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Abstract—Safe human-machine interactions promote high
flexibility in collaborative workspaces. Fall detection and lo-
calization of the operator are major issues in ensuring a safe
working environment. However, many proposed solutions are not
applicable for deployment in industrial environments due to their
performance limitations in practical contexts. In this paper, we
propose an integrated framework for both localization and fall
detection of operators inside a shared workspace that employs
radio-frequency (RF) signal analysis in real-time. Multipath and
non-line-of-sight (NLOS) scattering that affect RF signal propaga-
tion can be leveraged for human sensing in complex workspaces:
the proposed system continuously monitors the fluctuations of the
RF field across the space by a dense network of WiFi compliant
radio devices operating at 2.4GHz. To increase the accuracy of
the localization system, a sensor fusion algorithm using Extended
Kalman Filter techniques is employed. The proposed method may
be used for integrating measurements from both RF nodes and
an additional image-based system. For fall detection, a Hidden
Markov Model is applied to discern different postures of the
operator and to detect a fall event by tracking the fluctuations
of the wireless signal quality. Fall detector performances are
validated through experimental measurements. The preliminary
results confirm the effectiveness of the proposed approach for
different body configurations and pre-impact postures to correctly
detect a fall event. Finally, some results about sensor fusion for
improved operator localization are presented.

I. INTRODUCTION

Collaborative human-machine workspaces are increasingly
interesting for production flexibility, especially e.g., in the
domain of industrial robotics. In such shared workspaces
no enclosures are present for extending the possibilities of
interaction (see ISO 10218-2 [1] for industrial manipulators)
or as the default operational mode (as in automated guidance
vehicles, AGV, or in mobile manipulation solutions). Machines
remain, nonetheless, hazardous and workers protection is the
topmost key issue in manufacturing environments [2]. The
range of safeguarding measures relies on the sensing infor-
mation for extracting context awareness from the cooperative
environment. Risk reduction measures, in fact, strongly depend
on the possibilities of timely detection of hazardous situations.
Hazards notably include the probability of collisions and the

misplacement of operators with respect to a given task. Coun-
termeasures for misplacement include, in fact, the operator
localization (to detect operators in wrong places) and posture
detection (wrong configuration in the right place). Operator
fall detection is therefore a major aspect that combines full in-
formation about workers safety. It is also a substantial sensory
input when working at heights above two meters or in places
with dangerous gas and chemical vapors [3]. A fall detection
system can be defined as an assistant device whose main
objective is to raise an alert when a fall event has occurred. Fall
detectors can be broadly categorized into two types: systems
based on wearable devices [4] and sensor-based context-aware
systems [5]. All solutions regarding both systems, with their
strengths and weaknesses, can gain only partial confidence by
users about their reliability for the deployment in real industrial
environments. Specifically when workers safety is at stake,
solid evidence in detection performance is the major driver
for the monitoring system design choice. Provided that no
single technology can solve the problem related to continuous
operator monitoring (i.e., localization, status of proximity to
machines, onset of hazardous events), the most promising
solution is based on integrated data fusion methods. In this
view, we propose a technique that is devised to contribute to
such worker sensing ecosystem, making use of a distributed
communication infrastructure that may be also be used for
standard M2M tasks.

In this paper, we propose a novel approach to context-
aware fall detection and operator localization that leverages the
Radio-Frequency (RF) signal fluctuations for human sensing.
Human motion and time-varying posture affects both RF
signal attenuation and multipath propagation in such a way
that it can be leveraged for ubiquitous sensing of humans in
complex spaces. Recent research shows that the perturbations
of the RF fields that are usually adopted for wireless data
transmission (i.e., in the 2-5GHz bands) can be used as
powerful sensing tool for a number of applications ranging
from human body motion detection to localization. Radio
devices deployed in the industrial space can therefore not only
serve as ubiquitous communication interfaces, but they are
also expected to incorporate novel sensing capabilities with



Fig. 1. Wireless network deployment in the Human-Robot shared environ-
ment: example of RF signal inspection for human sensing inside the detection
area.

the goal of acquiring an accurate human-scale understanding
of space and motion. The proposed system is designed to
continuously monitor the fluctuations of the RF field across
the workspace by a dense network of radio devices (see Fig.
1). These devices form a pre-existing or a newly deployed
network placed at arbitrary locations around the monitored
area and able to exchange digital information by exploiting any
wireless industrial communication protocol (e.g., WiFi, IEEE
802.15.4, WirelessHART, ISA SP100). RF signals of interest
are either narrowband or wideband, in licensed or unlicensed
frequency bands, preferably above 2GHz to better capture
human-induced fading. The presence, position and motion of
a human body affect the nearby RF field in a predictable way,
making possible to estimate and track its activity without the
need to deploy and calibrate any additional wearable sensor
(sensor-free detection), neither to ask for specific user actions
(non-cooperative detection).

