j −Ωi j × ri j

)

ViV j

− ξ1

∑

j

F(ri j) (ei j ·Ωi j) ei j ViV j

− ξ2

∑

i

F(ri j)Ωi j ViV j .

(25)

This viscous torque completes the right hand side in (15) to

yield the general micropolar model. The first term in (25)

comes from ΦD and was already presented in (12). The second

and the third derive from ΦΩ
D

.

III. The continuum equations

The conservation laws derived from the dynamic equations

of the SPH particles lead to a hydrodynamic motion of this

ensemble according to a fluid with spin. The continuum limit

is therefore important to identify the different viscosities in

terms of the model parameters introduced, as well as to infer

the scaling laws followed by the different model coefficients

as a function of the characteristic length h. To derive these

continuum equations, the time-derivative of the hydrodynamic

fields, such as momentum, angular momentum and mass

densities, constructed from the SPH particles, are expanded up

to O(h2). The explicit derivation of the continuum equations

is given in [20] and will be omitted here, although the final

expressions are given.

The momentum transport equation for a fluid with spin

reads,

ρ
du

dt
= −∇p + ρ f v + ρg. (26)

with

ρ f v = (µ + µr) ∇
2u + (µ + λ − µr)∇ (∇ · u) + 2µr∇ ×Ω,

(27)

where µ, λ and µr are the shear, second and microrotation vis-

cosities, respectively. The comparison with the field equations

of motion of the SPH model in the limit h → 0 allows us to

identify the relationship between the dissipative coefficients

and the model parameters, which yield


























































µ =
ζ1

2(n + 2)
+
ζ2

4
,

λ =
ζ1

2(n + 2)
,

µr =
ζ2

4
⇒ µr = µ − λ.

(28)

According to (20), the following limits apply to µ, µr and λ:






































































µ ≥ 0,

µr ≥ 0,

−
2µ

n
≤ λ ≤ µ,

⇒ 0 ≤ µr ≤ µ
(

1 + 2
n

)

.

(29)

The bulk viscosity κB, defined as (see [2]), reads,

κB = λ +
2µ

n
, (30)

The viscous force in (27) has the structure of the Newtonian

one plus a rotational term. It is germane to mention that Müller

et al. [17] proposed, for their model, this same dissipative term

however with three degrees of freedom: a shear, a second and a

rotational viscosity, postulating a-posteriori restrictions in their

values. By deriving this force with a bottom-up approach from

the particle level, it has been shown in the present article that
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only two coefficients are actually independent if conservation

laws must be satisfied.

The dynamic evolution of the field spin induced by (15)

with (25) in the limit h→ 0 leads to the equation for the spin

evolution at the continuous level:

ρI
dΩ

dt
= ρG − 2µr (2Ω − ∇ × u) +

+ γ1 ∇
2
Ω + (γ1 + γ2)∇ (∇ ·Ω)

(31)

where the additional spin-viscosity coefficients γ1 and γ2 are

linked to the parameters ξ1 and ξ2 through:

γ1 =

[

ξ1

2(n + 2)
+
ξ2

2

]

, γ2 =

[

ξ1

2(n + 2)
−
ξ2

2

]

, (32)

and where we have implicitly assumed that n ≥ 3. For

n = 2, namely, in the case that two-dimensional simulations

are performed (not to be confused with two dimensional

flows studied through three-dimensional simulations), vorticity

and spin are transported as scalars. Then, in (25) the term

proportional to ξ1 is exactly zero in n = 2 and should be

ignored. In terms of viscosity coefficients, the latter implies

that γ2 = −γ1. Hence, the transport coefficients given in (32),

for two dimensions, correspond to the ones of (25) with ξ1 = 0.

The evolution equation for the spin derivative (31) includes

the same additional terms (spin Laplacian and gradient of spin

divergence) like the corresponding one in the referred seminal

paper by Condiff & Dahler [6] (equation 13 there).

The entropy production is now increased by ΦΩ
D

on the right-

hand side of (19). Therefore, it follows that, in addition to (20),

ξ2 ≥ 0 and ξ1 ≥ −ξ2. It is worth noting that for planar flows

(∇ ·Ω) is zero.

It is important to notice that the moment of inertia in the

continuum limit in the general case of a n-dimension fluid,

scales as

Ii = cV
2/n

i
+ I (33)

where I is the moment of inertia of the molecular constituents

of the fluid and c is a factor depending on the particle

geometry (see [20] for a detailed discussion). For molecular

fluids, the second term in this last equation is negligibly small.

However, the first term is scale-dependent, as it is determined

by the degree of coarse-grain (granularity) chosen for our

simulation. Although no rotational inertia is present in the

physical continuum fluid, still the simulation should consider

a non-vanishing Ii ∼ h2 so that the total angular momentum

is conserved in a SPH calculation with complex particle

interactions. Furthermore, in the general model for fluids with

spin, the micropolar effects can still be relevant even if the

rotational inertia of the system is negligible in the continuum

description. Effectively, when equating the left-hand side of

(31) to zero, due to the presence of the new dissipative terms

still the spin field Ω is not equal to the vorticity but satisfies a

spatial differential equation. It is thus expected that this general

micropolar model can find application to the modelling of

non-Newtonian fluids, in which the microscopic structure of

the molecules can introduce this type of dissipative processes

given in (24).

