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1. Introduction

Determining the first-passage time is a key issue in the analysis of many stochastic

processes [1]. How long a signal takes to reach a threshold value or a diffusive particle

to reach a target, to escape from a confined region through a small aperture, to be

absorbed by a particular site of a boundary are very general questions which apply to

different phenomena in the real world, from chemical reactions [2, 3] and intracellular

transport [4] to animal movements [5] and financial time series [6]. Strictly speaking

the problem is to determine the distribution of the time a particle takes to reach for the

first time a given point. However, in many real situations the boundary is not perfectly

absorbing and the particle can reach a given site many times before reacting with it. In

such a case the relevant quantity is not the first time the particle reaches the site, but,

instead, the time the particle reacts with it. Depending on the different contexts, such as,

for example, absorption processes, chemical reactions, escaping from confined regions,

one calls this quantity absorption time, reaction time, exit time, escape time. In the

following we adopt the term time to absorption or absorption time, having in mind that,

in the presence of partially absorbing boundaries, strictly speaking this is not the first

time the particle reaches the site, but the first time the particle reacts with it (which are

the same in the case of perfectly absorbing boundary). We are then dealing with partially

reflecting (or absorbing) boundaries, the so called radiation boundary conditions. While

such problems have been widely studied in the case of diffusive phenomena [1,6,7], a very

good approximation for many physical and chemical processes, less attention, up to now,

has been put on the non-diffusive case. This is the case, for example, of search processes

with non-diffusive relocations in the presence of finite reaction rate [8], or processes

involving active particles [9], like self-propelled cells [10], Janus particles [11–13] or

molecular motors in microtubular filaments [14]. Active matter is becoming a relevant

and growing field of research and allows us to extend many tools of statistical mechanics

to the fascinating field of biological non-equilibrium processes [15]. Strictly related are

the processes governed by the telegrapher’s equation [16], which in 1D corresponds

exactly to the run-and-tumble motion of a self-propelled particle. As an example,

the firing of neurons can be modeled as a stochastic process with dichotomous noise,

resulting in a telegrapher-like asymmetric equation [17]. First-passage time problems

and solutions of the telegrapher’s equation in the presence of totally absorbing and

reflecting boundaries have been analyzed in the past [18–20]. More specifically, in

Ref. [19] the solution for the probability density of the particle displacement is reported

for one and two absorbing boundaries; different combinations of reflecting/absorbing

boundaries are analyzed in Ref. [20]. Perfectly absorbing boundaries are also considered

in a recent paper analyzing first-passage time problems of run-and-tumble particles

[21]. Less attention, instead, has been paid to the problems with partially absorbing

boundaries [16]. In Ref. [22] a solution of the telegrapher’s equation is given, considering

the special case of one partly absorbing point.

The aim of the present paper is to investigate absorption problems described by
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the telegrapher’s equation in the presence of partially reflecting boundaries. Exact

expressions of the distribution (in the Laplace domain) of absorption time and its mean

value will be given for the general situation of two different partially reflecting/absorbing

boundaries, recovering some previously obtained results as particular cases.

The paper is organized as follow. In Sec. 2 the run-and-tumble model is introduced

together with the appropriate boundary conditions. In Sec. 3 we define the time to

absorption, giving a general expression for its mean value. In Sec. 4 and 5 two limiting

cases are discussed, respectively the diffusive limit and the wave limit. In Sec. 6

different case studies are reported, giving exact expressions for the Laplace transformed

probability distribution and the mean time to absorption. In Sec. 7 we discuss some

features of the survival probability and absorption time distribution (higher moments,

large volume limit) in the simplified case of symmetric boundaries. Conclusions are

drawn in Sec. 8.