In this study, a log-normal model is defined where the re-
ceived signal strength (RSS) mean and variance are expressed
as functions of the human movement. When fall event is
occurred, power fluctuation received by the wireless link in
the covered area increases, while it reduces in stable situations,
like sitting, standing or lying down. We apply Hidden Markov
Model (HMM) [6] during real-time detection. We train the
HMM using RF signal perturbations and the outputs i.e.,
human motion transition state and its observation probability,
describe a reliable human fall detection indicator.

An important issue in human motion detection is the timing
of sensing (refresh rate and latency). In this study, a robust
sensor fusion approach is applied with a twofold purpose.
First, a general sensor information blending is reckoned to
be efficient when full reliability can only be obtained from the
combination of multiple sources. Second, due to the relative
low rate of RF and e.g., vision sources, the sensor fusion
techniques make use of prediction filters that provide a faster
likely detection at the cost of some larger spatial uncertainty.

The main contributions of this paper include: i) the def-
inition and the experimental validation of a HMM method
for fall detection and real-time localization of the operator in
the workspace using fixed WiFi compliant devices deployed
around the workspace area; ii) the design of a sensor fusion

framework that integrates the sensor-less RF-based human
sensing technology with image sensors (i.e., 3D Time-of-
Flight cameras) for the purpose of fast real-time estimation
of the most likely location/posture of operators by using slow
samples.
The paper is organized as follows: the related work is reviewed
in Sect. II. The proposed method for human fall detection is
described in Sect. III, while in Sect. IV experimental mea-
surements using software-defined radio devices are conducted.
The sensor fusion framework is illustrated in Sect. V for
operator localization inside the workspace area. Conclusions
are presented in Sect. VI.

II. RELATED WORK

Systems and solutions developed to detect and localize
the fall event can be divided into two main approaches based
on the sensing technologies employed. The first approach is
based on the use of wearable devices and sensors, such as
accelerometers, wireless and posture sensors [7]. The second,
classified as a context-aware system, is based on camera/video
data, acoustic sources and/or other event sensing [8]. In most
cases, the performance of the detector is expressed in terms
of sensitivity (SE) and specificity (SP). The sensitivity is the
ability of a detector to correctly classify a fall as a fall, while
the specificity is the ability of a detector to correctly classify
an activities of daily living (ADL) as ADL [9].

A. Wearable devices and sensors

Fall detectors on wearable devices and sensors can measure
acceleration combined with other methods [10]. Their main
objective is to discriminate between fall events and activities
of daily living (ADL), like sitting down or going from standing
position to lying down.

The vast majority of wearable fall detectors are in the form
of accelerometer devices . Some of them also incorporate other
sensors such as gyroscopes to obtain information about the
position. The use of applications based on accelerometers and
gyroscopes in gait and balance evaluation, fall risk assessment
and mobility monitoring has been actively explored [11].
Cheng et al. [12] implemented daily activity monitoring and
fall detection using a decision tree: A decision tree is applied
to the angles of all the body postures and recognize posture
transitions. They considered the four types of falls: from
standing to face-up lying, face-down lying, left-side lying, and
right-side with SE equal to 95.33 %. Dynamic gait activities
are also identified using Hidden Markov Models through
surface electromyography signals along with the acceleration
signals.

Today’s smart-phones come with a rich set of embedded
sensors, such as an accelerometer, digital compass, gyroscope,
GPS, microphone, and camera [13]. However, looking to
the industrial domain, the trend towards smart phone-based
detectors poses several problems. Smart-phone devices were
not initially intended for fall detection and localization nor for
safety critical applications [14]. In addition, in some cases they
are not applicable for industrial workplaces where operators
are not allowed to use personal devices.