IV. Results

In ref. [20] we validate our new SPH model in two

cases, namely, two-dimensional Poiseuille flow, for which it

exist analytical solution, and the Lid-driven cavity, for which

numerical solutions of the field equations via mesh methods

are available. Excellent agreement was found in both cases.

Here, we discuss only the second, for illustration purposes.

A. Lid-driven cavity with a micropolar fluid

The lid-driven cavity is a well-known benchmark case for

validating numerical solvers on viscous flows. Its physical

characteristics resemble those typical of lubrication processes,

a field in which micropolar fluids have received great attention

in the literature (see e.g. [1], [13], [22]). In 2012 Chen et

al. [4] showed numerical simulations of a lid-driven cavity

with a micropolar fluid, although they provided no velocity

profiles. More recently, Venkatadri et al. [23] studied the same

problem providing the 2D velocity profiles. These authors

adopted the momentum (27) for modeling this problem, but

using an equivalent but different definition of the viscosity

parameters [9],

ρ f v = (µ + κ) ∇2u + (µ + λ)∇ (∇ · u) + κ∇ ×Ω, (34)

with the corresponding, also equivalent, spin equation:

ρI
dΩ

dt
= ρG − κ (2Ω − ∇ × u) (35)

In this latter formulation the rotational viscosity is referred to

as κ. When this alternative formulation is used, the dependence

of its coefficients (µ, κ, λ) with ζ1 and ζ2 needs to be

consistently readjusted, changing Eqs. (28) accordingly (see

[20] for details). Venkatadri et al. studied the influence of

selecting different values of K = κ/µ on the lid-driven cavity

flow. Here, for the sake of brevity the cases K = 0 (that is

standard Newtonian fluid) and K = 3 are treated with the

proposed SPH model.

In the left panel of Fig. 2 the setup of the problem is

shown along with the conditions on the walls. The Reynolds

number is Re = ρU L/µ = 400 and the spatial resolution is

N = L/∆r = 400 where ∆r is the initial particle distance. The

right panel of the same figure displays the time history of the

kinetic energy for K = 0 and K = 3. In this latter case, we

observe a decrease of the kinetic energy at the steady state, as

a consequence of an increase of dissipation due to the spin.

In Fig. 3 the streamlines for the two selected cases are

shown. For K = 3, a positive vertical displacement of the

central vortex is visible, as well as a mitigation of the

recirculation vortex at the bottom right corner.

Finally, Fig. 4 shows the comparison between the mid-

section velocity profiles as predicted by the present SPH

model, by the finite difference schemes in Venkatadri et

al. [23] and by the classic reference of Ghia et al [10] for the

Newtonian case. As can be appreciated, the SPH simulation is

in qualitative fair agreement with the reference results of the

referred Eulerian schemes.
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Fig. 2. Lid-driven cavity. Left: Sketch of the problem and of the boundary
conditions. Right: time histories of the kinetic energy for K = 0 and K = 3.
The spatial resolution is N = L/∆r = 400.

V. Conclusions

In this paper we have reviewed the previous bottom-up

approaches [3], [5] to construct smoothed particle hydrody-

namics (SPH) models from Lagrangian mechanics, supple-

mented with the addition of the Rayleighian or dissipation

function (DF), as a powerful tool to enforce general principles

of momenta conservation in complex systems. In the case

of micropolar fluids analized here, a dissipation function

has been defined at the particle level which depends on the

relative velocity between particles but also on an additional

spin degree of freedom, which modifies such relative velocity

and introduces spin related intrinsic dissipation mechanisms,

comparable to those related to the rate of deformation tensor in

Newtonian fluids. This dissipation function is invariant under

translations and solid-body rotations, which ensures that the

resulting forces and torques will respect the conservation of

the total momentum and angular momentum of the system.

The dissipative forces derived from the dissipation function

have been then incorporated to balance the expression obtained

Fig. 3. Lid-driven steady-state streamlines for Re = 400, µr/µ = 0 (left),
and µr/µ = 2 (right).

from the minimization of the Lagrangian of the system,

leading to a set of SPH particle equations to describe the

dynamics of the system in the most general case of micropolar

fluid. The bottom-up approach has also allowed us to discuss

in depth the nature of the moment of inertia per unit of mass

of the SPH particles. The obtained discrete model has been

taken to the continuum and compared with micropolar models

from the literature, establishing the corresponding relation-

ships between their coefficients and the ones of the dissipative

terms considered at the particle level. The derivation of SPH

equations from first principles, rather than from a discretization

of the space, is thus a powerful tool to describe the behavior

of complex systems or fluxes under extreme situations.
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