2. Run-and-tumble model and telegrapher’s equation

We consider a run-and-tumble particle in one dimension confined in a finite interval

[a, b]. The particle moves at constant speed v and performs tumble events at rate α,

randomly reorienting its direction of motion. We consider here the case of instantaneous

tumbling, a simplified description of realistic run-and-tumble bacteria [10]. The case of

finite tumbling time can be treated in the framework of bimodal processes, and analytical

results have been recently obtained for free run-and-tumble particles [23, 24]. Denoting

with P
R
(x, t) and P

L
(x, t) the probability density function (PDF), respectively, of right-

oriented and left-oriented particles, we can write the continuity equations as [21,25–29]

∂P
R

∂t
= − v

∂P
R

∂x
− α

2
P

R
+
α

2
P

L
(1)

∂P
L

∂t
= v

∂P
L

∂x
+
α

2
P

R
− α

2
P

L
(2)

By introducing the total PDF P and the current J

P = P
R
+ P

L
(3)

J = v(P
R
− P

L
) (4)

the equations for run-and-tumble particles can be written as

∂P

∂t
= − ∂J

∂x
(5)

∂J

∂t
= − v2

∂P

∂x
− αJ (6)

which correspond to the telegrapher’s equation for P (or for J)

∂2P

∂t2
+ α

∂P

∂t
= v2

∂2P

∂x2
(7)

By using the Laplace transform in the time domain

P̃ (x, s) =

∫

∞

0

dt e−st P (x, t) (8)
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the Eqs. (5,6) become

− P (x, 0) + sP̃ (x, s) = − ∂J̃

∂x
(x, s) (9)

−J(x, 0) + sJ̃(x, s) = − v2
∂P̃

∂x
(x, s)− αJ̃(x, s) (10)

2.1. Initial conditions

We consider initial conditions

P
R
(x, 0) =

δ(x)

2
(11)

P
L
(x, 0) =

δ(x)

2
(12)

corresponding to equally distributed left and right oriented particles at the origin x = 0

(in the following we assume, without loss of generality, that a < 0 < b). Initial conditions

for P and J read

P (x, 0) = δ(x) (13)

J(x, 0) = 0 (14)

and Eq.s (9,10) become

∂J̃

∂x
= δ(x)− sP̃ (15)

v2
∂P̃

∂x
= − (s+ α)J̃ (16)

which correspond to the second order differential equation for P̃

v2
∂2P̃

∂x2
− s(s+ α)P̃ = −(s+ α)δ(x) (17)

In Sec. 3 we will extend the analysis to the case of general initial conditions.

2.2. Boundary conditions

We consider partially reflecting (partially absorbing) boundaries, with reflection

coefficient γ (absorption coefficient η = 1 − γ). This corresponds to particles that,

arriving at boundaries, can be either reflected, instantaneously reverting their direction

of motion, or absorbed. It is worth noting that this does not encompass the situation

in which particles can be stuck at a confining wall due to their persistent motion, which

requires a different treatment. Boundary conditions at a and b can be written as [16,22]

P
R
(a, t) = γaPL

(a, t) (18)

P
L
(b, t) = γbPR

(b, t) (19)

where we have considered the possibility that the two boundaries can be different, with

reflection coefficients γa and γb. In terms of P and J we have

J(a, t) = − ǫavP (a, t) (20)

J(b, t) = ǫbvP (b, t) (21)
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where we have introduced the coefficient ǫ

ǫ =
1− γ

1 + γ
=

η

2− η
(22)

For γ = 0 (η = ǫ = 1) the boundary is perfectly absorbing, while for γ = 1 (η = ǫ = 0)

the boundary is perfectly reflecting.

In the Laplace domain boundary conditions read:

v
∂P̃

∂x

∣

∣

∣

∣

∣

x=a

= (s + α)ǫaP̃ (a, s) (23)

v
∂P̃

∂x

∣

∣

∣

∣

∣

x=b

= −(s + α)ǫbP̃ (b, s) (24)

The problem is then to find the solution of Eq. (17) with boundary conditions

(23,24). The solution is of the form

P̃ (x, s) =

{

A1e
cx + A2e

−cx for x > 0

A3e
cx + A4e

−cx for x < 0
(25)

where

v2c2 = s(s+ α) (26)

Coefficients Ai (i = 1, . . . , 4) are determined by imposing continuity of P̃ and

discontinuity of ∂xP̃ – from Eq. (17) – at x = 0 and boundary conditions at x = a and

x = b, Eq.s (23,24).