B. Context-aware systems

These systems use sensors (i.e., cameras, floor sensors,
infrared sensors, microphones, sound and pressure sensors) de-
ployed in the environment to detect falls. Their main advantage
is that the operator in workplace does not need to wear any
special device. However, their operation is limited to confined
spaces where the sensors have been previously deployed [8].

Liu et al. [15] investigate acoustic fall detection system
to recognize backward, forward and sideways falls (balance,
lose consciousness, trip, slip, reach chair, couch) with 97%
specificity. However, the proposed approach performance is
closely related with different ground and floor.

Li, et al. [16] use a audio sensors (i.e., microphone together
with a floor vibration sensor). However, only limited results
on automated fall detection are reported. Sensors, from other
devices, for example the Kinects infrared sensor can also be
used to create a fall detection system.

Video-based technologies are also exploited for fall de-
tection [17], but video-based technology has the weak script
of limited detection range, and it may disclose the personal
privacy.

Although there has been much research on both wearable
devices and context-aware systems, there are still significant
issues which could hinder the system performance, particularly
for industrial workspace [18]. Moreover, in the context of
functional safety, not all plant operators are supposed to wear
a radio tag supporting fall detection and localization.

III. RF-BASED FALL DETECTION

The system under consideration consists of a pre-existing
deployment of networked wireless field devices exchanging
digital information and measuring the RSS from multiple
links, forwarding these measurements to a Gateway node
serving as access point (AP) (see the simplified setting in
Fig. 2). RSS fluctuations have been analyzed to identify human
motion and localize the operator [19]. The problem under
study in this section is to identify and discriminate operator
falling (described by the state variable F1) from a “safe state”
(indicated as F0) corresponding to an operator located in a
known position xt inside the workspace and in safe conditions
(i.e., sitting, standing or walking inside the detection area).
Human fall detection is carried out by processing the RF signal
strength (received signal strength - RSS) measurements taken
over L peer-to-peer links and real-time collected/processed by
the AP up to time t . Note that the operator does not need
to carry any electronic device and is assumed to freely move
within the detection area by covering (in the safe state F0) the

locations xt ∈ {Hm}NH

m=0 = H̄ , with xt = H0 indicating the
operator located outside the detection zone and NH the number
of monitored positions. Fall detection carried out in this section
assumes the position xt of the operator in the shared workspace
as known or estimated (x̂t = H

m̂
) by following the procedure

illustrated in [18], and also summarized in Sect. V.A. The
operator falling state is not directly observable and is hidden
in to the RSS measurements: this suggests the adoption of an
Hidden Markov Model (HMM) approach.

Fig. 2. RF signal perturbations over time for two co-located wireless links
(in Line-of-Sight - LOS - and non-LOS, respectively), considering an operator
in non-safe state (sitting, falling and lying down).

A. Signal model for fall detection

As depicted in the example of Fig. 2, a human body falling
from a safe position xt = Hm ∀m > 0 (e.g., from sitting
or standing in safe state F0) is monitored by two co-located
wireless links. Body movements result in a pattern of RSS
shifts with predictable stochastic properties. We define the
temporal sequence of T RSS observations corresponding to a
human body falling as O� = O�(F1) = [o�,1, o�,2....o�,T ], with
o�,t = o�,t(F1) being the RSS observed at time 1 ≤ t ≤ T
and over a wireless link � ∈ L = {1, . . . , L}. Observation (or
RSS) at time t embed the information about hidden state q�,t

o�,t(F1|Hm) = q�,t(F1|Hm) + w�,t(F1|Hm) (1)

with superimposed disturbance w�,t ∼ N
[
0, σ2� (F1|Hm)

]
accounting for random fading, background noise and possible
time-warping effects during RSS collection. Hidden states
q�,t ∈ S�(Hm) = {S1, S2, ..., SN�

} model the “embedded”
temporal sequence of average RF signal attenuations (or shifts)
observed over link � and corresponding to the human body
falling from position Hm. The states follow the Markov
property and are therefore characterized by a stationary state
transition probability distribution A�(Hm) = {aij}, where

aij = P [q�,t+1 = Sj |q�,t = Si], ∀i, j. (2)

In the following section, we investigate fundamental problems,
regarding the Hidden Markov Model (HMM) design, namely:
the evaluation of the probability (or likelihood) of a sequence
of observations given a specific HMM model (evaluation
phase) and the adjustment of model parameters to best account
for the observed signal (training phase). Calibration o HMM
parameters is instead discussed in Sect. III.B.

B. Hidden Markov Model-based fall detection

The hidden Markov model for monitored link � and opera-
tor falling from position Hm is characterized by the following
elements: i) the N� states S�(Hm) = {S1, S2, ..., SN�

}; ii)



the state observations manifold, i.e., in terms of M RSSs
in the range V� = {v1, v2, ..., vM} with v1 = mint[o�,t]
and vM = maxt [o�,t]; iii) the state transition probability
distribution A�(Hm); iv) the observation probability in each
state j, B�(Hm) = {bj(k)},where

bj(k) = P [o�,t = vk|q�,t = Sj ], ∀j, ∀k; (3)

v) the initial state distribution π� = {πi},

πi = P [q�,1 = Si], ∀i. (4)

Given a RSS observation sequence over T samples O� and
the corresponding HMM model sets λ�(Hm) = (A�,B�,π�)
∀�, i characterizing the operator falling for each monitored
link and operator position, the detection system iteratively
computes the likelihood functions P [O�|λ�(Hm)] of the ob-
servation sequence and makes a decision based on this value.

For a given link � and operator position Hm, the likelihood
function is obtained iteratively as [6]-[26]

P [O�|λ�(Hm)] =

N�∑
i=1

αT (i). (5)

where

αt+1(i) =
[ N�∑

i=1

αt(i)ai,j

]
bj(o�,t+1), 1 ≤ t ≤ T − 1, ∀i,

(6)
while at initialization

α1(i) = πibi(o�,1), 1 ≤ i ≤ Nl. (7)

For fall detection we adopt an hard decision metric on each
link: a threshold value τ� is applied to the likelihood function
(5) to detect a possible falling pattern in the surrounding of the
considered link. Non informative links are purged according
to the known link deployment. Given L links the probability
of falling detection given the operator position xt = Hm is
thus evaluated as

Pfall =
1

L
×
∑
�∈L

1P [O�|λ�(Hm)]>τ� (8)

with 1x>τ�(x) being the indicator function for link �:
1x>τ�(x) = 1 if x > τ� and 1x>τ�(x) = 0 otherwise.

For model training, we use an iterative Baum-Welch [6]
procedure to adjust the parameters characterizing the HMM
(A�,B�, π�) for each link and operator position. Given a set
of training RSS data the HMM parameters are chosen to
maximize the probability of the observation sequence given
the model.

IV. EXPERIMENTAL ACTIVITY

In this section, experiments are designed to evaluate the
fall detection algorithm performance as well as the ability of
the algorithm to discern the fall from other operator activities.
Experimental results include the fall detection algorithm sen-
sitivity to different human body types and real time detection,
and its specificity to recognize falling from sitting and standing
activities.

A. Experimental setup

An hardware platform has been set up for the experiments
based on software defined radio devices deployed in pre-
defined positions and exchanging digital information over
2.4GHz bands and using a WiFi (IEEE 802.11b) compliant
physical layer radio interface. A depicted in Fig. 2, a single
antenna transmitter is communicating with a receiver em-
ploying two antennas (with spacing of 2λ � 24cm, and λ
being the propagation wavelength), the receiver is connected
to the AP and processing the RSSs observations from L = 2
wireless links (in Line-of-Sight - LOS - and obstructed by
the operator or in non-LOS - NLOS, respectively). The RSS
measurements corresponding to human falling have registered
for 10 seconds while RSS sampling time is 2 microseconds.
We implemented two scenarios regarding two subjects with
dissimilar body builds for each scenario. In the first scenario,
the subject sits on a chair and falls after 4 seconds, while in the
second scenario, the subject stands and falls after 5 seconds.
Measurements are obtained for 5 consequent observations for
real time monitoring in presence of WiFi traffic interference.

B. Experimental result

1) Hidden Markov Model training: As discussed in
Sec. III-B, during training phase the model parameters are esti-
mated. Fig. 4 represents state probability over time for NLOS
link. Y axis shows the 7 estimated states using the Markov
Model (i.e., defined in terms of relative RSS attenuation with
respect to operator in safe state F0). Colored spectrum shows
the evolution of state probabilities over time and highlight the
distribution of RF perturbation.