3. Time to absorption

The survival probability, i.e. the probability that the particle has not yet been absorbed

at time t, is

P(t) =

∫ b

a

dx P (x, t) (27)

The PDF of the absorption time is

ϕ(t) = −∂P
∂t

(t) (28)

and its Laplace transform reads

ϕ̃(s) = 1− s

∫ b

a

dx P̃ (x, s) = 1− sP̃(s) (29)

By using Eq. (15) it is easy to show that

ϕ̃(s) = J̃(b, s)− J̃(a, s) (30)

or, in term of P̃

ϕ̃(s) = ǫbvP̃ (b, s) + ǫavP̃ (a, s) (31)
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Table 1. Parameters of the model.

Quantity Meaning

v particle’s speed

α particle’s tumbling rate

a, b left and right position of boundaries (a < 0 < b)

ǫa, ǫb absorption coefficients of boundaries [see Eq.(22)]

The time to absorption distribution is then obtained from the solution of Eq. (17)

calculated at boundaries a and b. After some algebra one finally obtains

ϕ̃(s) =
ǫa(ǫb +

s
vc
)ecb − ǫa(ǫb − s

vc
)e−cb − ǫb(ǫa − s

vc
)eca + ǫb(ǫa +

s
vc
)e−ca

(ǫa +
s
vc
)(ǫb +

s
vc
)ec(b−a) − (ǫa − s

vc
)(ǫb − s

vc
)e−c(b−a)

(32)

or, rearranging the terms

ϕ̃(s) =
ǫaǫbvc(s+ α)(sinh cb− sinh ca) + s(s+ α)(ǫb cosh ca+ ǫa cosh cb)

[ǫaǫb(s+ α) + s]vc sinh c(b− a) + s(s+ α)(ǫa + ǫb) cosh c(b− a)
(33)

The meaning of the different parameters of the model are summarized in Table 1. It

is worth noting that the quantity c is a function of s and depends on the parameters v

and α through the Eq. (26).

The mean time to absorption τ is defined by

τ =

∫

∞

0

dt t ϕ(t) (34)

and can be obtained from the derivative of ϕ̃

τ = − ∂ϕ̃

∂s

∣

∣

∣

∣

s=0

(35)

By using the previous expressions one finally obtains

τ =
1

2v2
(b− a)(2v2 − ǫaǫbabα

2) + αv[ǫaa
2 + ǫbb

2 − 2ab(ǫa + ǫb)]

v(ǫa + ǫb) + ǫaǫbα(b− a)
(36)

The above expression has been obtained considering the initial condition P (x, 0) = δ(x),

Eq. (13). It is easy to generalize it to the case of generic initial conditions. By

considering particles starting at a generic point, P (x, 0) = δ(x − x0), and explicitly

writing the dependence on boundaries a, b and initial point x0 ∈ [a, b], we can write

τ(a, b, x0) = τ(a− x0, b− x0, 0) (37)

The average over generic initial conditions with distribution pin(x0) is then obtained as

〈τ〉 =
∫ b

a

dx0 pin(x0) τ(a− x0, b− x0, 0) (38)

where the expression of τ inside the integral is that of Eq. (36) with the substitution

a → a − x0 and b → b − x0. For example, considering uniform initial conditions

pin(x0) = 1/(b− a), one obtains

〈τ〉 = b− a

12v2
12v2 + α(b− a)[4v(ǫa + ǫb) + ǫaǫbα(b− a)]

v(ǫa + ǫb) + ǫaǫbα(b− a)
(39)



Run-and-tumble particles, telegrapher’s equation and absorption problems with partially reflecting boundaries7

4. Brownian limit

The Brownian (diffusion) limit is obtained by considering both large speed and tumble

rate at constant diffusivity: v → ∞, α → ∞, D = v2/α. The telegraph equation

reduces to the diffusion (Fokker - Planck) equation

∂P

∂t
= D

∂2P

∂x2
(40)

Partially reflecting boundaries for Brownian particles are described by the so called

radiation boundary condition [1]

J(b, t) = kP (b, t) (41)

where the coefficient k is in the range [0,∞), k = 0 describing the reflecting case and

k → ∞ the absorbing one. By comparing with Eq. (21) we then have that the correct

limit is obtained considering a velocity dependent absorption coefficient η (or ǫ) which

for large v behaves as η ≃ 2k/v (ǫ ≃ k/v) [30]. Possible choices are for example

ǫ = tanh (k/v) or ǫ = 1− exp (−k/v).
We then obtain the correct expression for the PDF ϕ̃ in the Brownian case from

the general expression reported in the previous Section, Eq. (32), considering v, α→ ∞
with D = v2/α and ǫv → k, c2 → s/D