2) Fall detection: In order to detect the fall event, we set
threshold value, τ� for the likelihood corresponding to each
link in 5. Fig. 5 shows the likelihood and threshold level
corresponding to the LOS and NLOS links for the windowing
signal. If the alarm system obtains the likelihood more than
the threshold value, the alarm raises.

3) Fall detection for humans with different heights: We
have selected two test subjects with 160 and 180 cm heights.
Subjects with dissimilar body builds are deliberately chosen to
study the potential effect of the height on the results. Fig. 6
shows fall detection and the corresponding likelihood function
(5) for LOS and NLOS links for both subjects with threshold
levels. Different heights cause different fall velocity and thus
different signal perturbations. Fig. 6 confirms that fall detection
algorithm tracks fall event accurately, regardless of the human
height. Also, the use of fall detection algorithm based on the
HMM modeling is effective to balance time-warping effects
among partially aligned sequences (due to random/imperfect
body movements).

4) Fall detection and pre-impact posture: Fig. 7 shows
that the fall detection algorithm recognizes fall event from
sitting and standing, pre-impact activities, due to HMM clear
discrimination even for small perturbations.

V. OPERATOR LOCALIZATION AND SENSOR FUSION

Stand-alone fall detection of operators in industrial environ-
ments pairs with the broader service of operator localization
inside some man-machine shared workspace. Actions that



Fig. 3. Integrated sensor fusion scheme for localization (gray) and fall detection (black) modules, all concurring as multiple inputs to a safety package for
worker protection.

Fig. 4. (a) The recieved signal, (b) Markov model state probability over time
for 6 estimated states (i.e., RF signal attenuation level) over NLOS link.

Fig. 5. Likelihood and threshold for fall detection, (a) recieved signal, (b)
LOS link,(c) NLOS link

might be taken on the onset of falling depend on the analysis
of potential hazards, which in turn are task-dependent and,
consequently, location-dependent. As introduced in Sect. III,
RF systems appear as a complementary enabling technology
for workers localization because it differentiates from e.g.,
vision in strengths/weaknesses. As a matter of fact, sensor
fusion is reckoned as the mainstream approach to blend
reliable information at a detection rate compatible with worker
safety assessment. Workers hazardous situations are intrinsi-
cally fast (i.e., falling or walking into collision), in the range
of [0.5, 2] m/s of human speed. Sensing information has not
only to be fused but also to be provided at frequency high
enough to capture such events. The following subsections are
discussing (V-A) a sensor-less localization approach making

Fig. 6. Fall event and RF signal perturbations and related likelihood for two
subjects with different heights, (a) 160 cm, and (b) 180 cm over LOS and
NLOS links.

Fig. 7. Real time fall tracking and pre-impact postures, (a) fall from sit, and
(b) fall from stand for NLOS link.

use of the introduced wireless architecture and (V-B) the sensor
fusion methodology adopted for human motion over-sampled
estimation.

A. Sensor-less RF-based positioning algorithm

The problem is to detect the presence and the position
of a single target (i.e., the operator) in safe state (i.e., not
falling, nor lying on the floor: F0) moving inside a workspace
shared with moving obstacles, e.g., a robot arm. Standing the
same considerations for fall detection (weaknesses in wearable
technologies), it might not be straightforward to have workers
wearing a radio tag supporting localization. The Device-Free
Localization (DFL) approach is based instead on the analysis
of the fluctuations of radio-frequency (RF) electromagnetic



waves (originated by a pre-existing wireless network) to detect
the presence of obstructing people [22]-[23] and, in turn, to
track their positions.

Operator localization is based on the RSS measurements taken
over the same L peer-to-peer links used for fall detection (see
Sect. III). Similarly as for fall detection, the target position
xt is not directly observable but it is hidden into the noisy
RSS measurements o�,t Single target localization can be based
on the maximum likelihood estimation (MLE) algorithm [18]
where RSS measurements o�,t(Hm|F0) are characterized, ∀� ∈
L, in terms of absence (i.e., xt = H0) or presence (i.e., xt =
Hm) of the target in the covered area as

o�,t(Hm|F0) =

{
h�(H0|F0) + w�(H0|F0), if xt = H0

h�(Hm|F0) + w�(Hm|F0), if xt = Hm.
(9)

For target absent, h�(H0|F0) and w�(H0|F0) represent,
in terms of average received power, the effects of fixed
obstructions on propagation and the effects of variations in
the surrounding environment in terms of random shadowing,
respectively. In case of target presence, the measured RSS is
subject to a perturbation that depends on the specific location
Hm. Therefore, both deterministic path-loss h�(Hm|F0) and
random fading w�(Hm|F0) ∼ N(0, σ2� (Hm|F0)) provide
information on the target location and are thus modeled as
function of Hm. The target location is estimated with the
MLE algorithm: the joint log-likelihood Λ(Ot|Hm,F0)) with
Ot = [o1,t, ..., oL,t] collecting the RSS observations for all
monitored links at time t, is evaluated, ∀m = 0, ..., NH as

Λ(Ot|Hm,F0) =

L∑
�=1

ln [P (o�,t|Hm,F0)] . (10)

with likelihood function for RSS sample o�,t

P (o�,t|.) =

=
1

(2π)1/2σ�(Hm|F0)
exp

{
−1
2

[s�,t − h�(Hm|F0)]
2

σ2� (Hm|F0)

}
.

Finally, the target location is estimated as x̂t = H
m̂

where

m̂ = argmax
Hm

Λ(st|Hm,F0). (11)

B. EKF approach to sensor fusion

The target location from DFL (xDFL
t in Fig. 3) is fused

with other sensors (e.g., cameras) in order to provide an
oversampled observation of the target likely location.The data
from the sensors is fused to a combined estimate resulting
in a more accurate localization.The resulting estimation x̂t

may be used directly for collision detection of the target (e.g.,
obstacle avoidance in the case of human-robot workspace)
and for injecting information on the fall detection function
(Fig. 3). The fused target localization is the result of a
standard Extended Kalman Filtering (EKF) as in [20]. The
predictor is a fast motion estimation based on second-order
kinematics model [24] (or a random walk, alternatively). The
prediction rate is as fast as 1kHz so to provide timely yet

Fig. 8. Performance comparison of sensor fusion schemes: distribution of
RMSE along a sample simulated human-motion trajectory. Algorithm with the
best performance in red.

inaccurate location information. Recall that for safety purposes
it is judged preferable to have spatially uncertain information
rather than no information during a blind timeframe between
samples. The update step is in the form of the Indirect Filter
approach, which plainly merges the fusing sources without
pre-filtering and/or feedforwarding/feedbacking. We verified
that Indirect Filtering is best performing (see Fig. 8) in the
given experimental setup w.r.t alternative schemes [25]. For the
purpose of designing the fusion scheme, the fusing sources are
generated with different levels of sampling noise and different
prediction/update ratios (i.e., number of guesses without sensor
information).

The inaccuracy of fused information is derived from the
filter covariance. In any estimated position, target inaccuracy
can be represented with a circumference centered in the
estimated position and radius equal to 2σ. The envelope of
these circles create a variable 2D spatial boundary around the
estimated trajectory (right part of Fig. 9). The variability of
spatial boundary largely depends on the prediction update ratio.
Performing the same trajectory with a larger prediction/update
ratio, makes the average size of the uncertainty to grow, as
reported in Fig. 10.

Fig. 9. Sample trajectory 2D projections: (left) nominal trajectory and sensors
samples; (right) zoom-in of the estimated target path (black) with a 2σ-wide
confidence (gray circle), enveloped (gray) all along the path.
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Fig. 10. Mean squared error of the estimated path localization, fused from 2
sources, under different prediction:update ratios. Slow sensors make the ratio
to increase, increasing the filter covariance.

VI. CONCLUSIONS

This paper described a device-free fall detection and local-
ization approach in human-machine shared workspaces. The
proposed algorithm exploits RF signal perturbations, obtained
through wireless devices deployed around the workspaces,
to extract human motion and posture features. The location-
based Hidden Markov Model exploits features to detect the fall
event. Also, a sensor fusion scheme using both image-based
sensors and RF devices is proposed to provide oversampled
measurements to localize the operator. Experimental activity
was conducted to validate the algorithms while preliminary
results confirm the effectiveness of the approach in terms of
sensitivity and specificity to detect fall events. Future develop-
ments will be focused on body action/gesture recognition for
fall prediction.
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