ϕ̃
B
(s) =

ka(kb +
s
c
)ecb − ka(kb − s

c
)e−cb − kb(ka − s

c
)eca + kb(ka +

s
c
)e−ca

(ka +
s
c
)(kb +

s
c
)ec(b−a) − (ka − s

c
)(kb − s

c
)e−c(b−a)

(42)

The mean time to absorption is obtained in the same limit from Eq. (36)

τ
B
=

1

2D

(b− a)(2D2 − kakbab) +D[kaa
2 + kbb

2 − 2ab(ka + kb)]

D(ka + kb) + kakb(b− a)
(43)

5. Wave limit

Another interesting limit is obtained for α→ 0, i.e. considering the absence of tumbling.

The telegraph equation in this limit reduces to the wave equation

∂2P

∂t2
= v2

∂2P

∂x2
(44)

In such a case a particle moves at constant velocity until it hits a barrier, where, with

probability γ, reverses the direction of motion, and, with probability 1− γ, is absorbed.

One obtains in such a case:

ϕ̃
W
(s) =

ǫa(ǫb + 1)esb/v − ǫa(ǫb − 1)e−sb/v − ǫb(ǫa − 1)esa/v + ǫb(ǫa + 1)e−sa/v

(ǫa + 1)(ǫb + 1)es(b−a)/v − (ǫa − 1)(ǫb − 1)e−s(b−a)/v
(45)

The mean time to absorption takes the simple form

τ
W

=
1

v

b− a

ǫa + ǫb
(46)

The above expression can be also obtained by simple considerations. Indeed, in the

absence of tumbling the particle bounces back and forth inside the box and each time
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it reaches the boundary a (b) it is absorbed with probability ηa (ηb) and reflected with

probability γa = 1 − ηa (γb = 1 − ηb). If the particle starts its motion at the origin

with right-oriented velocity, after a time b/v + nL/v (L = b − a and n = 0, 1, ...) for

even n it is absorbed by the boundary b with probability ηbγ
n/2
b γ

n/2
a , and for odd n it

is absorbed by the boundary a with probability ηaγ
(n+1)/2
b γ

(n−1)/2
a . A particles starting

with left-oriented velocity, at time |a|/v+nL/v (a < 0) for even n it is absorbed by the

boundary a with probability ηaγ
n/2
a γ

n/2
b , and for odd n it is absorbed by the boundary b

with probability ηbγ
(n+1)/2
a γ

(n−1)/2
b . The mean time to absorption can then be obtained

as an infinite sum

τ
W

=
1

2v

∞
∑

n=0

[(b+ nL) pn(a, b) + (|a|+ nL) pn(b, a)] (47)

where pn(a, b) = ηbγ
n/2
b γ

n/2
a for even n and pn(a, b) = ηaγ

(n+1)/2
b γ

(n−1)/2
a for odd n. The

above sum gives exactly the result reported in Eq. (46).

6. Different boundaries: case studies

We analyze here some interesting cases, giving analytic expressions for the time to

absorption distribution in the Laplace domain ϕ̃(s) and the mean time to absorption τ .

6.1. Semi-infinite segment: a→ −∞

In the case of a semi-infinite segment (−∞, b] the expression for the absorption time

distribution can be obtained from Eq. (32) in the limit a→ −∞

ϕ̃(s) =
ǫb

ǫb +
s
vc

e−cb (48)

This situation has been treated in Ref. [22], where an exact expression for the Laplace

transform of the density function P (x, t) is reported and from which one can deduce the

above expression for ϕ̃(s). It is worth noting that the time to absorption diverges

τ → ∞ (49)

due to the open left boundary allowing particles to move far away from the absorbing

wall. In the diffusion limit one has

ϕ̃
B
(s) =

kb
kb +

s
c

e−cb (50)

where c2 = s/D. In the case of perfect absorption (k → ∞) ϕ̃
B
(s) = exp (−b

√

s/D),

giving rise to a survival probability – by performing inverse Laplace transform from Eq.

(29) – P
B
(t) = erf(b/

√
4Dt), where erf(x) = (2/

√
π)

∫ x

0
dy exp(−y2) [1, 31].
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6.2. Equal boundaries: ǫa = ǫb = ǫ

In the case of equal boundaries, with the same reflection coefficients, we have

ϕ̃(s) = ǫ
(ǫ+ s

vc
)ecb − (ǫ− s

vc
)e−cb − (ǫ− s

vc
)eca + (ǫ+ s

vc
)e−ca

(ǫ+ s
vc
)2ec(b−a) − (ǫ− s

vc
)2e−c(b−a)

(51)

and

τ =
b− a

2vǫ
− αab

2v2
(52)

In the diffusion limit the mean time to absorption reads

τ
B
=
b− a

2k
− ab

2D
(53)

6.3. Symmetric boundaries: a = −b

If the two boundaries are equidistant from the initial particle position (symmetric case),

we have

ϕ̃(s) =
[2ǫaǫb + (ǫa + ǫb)

s
vc
]ecb − [2ǫaǫb − (ǫa + ǫb)

s
vc
]e−cb

(ǫa +
s
vc
)(ǫb +

s
vc
)e2cb − (ǫa − s

vc
)(ǫb − s

vc
)e−2cb

(54)

and

τ =
1

2v2
2b(2v2 + ǫaǫbb

2α2) + 3αvb2(ǫa + ǫb)

v(ǫa + ǫb) + 2ǫaǫbαb
(55)

In the diffusion limit the mean time to absorption is

τ
B
=

1

2D

2b(2D2 + kakbb
2) + 3Db2(ka + kb)

D(ka + kb) + 2kakbb
(56)

6.4. Equal and symmetric boundaries: ǫa = ǫb = ǫ, a = −b

In the case of two equal and symmetric boundaries one has

ϕ̃(s) =
2ǫ

(ǫ+ s
vc
)ecb + (ǫ− s

vc
)e−cb

(57)

and

τ =
b

vǫ
+
αb2

2v2
(58)

A similar case, but considering totally absorbing boundaries (ǫ=1), has been analyzed

in previous papers [18, 20, 21]. The above expressions are particularly simple and will

be taken as reference to discuss some other issues of absorption problems in the next

Section. In the diffusion limit the mean time to absorption reads

τ
B
=
b

k
+

b2

2D
(59)
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6.5. One reflecting boundary: ǫa = 0

In the case of one perfectly reflecting boundary at x = a and partially reflecting at x = b

one has

ϕ̃(s) = ǫb
eca + e−ca

(ǫb +
s
vc
)ec(b−a) + (ǫb − s

vc
)e−c(b−a)

(60)

and

τ =
b− a

vǫb
+
αb

2v2
(b− 2a) (61)

It is worth noting that for a = 0 previous formulae reduce to those obtained in Sec. 6.4.

Indeed, for symmetric reasons, the problem with two equal boundaries at −b and b is

equivalent to the one with a boundary at b and a reflecting boundary at the origin.

In the diffusion limit the mean time to absorption is

τ
B
=
b− a

kb
+

b

2D
(b− 2a) (62)

Considering average over uniformly distributed initial conditions – see Eq. (39) – one

has

〈τ
B
〉 = b− a

kb
+

(b− a)2

3D
(63)

in agreement with the expression reported in Table 1 of Ref. [32].

7. Discussion

In this Section I discuss some properties of the absorption time probability distribution,

referring to the case of equal and symmetric boundaries, treated in the previous Section.

This allows us to obtain simple analytical expressions without losing the underlying

physics.

The expression for the (Laplace transformed) probability distribution of the absorption

time in the case of boundaries with the same absorption properties (ǫa = ǫb = ǫ) and

located symmetrically with respect to the origin (a = −b), has been obtained in Section

6.4 and we rewrite it here for convenience

ϕ̃(s) =
2ǫ

(ǫ+ s
vc
)ecb + (ǫ− s

vc
)e−cb

=
1

cosh cb+ s
ǫvc

sinh cb
(64)

In the following we discuss some features of this distribution.

7.1. Higher moments

All the moments (when they exist) of the distribution can be, in principle, obtained by

simple derivatives

〈tn〉 = (−1)n
∂nϕ̃

∂sn

∣

∣

∣

∣

s=0

(65)
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The first moment is the mean time to absorption, reported in the previous Section

τ = 〈t〉 = b

vǫ
+
αb2

2v2
(66)

It is worth noting that the first term dominates when b/ℓ ≪ 2/ǫ, where ℓ = v/α is the

particle’s mean-free path. In other words, for small box length (with respect to ℓ) or

also for moderately large box length in the case of weakly absorbing boundaries (ǫ≪ 1),

the mean time to absorption is dominated by the wave-like term. For large box length,

instead, more precisely for b/ℓ ≫ 2/ǫ, the second diffusive-like term dominates in Eq.

(66). A more in-depth discussion of the large volume regime will be found at the end

of this Section.

We report here also the expressions for the second moment

〈t2〉 = 5

3
τ 2 +

b2

v2

(

1

3ǫ2
− 1

)

(67)

and the third moment

〈t3〉 = 61

15
τ 3 +

αb4

2v4

(

9

5ǫ2
− 5

)

+
b3

ǫv3

(

29

15ǫ2
− 5

)

(68)

Generic expressions for higher moments will be given below in the large volume limit.

7.2. Survival probability

An interesting property of the survival probability P(t) can be inferred from the

expression in Eq. (64), via the relation

P̃(s) =
1− ϕ̃(s)

s
(69)

We first observe that, due to the finite speed of the particle, the quantity P(t) will be 1

up to the time b/v, i.e. the minimum time the particle takes to cover the distance b and

then reach the boundary. We can then write P(t) = 1 − θ(t − b/v) Q(t − b/v), having

introduced the quantity Q(t). Using the property

Q(0) = lim
s→∞

s Q̃(s) (70)

we can obtain the value of the survival probability at time t = b/v

P(t=b/v) = 1− 2ǫ

ǫ+ 1
exp (−bα

2v
) (71)

The survival probability P(t) has then a discontinuity at t = b/v, jumping from 1 to a

lower finite value [19]. The previous expression has a simple physical interpretation: the

quantity exp (−bα/2v) is the probability that a particle has not changed its direction of

motion up to time t = b/v (thus ensuring that it reaches the boundary at time t = b/v)

and η = 2ǫ/(ǫ+1) is the absorption probability. Hence the second term in the right-hand

side of Eq. (71) is the probability that a particle is absorbed exactly at time t = b/v.
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7.3. Large volume limit

We now analyze the behavior of the probability distribution ϕ in the large volume limit,

b→ ∞. In this limit the mean time to absorption Eq. (66) diverges as

τ ≃ αb2

2v2
(72)

By defining the rescaled time t̂ = t/τ , it is possible to show that, in the large volume

limit, the probability distribution ψ(t̂) has a universal simple form in the Laplace

domain [33]

ψ̃(s) =
1

cosh
√
2s

= sech
√
2s (73)

By expanding in power of s we have

ψ̃(s) =

∞
∑

n=0

2nE2n

(2n)!
sn (74)

where En are the Euler numbers. The generic moments of the distribution are then

easily obtained from Eq. (65)

〈t̂n〉 = (−1)n
2nn!

(2n)!
E2n (75)

For example, the first three moments are 1, 5/3 and 61/15, which, due to the relation

〈tn〉 = τn 〈t̂n〉, correspond to

〈t〉 =
αb2

2v2
(76)

〈t2〉 = 5

3
τ 2 (77)

〈t3〉 = 61

15
τ 3 (78)

in agreement with the large volume limit of Eq.s (66,67,68).

8. Conclusions

Absorption problems in the presence of partially reflecting boundaries have been

analyzed for active particles animated by run-and-tumble dynamics in one space

dimension (telegrapher’s equation). General expressions are obtained for the absorption

time distribution in the Laplace domain and for the mean time to absorption. Brownian

and wave limits are retrieved, respectively, for v, α → ∞ and α → 0. Some interesting

case studies are analyzed: the case of semi-infinite segment, the case of equal boundaries

with the same reflection coefficients, the spatially symmetric case and the case of

coexistence of totally and partially reflecting boundaries. Large volume limit is also

discussed, giving explicit expressions for generic moments of the probability distribution

of absorption time. Reported results can be applied to all the cases in which the system

dynamics is described by a telegraph-like equation.
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